151
|
Tate M, Perera N, Prakoso D, Willis AM, Deo M, Oseghale O, Qian H, Donner DG, Kiriazis H, De Blasio MJ, Gregorevic P, Ritchie RH. Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:719290. [PMID: 34690762 PMCID: PMC8532155 DOI: 10.3389/fphar.2021.719290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a major contributor to the increasing burden of heart failure prevalence globally, at least in part due to a disease process termed diabetic cardiomyopathy. Diabetic cardiomyopathy is characterised by cardiac structural changes that are caused by chronic exposure to the diabetic milieu. These structural changes are a major cause of left ventricular (LV) wall stiffness and the development of LV dysfunction. In the current study, we investigated the therapeutic potential of a cardiac-targeted bone morphogenetic protein 7 (BMP7) gene therapy, administered once diastolic dysfunction was present, mimicking the timeframe in which clinical management of the cardiomyopathy would likely be desired. Following 18 weeks of untreated diabetes, mice were administered with a single tail-vein injection of recombinant adeno-associated viral vector (AAV), containing the BMP7 gene, or null vector. Our data demonstrated, after 8 weeks of treatment, that rAAV6-BMP7 treatment exerted beneficial effects on LV functional and structural changes. Importantly, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-BMP7. This was associated with a reduction in cardiac fibrosis, cardiomyocyte hypertrophy and cardiomyocyte apoptosis. In conclusion, BMP7 gene therapy limited pathological remodelling in the diabetic heart, conferring an improvement in cardiac function. These findings provide insight for the potential development of treatment strategies urgently needed to delay or reverse LV pathological remodelling in the diabetic heart.
Collapse
Affiliation(s)
- Mitchel Tate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nimna Perera
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Osezua Oseghale
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hongwei Qian
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel G Donner
- Preclinical Microsurgery and Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Microsurgery and Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, The University of Washington, Seattle, WA, United States
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
152
|
Han X, Fan Z. MicroRNAs Regulation in Osteogenic Differentiation of Mesenchymal Stem Cells. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.747068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cell with the potential of self-renewal and multidirectional differentiation. They can be obtained from a variety of tissues and can differentiate into a variety of cell types under different induction conditions, including osteoblasts. Because of this osteogenic property, MSCs have attracted much attention in the treatment of bone metabolism-related diseases. MicroRNAs (miRNAs), as an epigenetic factor, are thought to play an important regulatory role in the process of osteogenic differentiation of MSCs. In recent years, increasingly evidence shows that miRNAs imbalance is involved in the regulation of osteoporosis and fracture. In this review, miRNAs involved in osteogenic differentiation and their mechanisms for regulating the expression of target genes are reviewed. In addition, we also discuss the potential clinical applications and possible directions of this field in the future.
Collapse
|
153
|
Lee S, Chae DS, Song BW, Lim S, Kim SW, Kim IK, Hwang KC. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials. Int J Mol Sci 2021; 22:ijms221910586. [PMID: 34638927 PMCID: PMC8508846 DOI: 10.3390/ijms221910586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently published clinical trials involving the use of adipose-derived stem cells (ADSCs) indicated that approximately one-third of the studies were conducted on musculoskeletal disorders (MSD). MSD refers to a wide range of degenerative conditions of joints, bones, and muscles, and these conditions are the most common causes of chronic disability worldwide, being a major burden to the society. Conventional treatment modalities for MSD are not sufficient to correct the underlying structural abnormalities. Hence, ADSC-based cell therapies are being tested as a form of alternative, yet more effective, therapies in the management of MSDs. Therefore, in this review, MSDs subjected to the ADSC-based therapy were further categorized as arthritis, craniomaxillofacial defects, tendon/ligament related disorders, and spine disorders, and their brief characterization as well as the corresponding conventional therapeutic approaches with possible mechanisms with which ADSCs produce regenerative effects in disease-specific microenvironments were discussed to provide an overview of under which circumstances and on what bases the ADSC-based cell therapy was implemented. Providing an overview of the current status of ADSC-based cell therapy on MSDs can help to develop better and optimized strategies of ADSC-based therapeutics for MSDs as well as help to find novel clinical applications of ADSCs in the near future.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University, Gangneung 210-701, Korea;
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| |
Collapse
|
154
|
Zhang J, Zhang G, Miao Y. Identification, Molecular Characterization, and Tissue Expression Profiles of Three Smad Genes from Water Buffalo ( Bubalus bubalis). Genes (Basel) 2021; 12:genes12101536. [PMID: 34680931 PMCID: PMC8535384 DOI: 10.3390/genes12101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
Smads are involved in a variety of biological activities by mediating bone morphogenetic protein (BMP) signals. The full-length coding sequences (CDSs) of buffalo Smads 1, 4, and 5 were isolated and identified through RT-PCR in this study. Their lengths are 1398 bp, 1662 bp, and 1398 bp, respectively. In silico analysis showed that their transcriptional region structures, as well as their amino acid sequences, physicochemical characteristics, motifs, conserved domains, and three-dimensional structures of their encoded proteins are highly consistent with their counterparts in the species of Bovidae. The three Smad proteins are all hydrophilic without the signal peptides and transmembrane regions. Each of them has an MH1 domain and an MH2 domain. A nuclear localization sequence was found in the MH1 domain of buffalo Smads 1 and 5. Prediction showed that the function of the three Smads is mainly protein binding, and they can interact with BMPs and their receptors. The three genes were expressed in all 10 buffalo tissues assayed, and their expression in the mammary gland, gonad, and spleen was relatively high. The results here indicate that the three buffalo Smads may be involved in the transcriptional regulation of genes in a variety of tissues.
Collapse
|
155
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
156
|
Santibanez JF, Obradović H, Krstić J. BMP2 downregulates urokinase-type plasminogen activator via p38 MAPK: Implications in C2C12 cells myogenic differentiation. Acta Histochem 2021; 123:151774. [PMID: 34450502 DOI: 10.1016/j.acthis.2021.151774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Bone morphogenetic protein (BMP)2 strongly affects the differentiation program of myoblast cells by inhibiting myogenesis and inducing osteogenic differentiation. In turn, extracellular matrix (ECM) proteinases, such as urokinase-type plasminogen activator (uPA), can influence the fate of muscle stem cells by participating in ECM reorganization. Although both BMP2 and uPA have antagonistic roles in muscles cells differentiation, no connection between them has been elucidated so far. This study aims to determine whether BMP2 regulates uPA expression in the myogenic C2C12 cell line and its impact on muscle cell fate differentiation. Our results showed that BMP2 did not modify C2C12 cell proliferation in a growth medium or myogenic differentiation medium. Although BMP2 inhibited myogenesis and induced osteogenesis, these effects were achieved with different doses of BMP2. Low concentrations of BMP2 blocked myogenesis, while a higher concentration was needed to induce osteogenesis. Reduced uPA expression was noticed alongside myogenic inhibition at low concentrations of BMP2. BMP2 activated p38 MAPK signaling to inhibit uPA activity. Furthermore, ectopic human uPA expression reduced BMP2's ability to inhibit the myogenic differentiation of C2C12 cells. In conclusion, BMP2 inhibits uPA expression through p38 MAPK and in vitro myogenesis at non-osteogenic concentrations, while uPA ectopic expression prevents BMP2 from inhibiting myogenesis in C2C12 cells.
Collapse
|
157
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Pignolo RJ, Hsiao EC, Baujat G, Lapidus D, Sherman A, Kaplan FS. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: estimate from three treatment centers and a patient organization. Orphanet J Rare Dis 2021; 16:350. [PMID: 34353327 PMCID: PMC8340531 DOI: 10.1186/s13023-021-01983-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP), an ultra-rare, progressive, and permanently disabling disorder of extraskeletal ossification, is characterized by episodic and painful flare-ups and irreversible heterotopic ossification in muscles, tendons, and ligaments. Prevalence estimates have been hindered by the rarity of FOP and the heterogeneity of disease presentation. This study aimed to provide a baseline prevalence of FOP in the United States, based on contact with one of 3 leading treatment centers for FOP (University of Pennsylvania, Mayo Clinic, or University of California San Francisco), the International Fibrodysplasia Ossificans Progressiva Association (IFOPA) membership list, or the IFOPA FOP Registry through July 22, 2020. RESULTS Patient records were reviewed, collected, and deduplicated using first and last name initials, sex, state, and year of birth. A Kaplan-Meier survival curve was applied to each individual patient to estimate the probability that he or she was still alive, and a probability-weighted net prevalence estimate was calculated. After deduplication, 373 unique patients were identified in the United States, 294 of whom who were not listed as deceased in any list. The average time since last contact for 284 patients was 1.5 years. Based on the application of the survival probability, it is estimated that 279 of these patients were alive on the prevalence date (22 July 2020). An adjusted prevalence of 0.88 per million US residents was calculated using either an average survival rate estimate of 98.4% or a conservative survival rate estimate of 92.3% (based on the Kaplan-Meier survival curve from a previous study) and the US Census 2020 estimate of 329,992,681 on prevalence day. CONCLUSIONS This study suggests that the prevalence of FOP is higher than the often-cited value of 0.5 per million. Even so, because inclusion in this study was contingent upon treatment by the authors, IFOPA membership with confirmed clinical diagnosis, and the FOP Registry, the prevalence of FOP in the US may be higher than that identified here. Thus, it is imperative that efforts be made to identify and provide expert care for patients with this ultra-rare, significantly debilitating disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Geriatric Medicine & Gerontology, Robert and Arlene Kogod Professor of Geriatric Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Edward C Hsiao
- Robert L. Kroc Chair in Rheumatic and Connective Tissue Diseases III, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA.,Department of Medicine, Institute for Human Genetics, University of California, San Francisco, CA, USA.,Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Genevieve Baujat
- Department of Clinical Genetics, INSERM U1163, Paris-Descartes University, Imagine Institute, Necker-Enfants Malades Hospital, Paris, France
| | | | - Adam Sherman
- The International FOP Association, North Kansas City, MO, USA
| | - Frederick S Kaplan
- Departments of Orthopaedic Surgery and Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,The Center for Research in FOP & Related Disorders, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
159
|
Lui H, Samsonraj RM, Vaquette C, Denbeigh J, Kakar S, Cool SM, Dudakovic A, van Wijnen AJ. Combination of BMP2 and EZH2 Inhibition to Stimulate Osteogenesis in a 3D Bone Reconstruction Model. Tissue Eng Part A 2021; 27:1084-1098. [PMID: 33234056 PMCID: PMC8851245 DOI: 10.1089/ten.tea.2020.0218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
High concentrations of bone morphogenetic protein 2 (BMP2) in bone regeneration cause adverse events (e.g, heterotopic bone formation and acute inflammation). This study examines novel epigenetic strategies (i.e., EZH2 inhibition) for augmenting osteogenesis, thereby aiming to reduce the required BMP2 dose in vivo for bone regeneration and minimize these adverse effects. Human bone marrow-derived mesenchymal stem cells (BMSCs) were grown on three-dimensional (3D)-printed medical-grade polycaprolactone scaffolds and incubated in osteogenic media containing 50 ng/mL BMP2 and/or 5 μM GSK126 (EZH2 inhibitor) for 6 days (n = 3 per group and timepoint). Constructs were harvested for realtime quantitative polymerase chain reaction analysis at Day 10 and immunofluorescence (IF) microscopy at Day 21. After pretreating for 6 days and maintaining in osteogenic media for 4 days, BMSC-seeded scaffolds were also implanted in an immunocompromised subcutaneous murine model (n = 39; 3/group/donor and 3 control scaffolds) for histological analysis at 8 weeks. Pretreatment of BMSCs with BMP2 and BMP2/GSK126 costimulated expression of osteoblast-related genes (e.g., IBSP, SP7, RUNX2, and DLX5), as well as protein accumulation (e.g., collagen type 1/COL1A1 and osteocalcin/BGLAP) based on IF staining. While in vivo implantation for 8 weeks did not result in bone formation, increased angiogenesis was observed in BMP2 and BMP2/GSK126 groups. This study finds that BMP2 and GSK126 costimulate osteogenic differentiation of MSCs on 3D scaffolds in vitro and may contribute to enhanced vascularization when implanted in vivo to support bone formation. Thus, epigenetic priming with EZH2 inhibitors may have translational potential in bone healing by permitting a reduction of BMP2 dosing in vivo to mitigate its side effects. Impact statement While autografts are still the gold standard for bone reconstruction, tissue availability and donor morbidity are significant limitations. Previous attempts to use high concentrations of bone morphogenetic protein 2 (BMP2) have been shown to cause adverse events such as excessive bone formation and acute inflammation. Overall, the utilization of EZH2 inhibitors to modulate gene expression in favor of bone healing has been demonstrated in vitro in a tissue engineering strategy. Our study will pave the way to developing tissue engineering strategies involving GSK126 as an adjuvant to increase the effects of BMP2 for stimulating cells of interest on a three-dimensional scaffold for bone regeneration.
Collapse
Affiliation(s)
- Hayman Lui
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebekah M. Samsonraj
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon M. Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
160
|
Yi X, Wu P, Liu J, He S, Gong Y, Xiong J, Xu X, Li W. Candidate kinases for adipogenesis and osteoblastogenesis from human bone marrow mesenchymal stem cells. Mol Omics 2021; 17:790-795. [PMID: 34318850 DOI: 10.1039/d1mo00160d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors. Despite the recognition of the importance of protein phosphorylation in adipo-osteoblastocyte biology, relatively little is known about the specific kinases for adipo-osteoblastogenesis. Here, we constructed the comprehensive gene transcriptional landscapes of kinases at 3, 5, and 7 days during adipo-osteoblastogenesis from human bone marrow mesenchymal stem cells (hMSCs). We identified forty-four and eight significant DEGs (differentially expressed genes) separately for adipo-osteoblastogenesis. Five significant DEGs, namely CAMK2A, NEK10, PAK3, PRKG2, and PTK2B, were simultaneously shared by adipo-osteoblastogenic anecdotes. Using a lentivirus system, we confirmed that PTK2B (non-receptor protein tyrosine kinase 2 beta) simultaneously inhibited adipo-osteoblastogenesis through RNAi assays, and PRKG2 (protein kinase cGMP-dependent 2) facilitated adipogenesis and weakened osteoblastogenesis. The only certainty was that the identified candidate significant DEGs encoding kinases responsible for protein phosphorylation, especially PTK2B and PRKG2, were the potential molecular switches of cell fate determination for hMSCs. This study would provide novel study targets for hMSC differentiation and potential clues for the therapy of the adipo-osteoblastogenic balance-derived disorders.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Shan He
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianjun Xiong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| |
Collapse
|
161
|
Comparative Transcriptome Analysis of Human Adipose-Derived Stem Cells Undergoing Osteogenesis in 2D and 3D Culture Conditions. Int J Mol Sci 2021; 22:ijms22157939. [PMID: 34360705 PMCID: PMC8347556 DOI: 10.3390/ijms22157939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are types of mesenchymal stem cells (MSCs) that have been used as tissue engineering models for bone, cartilage, muscle, marrow stroma, tendon, fat and other connective tissues. Tissue regeneration materials composed of hADSCs have the potential to play an important role in reconstituting damaged tissue or diseased mesenchymal tissue. In this study, we assessed and investigated the osteogenesis of hADSCs in both two-dimensional (2D) and three-dimensional (3D) culture conditions. We confirmed that the hADSCs successfully differentiated into bone tissues by ARS staining and quantitative RT–PCR. To gain insight into the detailed biological difference between the two culture conditions, we profiled the overall gene expression by analyzing the whole transcriptome sequencing data using various bioinformatic methods. We profiled the overall gene expression through RNA-Seq and further analyzed this using various bioinformatic methods. During differential gene expression testing, significant differences in the gene expressions between hADSCs cultured in 2D and 3D conditions were observed. The genes related to skeletal development, bone development and bone remodeling processes were overexpressed in the 3D culture condition as compared to the 2D culture condition. In summary, our RNA-Seq-based study proves effective in providing new insights that contribute toward achieving a genome-wide understanding of gene regulation in mesenchymal stem cell osteogenic differentiation and bone tissue regeneration within the 3D culture system.
Collapse
|
162
|
Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu HMI, Nishimori K, Morrison C, Hsu W. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 2021; 13:13/583/eabb4416. [PMID: 33658353 DOI: 10.1126/scitranslmed.abb4416] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Skeletal stem cells from the suture mesenchyme, which are referred to as suture stem cells (SuSCs), exhibit long-term self-renewal, clonal expansion, and multipotency. These SuSCs reside in the suture midline and serve as the skeletal stem cell population responsible for calvarial development, homeostasis, injury repair, and regeneration. The ability of SuSCs to engraft in injury site to replace the damaged skeleton supports their potential use for stem cell-based therapy. Here, we identified BMPR1A as essential for SuSC self-renewal and SuSC-mediated bone formation. SuSC-specific disruption of Bmpr1a in mice caused precocious differentiation, leading to craniosynostosis initiated at the suture midline, which is the stem cell niche. We found that BMPR1A is a cell surface marker of human SuSCs. Using an ex vivo system, we showed that SuSCs maintained stemness properties for an extended period without losing the osteogenic ability. This study advances our knowledge base of congenital deformity and regenerative medicine mediated by skeletal stem cells.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ronay Stevens
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alan Boka
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura DiRienzo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Connie Chang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hsiao-Man Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine and Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City 960-1295, Japan
| | - Clinton Morrison
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
163
|
Souza ATP, Lopes HB, Oliveira FS, Weffort D, Freitas GP, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. The extracellular matrix protein Agrin is expressed by osteoblasts and contributes to their differentiation. Cell Tissue Res 2021; 386:335-347. [PMID: 34223979 DOI: 10.1007/s00441-021-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources. Moreover, the disruption of Agrin impaired the expression of its receptors and osteoblast differentiation, and the treatment with recombinant Agrin slightly increase this process. In addition, whilst Agrin knockdown downregulated the expression of genes related to Wnt and BMP signalling pathways, the addition of Agrin had no effect on these genes. Altogether, these data uncover the contribution of Agrin to osteoblast differentiation and suggest that, at least in part, an Agrin-Wnt-BMP circuit is involved in this process. This makes Agrin a candidate as target for developing new therapeutic strategies to treat bone-related diseases and injuries.
Collapse
Affiliation(s)
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Weffort
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
164
|
Zhang YL, Liu L, Peymanfar Y, Anderson P, Xian CJ. Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22137210. [PMID: 34281266 PMCID: PMC8269269 DOI: 10.3390/ijms22137210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.
Collapse
|
165
|
Liu X, Liu X, Du Y, Hu M, Tian Y, Li Z, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. DUSP5 promotes osteogenic differentiation through SCP1/2-dependent phosphorylation of SMAD1. STEM CELLS (DAYTON, OHIO) 2021; 39:1395-1409. [PMID: 34169608 PMCID: PMC8518947 DOI: 10.1002/stem.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
Dual‐specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C‐terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2‐dependent manner. Specifically, DUSP5 attenuates the SCP1/2‐SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xuenan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yangge Du
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Menglong Hu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yueming Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Zheng Li
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Longwei Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xiao Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yunsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Ping Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
166
|
Xie S, Zhao C, Chen W, Li G, Xiong Z, Tang X, Zhang F, Xiao H. Recombinant human bone morphogenetic protein 2 and 7 inhibit the degeneration of intervertebral discs by blocking the Puma-dependent apoptotic signaling. Int J Biol Sci 2021; 17:2367-2379. [PMID: 34239363 PMCID: PMC8241732 DOI: 10.7150/ijbs.56823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/26/2021] [Indexed: 11/06/2022] Open
Abstract
Recombinant human bone morphogenetic proteins (rhBMPs) can stimulate bone formation and growth in the treatment of spinal fusions and nonunions. However, it is still unclear whether rhBMPs function in the prevention of intervertebral disc degeneration (IDD). Here, we discovered that BMP levels were decreased in IDD patients, which impaired the BMP/Smad (Mothers against decapentaplegic homologs) signaling. Conducting a microarray assay in Smad4-knockdown cells, we found that expression of PUMA (p53-upregulated modulator of apoptosis) was significantly induced. The molecular analysis revealed that Smad4 recruited HDAC1 (histone deacetylase 1) and the phosphorylated Smad1/5/8 to dock on the promoter of PUMA to repress its expression. The impairment of BMP/Smad signaling in IDD patients caused the significant induction of Puma-dependent apoptosis and resulted in the pathogenesis of IDD. In vitro knockdown of BMP receptors (BMPR1a and BMPR2) in nucleus pulposus (NP) cells could mimic the molecular changes of BMP/Smad signaling and Puma-dependent apoptotic signaling that were observed in IDD patients. Exposing NP cells to RITA (reactivating p53 and inducing tumor apoptosis) small molecule and rhBMP2 (or rhBMP7), we observed that rhBMP2/7 could significantly decrease protein levels of Puma and its downstream proapoptotic molecules, blocking cell apoptosis. Importantly, administration of rhBMPs in aged rats could inhibit the occurrence of IDD. Our results provide a link between BMP/Smad signaling and Puma-dependent apoptotic signaling, revealing a new mechanism of how BMPs contribute to IDD pathogenesis and providing evidence that rhBMPs may decrease apoptosis and improve the outcome of IDD.
Collapse
Affiliation(s)
- Shiwei Xie
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| | - Chenyang Zhao
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| | - Wei Chen
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| | - Gengwu Li
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| | - Zhiwei Xiong
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| | - Xiangjun Tang
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunan, China
| | - Heng Xiao
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua City, Sichuan, 617067, China
| |
Collapse
|
167
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain.,Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
168
|
Abstract
Periodontitis is one of the most prevalent epidemics affecting human health and life recently, and exploration of the pathogenesis and treatment of periodontitis has been valued by scholars. In recent years, sclerostin, a new factor on bone resorption and reconstruction caused by inflammation and mechanical stimulation, has been a research hotspot. This article summarizes the researches on sclerostin in periodontitis development in recent years. Among them, sclerostin has been shown to be a critical negative regulator of bone formation, thereby inhibiting bone remodeling in periodontitis development, and is closely associated with tooth movement. Besides, evidence indicates that the removal of sclerostin seems to reasonably protect the alveolar bone from resorption. Regulation of sclerostin expression is a novel, promising treatment for periodontitis and addresses several complications seen with traditional therapies; accordingly, many drugs with similar mechanisms have emerged. Moreover, the application prospect of sclerostin in periodontal therapy combined with orthodontic treatment is another promising approach. There are also a lot of drugs that regulate sclerostin. Anti-sclerostin antibody (Scl-Ab) is the most direct one that inhibits bone resorption caused by sclerostin. At present, drugs that inhibit the expression of sclerostin have been applied to the treatment of diseases such as multiple myeloma and osteoporosis. Therefore, the application of sclerostin in the oral field is just around the corner, which provides a new therapeutic bone regulation strategy in oral and general health.
Collapse
|
169
|
Chen X, Liu W, Liu B. Ginsenoside Rh7 Suppresses Proliferation, Migration and Invasion of NSCLC Cells Through Targeting ILF3-AS1 Mediated miR-212/SMAD1 Axis. Front Oncol 2021; 11:656132. [PMID: 33996578 PMCID: PMC8116958 DOI: 10.3389/fonc.2021.656132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
It is reported that ginsenosides have a significant anti-tumor effect on a variety of tumors. However, the role and mechanism of Rh7 in non-small cell lung cancer (NSCLC) are unclear. In this study, we aimed to study the anti-tumor effect of Rh7 on the proliferation and progression of NSCLC. Bioinformatics analysis showed that ILF3-AS1 was regulated by ginsenoside Rh7 in NSCLC. Down-regulation of ILF3-AS1 could significantly inhibit the proliferation, metastasis and invasion of NSCLC. In addition, ILF3-AS1 negatively controlled miR-212, which in turn targeted SMAD1 expression, thereby regulating NSCLC cell viability and apoptosis. Our results indicate that ILF3-AS1 can be used as a diagnostic and therapeutic target for non-small cell lung cancer. It is discovered for the first time that ginsenoside Rh7 inhibits the expression of ILF3-AS1 and exerts antitumor effects.
Collapse
Affiliation(s)
| | - Wenguang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
170
|
Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep 2021; 11:8745. [PMID: 33888790 PMCID: PMC8062523 DOI: 10.1038/s41598-021-88058-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Bioactive glasses (BGs) have attracted added attention in the structure of the scaffolds for bone repair applications. Different metal ions could be doped in BGs to induce specific biological responses. Among these ions, strontium (Sr) is considered as an effective and safe doping element with promising effects on bone formation and regeneration. In this experiment, we evaluated the antibacterial activities of the gelatin-BG (Gel-BG) and Gel-BG/Sr scaffolds in vitro. The osteogenic properties of the prepared scaffolds were also assessed in rabbit calvarial bone defects for 12 weeks. Both scaffolds showed in vivo bone formation during 12 weeks with the newly formed bone area in Gel-BG/Sr scaffold was higher than that in Gel-BG scaffolds after the whole period. Based on the histological results, Gel-BG/Sr exhibited acceleration of early-stage bone formation in vivo. The results of antibacterial investigation for both scaffolds showed complete growth inhibition against Escherichia coli (E. coli). Although Gel-BG revealed no antibacterial effect on Staphylococcus aureus (S. aureus), the Gel-BG/Sr was able to partially inhibit the growth of S. aureus, as detected by threefold reduction in growth index. Our results confirmed that Sr doped BG is a favorable candidate for bone tissue engineering with superior antibacterial activity and bone regeneration capacity compared with similar counterparts having no Sr ion.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Eyni
- Department of Anatomical Sciences, Faculty of Medical sceinces, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raziyeh Najafloo
- Department of Bio-Informatics, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
171
|
Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone Morphogenetic Proteins and Diabetic Retinopathy. Biomolecules 2021; 11:biom11040593. [PMID: 33919531 PMCID: PMC8073699 DOI: 10.3390/biom11040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others’ studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Samar Habib
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt;
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Moustafa
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)721-4278 or +1-(706)721-4279
| |
Collapse
|
172
|
Kawecki F, Galbraith T, Clafshenkel WP, Fortin M, Auger FA, Fradette J. In Vitro Prevascularization of Self-Assembled Human Bone-Like Tissues and Preclinical Assessment Using a Rat Calvarial Bone Defect Model. MATERIALS 2021; 14:ma14082023. [PMID: 33920607 PMCID: PMC8073395 DOI: 10.3390/ma14082023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
In vitro prevascularization has the potential to address the challenge of maintaining cell viability at the core of engineered constructs, such as bone substitutes, and to improve the survival of tissue grafts by allowing quicker anastomosis to the host microvasculature. The self-assembly approach of tissue engineering allows the production of biomimetic bone-like tissue constructs including extracellular matrix and living human adipose-derived stromal/stem cells (hASCs) induced towards osteogenic differentiation. We hypothesized that the addition of endothelial cells could improve osteogenesis and biomineralization during the production of self-assembled human bone-like tissues using hASCs. Additionally, we postulated that these prevascularized constructs would consequently improve graft survival and bone repair of rat calvarial bone defects. This study shows that a dense capillary network spontaneously formed in vitro during tissue biofabrication after two weeks of maturation. Despite reductions in osteocalcin levels and hydroxyapatite formation in vitro in prevascularized bone-like tissues (35 days of culture), in vivo imaging of prevascularized constructs showed an improvement in cell survival without impeding bone healing after 12 weeks of implantation in a calvarial bone defect model (immunocompromised male rats), compared to their stromal counterparts. Globally, these findings establish our ability to engineer prevascularized bone-like tissues with improved functional properties.
Collapse
Affiliation(s)
- Fabien Kawecki
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Todd Galbraith
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
| | - William P. Clafshenkel
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
| | - Michel Fortin
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Faculty of Dentistry, Université Laval, Québec, QC G1V 0A6, Canada
- Service of Oral and Maxillofacial Surgery, CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
| | - François A. Auger
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
173
|
Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta Biomater 2021; 125:219-230. [PMID: 33677160 DOI: 10.1016/j.actbio.2021.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) remodeling is necessary for the development and self-healing of tissue, and the process is tissue specific. Matrix metalloproteinases (MMPs) play a role in ECM remodeling by unwinding and cleaving ECM. We hypothesized that ECM remodeling by MMPs is involved in the differentiation of stem cells into specific lineages during self-healing. To prove the hypothesis, we investigated which MMPs are involved in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) grown on a type I collagen (Col I) matrix, and we found that specifically high expression of MMP13 in hMSCs grown on a Col I matirx during osteogenic differentiation. Moreover, knocking down of MMP13 decreased the osteogenic differentiation of hMSCs grown on a Col I matrix. In addition, pre-treatment of recombinant human MMP13 lead to remodeling of Col I matrix and increased the osteogenic differentiation of hMSCs and in vivo bone formation following the upregulation of the expression of runt-related transcription factor 2 (RUNX2), integrin α3 (ITGA3), and focal adhesion kinase. Furthermore, the transcription factor RUNX2 bound to the MMP13 promoter. These results suggest that growth on a remodeled Col I matrix by MMP13 stimulates osteogenic differentiation of hMSCs and self-healing of bone tissue via an MMP13/ITGA3/RUNX2 positive feedback loop. STATEMENT OF SIGNIFICANCE: Self-healing of tissue could be the key to treating diseases that cannot be overcome by present technology. We investigated the mechanism underlying the self-healing of tissue and we found that the osteogenic differentiation was increased in hMSCs grown on a remodeled Col I matrix by the optimized concentration of MMP13 not in hMSCs grown on a Col I fragments cleaved by a high concentration of MMP13. In addition, we found the remodeled Col I matrix by MMP13 increased the osteogenic capacity through a MMP13/integrin α3/RUNX2 positive feedback loop. This result would be able to not only provide a strategy for bone tissue-specific functional materials following strong evidence about the self-healing mechanism of bone through the interaction between stem cells and the ECM matrix. As such, we strongly believe our finding will be of interest to researchers studying biomaterials, stem cell biology and matrix interaction for regenerative medicine and therapy.
Collapse
|
174
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
175
|
MiR-105 enhances osteogenic differentiation of hADSCs via the targeted regulation of SOX9. Tissue Cell 2021; 72:101540. [PMID: 33838353 DOI: 10.1016/j.tice.2021.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate whether miR-105 can regulate the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) by targeting SOX9. METHODS The hADSCs were grouped for subsequent transfection and induction of osteogenic differentiation as follows: control, miR-NC, miR-105 mimics, miR-105 inhibitors, SOX9, SOX9 siRNA, miR-105 mimics + SOX9 and miR-105 inhibitors + SOX9 siRNA groups. Next, hADSCs were stained for alkaline phosphatase (ALP), and Alizarin Red S staining (ARS) was performed. Osteogenic differentiation-related genes and miR-105 expression were assessed by qRT-PCR, while SOX9 protein expression was determined by Western blotting. RESULTS MiR-105 expression was increased and SOX9 protein expression was decreased during the osteogenic differentiation of hADSCs. A dual-luciferase reporter assay confirmed SOX9 to be a target gene of miR-105. Compared with the control group, the miR-105 mimics and SOX9 siRNA groups had elevated BMP2, OPN, OCN, BSP, Osx and Runx2 mRNA expression with reduced SOX9 expression, as well as increased ARS intensity and ALP activity. After transfection of miR-105 inhibitors/SOX9 into hADSCs, the results were the opposite. Overexpressing SOX9 reversed the effect of miR-105 in promoting the osteogenic differentiation of hADSCs. CONCLUSION MiR-105 could target SOX9 to improve the expression of osteogenic differentiation genes and thus enhance the osteogenic differentiation of hADSCs.
Collapse
|
176
|
High glucose promotes mineralization via bone morphogenetic protein 4-Smad signals in early stage of osteoblast differentiation. Diabetol Int 2021; 12:171-180. [PMID: 33786272 DOI: 10.1007/s13340-020-00463-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is associated with bone fragility. Although osteoblast maturation is disturbed in patients with diabetes mellitus, the involvement of high glucose (HG) in different stages of osteoblast maturation is unclear. We used MC3T3-E1 cells, a murine osteoblastic cell line. The cells were incubated in high glucose medium (16.5 and 27.5 mM) with three different time courses: throughout 21 days, only first 7 days (early stage) and only last 7 days (late stage). Mineralization assay showed that HG throughout 21 days increased mineralization compared with control (5.5 mM). In the time course experiment, HG increased mRNA expression of Alp, osteocalcin (Ocn), runt-related transcription factor 2 and osterix on days 3 and 5. By contrast, long-term treatment with HG (14 and 21 days) decreased expression of these osteoblastic markers. HG only during early stage enhanced mineralization, while HG only during late stage had no effects. HG increased the expression of bone morphogenetic protein (BMP) 4 and enhanced phosphorylation of Smad1/5/8. Treatment with a BMP receptor antagonist LDN193189 prevented the HG-induced mineralization during early stage of osteoblast differentiation, indicating that HG in the early stage promotes mineralization by BMP4. In conclusion, the study demonstrates that continuous HG treatment might enhance early osteoblast differentiation but disturbs osteoblast maturation, and that BMP-4-Smad signal might be involved in the HG-induced differentiation and mineralization of osteoblasts.
Collapse
|
177
|
Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112055. [PMID: 33947549 DOI: 10.1016/j.msec.2021.112055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue requires a range of complex mechanisms to allow the restoration of its structure and function. Bone healing is a signaling cascade process, involving cells secreting cytokines, growth factors, and pro-inflammatory factors in the defect site that will, subsequently, recruit surrounding stem cells to migrate, proliferate, and differentiate into bone-forming cells. Bioactive functional scaffolds could be applied to improve the bone healing processes where the organism is not able to fully regenerate the lost tissue. However, to be optimal, such scaffolds should act as osteoconductors - supporting bone-forming cells, providing nutrients, and sustaining the arrival of new blood vessels, and act as osteoinducers - slowly releasing signaling molecules that stimulate mesenchymal stem cells to differentiate and deposit mineralized bone matrix. Different compositions and shapes of scaffolds, cutting-edge technologies, application of signaling molecules to promote cell differentiation, and high-quality biomaterials are reaching favorable outcomes towards osteoblastic differentiation of stem cells in in vitro and in vivo researches for bone regeneration. Hydrogel-based biomaterials are being pointed as promising for bone tissue regeneration; however, despite all the research and high-impact scientific publications, there are still several challenges that prevent the use of hydrogel-based scaffolds for bone regeneration being feasible for their clinical application. Hence, the objective of this review is to consolidate and report, based on the current scientific literature, the approaches for bone tissue regeneration using bioactive hydrogel-based scaffolds, cell-based therapies, and three-dimensional bioprinting to define the key challenges preventing their use in clinical applications.
Collapse
Affiliation(s)
- Mariane B Sordi
- Research Center on Dental Implants, Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil; Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| | - Ariadne Cruz
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group, Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Ricardo Magini
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| |
Collapse
|
178
|
Mesa Restrepo A, Fernando Alzate J, Patiño Gonzalez EB. Bone morphogenetic protein 2: heterologous expression and potential in bone regeneration. ACTUALIDADES BIOLÓGICAS 2021. [DOI: 10.17533/udea.acbi.v43n114a01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Currently, bone morphogenetic protein 2 (BMP-2) is one of the two osteoinductive growth factors used in medical devices to promote bone formation. Typically, this protein is bought from commercial houses at high rates and in small quantities that are not enough to cover clinical needs. Because of this, it has been proposed that research centers use their own heterologous expression systems to have a constant supply of BMP-2. The aim of this study was to standardize the heterologous expression of BMP-2 and evaluate its osteoinductive activity in vitro. Our procedure for expression and purification was based on recombinant DNA technology using the plasmid pET-28 and IPTG as inductor. After extracting the protein from inclusion bodies, folding it and modifying it via a redox system, we observed via electrophoresis a 26 kDa dimer. We evaluated its osteoinductive activity in myoblastic C2C12 by quantifying enzymatically the activity of alkaline phosphate (ALP) and staining mineralization nodules. ALP activity is proportional to BMP-2 concentration, increasing 90% at 3 µg/mL. These cells form calcium nodules, mineralizing 50% of the area.
Collapse
|
179
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
180
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
181
|
Bone Morphogenetic Protein-2 Promotes Osteoclasts-mediated Osteolysis via Smad1 and p65 Signaling Pathways. Spine (Phila Pa 1976) 2021; 46:E234-E242. [PMID: 33156278 DOI: 10.1097/brs.0000000000003770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro biological study. OBJECTIVE The aim of this study was to explore the role of bone morphogenetic protein-2 (BMP-2) in the regulation of osteoclast-mediated osteolysis, and the possible mechanism involving BMP-2 and nuclear factor-kappa B (NF-κB) signaling pathways. SUMMARY OF BACKGROUND DATA Recombinant human BMP-2 (rhBMP-2) has been approved as a therapeutic agent in spinal fusion and bone defect repair. However, its efficacy and clinical application are limited by associated complications including osteoclast-mediated bone resorption. The mechanism of BMP-2-induced osteolysis remains unknown. METHODS Bone marrow-derived macrophages (BMMs) were isolated from C57BL/6J mice and cultured with macrophage colony-stimulating factor (M-CSF) and receptor activator for nuclear factor-κB Ligand (RANKL) to induce osteoclast differentiation. An in vitro bone resorption assay was performed by co-culturing BMMs and bone slides. The expression of BMP canonical and NF-κB signaling factors and their interaction during signal transduction were quantitated by reverse transcription polymerase chain reaction, Western blot analysis, confocal microscopy, and co-immunoprecipitation. RESULTS BMP-2 enhanced osteoclast-mediated bone resorption via inducing osteoclast differentiation in a concentration-dependent manner. In addition, a high concentration of BMP-2 significant upregulated phosphorylation of BMP signaling factors p-Smad1/5/8 and NF-κB downstream factor p65, and promoted the degeneration of IκBα. In addition, BMP-2 induced osteoclast differentiation through coupling between BMP receptor II and RANK. CONCLUSION High concentrations of BMP-2 enhanced osteoclast-mediated bone resorption by promoting RANKL-induced pre-osteoclast differentiation, probably by mediating the cross-talk between BMP canonical and NF-κB signaling pathways.Level of Evidence: N/A.
Collapse
|
182
|
A comparative genomic database of skeletogenesis genes: from fish to mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100796. [PMID: 33676152 DOI: 10.1016/j.cbd.2021.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/20/2022]
Abstract
Skeletogenesis is a complex process that requires a rigorous control at multiple levels during osteogenesis, such as signaling pathways and transcription factors. The skeleton among vertebrates is a highly conserved organ system, but teleost fish and mammals have evolved unique traits or have lost particular skeletal elements in each lineage. In present study, we constructed a skeletogenesis database containing 4101, 3715, 2996, 3300, 3719 and 3737 genes in Danio rerio, Oryzias latipes, Gallus gallus, Xenopus tropicalis, Mus musculus and Homo sapiens genome, respectively. Then, we found over 55% of the genes are conserved in the six species. Notably, there are 181 specific-genes in the human genome without orthologues in the other five genomes, such as the ZNF family (ZNF100, ZNF101, ZNF14, CALML6, CCL4L2, ZIM2, HSPA6, etc); and 31 genes are identified explicitly in fish species, which are mainly involved in TGF-beta, Wnt, MAPK, Calcium signaling pathways, such as bmp16, bmpr2a, eif4e1c, wnt2ba, etc. Particularly, there are 20 zebrafish-specific genes (calm3a, si:dkey-25li10, drd1a, drd7, etc) and one medaka-specific gene (c-myc17) that may alter skeletogenesis formation in the corresponding species. The database provides the new systematic genomic insights into skeletal development from teleosts to mammals, which may help to explain some of the complexities of skeletal phenotypes among different vertebrates and provide a reference for the treatment of skeletal diseases as well as for applications in the aquaculture industry.
Collapse
|
183
|
Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen MU, Ylä-Herttuala S, Laakkonen JP. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 2021; 24:129-144. [PMID: 33021694 PMCID: PMC7921060 DOI: 10.1007/s10456-020-09748-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Collapse
Affiliation(s)
- H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J P Lappalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - A Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
184
|
Chen Z, Ding M, Cho E, Seong J, Lee S, Lee TH. 2-NPPA Mitigates Osteoclastogenesis via Reducing TRAF6-Mediated c-fos Expression. Front Pharmacol 2021; 11:599081. [PMID: 33574753 PMCID: PMC7870508 DOI: 10.3389/fphar.2020.599081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Excessive bone resorption leads to bone destruction in pathological bone diseases. Osteoporosis, which occurs when osteoclast-mediated bone resorption exceeds osteoblast-mediated bone synthesis, is regarded a global health challenge. Therefore, it is of great importance to identify agents that can regulate the activity of osteoclasts and prevent bone diseases mediated mainly by bone loss. We screened compounds for this purpose and found that 2-(2-chlorophenoxy)-N-[2-(4-propionyl-1piperazinyl) phenyl] acetamide (2-NPPA) exhibited a strong inhibitory effect on osteoclastogenesis. 2-NPPA suppressed the mRNA and protein expression of several osteoclast-specific markers and blocked the formation of mature osteoclasts, reducing the F-actin ring formation and bone resorption activity. In a cell signaling point of view, 2-NPPA exhibited a significant inhibitory effect on the phosphorylation of nuclear factor kappa-B (NF-κB) and c-fos expression in vitro and prevented ovariectomy-induced bone loss in vivo. These findings highlighted the potential of 2-NPPA as a drug for the treatment of bone loss-mediated disorders.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea
| | - Mina Ding
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jihyoun Seong
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | - Tae-Hoon Lee
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea.,Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
185
|
Chen M, Zhou M, Fu Y, Li J, Wang Z. Effects of miR-672 on the angiogenesis of adipose-derived mesenchymal stem cells during bone regeneration. Stem Cell Res Ther 2021; 12:85. [PMID: 33494825 PMCID: PMC7836178 DOI: 10.1186/s13287-021-02154-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sufficient vascular network plays an important role in the repair of bone defects. Bone morphogenetic protein 2 (BMP2) being a key regulator of angiogenesis has attracted the attention of researchers. In addition, evidence has suggested that BMP2 coordinates with microRNAs (miRNAs) to form intracellular networks regulating mesenchymal stem cells (MSCs) angiogenesis. Elucidating the underlying mechanisms that are regulating adipose-derived mesenchymal stem cells (ADSCs) angiogenesis might provide more effective method to enhance bone regeneration. METHODS We identified the specific miRNA in rat ADSCs during BMP2-induced angiogenesis and chose the most significant differentially expressed miRNA, miR-672. Three lentiviral system named Lenti-miR-672, Lenti-as-miR-672, and Lenti-miR-NC were transduced into the ADSCs individually. Then, the quantitative real-time polymerase chain reaction (qPCR), western blotting, and blood vessel formation analysis were performed to investigate the effects of miR-672 on ADSCs angiogenesis. Bioinformation platforms were used to screen the potential target of miR-672. Small interfering RNA (siRNA) against TIMP2 (si-TIMP2) mRNA were obtained from GenePharma, and then si-TIMP2 miRNA and miR-672 were co-transfected into ADSCs to detect the effects of TIMP2 on angiogenesis. Calcium phosphate cement (CPC) scaffolds that seeded the lentiviral-modified ADSCs were constructed to test the vascularized bone regeneration in vivo. RESULTS Our data showed that after the angiogenesis of ADSCs induced by BMP2, miR-672 was the most significantly upregulated miRNA. Overexpression of miR-672 promoted the angiogenesis of ADSCs, while knockdown of miR-672 repressed the angiogenesis of ADSCs. The bioinformation prediction showed that TIMP2 might be the one of miR-672' potential targets. TIMP2 protein expression was gradually decreased in ADSCs with overexpressed miR-672. And the angiogenic factors were upregulated in the ADSCs which were transduced with si-TIMP2. Then, the CPC scaffolds coupled the miR-672-modified ADSCs and showed the good potential in vascularized bone regeneration. The overexpressed miR-672 could greatly enhance the blood vessel volume and Microfil-labeled blood vessel numbers in newly formed bone. CONCLUSION BMP2 could promote the angiogenesis of ADSCs through stimulating the expression of miR-672 in ADSCs. miR-672 acted as a positive regulator on the angiogenesis of ADSCs, and incorporating the miR-672-modified ADSCs in the CPC could significantly promote the vascularization and the bone regeneration.
Collapse
Affiliation(s)
- Mingjiao Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Meng Zhou
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Yao Fu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Jin Li
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Zi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
186
|
Cho HH, Been SY, Kim WY, Choi JM, Choi JH, Song CU, Song JE, Bucciarelli A, Khang G. Comparative Study on the Effect of the Different Harvesting Sources of Demineralized Bone Particles on the Bone Regeneration of a Composite Gellan Gum Scaffold for Bone Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:1900-1911. [DOI: 10.1021/acsabm.0c01549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hun Hwi Cho
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Su Young Been
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Woo Youp Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jeong Min Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Cheol Ui Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Alessio Bucciarelli
- Microsystem Technology Group, Center for Materials and Microsystems, Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Trentino, Italy
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| |
Collapse
|
187
|
LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes. Commun Biol 2021; 4:90. [PMID: 33469151 PMCID: PMC7815736 DOI: 10.1038/s42003-020-01613-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated as regulators of growth factor signaling; however, the possible redundancy among mammalian LRIG1, LRIG2, and LRIG3 has hindered detailed elucidation of their physiological functions. Here, we show that Lrig-null mouse embryonic fibroblasts (MEFs) are deficient in adipogenesis and bone morphogenetic protein (BMP) signaling. In contrast, transforming growth factor-beta (TGF-β) and receptor tyrosine kinase (RTK) signaling appeared unaltered in Lrig-null cells. The BMP signaling defect was rescued by ectopic expression of LRIG1 or LRIG3 but not by expression of LRIG2. Caenorhabditis elegans with mutant LRIG/sma-10 variants also exhibited a lipid storage defect. Human LRIG1 variants were strongly associated with increased body mass index (BMI) yet protected against type 2 diabetes; these effects were likely mediated by altered adipocyte morphology. These results demonstrate that LRIG proteins function as evolutionarily conserved regulators of lipid metabolism and BMP signaling and have implications for human disease.
Collapse
|
188
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
189
|
Rathinam E, Govindarajan S, Rajasekharan S, Declercq H, Elewaut D, De Coster P, Martens L, Leybaert L. The calcium dynamics of human dental pulp stem cells stimulated with tricalcium silicate-based cements determine their differentiation and mineralization outcome. Sci Rep 2021; 11:645. [PMID: 33436827 PMCID: PMC7804324 DOI: 10.1038/s41598-020-80096-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Calcium (Ca2+) signalling plays an indispensable role in dental pulp and dentin regeneration, but the Ca2+ responses of human dental pulp stem cells (hDPSCs) stimulated with tricalcium silicate-based (TCS-based) dental biomaterials remains largely unexplored. The objective of the present study was to identify and correlate extracellular Ca2+ concentration, intracellular Ca2+ dynamics, pH, cytotoxicity, gene expression and mineralization ability of human dental pulp stem cells (hDPSCs) stimulated with two different TCS-based biomaterials: Biodentine and ProRoot white MTA. The hDPSCs were exposed to the biomaterials, brought in contact with the overlaying medium, with subsequent measurements of extracellular Ca2+ and pH, and intracellular Ca2+ changes. Messenger RNA expression (BGLAP, TGF-β, MMP1 and BMP2), cytotoxicity (MTT and TUNEL) and mineralization potential (Alizarin red and Von Kossa staining) were then evaluated. Biodentine released significantly more Ca2+ in the α-MEM medium than ProRoot WMTA but this had no cytotoxic impact on hDPSCs. The larger Biodentine-linked Ca2+ release resulted in altered intracellular Ca2+ dynamics, which attained a higher maximum amplitude, faster rise time and increased area under the curve of the Ca2+ changes compared to ProRoot WMTA. Experiments with intracellular Ca2+ chelation, demonstrated that the biomaterial-triggered Ca2+ dynamics affected stem cell-related gene expression, cellular differentiation and mineralization potential. In conclusion, biomaterial-specific Ca2+ dynamics in hDPSCs determine differentiation and mineralization outcomes, with increased Ca2+ dynamics enhancing mineralization.
Collapse
Affiliation(s)
- Elanagai Rathinam
- Department of Paediatric Dentistry and Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.
| | - Srinath Govindarajan
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium
| | - Sivaprakash Rajasekharan
- Department of Paediatric Dentistry and Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, 8500, Kortrijk, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium
| | - Peter De Coster
- Department of Reconstructive Dentistry and Oral Biology, Dental School, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Luc Martens
- Department of Paediatric Dentistry and Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic And Applied Medical Sciences - Physiology Group, Ghent University, Ghent, Belgium
| |
Collapse
|
190
|
Sylvester FA. Effects of Digestive Diseases on Bone Metabolism. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:1023-1031.e7. [DOI: 10.1016/b978-0-323-67293-1.00091-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
191
|
Yu M, Lei B. MicroRNA-5106-based nanodelivery to enhance osteogenic differentiation and bone regeneration of bone mesenchymal stem cells through targeting of Gsk-3α. MATERIALS CHEMISTRY FRONTIERS 2021; 5:8138-8150. [DOI: 10.1039/d1qm00367d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This work reports the intracellular delivery of miRNA-5106 into stem cells. The intracellular delivery could efficiently enhance the osteogenic differentiation andin vivobone regeneration through the targeting the Gsk-3α signaling pathway.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Bo Lei
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
192
|
Chen M, Liu Q, Xu Y, Wang Y, Han X, Wang Z, Liang J, Sun Y, Fan Y, Zhang X. The effect of LyPRP/collagen composite hydrogel on osteogenic differentiation of rBMSCs. Regen Biomater 2020; 8:rbaa053. [PMID: 33732498 PMCID: PMC7947583 DOI: 10.1093/rb/rbaa053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Although platelet-rich plasma (PRP) plays a significant role in the orthopedic clinical application, it still faces two major problems, namely, uncontrollable factors release, frequent preparation and extraction processes as well as the inconvenient form of usage. To overcome these shortcomings, freeze-dried PRP (LyPRP) was encapsulated into bioactive Col I hydrogel to induce osteogenic differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs). And PRP/Col І composite hydrogel was prepared as a control. Compared with Col І hydrogel, the introduction of platelets significantly improved the mechanical properties of hydrogels. Meanwhile, platelets were evenly distributed in the composite hydrogels network. The sustainable release of related factors in the composite hydrogels could last for more than 14 days to maintain its long-term biological activity. Further cell experiments confirmed that PRP and LyPRP could effectively alleviate the contraction of collagen hydrogel in vitro, and promote the adhesion, proliferation and osteogenesis differentiation of rBMSCs. The results of osteogenic gene expression indicated that the 10% LyPRP/Col І composite hydrogel could facilitate the early expression of BMP-2 and late osteogenic associated protein formation with higher expression of alkaline phosphatase and Osteocalcin (OCN). These results might provide new insights for the clinical application of 10% LyPRP/Col І composite hydrogel as practical bone repair injection.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Quanying Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhe Wang
- Department of Medical Genetics, Zunyi Medical University, No. 6 West Xuefu Road, Zunyi, Guizhou 563000, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.,Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
193
|
Siengdee P, Oster M, Reyer H, Viergutz T, Wimmers K, Ponsuksili S. Morphological and Molecular Features of Porcine Mesenchymal Stem Cells Derived From Different Types of Synovial Membrane, and Genetic Background of Cell Donors. Front Cell Dev Biol 2020; 8:601212. [PMID: 33363158 PMCID: PMC7755640 DOI: 10.3389/fcell.2020.601212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Synovial mesenchymal stem cells (SMSCs) have become a great cell source for musculoskeletal stem cell research, especially related to cartilage and bone tissue regeneration, due to their superior cell proliferation properties and multidifferentiation potential into various cell lineages. This study revealed isolation methods, culture conditions, and morphological and molecular characterization of SMSCs derived fibrous synovium (FS) and adipose synovium (FP) of two pig breeds differing in growth performance [German Landrace (DL), and fat deposition (Angeln Saddleback (AS)]. Herein, FS possessed nucleated cell numbers nearly twice as high as those of FP at Passage 0. SMSCs derived from different types of synovial membrane and genetic background show similar cell morphologies and immunophenotypes, which were assessed by cell surface epitopes and multilineage differentiation potential, but differ significantly in their molecular characteristics. In addition, transcripts of SMSCs from AS were more enriched in IGF-1 signaling and VEGF ligand receptor, while SMSCs from DL were more enriched in growth hormone signaling and bone metabolism. The results indicate that genetics and tissues play significant roles for SMSC characteristics so that SMSCs can be traced back to the original cell donor and be used for fine turning in applications of medical research and therapies.
Collapse
Affiliation(s)
- Puntita Siengdee
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
194
|
Calabrò ML, Lazzari N, Rigotto G, Tonello M, Sommariva A. Role of Epithelial-Mesenchymal Plasticity in Pseudomyxoma Peritonei: Implications for Locoregional Treatments. Int J Mol Sci 2020; 21:ijms21239120. [PMID: 33266161 PMCID: PMC7731245 DOI: 10.3390/ijms21239120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial-mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal-epithelial transition, MET), now collectively called epithelial-mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial-mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
- Correspondence:
| | - Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Marco Tonello
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Antonio Sommariva
- Advanced Surgical Oncology, Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| |
Collapse
|
195
|
Li Z, Liu H, Wang R, Ji C, Wei Y, Shi M, Wang Y, Du Y, Zhang Y, Yuan Q, Yan C. Bioactive Core-Shell CaF 2 Upconversion Nanostructure for Promotion and Visualization of Engineered Bone Reconstruction. ACS NANO 2020; 14:16085-16095. [PMID: 33151671 DOI: 10.1021/acsnano.0c08013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inorganic ion metabolism plays significant roles in various life processes including signal transduction, substance exchange, and cellular constructions. Regulation and monitoring of ion metabolism offer great promise to modulate biological activities and provide insights into related mechanisms. Here, a synergistic nanodepot based on a bioactive core-shell CaF2 upconversion nanostructure that integrates multiple mineral ions for metabolic regulation was built for the acceleration and monitoring of the biomineralization process. Multiple mineral ions released from the nanodepots can accelerate the growth of inorganic crystals and enhance the production of organic matrixes, synergistically facilitating the regeneration of bone defects in vivo. During the process, such a nanodepot can be constructed to specifically recognize osteoblasts for the monitoring of biomineralization. This nanoprobe represents an efficient strategy to promote and monitor biomineralization-related metabolic activities with applications in fundamental research, disease diagnosis, and regenerative medicine.
Collapse
Affiliation(s)
- Zhihao Li
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoran Liu
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunhua Yan
- School of Materials Science and Engineering & National Institute for Advanced Materials, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
196
|
A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res 2020; 8:41. [PMID: 33298874 PMCID: PMC7680794 DOI: 10.1038/s41413-020-00115-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-β/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-β/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-β/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 μg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2−/− mice. The rhBMP2-induced ectopic bone in Smurf2−/− mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2−/− mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2−/− mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2−/− BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.
Collapse
|
197
|
Liu F, Cheng X, Xiao L, Wang Q, Yan K, Su Z, Wang L, Ma C, Wang Y. Inside-outside Ag nanoparticles-loaded polylactic acid electrospun fiber for long-term antibacterial and bone regeneration. Int J Biol Macromol 2020; 167:1338-1348. [PMID: 33232699 DOI: 10.1016/j.ijbiomac.2020.11.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bone infections caused by bacteria during bone graft implantations can impair the ability of bone tissue repair, which is currently a clinical problem. In this study, the electrospinning technique was used to prepare a polylactic acid (PLLA)/silver (Ag) composite fiber, in which the silver nanoparticles (Ag-NPs) were uniformly distributed on the inner surface of PLLA fibers; dopamine (DA) was self-polymerized on the composite fiber surface to construct the adhesive polydopamine (PDA) film and chitosan (CS) was used to regulate Ag+ in situ through pulse electrochemical deposition for the construction of a stable Ag-NPs coating (CS/Ag), achieving the steady and slow release of Ag-NPs, therefore accomplishing the construction of a "inside-outside" Ag-NPs-loaded PLLA/Ag@PDA@CS/Ag composite fiber with dual functions of long-lasting antibacterial effect as well as bone regeneration promotion ability. The study results showed that the composite fiber has an excellent antibacterial effect against E. coli and S. aureus, and good osteoinductive and angiogenic properties. In summary, under the dual regulations of the strong adhesion of PDA and CS chelation, the "inside-outside" Ag-NPs-loaded composite fiber was endowed with good physiological stability, long-term antibacterial effect and bone infection inhibition ability, making it a promising bone implant material.
Collapse
Affiliation(s)
- Feifei Liu
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Xuewei Cheng
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lu Xiao
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China
| | - Kun Yan
- Traumatic Orthopedics, The 6th affiliated hospital of Xinjiang Medical University, 39 Wuxin Road, Urumqi 830001, PR China
| | - Zhi Su
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China.
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China.
| |
Collapse
|
198
|
Liu S, de Medeiros MC, Fernandez EM, Zarins KR, Cavalcante RG, Qin T, Wolf GT, Figueroa ME, D'Silva NJ, Rozek LS, Sartor MA. 5-Hydroxymethylation highlights the heterogeneity in keratinization and cell junctions in head and neck cancers. Clin Epigenetics 2020; 12:175. [PMID: 33203436 PMCID: PMC7672859 DOI: 10.1186/s13148-020-00965-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide, with human papillomavirus (HPV)-related HNSCC rising to concerning levels. Extensive clinical, genetic and epigenetic differences exist between HPV-associated HNSCC and HPV-negative HNSCC, which is often linked to tobacco use. However, 5-hydroxymethylation (5hmC), an oxidative derivative of DNA methylation and its heterogeneity among HNSCC subtypes, has not been studied. RESULTS We characterized genome-wide 5hmC profiles in HNSCC by HPV status and subtype in 18 HPV(+) and 18 HPV(-) well-characterized tumors. Results showed significant genome-wide hyper-5hmC in HPV(-) tumors, with both promoter and enhancer 5hmC able to distinguish meaningful tumor subgroups. We identified specific genes whose differential expression by HPV status is driven by differential hydroxymethylation. CDKN2A (p16), used as a key biomarker for HPV status, exhibited the most extensive hyper-5hmC in HPV(+) tumors, while HPV(-) tumors showed hyper-5hmC in CDH13, TIMP2, MMP2 and other cancer-related genes. Among the previously reported two HPV(+) subtypes, IMU (stronger immune response) and KRT (more keratinization), the IMU subtype revealed hyper-5hmC and up-regulation of genes in cell migration, and hypo-5hmC with down-regulation in keratinization and cell junctions. We experimentally validated our key prediction of higher secreted and intracellular protein levels of the invasion gene MMP2 in HPV(-) oral cavity cell lines. CONCLUSION Our results implicate 5hmC in driving differences in keratinization, cell junctions and other cancer-related processes among tumor subtypes. We conclude that 5hmC levels are critical for defining tumor characteristics and potentially used to define clinically meaningful cancer patient subgroups.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA
| | | | - Evan M Fernandez
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Maria E Figueroa
- Department of Human Genetics and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA. .,Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
199
|
Lin H, Shi F, Jiang S, Wang Y, Zou J, Ying Y, Huang D, Luo L, Yan X, Luo Z. Metformin attenuates trauma-induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. J Cell Mol Med 2020; 24:14491-14501. [PMID: 33169942 PMCID: PMC7754007 DOI: 10.1111/jcmm.16076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
AMP‐activated protein kinase (AMPK) is an intracellular sensor of energy homoeostasis that is activated under energy stress and suppressed in energy surplus. AMPK activation leads to inhibition of anabolic processes that consume ATP. Osteogenic differentiation is a process that highly demands ATP during which AMPK is inhibited. The bone morphogenetic proteins (BMPs) signalling pathway plays an essential role in osteogenic differentiation. The present study examines the inhibitory effect of metformin on BMP signalling, osteogenic differentiation and trauma‐induced heterotopic ossification. Our results showed that metformin inhibited Smad1/5 phosphorylation induced by BMP6 in osteoblast MC3T3‐E1 cells, concurrent with up‐regulation of Smad6, and this effect was attenuated by knockdown of Smad6. Furthermore, we found that metformin suppressed ALP activity and mineralization of the cells, an event that was attenuated by the dominant negative mutant of AMPK and mimicked by its constitutively active mutant. Finally, administration of metformin prevented the trauma‐induced heterotopic ossification in mice. In conjuncture, AMPK activity and Smad6 and Smurf1 expression were enhanced by metformin treatment in the muscle of injured area, concurrently with the reduction of ALK2. Collectively, our study suggests that metformin prevents heterotopic ossification via activation of AMPK and subsequent up‐regulation of Smad6. Therefore, metformin could be a potential therapeutic drug for heterotopic ossification induced by traumatic injury.
Collapse
Affiliation(s)
- Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanyuan Wang
- Clinical Systems Biology Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Institute of Basic Biomedical Sciences and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| |
Collapse
|
200
|
Bal Z, Kushioka J, Kodama J, Kaito T, Yoshikawa H, Korkusuz P, Korkusuz F. BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 2020; 50:1707-1722. [PMID: 32336073 PMCID: PMC7672355 DOI: 10.3906/sag-2003-127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
A fracture that does not unite in nine months is defined as nonunion. Nonunion is common in fragmented fractures and large bone defects where vascularization is impaired. The distal third of the tibia, the scaphoid bone or the talus fractures are furthermore prone to nonunion. Open fractures and spinal fusion cases also need special monitoring for healing. Bone tissue regeneration can be attained by autografts, allografts, xenografts and synthetic materials, however their limited availability and the increased surgical time as well as the donor site morbidity of autograft use, and lower probability of success, increased costs and disease transmission and immunological reaction probability of allografts oblige us to find better solutions and new grafts to overcome the cons. A proper biomaterial for regeneration should be osteoinductive, osteoconductive, biocompatible and mechanically suitable. Cytokine therapy, where growth factors are introduced either exogenously or triggered endogenously, is one of the commonly used method in bone tissue engineering. Transforming growth factor β (TGFβ) superfamily, which can be divided structurally into two groups as bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs) and TGFβ, activin, Nodal branch, Mullerian hormone, are known to be produced by osteoblasts and other bone cells and present already in bone matrix abundantly, to take roles in bone homeostasis. BMP family, as the biggest subfamily of TGFβ superfamily, is also reported to be the most effective growth factors in bone and development, which makes them one of the most popular cytokines used in bone regeneration. Complications depending on the excess use of growth factors, and pleiotropic functions of BMPs are however the main reasons of why they should be approached with care. In this review, the Smad dependent signaling pathways of TGFβ and BMP families and their relations and the applications in preclinical and clinical studies will be briefly summarized.
Collapse
Affiliation(s)
- Zeynep Bal
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Joe Kodama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Petek Korkusuz
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Ankara, Turkey
| |
Collapse
|