151
|
Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep 2021; 11:8745. [PMID: 33888790 PMCID: PMC8062523 DOI: 10.1038/s41598-021-88058-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Bioactive glasses (BGs) have attracted added attention in the structure of the scaffolds for bone repair applications. Different metal ions could be doped in BGs to induce specific biological responses. Among these ions, strontium (Sr) is considered as an effective and safe doping element with promising effects on bone formation and regeneration. In this experiment, we evaluated the antibacterial activities of the gelatin-BG (Gel-BG) and Gel-BG/Sr scaffolds in vitro. The osteogenic properties of the prepared scaffolds were also assessed in rabbit calvarial bone defects for 12 weeks. Both scaffolds showed in vivo bone formation during 12 weeks with the newly formed bone area in Gel-BG/Sr scaffold was higher than that in Gel-BG scaffolds after the whole period. Based on the histological results, Gel-BG/Sr exhibited acceleration of early-stage bone formation in vivo. The results of antibacterial investigation for both scaffolds showed complete growth inhibition against Escherichia coli (E. coli). Although Gel-BG revealed no antibacterial effect on Staphylococcus aureus (S. aureus), the Gel-BG/Sr was able to partially inhibit the growth of S. aureus, as detected by threefold reduction in growth index. Our results confirmed that Sr doped BG is a favorable candidate for bone tissue engineering with superior antibacterial activity and bone regeneration capacity compared with similar counterparts having no Sr ion.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Eyni
- Department of Anatomical Sciences, Faculty of Medical sceinces, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raziyeh Najafloo
- Department of Bio-Informatics, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
152
|
Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone Morphogenetic Proteins and Diabetic Retinopathy. Biomolecules 2021; 11:biom11040593. [PMID: 33919531 PMCID: PMC8073699 DOI: 10.3390/biom11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others’ studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Samar Habib
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt;
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Moustafa
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)721-4278 or +1-(706)721-4279
| |
Collapse
|
153
|
Kawecki F, Galbraith T, Clafshenkel WP, Fortin M, Auger FA, Fradette J. In Vitro Prevascularization of Self-Assembled Human Bone-Like Tissues and Preclinical Assessment Using a Rat Calvarial Bone Defect Model. MATERIALS 2021; 14:ma14082023. [PMID: 33920607 PMCID: PMC8073395 DOI: 10.3390/ma14082023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
In vitro prevascularization has the potential to address the challenge of maintaining cell viability at the core of engineered constructs, such as bone substitutes, and to improve the survival of tissue grafts by allowing quicker anastomosis to the host microvasculature. The self-assembly approach of tissue engineering allows the production of biomimetic bone-like tissue constructs including extracellular matrix and living human adipose-derived stromal/stem cells (hASCs) induced towards osteogenic differentiation. We hypothesized that the addition of endothelial cells could improve osteogenesis and biomineralization during the production of self-assembled human bone-like tissues using hASCs. Additionally, we postulated that these prevascularized constructs would consequently improve graft survival and bone repair of rat calvarial bone defects. This study shows that a dense capillary network spontaneously formed in vitro during tissue biofabrication after two weeks of maturation. Despite reductions in osteocalcin levels and hydroxyapatite formation in vitro in prevascularized bone-like tissues (35 days of culture), in vivo imaging of prevascularized constructs showed an improvement in cell survival without impeding bone healing after 12 weeks of implantation in a calvarial bone defect model (immunocompromised male rats), compared to their stromal counterparts. Globally, these findings establish our ability to engineer prevascularized bone-like tissues with improved functional properties.
Collapse
Affiliation(s)
- Fabien Kawecki
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Todd Galbraith
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
| | - William P. Clafshenkel
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
| | - Michel Fortin
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Faculty of Dentistry, Université Laval, Québec, QC G1V 0A6, Canada
- Service of Oral and Maxillofacial Surgery, CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada
| | - François A. Auger
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l′Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada; (F.K.); (T.G.); (W.P.C.); (M.F.); (F.A.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
154
|
Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta Biomater 2021; 125:219-230. [PMID: 33677160 DOI: 10.1016/j.actbio.2021.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) remodeling is necessary for the development and self-healing of tissue, and the process is tissue specific. Matrix metalloproteinases (MMPs) play a role in ECM remodeling by unwinding and cleaving ECM. We hypothesized that ECM remodeling by MMPs is involved in the differentiation of stem cells into specific lineages during self-healing. To prove the hypothesis, we investigated which MMPs are involved in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) grown on a type I collagen (Col I) matrix, and we found that specifically high expression of MMP13 in hMSCs grown on a Col I matirx during osteogenic differentiation. Moreover, knocking down of MMP13 decreased the osteogenic differentiation of hMSCs grown on a Col I matrix. In addition, pre-treatment of recombinant human MMP13 lead to remodeling of Col I matrix and increased the osteogenic differentiation of hMSCs and in vivo bone formation following the upregulation of the expression of runt-related transcription factor 2 (RUNX2), integrin α3 (ITGA3), and focal adhesion kinase. Furthermore, the transcription factor RUNX2 bound to the MMP13 promoter. These results suggest that growth on a remodeled Col I matrix by MMP13 stimulates osteogenic differentiation of hMSCs and self-healing of bone tissue via an MMP13/ITGA3/RUNX2 positive feedback loop. STATEMENT OF SIGNIFICANCE: Self-healing of tissue could be the key to treating diseases that cannot be overcome by present technology. We investigated the mechanism underlying the self-healing of tissue and we found that the osteogenic differentiation was increased in hMSCs grown on a remodeled Col I matrix by the optimized concentration of MMP13 not in hMSCs grown on a Col I fragments cleaved by a high concentration of MMP13. In addition, we found the remodeled Col I matrix by MMP13 increased the osteogenic capacity through a MMP13/integrin α3/RUNX2 positive feedback loop. This result would be able to not only provide a strategy for bone tissue-specific functional materials following strong evidence about the self-healing mechanism of bone through the interaction between stem cells and the ECM matrix. As such, we strongly believe our finding will be of interest to researchers studying biomaterials, stem cell biology and matrix interaction for regenerative medicine and therapy.
Collapse
|
155
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
156
|
MiR-105 enhances osteogenic differentiation of hADSCs via the targeted regulation of SOX9. Tissue Cell 2021; 72:101540. [PMID: 33838353 DOI: 10.1016/j.tice.2021.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate whether miR-105 can regulate the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) by targeting SOX9. METHODS The hADSCs were grouped for subsequent transfection and induction of osteogenic differentiation as follows: control, miR-NC, miR-105 mimics, miR-105 inhibitors, SOX9, SOX9 siRNA, miR-105 mimics + SOX9 and miR-105 inhibitors + SOX9 siRNA groups. Next, hADSCs were stained for alkaline phosphatase (ALP), and Alizarin Red S staining (ARS) was performed. Osteogenic differentiation-related genes and miR-105 expression were assessed by qRT-PCR, while SOX9 protein expression was determined by Western blotting. RESULTS MiR-105 expression was increased and SOX9 protein expression was decreased during the osteogenic differentiation of hADSCs. A dual-luciferase reporter assay confirmed SOX9 to be a target gene of miR-105. Compared with the control group, the miR-105 mimics and SOX9 siRNA groups had elevated BMP2, OPN, OCN, BSP, Osx and Runx2 mRNA expression with reduced SOX9 expression, as well as increased ARS intensity and ALP activity. After transfection of miR-105 inhibitors/SOX9 into hADSCs, the results were the opposite. Overexpressing SOX9 reversed the effect of miR-105 in promoting the osteogenic differentiation of hADSCs. CONCLUSION MiR-105 could target SOX9 to improve the expression of osteogenic differentiation genes and thus enhance the osteogenic differentiation of hADSCs.
Collapse
|
157
|
High glucose promotes mineralization via bone morphogenetic protein 4-Smad signals in early stage of osteoblast differentiation. Diabetol Int 2021; 12:171-180. [PMID: 33786272 DOI: 10.1007/s13340-020-00463-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is associated with bone fragility. Although osteoblast maturation is disturbed in patients with diabetes mellitus, the involvement of high glucose (HG) in different stages of osteoblast maturation is unclear. We used MC3T3-E1 cells, a murine osteoblastic cell line. The cells were incubated in high glucose medium (16.5 and 27.5 mM) with three different time courses: throughout 21 days, only first 7 days (early stage) and only last 7 days (late stage). Mineralization assay showed that HG throughout 21 days increased mineralization compared with control (5.5 mM). In the time course experiment, HG increased mRNA expression of Alp, osteocalcin (Ocn), runt-related transcription factor 2 and osterix on days 3 and 5. By contrast, long-term treatment with HG (14 and 21 days) decreased expression of these osteoblastic markers. HG only during early stage enhanced mineralization, while HG only during late stage had no effects. HG increased the expression of bone morphogenetic protein (BMP) 4 and enhanced phosphorylation of Smad1/5/8. Treatment with a BMP receptor antagonist LDN193189 prevented the HG-induced mineralization during early stage of osteoblast differentiation, indicating that HG in the early stage promotes mineralization by BMP4. In conclusion, the study demonstrates that continuous HG treatment might enhance early osteoblast differentiation but disturbs osteoblast maturation, and that BMP-4-Smad signal might be involved in the HG-induced differentiation and mineralization of osteoblasts.
Collapse
|
158
|
Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112055. [PMID: 33947549 DOI: 10.1016/j.msec.2021.112055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue requires a range of complex mechanisms to allow the restoration of its structure and function. Bone healing is a signaling cascade process, involving cells secreting cytokines, growth factors, and pro-inflammatory factors in the defect site that will, subsequently, recruit surrounding stem cells to migrate, proliferate, and differentiate into bone-forming cells. Bioactive functional scaffolds could be applied to improve the bone healing processes where the organism is not able to fully regenerate the lost tissue. However, to be optimal, such scaffolds should act as osteoconductors - supporting bone-forming cells, providing nutrients, and sustaining the arrival of new blood vessels, and act as osteoinducers - slowly releasing signaling molecules that stimulate mesenchymal stem cells to differentiate and deposit mineralized bone matrix. Different compositions and shapes of scaffolds, cutting-edge technologies, application of signaling molecules to promote cell differentiation, and high-quality biomaterials are reaching favorable outcomes towards osteoblastic differentiation of stem cells in in vitro and in vivo researches for bone regeneration. Hydrogel-based biomaterials are being pointed as promising for bone tissue regeneration; however, despite all the research and high-impact scientific publications, there are still several challenges that prevent the use of hydrogel-based scaffolds for bone regeneration being feasible for their clinical application. Hence, the objective of this review is to consolidate and report, based on the current scientific literature, the approaches for bone tissue regeneration using bioactive hydrogel-based scaffolds, cell-based therapies, and three-dimensional bioprinting to define the key challenges preventing their use in clinical applications.
Collapse
Affiliation(s)
- Mariane B Sordi
- Research Center on Dental Implants, Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil; Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| | - Ariadne Cruz
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group, Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Ricardo Magini
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| |
Collapse
|
159
|
Mesa Restrepo A, Fernando Alzate J, Patiño Gonzalez EB. Bone morphogenetic protein 2: heterologous expression and potential in bone regeneration. ACTUALIDADES BIOLÓGICAS 2021. [DOI: 10.17533/udea.acbi.v43n114a01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Currently, bone morphogenetic protein 2 (BMP-2) is one of the two osteoinductive growth factors used in medical devices to promote bone formation. Typically, this protein is bought from commercial houses at high rates and in small quantities that are not enough to cover clinical needs. Because of this, it has been proposed that research centers use their own heterologous expression systems to have a constant supply of BMP-2. The aim of this study was to standardize the heterologous expression of BMP-2 and evaluate its osteoinductive activity in vitro. Our procedure for expression and purification was based on recombinant DNA technology using the plasmid pET-28 and IPTG as inductor. After extracting the protein from inclusion bodies, folding it and modifying it via a redox system, we observed via electrophoresis a 26 kDa dimer. We evaluated its osteoinductive activity in myoblastic C2C12 by quantifying enzymatically the activity of alkaline phosphate (ALP) and staining mineralization nodules. ALP activity is proportional to BMP-2 concentration, increasing 90% at 3 µg/mL. These cells form calcium nodules, mineralizing 50% of the area.
Collapse
|
160
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
161
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
162
|
Bone Morphogenetic Protein-2 Promotes Osteoclasts-mediated Osteolysis via Smad1 and p65 Signaling Pathways. Spine (Phila Pa 1976) 2021; 46:E234-E242. [PMID: 33156278 DOI: 10.1097/brs.0000000000003770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro biological study. OBJECTIVE The aim of this study was to explore the role of bone morphogenetic protein-2 (BMP-2) in the regulation of osteoclast-mediated osteolysis, and the possible mechanism involving BMP-2 and nuclear factor-kappa B (NF-κB) signaling pathways. SUMMARY OF BACKGROUND DATA Recombinant human BMP-2 (rhBMP-2) has been approved as a therapeutic agent in spinal fusion and bone defect repair. However, its efficacy and clinical application are limited by associated complications including osteoclast-mediated bone resorption. The mechanism of BMP-2-induced osteolysis remains unknown. METHODS Bone marrow-derived macrophages (BMMs) were isolated from C57BL/6J mice and cultured with macrophage colony-stimulating factor (M-CSF) and receptor activator for nuclear factor-κB Ligand (RANKL) to induce osteoclast differentiation. An in vitro bone resorption assay was performed by co-culturing BMMs and bone slides. The expression of BMP canonical and NF-κB signaling factors and their interaction during signal transduction were quantitated by reverse transcription polymerase chain reaction, Western blot analysis, confocal microscopy, and co-immunoprecipitation. RESULTS BMP-2 enhanced osteoclast-mediated bone resorption via inducing osteoclast differentiation in a concentration-dependent manner. In addition, a high concentration of BMP-2 significant upregulated phosphorylation of BMP signaling factors p-Smad1/5/8 and NF-κB downstream factor p65, and promoted the degeneration of IκBα. In addition, BMP-2 induced osteoclast differentiation through coupling between BMP receptor II and RANK. CONCLUSION High concentrations of BMP-2 enhanced osteoclast-mediated bone resorption by promoting RANKL-induced pre-osteoclast differentiation, probably by mediating the cross-talk between BMP canonical and NF-κB signaling pathways.Level of Evidence: N/A.
Collapse
|
163
|
A comparative genomic database of skeletogenesis genes: from fish to mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100796. [PMID: 33676152 DOI: 10.1016/j.cbd.2021.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/20/2022]
Abstract
Skeletogenesis is a complex process that requires a rigorous control at multiple levels during osteogenesis, such as signaling pathways and transcription factors. The skeleton among vertebrates is a highly conserved organ system, but teleost fish and mammals have evolved unique traits or have lost particular skeletal elements in each lineage. In present study, we constructed a skeletogenesis database containing 4101, 3715, 2996, 3300, 3719 and 3737 genes in Danio rerio, Oryzias latipes, Gallus gallus, Xenopus tropicalis, Mus musculus and Homo sapiens genome, respectively. Then, we found over 55% of the genes are conserved in the six species. Notably, there are 181 specific-genes in the human genome without orthologues in the other five genomes, such as the ZNF family (ZNF100, ZNF101, ZNF14, CALML6, CCL4L2, ZIM2, HSPA6, etc); and 31 genes are identified explicitly in fish species, which are mainly involved in TGF-beta, Wnt, MAPK, Calcium signaling pathways, such as bmp16, bmpr2a, eif4e1c, wnt2ba, etc. Particularly, there are 20 zebrafish-specific genes (calm3a, si:dkey-25li10, drd1a, drd7, etc) and one medaka-specific gene (c-myc17) that may alter skeletogenesis formation in the corresponding species. The database provides the new systematic genomic insights into skeletal development from teleosts to mammals, which may help to explain some of the complexities of skeletal phenotypes among different vertebrates and provide a reference for the treatment of skeletal diseases as well as for applications in the aquaculture industry.
Collapse
|
164
|
Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen MU, Ylä-Herttuala S, Laakkonen JP. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 2021; 24:129-144. [PMID: 33021694 PMCID: PMC7921060 DOI: 10.1007/s10456-020-09748-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Collapse
Affiliation(s)
- H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J P Lappalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - A Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
165
|
Chen Z, Ding M, Cho E, Seong J, Lee S, Lee TH. 2-NPPA Mitigates Osteoclastogenesis via Reducing TRAF6-Mediated c-fos Expression. Front Pharmacol 2021; 11:599081. [PMID: 33574753 PMCID: PMC7870508 DOI: 10.3389/fphar.2020.599081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Excessive bone resorption leads to bone destruction in pathological bone diseases. Osteoporosis, which occurs when osteoclast-mediated bone resorption exceeds osteoblast-mediated bone synthesis, is regarded a global health challenge. Therefore, it is of great importance to identify agents that can regulate the activity of osteoclasts and prevent bone diseases mediated mainly by bone loss. We screened compounds for this purpose and found that 2-(2-chlorophenoxy)-N-[2-(4-propionyl-1piperazinyl) phenyl] acetamide (2-NPPA) exhibited a strong inhibitory effect on osteoclastogenesis. 2-NPPA suppressed the mRNA and protein expression of several osteoclast-specific markers and blocked the formation of mature osteoclasts, reducing the F-actin ring formation and bone resorption activity. In a cell signaling point of view, 2-NPPA exhibited a significant inhibitory effect on the phosphorylation of nuclear factor kappa-B (NF-κB) and c-fos expression in vitro and prevented ovariectomy-induced bone loss in vivo. These findings highlighted the potential of 2-NPPA as a drug for the treatment of bone loss-mediated disorders.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea
| | - Mina Ding
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jihyoun Seong
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | - Tae-Hoon Lee
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea.,Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
166
|
Chen M, Zhou M, Fu Y, Li J, Wang Z. Effects of miR-672 on the angiogenesis of adipose-derived mesenchymal stem cells during bone regeneration. Stem Cell Res Ther 2021; 12:85. [PMID: 33494825 PMCID: PMC7836178 DOI: 10.1186/s13287-021-02154-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sufficient vascular network plays an important role in the repair of bone defects. Bone morphogenetic protein 2 (BMP2) being a key regulator of angiogenesis has attracted the attention of researchers. In addition, evidence has suggested that BMP2 coordinates with microRNAs (miRNAs) to form intracellular networks regulating mesenchymal stem cells (MSCs) angiogenesis. Elucidating the underlying mechanisms that are regulating adipose-derived mesenchymal stem cells (ADSCs) angiogenesis might provide more effective method to enhance bone regeneration. METHODS We identified the specific miRNA in rat ADSCs during BMP2-induced angiogenesis and chose the most significant differentially expressed miRNA, miR-672. Three lentiviral system named Lenti-miR-672, Lenti-as-miR-672, and Lenti-miR-NC were transduced into the ADSCs individually. Then, the quantitative real-time polymerase chain reaction (qPCR), western blotting, and blood vessel formation analysis were performed to investigate the effects of miR-672 on ADSCs angiogenesis. Bioinformation platforms were used to screen the potential target of miR-672. Small interfering RNA (siRNA) against TIMP2 (si-TIMP2) mRNA were obtained from GenePharma, and then si-TIMP2 miRNA and miR-672 were co-transfected into ADSCs to detect the effects of TIMP2 on angiogenesis. Calcium phosphate cement (CPC) scaffolds that seeded the lentiviral-modified ADSCs were constructed to test the vascularized bone regeneration in vivo. RESULTS Our data showed that after the angiogenesis of ADSCs induced by BMP2, miR-672 was the most significantly upregulated miRNA. Overexpression of miR-672 promoted the angiogenesis of ADSCs, while knockdown of miR-672 repressed the angiogenesis of ADSCs. The bioinformation prediction showed that TIMP2 might be the one of miR-672' potential targets. TIMP2 protein expression was gradually decreased in ADSCs with overexpressed miR-672. And the angiogenic factors were upregulated in the ADSCs which were transduced with si-TIMP2. Then, the CPC scaffolds coupled the miR-672-modified ADSCs and showed the good potential in vascularized bone regeneration. The overexpressed miR-672 could greatly enhance the blood vessel volume and Microfil-labeled blood vessel numbers in newly formed bone. CONCLUSION BMP2 could promote the angiogenesis of ADSCs through stimulating the expression of miR-672 in ADSCs. miR-672 acted as a positive regulator on the angiogenesis of ADSCs, and incorporating the miR-672-modified ADSCs in the CPC could significantly promote the vascularization and the bone regeneration.
Collapse
Affiliation(s)
- Mingjiao Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Meng Zhou
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Yao Fu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Jin Li
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Zi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
167
|
Cho HH, Been SY, Kim WY, Choi JM, Choi JH, Song CU, Song JE, Bucciarelli A, Khang G. Comparative Study on the Effect of the Different Harvesting Sources of Demineralized Bone Particles on the Bone Regeneration of a Composite Gellan Gum Scaffold for Bone Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:1900-1911. [DOI: 10.1021/acsabm.0c01549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hun Hwi Cho
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Su Young Been
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Woo Youp Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jeong Min Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Cheol Ui Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Alessio Bucciarelli
- Microsystem Technology Group, Center for Materials and Microsystems, Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Trentino, Italy
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| |
Collapse
|
168
|
LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes. Commun Biol 2021; 4:90. [PMID: 33469151 PMCID: PMC7815736 DOI: 10.1038/s42003-020-01613-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated as regulators of growth factor signaling; however, the possible redundancy among mammalian LRIG1, LRIG2, and LRIG3 has hindered detailed elucidation of their physiological functions. Here, we show that Lrig-null mouse embryonic fibroblasts (MEFs) are deficient in adipogenesis and bone morphogenetic protein (BMP) signaling. In contrast, transforming growth factor-beta (TGF-β) and receptor tyrosine kinase (RTK) signaling appeared unaltered in Lrig-null cells. The BMP signaling defect was rescued by ectopic expression of LRIG1 or LRIG3 but not by expression of LRIG2. Caenorhabditis elegans with mutant LRIG/sma-10 variants also exhibited a lipid storage defect. Human LRIG1 variants were strongly associated with increased body mass index (BMI) yet protected against type 2 diabetes; these effects were likely mediated by altered adipocyte morphology. These results demonstrate that LRIG proteins function as evolutionarily conserved regulators of lipid metabolism and BMP signaling and have implications for human disease.
Collapse
|
169
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
170
|
Rathinam E, Govindarajan S, Rajasekharan S, Declercq H, Elewaut D, De Coster P, Martens L, Leybaert L. The calcium dynamics of human dental pulp stem cells stimulated with tricalcium silicate-based cements determine their differentiation and mineralization outcome. Sci Rep 2021; 11:645. [PMID: 33436827 PMCID: PMC7804324 DOI: 10.1038/s41598-020-80096-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Calcium (Ca2+) signalling plays an indispensable role in dental pulp and dentin regeneration, but the Ca2+ responses of human dental pulp stem cells (hDPSCs) stimulated with tricalcium silicate-based (TCS-based) dental biomaterials remains largely unexplored. The objective of the present study was to identify and correlate extracellular Ca2+ concentration, intracellular Ca2+ dynamics, pH, cytotoxicity, gene expression and mineralization ability of human dental pulp stem cells (hDPSCs) stimulated with two different TCS-based biomaterials: Biodentine and ProRoot white MTA. The hDPSCs were exposed to the biomaterials, brought in contact with the overlaying medium, with subsequent measurements of extracellular Ca2+ and pH, and intracellular Ca2+ changes. Messenger RNA expression (BGLAP, TGF-β, MMP1 and BMP2), cytotoxicity (MTT and TUNEL) and mineralization potential (Alizarin red and Von Kossa staining) were then evaluated. Biodentine released significantly more Ca2+ in the α-MEM medium than ProRoot WMTA but this had no cytotoxic impact on hDPSCs. The larger Biodentine-linked Ca2+ release resulted in altered intracellular Ca2+ dynamics, which attained a higher maximum amplitude, faster rise time and increased area under the curve of the Ca2+ changes compared to ProRoot WMTA. Experiments with intracellular Ca2+ chelation, demonstrated that the biomaterial-triggered Ca2+ dynamics affected stem cell-related gene expression, cellular differentiation and mineralization potential. In conclusion, biomaterial-specific Ca2+ dynamics in hDPSCs determine differentiation and mineralization outcomes, with increased Ca2+ dynamics enhancing mineralization.
Collapse
Affiliation(s)
- Elanagai Rathinam
- Department of Paediatric Dentistry and Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.
| | - Srinath Govindarajan
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium
| | - Sivaprakash Rajasekharan
- Department of Paediatric Dentistry and Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, 8500, Kortrijk, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium
| | - Peter De Coster
- Department of Reconstructive Dentistry and Oral Biology, Dental School, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Luc Martens
- Department of Paediatric Dentistry and Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic And Applied Medical Sciences - Physiology Group, Ghent University, Ghent, Belgium
| |
Collapse
|
171
|
Chen M, Liu Q, Xu Y, Wang Y, Han X, Wang Z, Liang J, Sun Y, Fan Y, Zhang X. The effect of LyPRP/collagen composite hydrogel on osteogenic differentiation of rBMSCs. Regen Biomater 2020; 8:rbaa053. [PMID: 33732498 PMCID: PMC7947583 DOI: 10.1093/rb/rbaa053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Although platelet-rich plasma (PRP) plays a significant role in the orthopedic clinical application, it still faces two major problems, namely, uncontrollable factors release, frequent preparation and extraction processes as well as the inconvenient form of usage. To overcome these shortcomings, freeze-dried PRP (LyPRP) was encapsulated into bioactive Col I hydrogel to induce osteogenic differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs). And PRP/Col І composite hydrogel was prepared as a control. Compared with Col І hydrogel, the introduction of platelets significantly improved the mechanical properties of hydrogels. Meanwhile, platelets were evenly distributed in the composite hydrogels network. The sustainable release of related factors in the composite hydrogels could last for more than 14 days to maintain its long-term biological activity. Further cell experiments confirmed that PRP and LyPRP could effectively alleviate the contraction of collagen hydrogel in vitro, and promote the adhesion, proliferation and osteogenesis differentiation of rBMSCs. The results of osteogenic gene expression indicated that the 10% LyPRP/Col І composite hydrogel could facilitate the early expression of BMP-2 and late osteogenic associated protein formation with higher expression of alkaline phosphatase and Osteocalcin (OCN). These results might provide new insights for the clinical application of 10% LyPRP/Col І composite hydrogel as practical bone repair injection.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Quanying Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhe Wang
- Department of Medical Genetics, Zunyi Medical University, No. 6 West Xuefu Road, Zunyi, Guizhou 563000, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.,Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
172
|
Siengdee P, Oster M, Reyer H, Viergutz T, Wimmers K, Ponsuksili S. Morphological and Molecular Features of Porcine Mesenchymal Stem Cells Derived From Different Types of Synovial Membrane, and Genetic Background of Cell Donors. Front Cell Dev Biol 2020; 8:601212. [PMID: 33363158 PMCID: PMC7755640 DOI: 10.3389/fcell.2020.601212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Synovial mesenchymal stem cells (SMSCs) have become a great cell source for musculoskeletal stem cell research, especially related to cartilage and bone tissue regeneration, due to their superior cell proliferation properties and multidifferentiation potential into various cell lineages. This study revealed isolation methods, culture conditions, and morphological and molecular characterization of SMSCs derived fibrous synovium (FS) and adipose synovium (FP) of two pig breeds differing in growth performance [German Landrace (DL), and fat deposition (Angeln Saddleback (AS)]. Herein, FS possessed nucleated cell numbers nearly twice as high as those of FP at Passage 0. SMSCs derived from different types of synovial membrane and genetic background show similar cell morphologies and immunophenotypes, which were assessed by cell surface epitopes and multilineage differentiation potential, but differ significantly in their molecular characteristics. In addition, transcripts of SMSCs from AS were more enriched in IGF-1 signaling and VEGF ligand receptor, while SMSCs from DL were more enriched in growth hormone signaling and bone metabolism. The results indicate that genetics and tissues play significant roles for SMSC characteristics so that SMSCs can be traced back to the original cell donor and be used for fine turning in applications of medical research and therapies.
Collapse
Affiliation(s)
- Puntita Siengdee
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
173
|
Calabrò ML, Lazzari N, Rigotto G, Tonello M, Sommariva A. Role of Epithelial-Mesenchymal Plasticity in Pseudomyxoma Peritonei: Implications for Locoregional Treatments. Int J Mol Sci 2020; 21:ijms21239120. [PMID: 33266161 PMCID: PMC7731245 DOI: 10.3390/ijms21239120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial-mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal-epithelial transition, MET), now collectively called epithelial-mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial-mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
- Correspondence:
| | - Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (N.L.); (G.R.)
| | - Marco Tonello
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Antonio Sommariva
- Advanced Surgical Oncology, Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| |
Collapse
|
174
|
Li Z, Liu H, Wang R, Ji C, Wei Y, Shi M, Wang Y, Du Y, Zhang Y, Yuan Q, Yan C. Bioactive Core-Shell CaF 2 Upconversion Nanostructure for Promotion and Visualization of Engineered Bone Reconstruction. ACS NANO 2020; 14:16085-16095. [PMID: 33151671 DOI: 10.1021/acsnano.0c08013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inorganic ion metabolism plays significant roles in various life processes including signal transduction, substance exchange, and cellular constructions. Regulation and monitoring of ion metabolism offer great promise to modulate biological activities and provide insights into related mechanisms. Here, a synergistic nanodepot based on a bioactive core-shell CaF2 upconversion nanostructure that integrates multiple mineral ions for metabolic regulation was built for the acceleration and monitoring of the biomineralization process. Multiple mineral ions released from the nanodepots can accelerate the growth of inorganic crystals and enhance the production of organic matrixes, synergistically facilitating the regeneration of bone defects in vivo. During the process, such a nanodepot can be constructed to specifically recognize osteoblasts for the monitoring of biomineralization. This nanoprobe represents an efficient strategy to promote and monitor biomineralization-related metabolic activities with applications in fundamental research, disease diagnosis, and regenerative medicine.
Collapse
Affiliation(s)
- Zhihao Li
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoran Liu
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine (Ministry of Education), School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biological Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunhua Yan
- School of Materials Science and Engineering & National Institute for Advanced Materials, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
175
|
A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res 2020; 8:41. [PMID: 33298874 PMCID: PMC7680794 DOI: 10.1038/s41413-020-00115-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-β/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-β/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-β/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 μg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2−/− mice. The rhBMP2-induced ectopic bone in Smurf2−/− mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2−/− mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2−/− mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2−/− BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.
Collapse
|
176
|
Liu F, Cheng X, Xiao L, Wang Q, Yan K, Su Z, Wang L, Ma C, Wang Y. Inside-outside Ag nanoparticles-loaded polylactic acid electrospun fiber for long-term antibacterial and bone regeneration. Int J Biol Macromol 2020; 167:1338-1348. [PMID: 33232699 DOI: 10.1016/j.ijbiomac.2020.11.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bone infections caused by bacteria during bone graft implantations can impair the ability of bone tissue repair, which is currently a clinical problem. In this study, the electrospinning technique was used to prepare a polylactic acid (PLLA)/silver (Ag) composite fiber, in which the silver nanoparticles (Ag-NPs) were uniformly distributed on the inner surface of PLLA fibers; dopamine (DA) was self-polymerized on the composite fiber surface to construct the adhesive polydopamine (PDA) film and chitosan (CS) was used to regulate Ag+ in situ through pulse electrochemical deposition for the construction of a stable Ag-NPs coating (CS/Ag), achieving the steady and slow release of Ag-NPs, therefore accomplishing the construction of a "inside-outside" Ag-NPs-loaded PLLA/Ag@PDA@CS/Ag composite fiber with dual functions of long-lasting antibacterial effect as well as bone regeneration promotion ability. The study results showed that the composite fiber has an excellent antibacterial effect against E. coli and S. aureus, and good osteoinductive and angiogenic properties. In summary, under the dual regulations of the strong adhesion of PDA and CS chelation, the "inside-outside" Ag-NPs-loaded composite fiber was endowed with good physiological stability, long-term antibacterial effect and bone infection inhibition ability, making it a promising bone implant material.
Collapse
Affiliation(s)
- Feifei Liu
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Xuewei Cheng
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lu Xiao
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China
| | - Kun Yan
- Traumatic Orthopedics, The 6th affiliated hospital of Xinjiang Medical University, 39 Wuxin Road, Urumqi 830001, PR China
| | - Zhi Su
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China.
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China.
| |
Collapse
|
177
|
Liu S, de Medeiros MC, Fernandez EM, Zarins KR, Cavalcante RG, Qin T, Wolf GT, Figueroa ME, D'Silva NJ, Rozek LS, Sartor MA. 5-Hydroxymethylation highlights the heterogeneity in keratinization and cell junctions in head and neck cancers. Clin Epigenetics 2020; 12:175. [PMID: 33203436 PMCID: PMC7672859 DOI: 10.1186/s13148-020-00965-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide, with human papillomavirus (HPV)-related HNSCC rising to concerning levels. Extensive clinical, genetic and epigenetic differences exist between HPV-associated HNSCC and HPV-negative HNSCC, which is often linked to tobacco use. However, 5-hydroxymethylation (5hmC), an oxidative derivative of DNA methylation and its heterogeneity among HNSCC subtypes, has not been studied. RESULTS We characterized genome-wide 5hmC profiles in HNSCC by HPV status and subtype in 18 HPV(+) and 18 HPV(-) well-characterized tumors. Results showed significant genome-wide hyper-5hmC in HPV(-) tumors, with both promoter and enhancer 5hmC able to distinguish meaningful tumor subgroups. We identified specific genes whose differential expression by HPV status is driven by differential hydroxymethylation. CDKN2A (p16), used as a key biomarker for HPV status, exhibited the most extensive hyper-5hmC in HPV(+) tumors, while HPV(-) tumors showed hyper-5hmC in CDH13, TIMP2, MMP2 and other cancer-related genes. Among the previously reported two HPV(+) subtypes, IMU (stronger immune response) and KRT (more keratinization), the IMU subtype revealed hyper-5hmC and up-regulation of genes in cell migration, and hypo-5hmC with down-regulation in keratinization and cell junctions. We experimentally validated our key prediction of higher secreted and intracellular protein levels of the invasion gene MMP2 in HPV(-) oral cavity cell lines. CONCLUSION Our results implicate 5hmC in driving differences in keratinization, cell junctions and other cancer-related processes among tumor subtypes. We conclude that 5hmC levels are critical for defining tumor characteristics and potentially used to define clinically meaningful cancer patient subgroups.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA
| | | | - Evan M Fernandez
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Maria E Figueroa
- Department of Human Genetics and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI, 48109-2218, USA. .,Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
178
|
Lin H, Shi F, Jiang S, Wang Y, Zou J, Ying Y, Huang D, Luo L, Yan X, Luo Z. Metformin attenuates trauma-induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. J Cell Mol Med 2020; 24:14491-14501. [PMID: 33169942 PMCID: PMC7754007 DOI: 10.1111/jcmm.16076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
AMP‐activated protein kinase (AMPK) is an intracellular sensor of energy homoeostasis that is activated under energy stress and suppressed in energy surplus. AMPK activation leads to inhibition of anabolic processes that consume ATP. Osteogenic differentiation is a process that highly demands ATP during which AMPK is inhibited. The bone morphogenetic proteins (BMPs) signalling pathway plays an essential role in osteogenic differentiation. The present study examines the inhibitory effect of metformin on BMP signalling, osteogenic differentiation and trauma‐induced heterotopic ossification. Our results showed that metformin inhibited Smad1/5 phosphorylation induced by BMP6 in osteoblast MC3T3‐E1 cells, concurrent with up‐regulation of Smad6, and this effect was attenuated by knockdown of Smad6. Furthermore, we found that metformin suppressed ALP activity and mineralization of the cells, an event that was attenuated by the dominant negative mutant of AMPK and mimicked by its constitutively active mutant. Finally, administration of metformin prevented the trauma‐induced heterotopic ossification in mice. In conjuncture, AMPK activity and Smad6 and Smurf1 expression were enhanced by metformin treatment in the muscle of injured area, concurrently with the reduction of ALK2. Collectively, our study suggests that metformin prevents heterotopic ossification via activation of AMPK and subsequent up‐regulation of Smad6. Therefore, metformin could be a potential therapeutic drug for heterotopic ossification induced by traumatic injury.
Collapse
Affiliation(s)
- Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanyuan Wang
- Clinical Systems Biology Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Institute of Basic Biomedical Sciences and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| |
Collapse
|
179
|
Bal Z, Kushioka J, Kodama J, Kaito T, Yoshikawa H, Korkusuz P, Korkusuz F. BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 2020; 50:1707-1722. [PMID: 32336073 PMCID: PMC7672355 DOI: 10.3906/sag-2003-127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
A fracture that does not unite in nine months is defined as nonunion. Nonunion is common in fragmented fractures and large bone defects where vascularization is impaired. The distal third of the tibia, the scaphoid bone or the talus fractures are furthermore prone to nonunion. Open fractures and spinal fusion cases also need special monitoring for healing. Bone tissue regeneration can be attained by autografts, allografts, xenografts and synthetic materials, however their limited availability and the increased surgical time as well as the donor site morbidity of autograft use, and lower probability of success, increased costs and disease transmission and immunological reaction probability of allografts oblige us to find better solutions and new grafts to overcome the cons. A proper biomaterial for regeneration should be osteoinductive, osteoconductive, biocompatible and mechanically suitable. Cytokine therapy, where growth factors are introduced either exogenously or triggered endogenously, is one of the commonly used method in bone tissue engineering. Transforming growth factor β (TGFβ) superfamily, which can be divided structurally into two groups as bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs) and TGFβ, activin, Nodal branch, Mullerian hormone, are known to be produced by osteoblasts and other bone cells and present already in bone matrix abundantly, to take roles in bone homeostasis. BMP family, as the biggest subfamily of TGFβ superfamily, is also reported to be the most effective growth factors in bone and development, which makes them one of the most popular cytokines used in bone regeneration. Complications depending on the excess use of growth factors, and pleiotropic functions of BMPs are however the main reasons of why they should be approached with care. In this review, the Smad dependent signaling pathways of TGFβ and BMP families and their relations and the applications in preclinical and clinical studies will be briefly summarized.
Collapse
Affiliation(s)
- Zeynep Bal
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Joe Kodama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Petek Korkusuz
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Ankara, Turkey
| |
Collapse
|
180
|
Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Commun Biol 2020; 3:604. [PMID: 33097805 PMCID: PMC7584606 DOI: 10.1038/s42003-020-01318-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Previous reports have suggested a link between pulmonary tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), and the development of lung adenocarcinoma (LUAD) and sarcoidosis. Furthermore, these lung diseases share certain clinical similarities that can challenge differential diagnosis in some cases. Here, through comparison of lung transcriptome-derived molecular signatures of TB, LUAD and sarcoidosis patients, we identify certain shared disease-related expression patterns. We also demonstrate that MKI67, an over-expressed gene shared by TB and LUAD, is a key mediator in Mtb-promoted tumor cell proliferation, migration, and invasion. Moreover, we reveal a distinct ossification-related TB lung signature, which may be associated with the activation of the BMP/SMAD/RUNX2 pathway in Mtb-infected macrophages that can restrain mycobacterial survival and promote osteogenic differentiation of mesenchymal stem cells. Taken together, these findings provide novel pathogenic links and potential molecular markers for better understanding and differential diagnosis of pulmonary TB, LUAD and sarcoidosis. Previous work has suggested potential links between Mycobacterium tuberculosis infection and the development of both lung cancer and sarcoidosis, in addition to tuberculosis. Here, Qiyao Chai, Zhe Lu, Zhidong Liu and colleagues report a transcriptomic analysis of lung tissue from tuberculosis, lung adenocarcinoma, and sarcoidosis patients and find that while many disease-linked expression changes are shared between the three diseases, each also has distinct transcriptional signatures that could be useful as molecular markers.
Collapse
|
181
|
The Phosphodiesterase-5 Inhibitor Vardenafil Improves the Activation of BMP Signaling in Response to Hydrogen Peroxide. Cardiovasc Drugs Ther 2020; 34:41-52. [PMID: 32096002 DOI: 10.1007/s10557-020-06939-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The pleiotropic roles of phosphodiesterase-5 inhibitors (PDE5is) in cardiovascular diseases have attracted attention. The effect of vardenafil (a PDE5i) is partly mediated through reduced oxidative stress, but it is unclear whether vardenafil protects against hydrogen peroxide (H2O2)-induced endothelial cell injury, and the molecular mechanisms that are involved remain unknown. We determined the protective role of vardenafil on H2O2-induced endothelial cell injury in cultured human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS Vardenafil decreased the number of TUNEL-positive cells, increased the Bcl2/Bax ratio, and ameliorated the numbers of BrdU-positive cells in H2O2-treated HUVECs. The bone morphogenetic protein receptor (BMPR)/p-Smad/MSX2 pathway was enhanced in response to H2O2, and vardenafil treatment could normalize this pathway. To determine whether the BMP pathway is involved, we blocked the BMP pathway using dorsomorphin, which abolished the protective effects of vardenafil. We found that vardenafil improved the H2O2-induced downregulation of BMP-binding endothelial regulator protein (BMPER), which possibly intersects with the BMP pathway in the regulation of endothelial cell injury in response to oxidative stress. CONCLUSIONS We demonstrated for the first time that exogenous H2O2 activates BMPR expression and promotes Smad1/5/8 phosphorylation. Additionally, vardenafil can attenuate H2O2-induced endothelial cell injury in HUVECs. Vardenafil decreases apoptosis through an improved Bcl-2/Bax ratio and increases cell proliferation. Vardenafil protects against endothelial cell injury through ameliorating the intracellular oxidative stress level and BMPER expression. The protective role of vardenafil on H2O2-induced endothelial cell injury is mediated through BMPR/p-Smad/MSX2 in HUVECs.
Collapse
|
182
|
Sotiropoulos MG, Chitnis T. Opposing and potentially antagonistic effects of BMP and TGF-β in multiple sclerosis: The "Yin and Yang" of neuro-immune Signaling. J Neuroimmunol 2020; 347:577358. [PMID: 32795734 DOI: 10.1016/j.jneuroim.2020.577358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Bone Morphogenetic Proteins (BMP) and Transforming Growth Factor-beta (TGF-β) are cytokines with similar receptors and messengers. They are important for immune cell function, with BMPs exerting mainly proinflammatory but also anti-inflammatory effects, and TGF-β suppressing inflammation. Patients with Multiple Sclerosis exhibit BMP overactivity and suppressed TGF-β signaling. This dysregulated signaling participates in the crosstalk between infiltrating immune cells and glia, where BMP inhibits remyelination. Reciprocal antagonism between the two pathways takes place via a variety of mechanisms. Although this antagonism has not been studied in the setting of Multiple Sclerosis, it could inform further research and treatment discovery.
Collapse
Affiliation(s)
- Marinos G Sotiropoulos
- Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
183
|
Natsume N, Yonezawa T, Woo JT, Teruya T. Effect of pinocembrin isolated from Alpinia zerumbet on osteoblast differentiation. Cytotechnology 2020; 73:10.1007/s10616-020-00427-2. [PMID: 33029744 PMCID: PMC8166995 DOI: 10.1007/s10616-020-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022] Open
Abstract
Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Osteoporosis is a bone metabolism disorder in which bone mass decreases due to increased bone resorption rather than bone formation. We focused on the traditional plant Alpinia zerumbet in Okinawa, Japan, and searched for promising compounds for the prevention and treatment of osteoporosis. Pinocembrin isolated from the leaves of A. zerumbet showed enhanced alkaline phosphatase (ALP) activity and mineralization and increased mRNA expression of osteoblast-related genes Alp and Osteocalcin (Ocn) in MC3T3-E1 cells. Pinocembrin increased the mRNA expression of Runx2 and Osterix, which are important transcription factors in osteoblast differentiation, and the mRNA expression of Dlx5 and Msx2, which are enhancers of these transcription factors. The bone morphogenetic protein (BMP) antagonist noggin, its receptor kinase inhibitor LDN-193189 and p38 MAPK inhibitor SB203580 attenuated pinocembrin-promoted ALP activity. Pinocembrin increased the mRNA of Bmp-2 and its target gene Id1. In addition, the estrogen receptor (ER) inhibitor ICI182780 suppressed pinocembrin-stimulated ALP activity. Pinocembrin may increase BMP-2 expression via ER. Then, the BMP-2 promotes osteoblast specific genes expression and mineralization through both Smad-dependent and independent pathway following Runx2 and Osterix induction. Our findings suggest that pinocembrin has bone anabolic effects and may be useful for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Noriyuki Natsume
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Takayuki Yonezawa
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan.
| | - Je-Tae Woo
- Department of Biological Chemistry, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Toshiaki Teruya
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
184
|
Lademann F, Weidner H, Tsourdi E, Kumar R, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Disruption of BMP Signaling Prevents Hyperthyroidism-Induced Bone Loss in Male Mice. J Bone Miner Res 2020; 35:2058-2069. [PMID: 32453466 DOI: 10.1002/jbmr.4092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (TH) are key regulators of bone health, and TH excess in mice causes high bone turnover-mediated bone loss. However, the underlying molecular mechanisms of TH actions on bone remain poorly defined. Here, we tested the hypothesis whether TH mediate their effects via the pro-osteogenic bone morphogenetic protein (BMP) signaling pathway in vitro and in vivo. Primary murine osteoblasts treated with 3,3',5-triiodo-L-thyronine (T3 ) showed an enhanced differentiation potential, which was associated with activated canonical BMP/SMAD signaling reflected by SMAD1/5/8 phosphorylation. Blocking BMP signaling at the receptor (LDN193189) and ligand level (noggin, anti-BMP2/BMP4 neutralizing antibodies) inhibited T3 -induced osteogenic differentiation. In vivo, TH excess over 4 weeks in male C57BL/6JRj mice led to severe trabecular bone loss with a high bone turnover that was completely prevented by treatment with the BMP ligand scavenger ALK3-Fc. Thus, TH activate the canonical BMP pathway in osteoblasts to promote their differentiation and function. Importantly, this study indicates that blocking the BMP pathway may be an effective strategy to treat hyperthyroidism-induced bone loss. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ravi Kumar
- Acceleron Pharma, Inc, Cambridge, MA, USA
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
185
|
Orphan Nuclear Receptor ERRγ Is a Novel Transcriptional Regulator of IL-6 Mediated Hepatic BMP6 Gene Expression in Mice. Int J Mol Sci 2020; 21:ijms21197148. [PMID: 32998264 PMCID: PMC7582774 DOI: 10.3390/ijms21197148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenetic protein 6 (BMP6) is a multifunctional growth factor involved in organ development and homeostasis. BMP6 controls expression of the liver hormone, hepcidin, and thereby plays a crucial role in regulating iron homeostasis. BMP6 gene transcriptional regulation in liver is largely unknown, but would be of great help to externally modulate iron load in pathologic conditions. Here, we describe a detailed molecular mechanism of hepatic BMP6 gene expression by an orphan nuclear receptor, estrogen-related receptor γ (ERRγ), in response to the pro-inflammatory cytokine interleukin 6 (IL-6). Recombinant IL-6 treatment increases hepatic ERRγ and BMP6 expression. Overexpression of ERRγ is sufficient to increase BMP6 gene expression in hepatocytes, suggesting that IL-6 is upstream of ERRγ. In line, knock-down of ERRγ in cell lines or a hepatocyte specific knock-out of ERRγ in mice significantly decreases IL-6 mediated BMP6 expression. Promoter studies show that ERRγ directly binds to the ERR response element (ERRE) in the mouse BMP6 gene promoter and positively regulates BMP6 gene transcription in IL-6 treatment conditions, which is further confirmed by ERRE mutated mBMP6-luciferase reporter assays. Finally, an inverse agonist of ERRγ, GSK5182, markedly inhibits IL-6 induced hepatic BMP6 expression in vitro and in vivo. Taken together, these results reveal a novel molecular mechanism on ERRγ mediated transcriptional regulation of hepatic BMP6 gene expression in response to IL-6.
Collapse
|
186
|
Ghorbani F, Li D, Zhong Z, Sahranavard M, Qian Z, Ni S, Zhang Z, Zamanian A, Yu B. Bioprinting a cell‐laden matrix for bone regeneration: A focused review. J Appl Polym Sci 2020. [DOI: 10.1002/app.49888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Melika Sahranavard
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Karaj Iran
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Zhenhua Zhang
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Karaj Iran
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| |
Collapse
|
187
|
Zhou L, Kuai F, Shi Q, Yang H. Doxorubicin restrains osteogenesis and promotes osteoclastogenesis in vitro. Am J Transl Res 2020; 12:5640-5654. [PMID: 33042445 PMCID: PMC7540161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Clinical evidence suggests that doxorubicin (DOX), as a chemotherapeutic drug, can induce severe bone damage in cancer patients. However, the effect of DOX on osteoporosis has not been fully elucidated. Therefore our study aims to investigate the effect and mechanism of DOX in osteoporosis. In our study, we co-cultured rat BMSCs with different concentrations of DOX solution, then the osteogenic differentiation markers and proliferation ability were analyzed. The results indicated that a certain concentration of the DOX solution may restrain the osteogenic differentiation of rat BMSCs by bmp-2/smads signalling pathway. Also, we found DOX promoted the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation. Our research explains excellently the induce-osteoporotic mechanism of DOX in vitro, which maybe contributing to the exploration of a new way to prevent osteoporosis caused by chemotherapy.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
- Department of Orthopaedic Surgery, Lianshui County HospitalHuai’an 223001, China
| | - Feng Kuai
- Department of Geriatrics, Yancheng NO.1 People’s HospitalJiangsu 224001, China
| | - Qin Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| |
Collapse
|
188
|
Abu Awwad HADM, Thiagarajan L, Kanczler JM, Amer MH, Bruce G, Lanham S, Rumney RMH, Oreffo ROC, Dixon JE. Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair. J Control Release 2020; 325:335-346. [PMID: 32629135 PMCID: PMC7445425 DOI: 10.1016/j.jconrel.2020.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/05/2023]
Abstract
Additive manufacturing processes used to create regenerative bone tissue engineered implants are not biocompatible, thereby restricting direct use with stem cells and usually require cell seeding post-fabrication. Combined delivery of stem cells with the controlled release of osteogenic factors, within a mechanically-strong biomaterial combined during manufacturing would replace injectable defect fillers (cements) and allow personalized implants to be rapidly prototyped by 3D bioprinting. Through the use of direct genetic programming via the sustained release of an exogenously delivered transcription factor RUNX2 (delivered as recombinant GET-RUNX2 protein) encapsulated in PLGA microparticles (MPs), we demonstrate that human mesenchymal stromal (stem) cells (hMSCs) can be directly fabricated into a thermo-sintered 3D bioprintable material and achieve effective osteogenic differentiation. Importantly we observed osteogenic programming of gene expression by released GET-RUNX2 (8.2-, 3.3- and 3.9-fold increases in OSX, RUNX2 and OPN expression, respectively) and calcification (von Kossa staining) in our scaffolds. The developed biodegradable PLGA/PEG paste formulation augments high-density bone development in a defect model (~2.4-fold increase in high density bone volume) and can be used to rapidly prototype clinically-sized hMSC-laden implants within minutes using mild, cytocompatible extrusion bioprinting. The ability to create mechanically strong 'cancellous bone-like' printable implants for tissue repair that contain stem cells and controlled-release of programming factors is innovative, and will facilitate the development of novel localized delivery approaches to direct cellular behaviour for many regenerative medicine applications including those for personalized bone repair.
Collapse
Affiliation(s)
- Hosam Al-Deen M Abu Awwad
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lalitha Thiagarajan
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mahetab H Amer
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gordon Bruce
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
189
|
Lee H, Kim SHL, Yoon H, Ryu J, Park HH, Hwang NS, Park TH. Intracellular Delivery of Recombinant RUNX2 Facilitated by Cell-Penetrating Protein for the Osteogenic Differentiation of hMSCs. ACS Biomater Sci Eng 2020; 6:5202-5214. [PMID: 33455270 DOI: 10.1021/acsbiomaterials.0c00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are a commonly used cell source for cell therapy and tissue engineering because of their easy accessibility and multipotency. Runt-related transcription factor 2 (RUNX2) is a master regulator of the osteogenic commitment of hMSCs. Either recombinant plasmid delivery or viral transduction has been utilized to activate RUNX2 gene expression for effective hMSC differentiation. In this study, recombinant RUNX2 fused with cell-penetrating 30Kc19α protein (30Kc19α-RUNX2) was delivered into hMSCs for osteogenic commitment. Fusion of recombinant RUNX2 with 30Kc19α resulted in successful delivery of the protein into cells and enhanced soluble expression of the protein. Intracellular delivery of the 30Kc19α-RUNX2 fusion protein enhanced the osteogenic differentiation of hMSCs in vitro. 30Kc19α-RUNX2 treatment resulted in increased ALP accumulation and elevated calcium deposition. Finally, implantation of hMSCs treated with 30Kc19α-RUNX2 showed osteogenesis via cell delivery into the subcutaneous tissue and bone regeneration in a cranial defect mouse model. Therefore, we suggest that 30Kc19α-RUNX2, an osteoinductive recombinant protein, is an efficient tool for bone tissue engineering.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungro Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
190
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
191
|
Lukač N, Katavić V, Novak S, Šućur A, Filipović M, Kalajzić I, Grčević D, Kovačić N. What do we know about bone morphogenetic proteins and osteochondroprogenitors in inflammatory conditions? Bone 2020; 137:115403. [PMID: 32371019 DOI: 10.1016/j.bone.2020.115403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Osteochondroprogenitors are crucial for embryonic bone development and postnatal processes such as bone repair in response to fracture injury, and their dysfunction may contribute to insufficient repair of structural damage in inflammatory arthritides. In the fracture healing, the early inflammatory phase is crucial for normal callus development and new bone formation. This process involves a complex interplay of many molecules and cell types, responsible for recruitment, expansion and differentiation of osteochondroprogenitor populations. In inflammatory arthritides, inflammation induces bone resorption and causes insufficient bone formation, which leads to local and systemic bone loss. While bone loss is a predominant feature in rheumatoid arthritis, inflammation also induces pathologic bone formation at enthesial sites in seronegative spondyloarthropathies. Bone morphogenetic proteins (BMP) are involved in cell proliferation, differentiation and apoptosis, and have fundamental roles in maintenance of postnatal bone homeostasis. They are crucial regulators of the osteochondroprogenitor pool and drive their proliferation, differentiation, and lifespan during bone regeneration. In this review, we summarize the effects of inflammation on osteochondroprogenitor populations during fracture repair and in inflammatory arthritides, with special focus on inflammation-mediated modulation of BMP signaling. We also present data in which we describe a population of murine synovial osteochondroprogenitor cells, which are reduced in arthritis, and characterize their expression of genes involved in regulation of bone homeostasis, emphasizing the up-regulation of BMP pathways in early progenitor subset. Based on the presented data, it may be concluded that during an inflammatory response, innate immune cells induce osteochondroprogenitors by providing signals for their recruitment, by producing BMPs and other osteogenic factors for paracrine effects, and by secreting inflammatory cytokines that may positively regulate osteogenic pathways. On the other hand, inflammatory cells may secrete cytokines that interfere with osteogenic pathways, proapoptotic factors that reduce the pool of osteochondroprogenitor cells, as well as BMP and Wnt antagonists. The net effect is strongly context-dependent and influenced by the local milieu of cells, cytokines, and growth factors. Further elucidation of the interplay between inflammatory signals and BMP-mediated bone formation may provide valuable tools for therapeutic targeting.
Collapse
Affiliation(s)
- Nina Lukač
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sanja Novak
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alan Šućur
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivo Kalajzić
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Danka Grčević
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
192
|
Wang W, Rigueur D, Lyons KM. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020; 137:115439. [PMID: 32442550 PMCID: PMC7891678 DOI: 10.1016/j.bone.2020.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
The ligands that comprise the Transforming Growth Factor β superfamily highly govern the development of the embryonic growth plate. Members of this superfamily activate canonical TGFβ and/or BMP (Bone Morphogenetic Protein) signaling pathways. How these pathways interact with one another is an area of active investigation. These two signaling pathways have been described to negatively regulate one another through crosstalk involving Smad proteins, the primary intracellular effectors of canonical signaling. More recently, a mechanism for regulation of the BMP pathway through TGFβ and BMP receptor interactions has been described. Here in this review, we demonstrate examples of how TGFβ is a gatekeeper of BMP action in the developing growth plate at both the receptor and transcriptional levels.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Diana Rigueur
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Karen M Lyons
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America; Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
193
|
Raad S, David A, Que J, Faure C. Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells Dev 2020; 29:953-966. [PMID: 32515280 PMCID: PMC9839344 DOI: 10.1089/scd.2020.0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.
Collapse
Affiliation(s)
- Suleen Raad
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Anu David
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Center for Human Development, Columbia University, New York, New York, USA
| | - Christophe Faure
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada.,Esophageal Atresia Clinic and Division of Pediatric Gastroenterology Hepatology and Nutrition, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada.,Address correspondence to: Dr. Christophe Faure, Division of Pediatric Gastroenterology, Sainte-Justine Hospital, 3715 Côte Sainte Catherine, Montreal H3T1C5, Quebec, Canada
| |
Collapse
|
194
|
Abstract
Purpose of Review Spinal pain and associated disability is a leading cause of morbidity worldwide that has a strong association with degenerative disc disease (DDD). Biologically based therapies to treat DDD face significant challenges posed by the unique milieu of the environment within the intervertebral disc, and many promising therapies are in the early stages of development. Patient selection, reasonable therapeutic goals, approach, and timing will need to be discerned to successfully translate potential therapeutics. This review provides a brief overview of the status of intradiscal biologic therapies. Recent Findings Proposed systemic delivery of therapeutic agents has not progressed very much in large part due to the risk of adverse events in remote tissues plus the very limited vascular supply and therefore questionable delivery to the intervertebral disc nucleus pulposus. Intradiscal delivery of therapeutic proteins shows good potential for clinical trials and translation with encouraging results from large animal pre-clinical studies plus an enhanced understanding of the biology of DDD. There are a few cell-based therapies currently under pre-clinical and clinical trial investigation; however, these attempts continue to be hampered by unknown if any, mechanism of action, no downstream detection of transplanted cells, mixed results concerning efficacy, small sample numbers, and a lack of objective evidence of pain mediation. Summary Treatment of DDD using biologically based therapeutics is a widely sought-after goal; however, potential therapies need to address pain and disability in larger, well-controlled studies.
Collapse
|
195
|
Ji F, Zhu L, Pan J, Shen Z, Yang Z, Wang J, Bai X, Lin Y, Tao J. hsa_circ_0026827 Promotes Osteoblast Differentiation of Human Dental Pulp Stem Cells Through the Beclin1 and RUNX1 Signaling Pathways by Sponging miR-188-3p. Front Cell Dev Biol 2020; 8:470. [PMID: 32671065 PMCID: PMC7332693 DOI: 10.3389/fcell.2020.00470] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found that circular RNA (circRNA) hsa_circ_0026827 plays a role during osteoblast differentiation, but the mechanism is unclear. The aim of this study was to illuminate the role of hsa_circ_0026827 in human dental pulp stem cells (DPSCs) during osteoblast differentiation. The results show that hsa_circ_0026827 expression significantly increased during osteoblast differentiation, while knockdown of hsa_circ_0026827 suppressed DPSC-derived osteoblast differentiation. microRNA (miRNA) expression profile analysis showed that downregulation of hsa_circ_0026827 promoted miR-188-3p expression. miR-188-3p downregulation restored osteogenic differentiation of DPSCs after hsa_circ_0026827 was silenced. Luciferase reporter assays verified that miR-188-3p was the target of hsa_circ_0026827 and also demonstrated that Beclin1 and RUNX1 were miR-188-3p downstream targets. miR-188-3p overexpression suppressed DPSC osteogenic differentiation by targeting Beclin-1-mediated autophagy and runt-related transcription factor 1 (RUNX1). In vivo studies using a heterotopic bone model also found that hsa_circ_0026827 overexpression plays an important role in promoting heterotopic bone formation. In conclusion, our research indicates that hsa_circ_0026827 promotes osteoblast differentiation of DPSCs via Beclin1 and the RUNX1 signaling pathways by sponging miR-188-3p, which suggests novel therapeutics for osteoporosis treatment.
Collapse
Affiliation(s)
- Fang Ji
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lanying Zhu
- Department of Stomatology, Jining Traditional Chinese Medicine Hospital, Shandong, China
| | - Jing Pan
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhecheng Shen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhao Yang
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jian Wang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuebing Bai
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueting Lin
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Tao
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
196
|
Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene 2020; 39:5152-5164. [PMID: 32535615 DOI: 10.1038/s41388-020-1351-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) program, which facilitates tumor metastasis, stemness and therapy resistance, is a reversible biological process that is largely orchestrated at the epigenetic level under the regulation of different cell signaling pathways. EMT state is often heterogeneous within individual tumors, though the epigenetic drivers underlying such heterogeneity remain elusive. In colon cancer, hyperactivation of the Wnt/β-catenin signaling not only drives tumor initiation, but also promotes metastasis in late stage by promoting EMT program. However, it is unknown whether the intratumorally heterogeneous Wnt activity could directly drive EMT heterogeneity, and, if so, what are the underlying epigenetic driver(s). Here, by analyzing a phenotypically and molecularly heterogeneous colon cancer cell line using single-cell RNA sequencing, we identified two distinct cell populations with positively correlated Wnt activity and EMT state. Integrative multi-omics analysis of these two cell populations revealed RUNX2 as a critical transcription factor epigenetically driving the EMT heterogeneity. Both in vitro and in vivo genetic perturbation assays validated the EMT-enhancing effect of RUNX2, which remodeled chromatin landscape and activated a panel of EMT-associated genes through binding to their promoters and/or potential enhancers. Finally, by exploring the clinical data, we showed that RUNX2 expression is positively correlated with metastasis development and poor survival of colon cancer patients, as well as patients afflicted with other types of cancer. Taken together, our work revealed RUNX2 as a new EMT-promoting epigenetic regulator in colon cancer, which may potentially serve as a prognostic marker for tumor metastasis.
Collapse
|
197
|
Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res 2020; 8:23. [PMID: 32550039 PMCID: PMC7280204 DOI: 10.1038/s41413-020-0099-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Osteocytes, the most abundant and long-lived cells in bone, are the master regulators of bone remodeling. In addition to their functions in endocrine regulation and calcium and phosphate metabolism, osteocytes are the major responsive cells in force adaptation due to mechanical stimulation. Mechanically induced bone formation and adaptation, disuse-induced bone loss and skeletal fragility are mediated by osteocytes, which sense local mechanical cues and respond to these cues in both direct and indirect ways. The mechanotransduction process in osteocytes is a complex but exquisite regulatory process between cells and their environment, between neighboring cells, and between different functional mechanosensors in individual cells. Over the past two decades, great efforts have focused on finding various mechanosensors in osteocytes that transmit extracellular mechanical signals into osteocytes and regulate responsive gene expression. The osteocyte cytoskeleton, dendritic processes, Integrin-based focal adhesions, connexin-based intercellular junctions, primary cilium, ion channels, and extracellular matrix are the major mechanosensors in osteocytes reported so far with evidence from both in vitro and in vitro studies. This review aims to give a systematic introduction to osteocyte mechanobiology, provide details of osteocyte mechanosensors, and discuss the roles of osteocyte mechanosensitive signaling pathways in the regulation of bone homeostasis.
Collapse
Affiliation(s)
- Lei Qin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wen Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
198
|
Julier Z, Karami R, Nayer B, Lu YZ, Park AJ, Maruyama K, Kuhn GA, Müller R, Akira S, Martino MM. Enhancing the regenerative effectiveness of growth factors by local inhibition of interleukin-1 receptor signaling. SCIENCE ADVANCES 2020; 6:eaba7602. [PMID: 32582857 PMCID: PMC7292637 DOI: 10.1126/sciadv.aba7602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 05/31/2023]
Abstract
Although growth factors (GFs) are key molecules for regenerative medicine, their use has been limited by issues associated with suboptimal delivery systems and incomplete understanding of their signaling dynamics. Here, we explored how proinflammatory signals affect GF regenerative potential. Using bone regeneration in mouse, we found that the regenerative capacity of two clinically relevant GFs (BMP-2 and PDGF-BB) is impaired by interleukin-1 receptor (IL-1R1). Mechanistically, IL-1R1 activation in bone-forming cells desensitizes them to GFs and accelerates senescence. Moreover, administration of the GFs triggers IL-1 release by macrophages. To provide localized and sustained IL-1R1 inhibition, we engineered IL-1R antagonist (IL-1Ra) to bind the extracellular matrix (ECM) very strongly and demonstrate that codelivering GFs with ECM-binding IL-1Ra induces superior regeneration. Thus, we highlight that GF regenerative activity is hindered by proinflammatory signals, and GF-based therapies should integrate immunomodulation. Particularly, ECM-binding IL-1Ra holds clinical translational potential by enhancing efficacy of GF therapies.
Collapse
Affiliation(s)
- Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Rezvan Karami
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Anthony J. Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Kenta Maruyama
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M. Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
199
|
Karadeniz F, Oh JH, Lee JI, Seo Y, Kong CS. 3,5-dicaffeoyl‑epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153225. [PMID: 32464299 DOI: 10.1016/j.phymed.2020.153225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Impaired bone formation is one of the reasons behind osteoporosis. Alterations in the patterns of mesenchymal stromal cell differentiation towards adipocytes instead of osteoblasts contribute to osteoporosis progression. Natural anti-osteoporotic agents are effective and safe alternatives for osteoporosis treatment. PURPOSE In this context, 3,5-dicaffeoyl‑epi-quinic acid (DCEQA) which is a derivative of chlorogenic acid with reported bioactivities was studied for its osteogenic differentiation enhancing potential in vitro. METHODS Anti-osteoporotic effects of DCEQA were investigated in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) which were induced to differentiate into osteoblasts or adipocytes with or without DCEQA treatment. Changes in the osteogenic and adipogenic markers such as ALP activity and lipid accumulation, respectively, were observed along with differentiation-specific activation of mitogen activated protein kinase (MAPK) pathways. RESULTS At 10 μM concentration, DCEQA increased the proliferation of bone marrow-derived human mesenchymal stromal cells (hBM-MSCs) during osteoblast differentiation. The expression of osteogenic markers ALP, osteocalcin, Runx2, BMP2 and Wnt 10a was upregulated by DCEQA treatment. The ALP activity and extracellular mineralization were also increased. DCEQA elevated the phosphorylation levels of p38 and JNK MAPKs as well as the activation of β-catenin and Smad1/5. DCEQA suppressed the lipid accumulation and downregulated expression of adipogenic markers PPARγ, C/EBPα and SREBP1c in adipo-induced hBM-MSCs. DCEQA also decreased the phosphorylation of p38 and ERK MAPKs and stimulated the activation of AMPK in hBM-MSC adipocytes. CONCLUSION DCEQA was suggested to enhance osteoblast differentiation via stimulating Wnt/BMP signaling. The adipocyte differentiation inhibitory effect of DCEQA was suggested to arise from its ability to increase AMPK phosphorylation. Overall, DCEQA was shown to possess osteogenesis enhancing and adipogenesis inhibitory properties which might facilitate its use against osteoporotic conditions.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Baegyang-dero 700beon-gil 140, Sasang-gu, Busan 46958, Korea.
| |
Collapse
|
200
|
Pulik Ł, Mierzejewski B, Ciemerych MA, Brzóska E, Łęgosz P. The Survey of Cells Responsible for Heterotopic Ossification Development in Skeletal Muscles-Human and Mouse Models. Cells 2020; 9:cells9061324. [PMID: 32466405 PMCID: PMC7349686 DOI: 10.3390/cells9061324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Heterotopic ossification (HO) manifests as bone development in the skeletal muscles and surrounding soft tissues. It can be caused by injury, surgery, or may have a genetic background. In each case, its development might differ, and depending on the age, sex, and patient's conditions, it could lead to a more or a less severe outcome. In the case of the injury or surgery provoked ossification development, it could be, to some extent, prevented by treatments. As far as genetic disorders are concerned, such prevention approaches are highly limited. Many lines of evidence point to the inflammatory process and abnormalities in the bone morphogenetic factor signaling pathway as the molecular and cellular backgrounds for HO development. However, the clear targets allowing the design of treatments preventing or lowering HO have not been identified yet. In this review, we summarize current knowledge on HO types, its symptoms, and possible ways of prevention and treatment. We also describe the molecules and cells in which abnormal function could lead to HO development. We emphasize the studies involving animal models of HO as being of great importance for understanding and future designing of the tools to counteract this pathology.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland;
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
| | - Maria A. Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
- Correspondence: (E.B.); (P.Ł.); Tel.: +48-22-5542-203 (E.B.); +48-22-5021-514 (P.Ł.)
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland;
- Correspondence: (E.B.); (P.Ł.); Tel.: +48-22-5542-203 (E.B.); +48-22-5021-514 (P.Ł.)
| |
Collapse
|