151
|
Vattulainen-Collanus S, Southwood M, Yang XD, Moore S, Ghatpande P, Morrell NW, Lagna G, Hata A. Bone morphogenetic protein signaling is required for RAD51-mediated maintenance of genome integrity in vascular endothelial cells. Commun Biol 2018; 1:149. [PMID: 30272025 PMCID: PMC6155317 DOI: 10.1038/s42003-018-0152-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The integrity of blood vessels is fundamental to vascular homeostasis. Inactivating mutations in the bone morphogenetic protein (BMP) receptor type II (BMPR2) gene cause hereditary vascular disorders, including pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia, suggesting that BMPR2 and its downstream signaling pathway are pivotal to the maintenance of vascular integrity through an unknown molecular mechanism. Here we report that inactivation of BMPR2 in pulmonary vascular endothelial cells results in a deficit of RAD51, an enzyme essential for DNA repair and replication. Loss of RAD51, which causes DNA damage and cell death, is also detected in animal models and human patients with pulmonary arterial hypertension. Restoration of BMPR2 or activation of the BMP signaling pathway rescues RAD51 and prevents DNA damage. This is an unexpected role of BMP signaling in preventing the accumulation of DNA damage and the concomitant loss of endothelial integrity and vascular remodeling associated with vascular disorders. Sanna Vattulainen-Collanus et al. report that mutations in the BMPR2 gene, which is associated with pulmonary arterial hypertension, result in a deficit of RAD51 and altered DNA repair and replication. They were able to rescue the RAD51-deficient phenotype by restoring BMPR2 activity in cell culture.
Collapse
Affiliation(s)
- Sanna Vattulainen-Collanus
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Mark Southwood
- Department of Pathology, Papworth Hospital, Papworth Everad, Cambridge, CB23 3RE, UK
| | - Xu Dong Yang
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Stephen Moore
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, 94143, CA, USA.
| |
Collapse
|
152
|
Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. JOURNAL OF FUNGI (BASEL, SWITZERLAND) 2018; 4:jof4030105. [PMID: 30200517 PMCID: PMC6162769 DOI: 10.3390/jof4030105] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable "genetic escape". Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted.
Collapse
|
153
|
Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018; 104:701-715. [PMID: 30044897 DOI: 10.1002/jlb.4ri0418-151r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The role of the microbiota in many diseases including cancer has gained increasing attention. Paired with this is our expanding appreciation for the heterogeneity of the neutrophil compartment regarding surface marker expression and functionality. In this review, we will discuss the influence of the microbiota on granulopoiesis and consequent activity of neutrophils in cancer. As evidence for this microbiota-neutrophil-cancer axis builds, it exposes new therapeutic targets to improve a cancer patient's outcome.
Collapse
Affiliation(s)
- Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
154
|
Martin JH, Bromfield EG, Aitken RJ, Lord T, Nixon B. Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes. Sci Rep 2018; 8:9685. [PMID: 29946146 PMCID: PMC6018751 DOI: 10.1038/s41598-018-27892-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
The unique biology of the oocyte means that accepted paradigms for DNA repair and protection are not of direct relevance to the female gamete. Instead, preservation of the integrity of the maternal genome depends on endogenous protein stores and/or mRNA transcripts accumulated during oogenesis. The aim of this study was to determine whether mature (MII) oocytes have the capacity to detect DNA damage and subsequently mount effective repair. For this purpose, DNA double strand breaks (DSB) were elicited using the topoisomerase II inhibitor, etoposide (ETP). ETP challenge led to a rapid and significant increase in DSB (P = 0.0002) and the consequential incidence of metaphase plate abnormalities (P = 0.0031). Despite this, ETP-treated MII oocytes retained their ability to participate in in vitro fertilisation, though displayed reduced developmental competence beyond the 2-cell stage (P = 0.02). To account for these findings, we analysed the efficacy of DSB resolution, revealing a significant reduction in DSB lesions 4 h post-ETP treatment. Notably, this response was completely abrogated by pharmacological inhibition of key elements (DNA-PKcs and DNA ligase IV) of the canonical non-homologous end joining DNA repair pathway, thus providing the first evidence implicating this reparative cascade in the protection of the maternal genome.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tessa Lord
- School of Molecular Biosciences, Centre for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
155
|
ERCC1 rs11615 polymorphism increases susceptibility to breast cancer: a meta-analysis of 4547 individuals. Biosci Rep 2018; 38:BSR20180440. [PMID: 29752341 PMCID: PMC6013698 DOI: 10.1042/bsr20180440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Excision repair cross-complementation group 1 (ERCC1), a DNA repair protein, is vital for maintaining genomic fidelity and integrity. Despite the fact that a mounting body of case-control studies has concentrated on investigating the association of the ERCC1 rs11615 polymorphism and breast cancer risk, there is still no consensus on it. We conducted the current meta-analysis of all eligible articles to reach a much more explicit conclusion on this ambiguous association. A total of seven studies involving 2354 breast cancer cases and 2193 controls were elaborately selected for this analysis from the Embase, EBSCO, PubMed, WanFang, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated in our meta-analysis. We found that the ERCC1 rs11615 polymorphism was significantly associated with breast cancer risk under all genetic models. When excluded, the studies that deviated from Hardy-Weinberg equilibrium (HWE), the pooled results of what remained significantly increase the risk of breast cancer under the allele model (OR = 1.14, 95% CI = 1.02-1.27, P=0.02), heterozygote model (OR = 1.24, 95% CI = 1.06-1.44, P=0.007), and dominant model (OR = 1.21, 95% CI = 1.05-1.41, P=0.01). This increased breast cancer risk was found in Asian population as well as under the heterozygote model (OR = 1.24, 95% CI = 1.05-1.48, P=0.013) and dominant model (OR = 1.20, 95% CI = 1.02-1.42, P=0.03). Our results suggest that the ERCC1 rs11615 polymorphism is associated with breast cancer susceptibility, and in particular, this increased risk of breast cancer existence in Asian population.
Collapse
|
156
|
Mokra K, Woźniak K, Bukowska B, Sicińska P, Michałowicz J. Low-concentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. CHEMOSPHERE 2018; 201:119-126. [PMID: 29518729 DOI: 10.1016/j.chemosphere.2018.02.166] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 05/25/2023]
Abstract
Because bisphenol A (BPA) and some of its analogs have been supposed to influence development of cancer, we have assessed the effect of BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) on DNA bases oxidation, which is a key process in cancer initiation. The analysis was conducted on human peripheral blood mononuclear cells (PBMCs), which are very useful model to assess genotoxic potential of various toxicants in different cell types. In order to determine oxidative damage to DNA pyrimidines and purines, alkaline version of the comet assay with DNA glycosylases, i.e. endonuclease III (Nth) and human 8-oxoguanine DNA glycosylase (hOGG1) was used. PBMCs were exposed to BPA or its analogs in the concentrations of 0.01, 0.1 and 1 μg/mL for 4 h and 0.001, 0.01 and 0.1 μg/mL for 48 h. We have observed that BPA, BPS, BPF and particularly BPAF caused oxidative damage to DNA pyrimidines and more strongly to purines in human PBMCs. The results have also shown that BPS, which is the most commonly used as a substitute for BPA in the manufacture induced definitely the smallest oxidative DNA bases lesions in PBMCs. Moreover, we have noticed that BPA, BPF and BPAF caused DNA damage at very low concentration of 1 ng/mL.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| |
Collapse
|
157
|
Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A, Hemminki K. Genetic variation of acquired structural chromosomal aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:13-21. [PMID: 30389156 DOI: 10.1016/j.mrgentox.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic.
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, 03601, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Italian Institute for Genomic Medicine (IIGM), Torino, 10126, Italy
| | - Zdena Polivkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| |
Collapse
|
158
|
Rajendran A, Shigi N, Sumaoka J, Komiyama M. One-Pot Isolation of a Desired Human Genome Fragment by Using a Biotinylated pcPNA/S1 Nuclease Combination. Biochemistry 2018; 57:2908-2912. [PMID: 29722525 DOI: 10.1021/acs.biochem.8b00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scission of the human genome at predetermined sites and isolation of a particular fragment are of great interest for the analysis of lesion/modification sites, in proteomics, and for gene therapy. However, methods for human genome scission and specific fragment isolation are limited. Here, we report a novel one-pot method for the site-specific scission of DNA by using a biotinylated pcPNA/S1 nuclease combination and isolation of a desired fragment by streptavidin-coated magnetic beads. The proof of concept was initially demonstrated for the clipping of plasmid DNA and isolation of the required fragment. Our method was then successfully applied for the isolation of a fragment from the cell-derived human genome.
Collapse
Affiliation(s)
- Arivazhagan Rajendran
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Narumi Shigi
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Jun Sumaoka
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| |
Collapse
|
159
|
DNA damage and tissue repair: What we can learn from planaria. Semin Cell Dev Biol 2018; 87:145-159. [PMID: 29727725 DOI: 10.1016/j.semcdb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Faithful renewal of aging and damaged tissues is central to organismal lifespan. Stem cells (SCs) generate the cellular progeny that replenish adult tissues across the body but this task becomes increasingly compromised over time. The age related decline in SC-mediated tissue maintenance is a multifactorial event that commonly affects genome integrity. The presence of DNA damage in SCs that are under continuous demand to divide poses a great risk for age-related disorders such as cancer. However, performing analysis of SCs with genomic instability and the DNA damage response during tissue renewal present significant challenges. Here we introduce an alternative experimental system based on the planaria flatworm Schmidtea mediterranea to address at the organismal level studies intersecting SC-mediated tissue renewal in the presence of genomic instability. Planaria have abundant SCs (neoblasts) that maintain high rates of cellular turnover and a variety of molecular tools have been developed to induce DNA damage and dissect how neoblasts respond to this stressor. S. mediterranea displays high evolutionary conservation of DNA repair mechanisms and signaling pathways regulating adult SCs. We describe genetically induced-DNA damage models and highlight body-wide signals affecting cellular decisions such as survival, proliferation, and death in the presence of genomic instability. We also discuss transcriptomic changes in the DNA damage response during injury repair and propose DNA repair as key component of tissue regeneration. Additional studies using planaria will provide insights about mechanisms regulating survival and growth of cells with DNA damage during tissue renewal and regeneration.
Collapse
|
160
|
Fernández-Díez C, González-Rojo S, Lombó M, Herráez MP. Tolerance to paternal genotoxic damage promotes survival during embryo development in zebrafish ( Danio rerio). Biol Open 2018; 7:7/5/bio030130. [PMID: 29712649 PMCID: PMC5992526 DOI: 10.1242/bio.030130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatozoa carry DNA damage that must be repaired by the oocyte machinery upon fertilization. Different strategies could be adopted by different vertebrates to face the paternal genotoxic damage. Mammals have strong sperm selection mechanisms and activate a zygotic DNA damage response (DDR) (including cell cycle arrest, DNA repair and alternative apoptosis) in order to guarantee the genomic conformity of the reduced progeny. However, external fertilizers, with different reproductive strategies, seem to proceed distinctively. Previous results from our group showed a downregulation of apoptotic activity in trout embryos with a defective DNA repairing ability, suggesting that mechanisms of tolerance to damaged DNA could be activated in fish to maintain cell survival and to progress with development. In this work, zebrafish embryos were obtained from control or UV-irradiated sperm (carrying more than 10% of fragmented DNA but still preserving fertilization ability). DNA repair (γH2AX and 53BP1 foci), apoptotic activity, expression of genes related to DDR and malformation rates were analyzed throughout development. Results showed in the progeny from damaged sperm, an enhanced repairing activity at the mid-blastula transition stage that returned to its basal level at later stages, rendering at hatching a very high rate of multimalformed larvae. The study of transcriptional and post-translational activity of tp53 (ZDF-GENE-990415-270) revealed the activation of an intense DDR in those progenies. However, the downstream pro-apoptotic factor noxa (ZDF-GENE-070119-3) showed a significant downregulation, whereas the anti-apoptotic gene bcl2 (ZDF-GENE-051015-1) was upregulated, triggering a repressive apoptotic scenario in spite of a clear genomic instability. This repression can be explained by the observed upregulation of p53 isoform Δ113p53, which is known to enhance bcl2 transcription. Our results showed that tp53 is involved in DNA damage tolerance (DDT) pathways, allowing the embryo survival regardless of the paternal DNA damage. DDT could be an evolutionary mechanism in fish: tolerance to unrepaired sperm DNA could introduce new mutations, some of them potentially advantageous to face a changing environment. Summary: In fish embryos, genomic instability generated by fertilization with DNA damaged sperm activates mechanisms of DNA damage tolerance, which seems to be mediated by Δ113p53 expression, promoting survival.
Collapse
Affiliation(s)
- Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - Marta Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - M Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| |
Collapse
|
161
|
Smolarz B, Romanowicz H. Association between single nucleotide polymorphism of DNA repair genes and endometrial cancer: a case-control study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1732-1738. [PMID: 31938277 PMCID: PMC6958112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 06/10/2023]
Abstract
Aim: The aim of this study was to analyse the frequencies of genotypes and alleles of Single Nucleotide Polymorphisms (SNPs) of six DNA repair genes (XRCC1-rs25487, XPD-rs13181, hMSH2-rs4987188, XRCC2-rs3218536, BRCA1-rs799917 and BRCA2-rs144848 SNPs) and attempt to evaluate the effect this DNA marker on endometrial cancer (EC). Material and methods: The patients were recruited to the study at the Department of Operative Gynaecology of the Institute of the Polish Mother's Memorial Hospital in Lodz. The study comprised 510 patients treated for EC. 510 disease-free individuals were used as controls. SNPs were analysed by the high resolutionmelting technique (HRM). Results: Statistically significant correlations were identified between four SNPs and endometrial cancer risk: rs25487, rs4987188, rs13181 and rs799917. The alleles XRCC1-Gln (OR 2.89; 95% CI 2.39-3.49, P<0.0001), hMSH2-Asp (OR 1.65; 95% CI 1.38-1.96, P<0.0001), XPD-Gln (OR 3.24; 95% CI 2.69-3.91, P<0.0001) and BRCA1-L (OR 1.56; 95% CI 1.31-1.85, P<0.0001) genes were strongly correlated with this malignancy. No relationship was found between the studied polymorphisms of XRCC2 and BRCA2 and the incidence of endometrial cancer. There was also not any association between polymorphisms of XRCC1, hMSH2, XPD, XRCC2, BRCA1, BRCA2, i.e., the polymorphisms of the analysed repair genes, and the cancer stage progression acc. to FIGO, the body mass index, the number of pregnancies in history, replacement therapy, diabetes mellitus and hypertension. Conclusions: The results indicate that rs25487, rs4987188, rs13181, and rs799917 SNPs may be associated with the incidence of endometrial cancer.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital-Research InstituteRzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital-Research InstituteRzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
162
|
Zhang Y, Cao J, Meng Y, Qu C, Shen F, Xu L. Overexpression of xeroderma pigmentosum group C decreases the chemotherapeutic sensitivity of colorectal carcinoma cells to cisplatin. Oncol Lett 2018; 15:6336-6344. [PMID: 29616110 PMCID: PMC5876430 DOI: 10.3892/ol.2018.8127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/20/2017] [Indexed: 11/09/2022] Open
Abstract
Xeroderma pigmentosum group C (XPC) is a DNA-damage-recognition gene active at the early stage of DNA repair. XPC also participates in regulation of cell-cycle checkpoint and DNA-damage-induced apoptosis. In the present study, the expression levels of genes involved in nucleotide excision repair (NER) were assessed in human colorectal cancer (CRC) tissue. This analysis revealed that expression of XPC mRNA significantly increased in colorectal carcinoma tissues compared with matched normal controls. Expression of XPC gradually increased along with the degree of progression of CRC. In vitro, an XTT assay demonstrated that small interfering RNA (siRNA) targeting XPC significantly increased the sensitivity of CRC SW480 cells to cisplatin, whereas cells transfected with a XPC-overexpression plasmid became more resistant to cisplatin. Furthermore, flow cytometry revealed that the proportion of apoptotic cells significantly increased in XPC-knockdown cells upon cisplatin treatment. However, the overexpression XPC significantly increased the resistance of cells to cisplatin. In vivo, tumor growth was significantly reduced in tumor-bearing mice when the XPC gene was knocked down. Upregulation of the expression of pro-apoptotic Bcl-associated X and downregulation of the anti-apoptotic B-cell lymphoma 2 proteins was observed in the implanted tumor tissue. In conclusion, XPC serves a key role in chemotherapeutic sensitivity of CRC to cisplatin, meaning that it may be a potential target for chemotherapy of CRC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Digestive Endoscopic Diagnosis and Treatment, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Jia Cao
- Department of Digestive Endoscopic Diagnosis and Treatment, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Yanni Meng
- Department of Digestive Endoscopic Diagnosis and Treatment, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Chunying Qu
- Department of Digestive Endoscopic Diagnosis and Treatment, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Feng Shen
- Department of Digestive Endoscopic Diagnosis and Treatment, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Leiming Xu
- Department of Digestive Endoscopic Diagnosis and Treatment, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
163
|
Najafi M, Cheki M, Rezapoor S, Geraily G, Motevaseli E, Carnovale C, Clementi E, Shirazi A. Metformin: Prevention of genomic instability and cancer: A review. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:1-8. [PMID: 29502733 DOI: 10.1016/j.mrgentox.2018.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
The diabetes drug metformin can mitigate the genotoxic effects of cytotoxic agents and has been proposed to prevent or even cure certain cancers. Metformin reduces DNA damage by mechanisms that are only incompletely understood. Metformin scavenges free radicals, including reactive oxygen species and nitric oxide, which are produced by genotoxicants such as ionizing or non-ionizing radiation, heavy metals, and chemotherapeutic agents. The drug may also increase the activities of antioxidant enzymes and inhibit NADPH oxidase, cyclooxygenase-2, and inducible nitric oxide synthase, thereby limiting macrophage recruitment and inflammatory responses. Metformin stimulates the DNA damage response (DDR) in the homologous end-joining, homologous recombination, and nucleotide excision repair pathways. This review focuses on the protective properties of metformin against genomic instability.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences L. Sacco, Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, Università di Milano, Milan, Italy
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy; Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, Consiglio Nazionale delle Ricerche Institute of Neuroscience, L. Sacco University Hospital, Università di Milano, Milan, Italy
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
164
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
165
|
Shi Q, Fijten RR, Spina D, Riffo Vasquez Y, Arlt VM, Godschalk RW, Van Schooten FJ. Altered gene expression profiles in the lungs of benzo[a]pyrene-exposed mice in the presence of lipopolysaccharide-induced pulmonary inflammation. Toxicol Appl Pharmacol 2017; 336:8-19. [PMID: 28987381 PMCID: PMC5703654 DOI: 10.1016/j.taap.2017.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20μg/mouse) to induce pulmonary inflammation and subsequently exposed to B[a]P (0.5mg/mouse) by intratracheal instillation. Gene expression changes were analyzed in mouse lungs by RNA microarrays. Analysis of genes that are known to be involved in the cellular response to B[a]P indicated that LPS significantly inhibited gene expression of various enzymes linked to B[a]P metabolism, which was confirmed by phenotypic analyses of enzyme activity. Ultimately, these changes resulted in higher levels of B[a]P-DNA adducts in the lungs of mice exposed to B[a]P with prior LPS treatment compared to the lungs of mice exposed to B[a]P alone. Using principle component analysis (PCA), we found that of all the genes that were significantly altered in their expression, those that were able to separate the different exposure conditions were predominantly related to immune-response. Moreover, an overall analysis of differentially expressed genes indicated that cell-cell adhesion and cell-cell communication was inhibited in lungs of mice that received both B[a]P and LPS. Our results indicate that pulmonary inflammation increased the genotoxicity of B[a]P via inhibition of both phase I and II metabolism. Therefore, inflammation could be a critical contributor to B[a]P-induced carcinogenesis in humans.
Collapse
Affiliation(s)
- Q Shi
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - R R Fijten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - V M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R W Godschalk
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - F J Van Schooten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
166
|
Oladimeji PO, Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol Pharmacol 2017; 93:119-127. [PMID: 29113993 DOI: 10.1124/mol.117.110155] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately regulates the expression of genes encoding drug-metabolizing enzymes and drug transporters to essentially detoxify and eliminate xenobiotics and endotoxins from the body. In the past several years, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied, and the role of PXR as a xenobiotic sensor has been well established. It is now clear, however, that PXR plays many other roles in addition to its xenobiotic-sensing function. For instance, recent studies have discovered previously unidentified roles of PXR in inflammatory response, cell proliferation, and cell migration. PXR also contributes to the dysregulation of these processes in diseases states. These recent discoveries of the role of PXR in the physiologic and pathophysiologic conditions of other cellular processes provides the possibility of novel targets for drug discovery. This review highlights areas of PXR regulation that require further clarification and summarizes the recent progress in our understanding of the nonxenobiotic functions of PXR that can be explored for relevant therapeutic applications.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
167
|
Huang D, Guo X, Peng Z, Zeng G, Xu P, Gong X, Deng R, Xue W, Wang R, Yi H, Liu C. White rot fungi and advanced combined biotechnology with nanomaterials: promising tools for endocrine-disrupting compounds biotransformation. Crit Rev Biotechnol 2017; 38:671-689. [PMID: 29082760 DOI: 10.1080/07388551.2017.1386613] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Endocrine-disrupting compounds (EDCs) can interfere with endocrine systems and bio-accumulate through the food chain and even decrease biodiversity in contaminated areas. This review discusses a critical overview of recent research progress in the biotransformation of EDCs (including polychlorinated biphenyl and nonylphenol, and suspected EDCs such as heavy metals and sulfonamide antibiotics) by white rot fungi (WRF) based on techniques with an emphasis on summarizing and analyzing fungal molecular, metabolic and genetic mechanisms. Not only intracellular metabolism which seems to perform essential roles in the ability of WRF to transform EDCs, but also advanced applications are deeply discussed. This review mainly reveals the removal pathway of heavy metal and antibiotic pollutants because the single pollution almost did not exist in a real environment while the combined pollution has become more serious and close to people's life. The trends in WRF technology and its related advanced applications which use the combined technology, including biocatalysis of WRF and adsorption of nanomaterials, to degrade EDCs have also been introduced. Furthermore, challenges and future research needs EDCs biotransformation by WRF are also discussed. This research, referring to metabolic mechanisms and the combined technology of WRF with nanomaterials, undoubtedly contributes to the applications of biotechnology. This review will be of great benefit to an understanding of the trends in biotechnology for the removal of EDCs.
Collapse
Affiliation(s)
- Danlian Huang
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Xueying Guo
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Zhiwei Peng
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Guangming Zeng
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Piao Xu
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Xiaomin Gong
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Rui Deng
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Wenjing Xue
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Rongzhong Wang
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Huan Yi
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| | - Caihong Liu
- a College of Environmental Science and Engineering, Hunan University , Changsha , China.,b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , China
| |
Collapse
|
168
|
Zhang K, Keymeulen S, Nelson R, Tong TR, Yuan YC, Yun X, Liu Z, Lopez J, Raz DJ, Kim JY. Overexpression of Flap Endonuclease 1 Correlates with Enhanced Proliferation and Poor Prognosis of Non-Small-Cell Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:242-251. [PMID: 29037854 DOI: 10.1016/j.ajpath.2017.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/31/2023]
Abstract
Flap endonuclease 1 (FEN1) plays a crucial role in both DNA replication and damage repair. In this study, FEN1 expression and its clinical-pathologic significance in non-small-cell lung cancer (NSCLC) was investigated. Quantitative RT-PCR and immunohistochemistry analysis identified that both FEN1 mRNA and protein were highly overexpressed in about 36% of 136 cancer tissues compared to adjacent tissues, in which FEN1 was generally undetectable. Notably, patients with FEN1-overexpressed cancers were prone to have poor differentiation and poor prognosis. A strong positive correlation between the levels of FEN1 and Ki-67 staining was identified in these NSCLC tissues (r = 0.485), suggesting overexpressed FEN1 conferred a proliferative advantage to NSCLC. Furthermore, knockdown of FEN1 resulted in G1/S or G2/M phase cell cycle arrest and suppressed in vitro cellular proliferation in NSCLC cancer cells. Consistently, a selective FEN1 inhibitor was shown to effectively inhibit cellular proliferation of NSCLC cells in a dose-dependent manner. Additionally, knockdown of FEN1 significantly attenuated homologous DNA repair efficiency and enhanced cytotoxic effects of cisplatin in NSCLC cells. Taken together, these findings have indicated that overexpressed FEN1 represents a prognostic biomarker and potential therapeutic target for NSCLC treatment, which warrants further study.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| | - Sawa Keymeulen
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Rebecca Nelson
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California
| | - Tommy R Tong
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Zheng Liu
- Bioinformatics Core Facility, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California
| | - Joshua Lopez
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California
| | - Jae Y Kim
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
169
|
Cheah R, Srivastava R, Stafford ND, Beavis AW, Green V, Greenman J. Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing customized therapy. Int J Oncol 2017; 51:1227-1238. [PMID: 28902347 DOI: 10.3892/ijo.2017.4118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy is the standard treatment for head and neck squamous cell carcinoma (HNSCC), however, radioresistance remains a major clinical problem despite significant improvements in treatment protocols. Therapeutic outcome could potentially be improved if a patient's tumour response to irradiation could be predicted ex vivo before clinical application. The present study employed a bespoke microfluidic device to maintain HNSCC tissue whilst subjecting it to external beam irradiation and measured the responses using a panel of cell death and proliferation markers. HNSCC biopsies from five newly-presenting patients [2 lymph node (LN); 3 primary tumour (PT)] were divided into parallel microfluidic devices and replicates of each tumour were subjected to single-dose irradiation (0, 5, 10, 15 and 20 Gy). Lactate dehydrogenase (LDH) release was measured and tissue sections were stained for cytokeratin (CK), cleaved-CK18 (cCK18), phosphorylated-H2AX (γH2AX) and Ki‑67 by immunohistochemistry. In addition, fragmented DNA was detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Compared with non‑irradiated controls, higher irradiation doses resulted in elevated CK18-labelling index in two lymph nodes [15 Gy; 34.8% on LN1 and 31.7% on LN2 (p=0.006)] and a single laryngeal primary tumour (20 Gy; 31.5%; p=0.014). Significantly higher levels of DNA fragmentation were also detected in both lymph node samples and one primary tumour but at varying doses of irradiation, i.e., LN1 (20 Gy; 27.6%; p=0.047), LN2 (15 Gy; 15.3%; p=0.038) and PT3 (10 Gy; 35.2%; p=0.01). The γH2AX expression was raised but not significantly in the majority of samples. The percentage of Ki‑67 positive nuclei reduced dose-dependently following irradiation. In contrast no significant difference in LDH release was observed between irradiated groups and controls. There is clear inter- and intra-patient variability in response to irradiation when measuring a variety of parameters, which offers the potential for the approach to provide clinically valuable information.
Collapse
Affiliation(s)
- Ramsah Cheah
- Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | | | | | - Andrew W Beavis
- Radiation Physics, Hull and East Yorkshire Hospitals NHS Trust, Faculty of Science and Engineering, University of Hull, Hull, HU6 7RX, UK
| | - Victoria Green
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| | - John Greenman
- School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
170
|
Wang Q, Xiong J, Qiu D, Zhao X, Yan D, Xu W, Wang Z, Chen Q, Panday S, Li A, Wang S, Zhou J. Inhibition of PARP1 activity enhances chemotherapeutic efficiency in cisplatin-resistant gastric cancer cells. Int J Biochem Cell Biol 2017; 92:164-172. [PMID: 28827033 DOI: 10.1016/j.biocel.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023]
Abstract
Cisplatin (DDP) is the first line chemotherapeutic drug for several cancers, including gastric cancer (GC). Unfortunately, the rapid development of drug resistance remains a significant challenge for the clinical application of cisplatin. There is an urgent need to develop new strategies to overcome DDP resistance for cancer treatment. In this study, four types of human GC cells have been divided into naturally sensitive or naturally resistant categories according to their responses to cisplatin. PARP1 activity (poly (ADP-ribose), PAR) was found to be greatly increased in cisplatin-resistant GC cells. PARP1 inhibitors significantly enhanced cisplatin-induced DNA damage and apoptosis in the resistant GC cells via the inhibition of PAR. Mechanistically, PARP1 inhibitors suppress DNA-PKcs stability and reduce the capability of DNA double-strand break (DSB) repair via the NHEJ pathway. This was also verified in BGC823/DDP GC cells with acquired cisplatin resistance. In conclusion, we identified that PARP1 is a useful interceptive target in cisplatin-resistant GC cells. Our data provide a promising therapeutic strategy against cisplatin resistance in GC cells that has potential translational significance.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Xiong
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danping Qiu
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xue Zhao
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Donglin Yan
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhangding Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sapna Panday
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
171
|
Liu Z, Li G, Gou Y, Xiao D, Luo G, Saavedra JE, Liu J, Wang H. JS-K, a nitric oxide prodrug, induces DNA damage and apoptosis in HBV-positive hepatocellular carcinoma HepG2.2.15 cell. Biomed Pharmacother 2017; 92:989-997. [PMID: 28605880 DOI: 10.1016/j.biopha.2017.05.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most important cause of cancer-related death, and 85% of HCC is caused by chronic HBV infection, the prognosis of patients and the reduction of HBV DNA levels remain unsatisfactory. JS-K, a nitric oxide-releasing diazeniumdiolates, is effective against various tumors, but little is known on its effects on HBV positive HCC. We found that JS-K reduced the expression of HBsAg and HBeAg in HBV-positive HepG2.2.15 cells. This study aimed to further examine anti-tumor effects of JS-K on HepG2.2.15 cells. The MTT assay and colony forming assay were used to study the cell growth inhibition of JS-K; scratch assay and transwell assay were performed to detect cell migration. The cell cycle was detected by flow cytometry. The immunofluorescence, flow cytometry analysis, and western blot were used to study DNA damage and cell apoptosis. JS-K inhibited HepG2.2.15 cell growth in a dose-dependent manner, suppressed cell colony formation and migration, arrested cells gather in the G2 phase. JS-K (1-20μM) increased the expression of DNA damage-associated protein phosphorylation H2AX (γH2AX), phosphorylation of checkpoint kinase 1 (p-Chk1), phosphorylation of checkpoint kinase 2 (p-Chk2), ataxia-telangiectasia mutated (ATM), phosphorylation of ataxia-telangiectasia mutated rad3-related (p-ATR) and apoptotic-associated proteins cleaved caspase-3, cleaved caspase-7, cleaved poly ADP-ribose polymerase (cleaved PARP). The study demonstrated JS-K is effective against HBV-positive HepG2.2.15 cells, the mechanisms are not only related to inhibition of HBsAg and HBeAg secretion, but also related with induction of DNA damage and apoptosis. JS-K is a promising anti-cancer candidate against HBV-positive HCC.
Collapse
Affiliation(s)
- Zhengyun Liu
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, 563000 China
| | - Guangmin Li
- Department of emergency, Affiliated Hospital of Zunyi Medical College, China
| | - Ying Gou
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Department of Microbiology, Zunyi Medical College, Guizhou, 563000 China
| | - Dongyan Xiao
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Department of Microbiology, Zunyi Medical College, Guizhou, 563000 China
| | - Guo Luo
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China
| | | | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, 563000 China
| | - Huan Wang
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Department of Microbiology, Zunyi Medical College, Guizhou, 563000 China.
| |
Collapse
|
172
|
A BRCA1-Dependent DNA Damage Response in the Regenerating Adult Peripheral Nerve Milieu. Mol Neurobiol 2017; 55:4051-4067. [PMID: 28585187 DOI: 10.1007/s12035-017-0574-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
It is not generally appreciated that DNA repair machinery has a critical role in the remodeling of neurons that adopt a regenerative phenotype. We identified that breast cancer 1 (BRCA1)-dependent DNA activity, previously well known to repair cancer cells, is active in adult peripheral neurons and Schwann cells during their injury and regeneration response. Temporary or partial loss of BRCA1 or blockade of its intraneuronal nuclear entry impaired outgrowth in neurons in vitro and impacted nerve regeneration and functional recovery in vivo. We found that distal axonal injury triggered a BRCA1-dependent DNA damage response (DDR) signal in neuronal soma. BRCA1 also supported an enabling transcriptional program of injured neurons and supporting Schwann cells. Our findings indicate that BRCA1 offers prominent functional roles in neurons and glial cells including key support for their physical and molecular integrity. Since BRCA1 mutations are common in humans, this function of BRCA1 in peripheral neurons and their glial partners warrants attention.
Collapse
|
173
|
Abstract
Beyond protein synthesis and autophagy, emerging evidence has implicated mTORC1 in regulating protein folding and proteasomal degradation as well, highlighting its prominent role in cellular proteome homeostasis or proteostasis. In addition to growth signals, mTORC1 senses and responds to a wide array of stresses, including energetic/metabolic stress, genotoxic stress, oxidative stress, osmotic stress, ER stress, proteotoxic stress, and psychological stress. Whereas growth signals unanimously stimulate mTORC1, stresses exert complex impacts on mTORC1, most of which are repressive. mTORC1 suppression, as a generic adaptive strategy, empowers cell survival under various stressful conditions. In this essay, we provide an overview of the emerging role of mTORC1 in proteostasis, the distinct molecular mechanisms through which mTORC1 reacts to diverse stresses, and the schemes exploited by cancer cells to circumvent stress-induced mTORC1 suppression. Hence, acting as a stress sensor, mTORC1 intimately couples stresses to cellular proteostasis.
Collapse
Affiliation(s)
- Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA,Corresponding author: Chengkai Dai,
| |
Collapse
|
174
|
Abstract
Beyond protein synthesis and autophagy, emerging evidence has implicated mTORC1 in regulating protein folding and proteasomal degradation as well, highlighting its prominent role in cellular proteome homeostasis or proteostasis. In addition to growth signals, mTORC1 senses and responds to a wide array of stresses, including energetic/metabolic stress, genotoxic stress, oxidative stress, osmotic stress, ER stress, proteotoxic stress, and psychological stress. Whereas growth signals unanimously stimulate mTORC1, stresses exert complex impacts on mTORC1, most of which are repressive. mTORC1 suppression, as a generic adaptive strategy, empowers cell survival under various stressful conditions. In this essay, we provide an overview of the emerging role of mTORC1 in proteostasis, the distinct molecular mechanisms through which mTORC1 reacts to diverse stresses, and the schemes exploited by cancer cells to circumvent stress-induced mTORC1 suppression. Hence, acting as a stress sensor, mTORC1 intimately couples stresses to cellular proteostasis.
Collapse
Affiliation(s)
- Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
175
|
The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017; 7:biom7020034. [PMID: 28346397 PMCID: PMC5485723 DOI: 10.3390/biom7020034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted.
Collapse
|
176
|
Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology 2017; 25:403-413. [DOI: 10.1007/s10787-017-0332-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/19/2017] [Indexed: 02/07/2023]
|
177
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
178
|
Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Laloë D, Moroldo M, Davila AM, Tomé D, Blachier F, Lan A. Epithelial response to a high-protein diet in rat colon. BMC Genomics 2017; 18:116. [PMID: 28137254 PMCID: PMC5282643 DOI: 10.1186/s12864-017-3514-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023] Open
Abstract
Background High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. Results The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). Conclusion The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3514-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Beaumont
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Mireille Andriamihaja
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Lucie Armand
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Marta Grauso
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Florence Jaffrézic
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, 78350, Jouy-en-Josas, France
| | - Denis Laloë
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, 78350, Jouy-en-Josas, France
| | | | - Anne-Marie Davila
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France
| | - Annaïg Lan
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France.
| |
Collapse
|
179
|
Healey KR, Jimenez Ortigosa C, Shor E, Perlin DS. Genetic Drivers of Multidrug Resistance in Candida glabrata. Front Microbiol 2016; 7:1995. [PMID: 28018323 PMCID: PMC5156712 DOI: 10.3389/fmicb.2016.01995] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Both the incidence of invasive fungal infections and rates of multidrug resistance associated with fungal pathogen Candida glabrata have increased in recent years. In this perspective, we will discuss the mechanisms underlying the capacity of C. glabrata to rapidly develop resistance to multiple drug classes, including triazoles and echinocandins. We will focus on the extensive genetic diversity among clinical isolates of C. glabrata, which likely enables this yeast to survive multiple stressors, such as immune pressure and antifungal exposure. In particular, over half of C. glabrata clinical strains collected from U.S. and non-U.S. sites have mutations in the DNA mismatch repair gene MSH2, leading to a mutator phenotype and increased frequencies of drug-resistant mutants in vitro. Furthermore, recent studies and data presented here document extensive chromosomal rearrangements among C. glabrata strains, resulting in a large number of distinct karyotypes within a single species. By analyzing clonal, serial isolates derived from individual patients treated with antifungal drugs, we were able to document chromosomal changes occurring in C. glabrata in vivo during the course of antifungal treatment. Interestingly, we also show that both MSH2 genotypes and chromosomal patterns cluster consistently into specific strain types, indicating that C. glabrata has a complex population structure where genomic variants arise, perhaps during the process of adaptation to environmental changes, and persist over time.
Collapse
Affiliation(s)
- Kelley R Healey
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| | - Cristina Jimenez Ortigosa
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| | - Erika Shor
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| | - David S Perlin
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| |
Collapse
|
180
|
Xiao M, Xiao S, Straaten TVD, Xue P, Zhang G, Zheng X, Zhang Q, Cai Y, Jin C, Yang J, Wu S, Zhu G, Lu X. Genetic polymorphisms in 19q13.3 genes associated with alteration of repair capacity to BPDE-DNA adducts in primary cultured lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 812:39-47. [PMID: 27908386 DOI: 10.1016/j.mrgentox.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage in cells caused by BPDE is normally repaired by Nucleotide Excision Repair (NER) and Base Excision Repair (BER). Genetic variations in NER and BER can change individual DNA repair capacity to DNA damage induced by BPDE. In the present study we determined the number of in vitro induced BPDE-DNA adducts in lymphocytes, to reflect individual susceptibility to Polycyclic aromatic hydrocarbons (PAHs)-induced carcinogenesis. The BPDE-DNA adduct level in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 281 randomly selected participants. We genotyped for 9 single nucleotide polymorphisms (SNPs) in genes involved in NER (XPB rs4150441, XPC rs2228001, rs2279017 and XPF rs4781560), BER (XRCC1 rs25487, rs25489 and rs1799782) and genes located on chromosome 19q13.2-3 (PPP1R13L rs1005165 and CAST rs967591). We found that 3 polymorphisms in chromosome 19q13.2-3 were associated with lower levels of BPDE-DNA adducts (MinorT allele in XRCC1 rs1799782, minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571). In addition, a modified comet assay was performed to further confirm the above conclusions. We found both minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571 were associated with the lower levels of BPDE-adducts. Our data suggested that the variant genotypes of genes in chromosome 19q13.2-3 are associated with the alteration of repair efficiency to DNA damage caused by Benzo[a]pyrene, and may contribute to enhance predictive value for individual's DNA repair capacity in response to environmental carcinogens.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Sha Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Tahar van der Straaten
- Dept. Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ping Xue
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiao Zheng
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Yuan Cai
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guolian Zhu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
181
|
Zhdanov VP. Kinetic aspects of enzyme-mediated repair of DNA single-strand breaks. Biosystems 2016; 150:194-199. [PMID: 27771386 DOI: 10.1016/j.biosystems.2016.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
In cells and bacteria, DNA can be damaged in different ways. The efficient damage repair, mediated by various enzymes, is crucial for their survival. Most frequently, the damage is reduced to single-strand breaks. In human cells, according to the experiments, the repair of such breaks can mechanistically be divided into four steps including (i) the break detection, (ii) processing of damaged ends, (iii) gap filling, and (iv) ligation of unbound ends of the broken strand. The first and second steps run in parallel while the third and fourth steps are sequential. The author proposes a kinetic model describing these steps. It allows one to understand the likely dependence of the number of breaks in different states on enzyme concentrations. The dependence of these concentrations on the rate of the formation of breaks can be understood as well. In addition, the likely role of unzipping and zipping of the fragments of broken ends of the strand in the ligation step has been scrutinized taking the specifics of binding of DNA stands into account.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
182
|
Di C, Sun C, Li H, Si J, Zhang H, Han L, Zhao Q, Liu Y, Liu B, Miao G, Gan L, Liu Y. Diallyl disulfide enhances carbon ion beams-induced apoptotic cell death in cervical cancer cells through regulating Tap73 /ΔNp73. Cell Cycle 2016; 14:3725-33. [PMID: 26505313 DOI: 10.1080/15384101.2015.1104438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diallyl disulfide (DADS), extracted from crushed garlic by steam-distillation, has been reported to provide the anticancer activity in several cancer types. However, the effect of DADS on high-LET carbon beams - induced cell death remains unknown. Therefore, we used human cervical cancer cells to elucidate the molecular effects of this diallyl sulfide. Radiotherapy remains the mainstay of treatment, especially in advanced cervical cancer and there is still space to improve the radiosensitivity to reduce radiation dosage. In this study, we found that radiation effects evoked by high-LET carbon beam was marked by inhibition of cell viability, cell cycle arrest, significant rise of apoptotic cells, regulation of transcription factor, such as p73, as well as alterations of crucial mediator of the apoptosis pathway. We further demonstrated that pretreatment of 10 µM DADS in HeLa cells exposed to radiation resulted in decrease in cell viability and increased radiosensitivity. Additionally, cells pretreated with DADS obviously inhibited the radiation-induced G2/M phase arrest, but promoted radiation-induced apoptosis. Moreover, combination DADS and the radiation exacerbated the activation of apoptosis pathways through up-regulated ration of pro-apoptotic Tap73 to anti-apoptotic ΔNp73, and its downstream proteins, such as FASLG, and APAF1. Taken together, these results suggest that DADS is a potential candidate as radio sensitive agent for cervical cancer.
Collapse
Affiliation(s)
- Cuixia Di
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Chao Sun
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Hongyan Li
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Jing Si
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Hong Zhang
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Lu Han
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Qiuyue Zhao
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Yang Liu
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Bin Liu
- d College of Stomatology ; Lanzhou University ; Lanzhou , China
| | - Guoying Miao
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Lu Gan
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| | - Yuanyuan Liu
- a Department of Heavy Ion Radiation Medicine ; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences ; Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province ; Lanzhou , China
| |
Collapse
|
183
|
Abplanalp J, Hottiger MO. Cell fate regulation by chromatin ADP-ribosylation. Semin Cell Dev Biol 2016; 63:114-122. [PMID: 27693398 DOI: 10.1016/j.semcdb.2016.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 09/16/2016] [Indexed: 11/15/2022]
Abstract
ADP-ribosylation is an evolutionarily conserved complex posttranslational modification that alters protein function and/or interaction. Intracellularly, it is mainly catalyzed by diphtheria toxin-like ADP-ribosyltransferases (ARTDs), which attach one or several ADP-ribose residues onto target proteins. Several specific mono- and poly-ADP-ribosylation binding modules exist; hydrolases reverse the modification. The best-characterized ARTD family member, ARTD1, regulates various DNA-associated processes. Here, we focus on the role of ARTD1-mediated chromatin ADP-ribosylation in development, differentiation, and pluripotency, and the recent development of new methodologies that will enable more insight into these processes.
Collapse
Affiliation(s)
- Jeannette Abplanalp
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
184
|
Anuja K, Roy S, Ghosh C, Gupta P, Bhattacharjee S, Banerjee B. Prolonged inflammatory microenvironment is crucial for pro-neoplastic growth and genome instability: a detailed review. Inflamm Res 2016; 66:119-128. [PMID: 27653961 DOI: 10.1007/s00011-016-0985-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Chronic inflammation can affect the normal cell homeostasis and metabolism by rendering the cells susceptible to genomic instability that may lead to uncontrolled cellular growth and proliferation ensuing tumorigenesis. The causal agents for inflammation may be pathogenic infections like microbial agents ranging from viruses to bacteria. These infections lead to DNA damage or disruption of normal cell metabolism and alter the genome integrity. FINDINGS In this review, we have highlighted the role of recurrent infections in tumor microenvironment can lead to recruitment of pro-inflammatory cells, cytokines and growth factors to the site of inflammation. This makes the environment rich in cytokines, chemokines, DNA-damaging agents (ROS, RNS) and growth factors which activate DNA damage response pathway and help in sustained proliferation of the tumor cells. In any inflammatory response, the production of cytokines and related signaling molecules is self-regulating and limiting. But in case of neoplastic risk, deregulation of these factors may lead to abnormalities and related pathogenesis. CONCLUSION The scope of the present review is to explore the probable mechanistic link and factors responsible for chronic inflammation. The relation between chronic inflammation and DNA damage response was further elucidated to understand the mechanism by which it makes the cells susceptible to carcinogenesis.
Collapse
Affiliation(s)
- Kumari Anuja
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneshwar, Odisha, 751024, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneshwar, Odisha, 751024, India
| | - Chinmoy Ghosh
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneshwar, Odisha, 751024, India
| | - Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneshwar, Odisha, 751024, India.
| |
Collapse
|
185
|
Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:665-70. [PMID: 27151292 DOI: 10.1093/abbs/gmw041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
186
|
Malkova A, Kohlerova R, Fiala Z, Hamakova K, Selke-Krulichova I, Borska L. Genotoxic changes in peripheral lymphocytes after therapeutic exposure to crude coal tar and ultraviolet radiation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:553-558. [PMID: 27283756 DOI: 10.5507/bp.2016.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022] Open
Abstract
AIMS Goeckerman therapy is based on combined exposure to UV radiation (UVA, UVB) and crude coal tar (PAHs). Some indicators suggest a genotoxic hazard, however, the level of genotoxic risk of the therapy has not yet been investigated sufficiently. This study aims to assesss the genotoxic risk. METHODS The studied group consisted of patients with chronic stable plaque psoriasis treated by Goeckerman therapy (n = 29). Heparin-treated peripheral blood samples were collected one day before the first treatment and immediately after the last procedure. The lymphocytes were isolated from the blood. The level of genotoxicity was evaluated using an alkaline version of the Comet assay which detects DNA single strand breaks (DNA-SSBs), a neutral version of the Comet assay which detects DNA double strand breaks (DNA-DSBs), and using chromosomal aberrations. RESULTS The level of DNA-SSBs increased insignificantly (median; Q1-Q3): 1.4 (0.4; 0.1-1.4) vs. 2.5 (0.6; 0.3-2.7) %tDNA (P = 0.11) and the level of DNA-DSBs increased significantly: 7.8 (6.5; 3.4-10.5) vs. 20.7 (19.3; 14.2-24.6) % DNA (P < 0.001). The total number of aberrated cells (P < 0.001) and structurally aberrated cells (P < 0.001) increased significantly. CONCLUSION The elevated levels of the DNA-DSBs and the chromosomal aberrations in the peripheral lymphocytes indicated a genotoxic hazard. However, the elevated level of the chromosomal abnormalities was below the upper level of the reference range for healthy Czech adults. While, the genotoxic risk appears to be low, Goeckerman treatment represents a further contribution to the lifetime load of genotoxic factors.
Collapse
Affiliation(s)
- Andrea Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Renata Kohlerova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermal and Venereal Disease, University Hospital Hradec Kralove, Czech Republic
| | - Iva Selke-Krulichova
- Department of Medical Biophysic, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Lenka Borska
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic Coresponding autor: Lenka Borska, e-mail
| |
Collapse
|
187
|
Xiao Y, Wang J, Qin Y, Xuan Y, Jia Y, Hu W, Yu W, Dai M, Li Z, Yi C, Zhao S, Li M, Du S, Cheng W, Xiao X, Chen Y, Wu T, Meng S, Yuan Y, Liu Q, Huang W, Guo W, Wang S, Deng W. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth. Oncotarget 2016; 6:8046-61. [PMID: 25797267 PMCID: PMC4480734 DOI: 10.18632/oncotarget.3508] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/04/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yu Qin
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Xuan
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Dai
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenglin Li
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Canhui Yi
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mei Li
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sha Du
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Cheng
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yiming Chen
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Taihua Wu
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Songshu Meng
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuhui Yuan
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
188
|
Ni C, Li C, Dong Y, Guo X, Zhang Y, Xie Z. Anesthetic Isoflurane Induces DNA Damage Through Oxidative Stress and p53 Pathway. Mol Neurobiol 2016; 54:3591-3605. [PMID: 27194299 DOI: 10.1007/s12035-016-9937-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023]
Abstract
DNA damage is associated with aging and neurological disorders, including Alzheimer's disease. Isoflurane is a commonly used anesthetic. It remains largely unknown whether isoflurane induces DNA damage. Phosphorylation of the histone protein H2A variant X at Ser139 (γH2A.X) is a marker of DNA damage. We therefore set out to assess the effects of isoflurane on γH2A.X level in H4 human neuroglioma cells and in brain tissues of mice. Oxidative stress, caspase-activated DNase (CAD), and the p53 signaling pathway are involved in DNA damage. Thus, we determined the interaction of isoflurane with reactive oxygen species (ROS), CAD, and p53 to illustrate the underlying mechanisms. The cells were treated with 2 % isoflurane for 3 or 6 h. The mice were anesthetized with 1.4 % isoflurane for 2 h. Western blot, immunostaining and live cell fluorescence staining were used in the experiments. We showed that isoflurane increased levels of γH2A.X, cleaved caspase-3, and nucleus translocation of CAD and decreased levels of inhibitor of CAD (ICAD) and p53. Isoflurane enhanced the nucleus level of γH2A.X. Moreover, caspase inhibitor Z-VAD and ROS generation inhibitor N-acetyl-L-cysteine (NAC) attenuated the isoflurane-induced increase in γH2A.X level. However, NAC did not significantly alter the isoflurane-induced reduction in p53 level. Finally, p53 activator (actinomycin D) and inhibitor (pifithrin-α) attenuated and potentiated the isoflurane-induced increase in γH2A.X level, respectively. These findings suggest that isoflurane might induce DNA damage, as represented by increased γH2A.X level, via induction of oxidative stress and inhibition of the repair of DNA damage through the p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Cheng Li
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA.
| |
Collapse
|
189
|
Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA Damage: A Main Determinant of Vascular Aging. Int J Mol Sci 2016; 17:E748. [PMID: 27213333 PMCID: PMC4881569 DOI: 10.3390/ijms17050748] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
Collapse
Affiliation(s)
- Paula K Bautista-Niño
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Eliana Portilla-Fernandez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Douglas E Vaughan
- Department of Medicine & Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
190
|
Vodicka P, Musak L, Fiorito G, Vymetalkova V, Vodickova L, Naccarati A. DNA and chromosomal damage in medical workers exposed to anaesthetic gases assessed by the lymphocyte cytokinesis-block micronucleus (CBMN) assay. A critical review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:26-34. [PMID: 27894688 DOI: 10.1016/j.mrrev.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 11/26/2022]
Abstract
The lymphocyte cytokinesis-block micronucleus (CBMN) assay has been applied in hundreds of in vivo biomonitoring studies of humans exposed either environmentally or occupationally to genotoxic chemicals. However, there is an emerging need to re-evaluate the use of MN and other biomarkers within the lymphocyte CBMN cytome assay as quantitative indicators of exposure to main classes of chemical genotoxins. The main aim of the present report is to systematically review published studies investigating the use of the lymphocyte CBMN assay to determine DNA damage in subjects exposed to anaesthetic gases. We also compared performance of the CBMN assay with other DNA damage assays employed and identified strengths and weaknesses of the published studies. We have retrieved 11 studies, published between 1996 and 2013, reporting MN associated with occupational exposures (operating room personnel). The individual job categories were often described (anaesthesiologists, technicians, radiologists) among cases, as well as duration of exposure. All studies reported the compounds present at the workplace and, in some instances, the exposure levels were measured. Controls were usually recruited among personnel at the hospital not exposed to anaesthetics or they were healthy unexposed subjects from general population. The number of investigated subjects, due to the character of the occupation, was relatively smaller than those investigated in other occupational monitoring settings. Overall, the majority of the studies were age- and gender- matched (or investigated only males or females) while less attention was given to lifestyle confounders. Appropriate measurement of exposure, available in approximately half of the studies only, was compromised by the lack of the personal dosimetry-based determinations. In all studies, higher MN frequencies were observed in exposed individuals. The meta-analysis of mean MN frequency of combined studies confirmed this tendency (log mean ratio=0.56 [0.34-0.77]; P=3.51×10-7). Similar differences between the exposed and controls were also observed for other biomarkers.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Ludovit Musak
- Clinic of Occupational Medicine and Toxicology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Kollarova 2, 03601 Martin, Slovakia
| | - Giovanni Fiorito
- Human Genetics Foundation (HuGeF) Turin, via Nizza 52, 10126 Turin, Italy
| | - Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - Alessio Naccarati
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Human Genetics Foundation (HuGeF) Turin, via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
191
|
Vasuvat J, Montree A, Moonsom S, Leartsakulpanich U, Petmitr S, Focher F, Wright GE, Chavalitshewinkoon-Petmitr P. Biochemical and functional characterization of Plasmodium falciparum DNA polymerase δ. Malar J 2016; 15:116. [PMID: 26911594 PMCID: PMC4766629 DOI: 10.1186/s12936-016-1166-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/11/2016] [Indexed: 12/05/2022] Open
Abstract
Background Emergence of drug-resistant Plasmodium falciparum has created an urgent need for new drug targets. DNA polymerase δ is an essential enzyme required for chromosomal DNA replication and repair, and therefore may be a potential target for anti-malarial drug development. However, little is known of the characteristics and function of this P. falciparum enzyme. Methods The coding sequences of DNA polymerase δ catalytic subunit (PfPolδ-cat), DNA polymerase δ small subunit (PfPolδS) and proliferating cell nuclear antigen (PfPCNA) from chloroquine- and pyrimethamine-resistant P. falciparum strain K1 were amplified, cloned into an expression vector and expressed in Escherichia coli. The recombinant proteins were analysed by SDS-PAGE and identified by LC–MS/MS. PfPolδ-cat was biochemically characterized. The roles of PfPolδS and PfPCNA in PfPolδ-cat function were investigated. In addition, inhibitory effects of 11 compounds were tested on PfPolδ-cat activity and on in vitro parasite growth using SYBR Green I assay. Results The purified recombinant protein PfPolδ-cat, PfPolδS and PfPCNA showed on SDS-PAGE the expected size of 143, 57 and 34 kDa, respectively. Predicted amino acid sequence of the PfPolδ-cat and PfPolδS had 59.2 and 24.7 % similarity respectively to that of the human counterpart. The PfPolδ-cat possessed both DNA polymerase and 3′–5′ exonuclease activities. It used both Mg2+ and Mn2+ as cofactors and was inhibited by high KCl salt (>200 mM). PfPolδS stimulated PfPolδ-cat activity threefolds and up to fourfolds when PfPCNA was included in the assay. Only two compounds were potent inhibitors of PfPolδ-cat, namely, butylphenyl-dGTP (BuPdGTP; IC50 of 38 µM) and 7-acetoxypentyl-(3, 4 dichlorobenzyl) guanine (7-acetoxypentyl-DCBG; IC50 of 55 µM). The latter compound showed higher inhibition on parasite growth (IC50 of 4.1 µM). Conclusions Recombinant PfPolδ-cat, PfPolδS and PfPCNA were successfully expressed and purified. PfPolS and PfPCNA increased DNA polymerase activity of PfPolδ-cat. The high sensitivity of PfPolδ to BuPdGTP can be used to differentiate parasite enzyme from mammalian and human counterparts. Interestingly, 7-acetoxypentyl-DCBG showed inhibitory effects on both enzyme activity and parasite growth. Thus, 7-acetoxypentyl-DCBG is a potential candidate for future development of a new class of anti-malarial agents targeting parasite replicative DNA polymerase.
Collapse
Affiliation(s)
- Jitlada Vasuvat
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Atcha Montree
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Sangduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Ubolsree Leartsakulpanich
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pahonyothin Rd, Pathumthani, 12120, Thailand.
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | | | - George E Wright
- GLSynthesis Inc., One Innovation Drive, Worcester, MA, 01605, USA.
| | | |
Collapse
|
192
|
Ma Y, Deng XD, Feng Y, Zhang W, Wang SX, Liu Y, Liu H. Association of XPF Levels and Genetic Polymorphism with Susceptibility to Ischemic Stroke. J Mol Neurosci 2016; 59:168-76. [DOI: 10.1007/s12031-016-0729-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
|
193
|
Ghamrasni SE, Cardoso R, Li L, Guturi KKN, Bjerregaard VA, Liu Y, Venkatesan S, Hande MP, Henderson JT, Sanchez O, Hickson ID, Hakem A, Hakem R. Rad54 and Mus81 cooperation promotes DNA damage repair and restrains chromosome missegregation. Oncogene 2016; 35:4836-45. [PMID: 26876210 DOI: 10.1038/onc.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 12/18/2022]
Abstract
Rad54 and Mus81 mammalian proteins physically interact and are important for the homologous recombination DNA repair pathway; however, their functional interactions in vivo are poorly defined. Here, we show that combinatorial loss of Rad54 and Mus81 results in hypersensitivity to DNA-damaging agents, defects on both the homologous recombination and non-homologous DNA end joining repair pathways and reduced fertility. We also observed that while Mus81 deficiency diminished the cleavage of common fragile sites, very strikingly, Rad54 loss impaired this cleavage to even a greater extent. The inefficient repair of DNA double-strand breaks (DSBs) in Rad54(-/-)Mus81(-/-) cells was accompanied by elevated levels of chromosome missegregation and cell death. Perhaps as a consequence, tumor incidence in Rad54(-/-)Mus81(-/-) mice remained comparable to that in Mus81(-/-) mice. Our study highlights the importance of the cooperation between Rad54 and Mus81 for mediating DNA DSB repair and restraining chromosome missegregation.
Collapse
Affiliation(s)
- S El Ghamrasni
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - R Cardoso
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - L Li
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - K K N Guturi
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - V A Bjerregaard
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Ageing, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Y Liu
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Ageing, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - S Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, Singapore
| | - M P Hande
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, Singapore
| | - J T Henderson
- Department of Pharmaceutical Sciences, Division of Biomolecular Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - O Sanchez
- Department of pathology, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - I D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Ageing, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - A Hakem
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - R Hakem
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
194
|
Synowiec E, Wójcik KA, Czubatka A, Polakowski P, Izdebska J, Szaflik J, Błasiak J, Szaflik JP. Lack of association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and keratoconus in a Polish subpopulation. Arch Med Sci 2015; 11:1101-10. [PMID: 26528356 PMCID: PMC4624754 DOI: 10.5114/aoms.2015.54867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/28/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Keratoconus (KC) is a non-inflammatory thinning of the cornea and a leading indication for corneal transplantation. Oxidative stress plays a role in the pathogenesis of this disease. The products of the hOGG1 and MUTYH genes play an important role in the repair of oxidatively modified DNA in the base excision repair pathway. We hypothesized that variability in these genes may change susceptibility to oxidative stress and predispose individuals to the development of KC. We investigated the possible association between the c.977C>G polymorphism of the hOGG1 gene (rs1052133) and the c.972G>C polymorphism of the MUTYH gene (rs3219489) and KC occurrence as well as the modulation of this association by some KC risk factors. MATERIAL AND METHODS A total of 205 patients with KC and 220 controls were included in this study. The polymorphisms were genotyped with polymerase chain reaction (PCR) restriction fragment length polymorphism and PCR-confronting two-pair primer techniques. Differences in genotype and allele frequency distributions were evaluated using the χ(2) test, and KC risk was estimated with an unconditional multiple logistic regression with and without adjustment for co-occurrence of visual impairment, allergies, sex and family history for KC. RESULTS We did not find any association between the genotypes and combined genotypes of the c.977C>G polymorphism of the hOGG1 gene and the c.972G>C polymorphism of the MUTYH gene and the occurrence of KC. CONCLUSIONS Our findings suggest that the c.977C>G-hOGG1 polymorphism and the c.972G>C-MUTYH polymorphism may not be linked with KC occurrence in this Polish subpopulation.
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | | - Anna Czubatka
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Piotr Polakowski
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Justyna Izdebska
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, Warsaw, Poland
| |
Collapse
|
195
|
Coskun E, Jaruga P, Reddy PT, Dizdaroglu M. Extreme Expression of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Breast Cancer As Measured by Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry. Biochemistry 2015; 54:5787-90. [PMID: 26359670 DOI: 10.1021/acs.biochem.5b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a DNA repair protein and plays other important roles. Increased levels of APE1 in cancer have been reported. However, available methods for measuring APE1 levels are indirect and not quantitative. We previously developed an approach using liquid chromatography and tandem mass spectrometry with isotope dilution to accurately measure APE1 levels. Here, we applied this methodology to measure APE1 levels in normal and cancerous human breast tissues. Extreme expression of APE1 in malignant tumors was observed, suggesting that breast cancer cells may require APE1 for survival. Accurate measurement of APE1 may be essential for the development of novel treatment strategies and APE1 inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.,Department of Toxicology, Faculty of Pharmacy, Gazi University , Ankara, Turkey
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Prasad T Reddy
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| |
Collapse
|
196
|
Vodicka P, Musak L, Frank C, Kazimirova A, Vymetalkova V, Barancokova M, Smolkova B, Dzupinkova Z, Jiraskova K, Vodenkova S, Kroupa M, Osina O, Naccarati A, Palitti F, Försti A, Dusinska M, Vodickova L, Hemminki K. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis 2015; 36:1299-306. [DOI: 10.1093/carcin/bgv127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/20/2015] [Indexed: 11/14/2022] Open
|
197
|
Ahn JW, Kim S, Na W, Baek SJ, Kim JH, Min K, Yeom J, Kwak H, Jeong S, Lee C, Kim SY, Choi CY. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. Nucleic Acids Res 2015; 43:6321-33. [PMID: 26068472 PMCID: PMC4513868 DOI: 10.1093/nar/gkv592] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/13/2015] [Accepted: 05/24/2015] [Indexed: 11/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most severe type of DNA damage and are primarily repaired by non-homologous end joining (NHEJ) and homologous recombination (HR) in the G1 and S/G2 phase, respectively. Although CtBP-interacting protein (CtIP) is crucial in DNA end resection during HR following DSBs, little is known about how CtIP levels increase in an S phase-specific manner. Here, we show that Serpine mRNA binding protein 1 (SERBP1) regulates CtIP expression at the translational level in S phase. In response to camptothecin-mediated DNA DSBs, CHK1 and RPA2 phosphorylation, which are hallmarks of HR activation, was abrogated in SERBP1-depleted cells. We identified CtIP mRNA as a binding target of SERBP1 using RNA immunoprecipitation-coupled RNA sequencing, and confirmed SERBP1 binding to CtIP mRNA in S phase. SERBP1 depletion resulted in reduction of polysome-associated CtIP mRNA and concomitant loss of CtIP expression in S phase. These effects were reversed by reconstituting cells with wild-type SERBP1, but not by SERBP1 ΔRGG, an RNA binding defective mutant, suggesting regulation of CtIP translation by SERBP1 association with CtIP mRNA. These results indicate that SERBP1 affects HR-mediated DNA repair in response to DNA DSBs by regulation of CtIP translation in S phase.
Collapse
Affiliation(s)
- Jang-Won Ahn
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sunjik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Wooju Na
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Su-Jin Baek
- Human Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea Department of Functional Genomics, University of Science of Technology, Daejeon 305-350, Republic of Korea
| | - Jeong-Hwan Kim
- Human Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Keehong Min
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Hoyun Kwak
- Department of Molecular Biology, Dankook University, Yongin 448-701, Republic of Korea
| | - Sunjoo Jeong
- Department of Molecular Biology, Dankook University, Yongin 448-701, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Seon-Young Kim
- Human Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea Department of Functional Genomics, University of Science of Technology, Daejeon 305-350, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
198
|
Reddy PT, Jaruga P, Nelson BC, Lowenthal MS, Jemth AS, Loseva O, Coskun E, Helleday T, Dizdaroglu M. Production, Purification, and Characterization of ¹⁵N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods Enzymol 2015; 566:305-32. [PMID: 26791985 DOI: 10.1016/bs.mie.2015.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA-protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length (15)N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of (15)N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented.
Collapse
Affiliation(s)
- Prasad T Reddy
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA.
| | - Pawel Jaruga
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Bryant C Nelson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Mark S Lowenthal
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erdem Coskun
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miral Dizdaroglu
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| |
Collapse
|
199
|
Kotapati S, Wickramaratne S, Esades A, Boldry EJ, Quirk Dorr D, Pence MG, Guengerich FP, Tretyakova NY. Polymerase Bypass of N(6)-Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene. Chem Res Toxicol 2015; 28:1496-507. [PMID: 26098310 DOI: 10.1021/acs.chemrestox.5b00166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N(6)-(2-Hydroxy-3-buten-1-yl)-2'-deoxyadenosine (N(6)-HB-dA I) and N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N(6),N(6)-DHB-dA) are exocyclic DNA adducts formed upon alkylation of the N(6) position of adenine in DNA by epoxide metabolites of 1,3-butadiene (BD), a common industrial and environmental chemical classified as a human and animal carcinogen. Since the N(6)-H atom of adenine is required for Watson-Crick hydrogen bonding with thymine, N(6)-alkylation can prevent adenine from normal pairing with thymine, potentially compromising the accuracy of DNA replication. To evaluate the ability of BD-derived N(6)-alkyladenine lesions to induce mutations, synthetic oligodeoxynucleotides containing site-specific (S)-N(6)-HB-dA I and (R,R)-N(6),N(6)-DHB-dA adducts were subjected to in vitro translesion synthesis in the presence of human DNA polymerases β, η, ι, and κ. While (S)-N(6)-HB-dA I was readily bypassed by all four enzymes, only polymerases η and κ were able to carry out DNA synthesis past (R,R)-N(6),N(6)-DHB-dA. Steady-state kinetic analyses indicated that all four DNA polymerases preferentially incorporated the correct base (T) opposite (S)-N(6)-HB-dA I. In contrast, hPol β was completely blocked by (R,R)-N(6),N(6)-DHB-dA, while hPol η and κ inserted A, G, C, or T opposite the adduct with similar frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed that while translesion synthesis past (S)-N(6)-HB-dA I was mostly error-free, replication of DNA containing (R,R)-N(6),N(6)-DHB-dA induced significant numbers of A, C, and G insertions and small deletions. These results indicate that singly substituted (S)-N(6)-HB-dA I lesions are not miscoding, but that exocyclic (R,R)-N(6),N(6)-DHB-dA adducts are strongly mispairing, probably due to their inability to form stable Watson-Crick pairs with dT.
Collapse
Affiliation(s)
- Srikanth Kotapati
- †Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susith Wickramaratne
- †Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Amanda Esades
- †Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Emily J Boldry
- †Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danae Quirk Dorr
- †Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew G Pence
- ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - F Peter Guengerich
- ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Natalia Y Tretyakova
- †Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
200
|
Michalska MM, Samulak D, Romanowicz H, Bieńkiewicz J, Sobkowski M, Ciesielski K, Smolarz B. Single nucleotide polymorphisms (SNPs) of hOGG1 and XRCC1 DNA repair genes and the risk of ovarian cancer in Polish women. Tumour Biol 2015; 36:9457-63. [PMID: 26124010 DOI: 10.1007/s13277-015-3707-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to determine single nucleotide polymorphisms in hOGG1 (Ser326Cys (rs13181)) and XRCC1 (Arg194Trp (rs1799782)) genes, respectively, and to identify the correlation between them and the overall risk, grading and staging of ovarian cancer in Polish women. Our study comprised 720 patients diagnosed with ovarian cancer and 720 healthy controls. The genotype analysis of hOGG1 and XRCC1 polymorphisms was performed using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (PCR-RFLP). Odds ratios (OR) and 95 % confidence intervals (CI) for each genotype and allele were calculated. Results revealed an association between hOGG1 Ser326Cys polymorphism and the incidence of ovarian cancer. Variant Cys allele of hOGG1 increased the overall cancer risk (OR 2.89; 95 % CI 2.47-3.38; p < .0001). Moreover, ovarian cancer grading remained in a relationship with both analysed polymorphisms; G1 tumours presented increased frequencies of hOGG1 Cys/Cys homozygotes (OR 18.33; 95 % CI 9.38-35.81; p < .0001) and XRCC1 Trp/Trp homozygotes (OR 20.50; 95 % CI 10.17-41.32; p < .0001). Furthermore, G1 ovarian cancers displayed an overrepresentation of Cys and Trp allele. In conclusion, hOGG1 Ser326Cys and XRCC1 Arg194Trp polymorphisms may be regarded as risk factors of ovarian cancer.
Collapse
Affiliation(s)
- Magdalena M Michalska
- Department of Obstetrics and Gynaecology, Regional Hospital in Kalisz, Kalisz, Poland
| | - Dariusz Samulak
- Department of Obstetrics and Gynaecology, Regional Hospital in Kalisz, Kalisz, Poland
- Cathedral of Mother's and Child's Health, Poznan University of Medical Sciences, Poznań, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Jan Bieńkiewicz
- Department of Surgical, Endoscopic and Oncologic Gynaecology, Institute of Polish Mother's Memorial Hospital, Lodz, Poland
| | - Maciej Sobkowski
- Department of Obstetrics and Gynaecology, University Hospital, Polna 33, Poznań, Poland
| | | | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland.
| |
Collapse
|