151
|
A Four-Biomarker Blood Signature Discriminates Systemic Inflammation Due to Viral Infection Versus Other Etiologies. Sci Rep 2017; 7:2914. [PMID: 28588308 PMCID: PMC5460227 DOI: 10.1038/s41598-017-02325-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
The innate immune system of humans and other mammals responds to pathogen-associated molecular patterns (PAMPs) that are conserved across broad classes of infectious agents such as bacteria and viruses. We hypothesized that a blood-based transcriptional signature could be discovered indicating a host systemic response to viral infection. Previous work identified host transcriptional signatures to individual viruses including influenza, respiratory syncytial virus and dengue, but the generality of these signatures across all viral infection types has not been established. Based on 44 publicly available datasets and two clinical studies of our own design, we discovered and validated a four-gene expression signature in whole blood, indicative of a general host systemic response to many types of viral infection. The signature’s genes are: Interferon Stimulated Gene 15 (ISG15), Interleukin 16 (IL16), 2′,5′-Oligoadenylate Synthetase Like (OASL), and Adhesion G Protein Coupled Receptor E5 (ADGRE5). In each of 13 validation datasets encompassing human, macaque, chimpanzee, pig, mouse, rat and all seven Baltimore virus classification groups, the signature provides statistically significant (p < 0.05) discrimination between viral and non-viral conditions. The signature may have clinical utility for differentiating host systemic inflammation (SI) due to viral versus bacterial or non-infectious causes.
Collapse
|
152
|
Leisching G, Wiid I, Baker B. The Association of OASL and Type I Interferons in the Pathogenesis and Survival of Intracellular Replicating Bacterial Species. Front Cell Infect Microbiol 2017; 7:196. [PMID: 28580319 PMCID: PMC5437694 DOI: 10.3389/fcimb.2017.00196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
The type I IFN response quickly became associated with its role in the innate immune response to viral infection. The past few years have seen the significance of IFNs expand in breadth to include non-viral pathogens. Previous work has identified that following viral infection, type I IFN signaling induces the production of the 2'-5'-oligoadenylate synthetase (OAS) family, which include OAS1, OAS2, OAS3, and OAS-like (OASL) protein. OASL was identified to be strongly induced following viral infection through engaging the RNA sensor RIG-I and increasing signaling through this pathway to enhance the anti-viral type I IFN response. Surprisingly, infection with viral dsDNA revealed an IFN inhibitory role and therefore pro-viral function of OASL through the inhibition of the cGAS cytosolic DNA sensing mechanism. Intracellular bacteria are able to activate the cytosolic DNA sensing pathway, however the role of OASL during bacterial infection is largely unknown. Vacuolar pathogenic microbes such as mycobacteria induce OASL early post infection, where it functions in a prosurvival fashion by inhibiting autophagic mechanisms and antimicrobial peptide expression. This suggests an underestimated role of OASL in the innate immune response to infection with a variety of pathogens and points to OASL-associated modulation of the type I IFN response. OASL may therefore play a critical role in defining the outcome of infection. We provide a brief update on the recent developments of the OAS family of proteins in response to DNA and RNA virus infections, as well as discuss evidence of Oasl expression in response to a number of cytosolic and vacuolar replicating bacterial pathogens.
Collapse
Affiliation(s)
- Gina Leisching
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape Town, South Africa
| | - Ian Wiid
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape Town, South Africa
| | - Bienyameen Baker
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch UniversityCape Town, South Africa
| |
Collapse
|
153
|
Interferon-Inducible Oligoadenylate Synthetase-Like Protein Acts as an Antiviral Effector against Classical Swine Fever Virus via the MDA5-Mediated Type I Interferon-Signaling Pathway. J Virol 2017; 91:JVI.01514-16. [PMID: 28331099 PMCID: PMC5432864 DOI: 10.1128/jvi.01514-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023] Open
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which poses a serious threat to the global pig industry. Interferons (IFNs) and IFN-stimulated genes (ISGs) play a key role in host antiviral defense. We have previously screened the porcine 2′-5′-oligoadenylate synthetase-like protein (pOASL) as a potential anti-CSFV ISG using a reporter CSFV. This study aimed to clarify the underlying antiviral mechanism of pOASL against CSFV. We confirmed that CSFV replication was significantly suppressed in lentivirus-delivered, pOASL-overexpressing PK-15 cells, whereas silencing the expression of endogenous pOASL by small interfering RNAs markedly enhanced CSFV growth. In addition, the transcriptional level of pOASL was upregulated both in vitro and in vivo upon CSFV infection. Interestingly, the anti-CSFV effects of pOASL are independent of the canonical RNase L pathway but depend on the activation of the type I IFN response. Glutathione S-transferase pulldown and coimmunoprecipitation assays revealed that pOASL interacts with MDA5, a double-stranded RNA sensor, and further enhances MDA5-mediated type I IFN signaling. Moreover, we showed that pOASL exerts anti-CSFV effects in an MDA5-dependent manner. In conclusion, pOASL suppresses CSFV replication via the MDA5-mediated type I IFN-signaling pathway. IMPORTANCE The host innate immune response plays an important role in mounting the initial resistance to viral infection. Here, we identify the porcine 2′-5′-oligoadenylate synthetase-like protein (pOASL) as an interferon (IFN)-stimulated gene (ISG) against classical swine fever virus (CSFV). We demonstrate that the anti-CSFV effects of pOASL depend on the activation of type I IFN response. In addition, we show that pOASL, as an MDA5-interacting protein, is a coactivator of MDA5-mediated IFN induction to exert anti-CSFV actions. This work will be beneficial to the development of novel anti-CSFV strategies by targeting pOASL.
Collapse
|
154
|
Kiprijanovska S, Stefanovska ES, Noveski P, Ivanova VC, Plaseska-Karanfilska D. Influence of OASL gene polymorphisms on host response to interferon therapy in chronic hepatitis C virus patients. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV) infection becomes a major public health problem and leading cause of chronic liver disease and liver failure. Pegylated interferon-alfa and ribavirin are currently the standard treatment for chronic hepatitis C (CHC). It is indicated that genes that trace the interferon signaling could be associated with the host response to the therapy. In order to investigate the influence of these genes on host related response, we have analyzed seven single nucleotide polymorphisms (rs59248852, rs74390571, rs12811390, rs1169279, rs3213545, rs1083129 and rs2859398) in 2-5-Oligoadenylate- Synthetase-Like (OASL) gene in CHC cases from Republic of Macedonia. A simple and easy to use SNaPshot method was developed. A cohort of 100 HCV RNA positive patients - non responders and 109 patients with achieved virological response after the standard treatment were included in this study. We have found significant association in five of the seven studied SNP` s: rs59248852 [p = 6.5x10-31, OR=55.7 (20.0-155.3)]; rs12811390 [p = 2.2x10-11, OR=4.3 (2.3-6.7)]; rs2859398 [p=1.34x10-9, OR=3.4 (2.2-5.0)]; rs74390571 [p=4.3x10-7, OR=2.9 (1.9-4.4)], and rs1083129 [p=0.0139, OR=2.0 (1.1-3.5)]. The results from this study can be used as a predictive factor of future patient’s selection for the standard therapy, having an important cost benefit for the health insurance system.
Collapse
Affiliation(s)
- Sanja Kiprijanovska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje , R. Macedonia
| | - Emilija Sukarova Stefanovska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje , R. Macedonia
| | - Predrag Noveski
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje , R. Macedonia
| | | | - Dijana Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje , R. Macedonia
| |
Collapse
|
155
|
Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, Züst R, Hwang M, V’kovski P, Stalder H, Marti S, Habjan M, Cervantes-Barragan L, Elliot R, Karl N, Gaughan C, van Kuppeveld FJM, Silverman RH, Keller M, Ludewig B, Bergmann CC, Ziebuhr J, Weiss SR, Kalinke U, Thiel V. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 2017; 13:e1006195. [PMID: 28158275 PMCID: PMC5310923 DOI: 10.1371/journal.ppat.1006195] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/15/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.
Collapse
Affiliation(s)
- Eveline Kindler
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jochen Wilhelm
- Universities Giessen & Marburg Lung Center (UGMLC), Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| | - Huib H. Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Philip V’kovski
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Sabrina Marti
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | | | | | - Ruth Elliot
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nadja Karl
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - John Ziebuhr
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Volker Thiel
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- * E-mail:
| |
Collapse
|
156
|
Song DJ. Rhinovirus and childhood asthma: an update. KOREAN JOURNAL OF PEDIATRICS 2016; 59:432-439. [PMID: 27895690 PMCID: PMC5118502 DOI: 10.3345/kjp.2016.59.11.432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/26/2023]
Abstract
Asthma is recognized as a complex disease resulting from interactions between multiple genetic and environmental factors. Accumulating evidence suggests that respiratory viral infections in early life constitute a major environmental risk factor for the development of childhood asthma. Respiratory viral infections have also been recognized as the most common cause of asthma exacerbation. The advent of molecular diagnostics to detect respiratory viruses has provided new insights into the role of human rhinovirus (HRV) infections in the pathogenesis of asthma. However, it is still unclear whether HRV infections cause asthma or if wheezing with HRV infection is simply a predictor of childhood asthma. Recent clinical and experimental studies have identified plausible pathways by which HRV infection could cause asthma, particularly in a susceptible host, and exacerbate disease. Airway epithelial cells, the primary site of infection and replication of HRV, play a key role in these processes. Details regarding the role of genetic factors, including ORMDL3, are beginning to emerge. This review discusses recent clinical and experimental evidence for the role of HRV infection in the development and exacerbation of childhood asthma and the potential underlying mechanisms that have been proposed.
Collapse
Affiliation(s)
- Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea.; Environmental Health Center for Childhood Asthma, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
157
|
East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016; 538:270-273. [PMID: 27669025 PMCID: PMC5576363 DOI: 10.1038/nature19802] [Citation(s) in RCA: 717] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Bacterial adaptive immune systems use CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage. Although most prokaryotic adaptive immune systems generally target DNA substrates, type III and VI CRISPR systems direct interference complexes against single-stranded RNA substrates. In type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease (RNase). How this enzyme acquires mature CRISPR RNAs (crRNAs) that are essential for immune surveillance and how it carries out crRNA-mediated RNA cleavage remain unclear. Here we show that bacterial C2c2 possesses a unique RNase activity responsible for CRISPR RNA maturation that is distinct from its RNA-activated single-stranded RNA degradation activity. These dual RNase functions are chemically and mechanistically different from each other and from the crRNA-processing behaviour of the evolutionarily unrelated CRISPR enzyme Cpf1 (ref. 11). The two RNase activities of C2c2 enable multiplexed processing and loading of guide RNAs that in turn allow sensitive detection of cellular transcripts.
Collapse
Affiliation(s)
- Alexandra East-Seletsky
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Mitchell R O'Connell
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Spencer C Knight
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David Burstein
- Department of Earth And Planetary Sciences, University of California, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, California 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA
| |
Collapse
|
158
|
Anastasina M, Le May N, Bugai A, Fu Y, Söderholm S, Gaelings L, Ohman T, Tynell J, Kyttänen S, Barboric M, Nyman TA, Matikainen S, Julkunen I, Butcher SJ, Egly JM, Kainov DE. Influenza virus NS1 protein binds cellular DNA to block transcription of antiviral genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1440-1448. [PMID: 27664935 DOI: 10.1016/j.bbagrm.2016.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/26/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland; Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Nicolas Le May
- Department of Functional Genomics and Cancer, Institute for genetics, molecular and cellular biology (IGBMC), Strasbourg 67404, France
| | - Andrii Bugai
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Tiina Ohman
- Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Janne Tynell
- National Institute for Health and Welfare (THL), Helsinki 00271, Finland
| | - Suvi Kyttänen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Matjaz Barboric
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, 00014, Finland; Institute of Clinical Medicine, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Sampsa Matikainen
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki 00271, Finland; Department of Virology, University of Turku, Turku 20014, Finland
| | - Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, Institute for genetics, molecular and cellular biology (IGBMC), Strasbourg 67404, France.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
159
|
Chen LY, Cui ZL, Hua FC, Yang WJ, Bai Y, Lan FH. Bioinformatics analysis of gene expression profiles of dermatomyositis. Mol Med Rep 2016; 14:3785-90. [PMID: 27599581 DOI: 10.3892/mmr.2016.5703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/17/2016] [Indexed: 11/05/2022] Open
Abstract
Dermatomyositis (DM) is a type of autoimmune inflammatory myopathy, which primarily affects the skin and muscle. The underlying mechanisms of DM remain poorly understood. The present study aimed to explore gene expression profile alterations, investigate the underlying mechanisms, and identify novel targets for DM. The GSE48280 dataset, which includes data from five DM and five normal muscle tissue samples, was obtained from the Gene Expression Omnibus. Firstly, differentially expressed genes (DEGs) were screened by limma package in R. Subsequently, functional and pathway enrichment analyses were performed using ClueGO from Cytoscape. Finally, protein‑protein interaction (PPI) networks were constructed using STRING and Cytoscape, in order to identify hub genes. As a result, 180 upregulated and 21 downregulated genes were identified in the DM samples. The Gene Ontology enrichment analysis revealed that the type I interferon (IFN) signaling pathway was the most significantly enriched term within the DEGs. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 27 significant pathways, the majority of which can be divided into the infectious diseases and immune system categories. Following construction of PPI networks, 24 hub genes were selected, all of which were associated with the type I IFN signaling pathway in DM. The findings of the present study indicated that type I IFNs may have a central role in the induction of DM. In addition, other DEGs, including chemokine (C‑C motif) ligand 5, C‑X‑C motif chemokine 10, Toll‑like receptor 3, DEXD/H‑Box helicase 58, interferon induced with helicase C domain 1, interferon‑stimulated gene 15 and MX dynamin‑like GTPase 1, may be potential targets for DM diagnosis and treatment.
Collapse
Affiliation(s)
- Liang-Yuan Chen
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical School, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhao-Lei Cui
- Department of Clinical Laboratory, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Fan-Cui Hua
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical School, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Weng-Jing Yang
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical School, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ye Bai
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical School, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Feng-Hua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical School, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
160
|
Gu X, Boldrup L, Coates PJ, Fahraeus R, Nylander E, Loizou C, Olofsson K, Norberg-Spaak L, Gärskog O, Nylander K. Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites. Sci Rep 2016; 6:32579. [PMID: 27572959 PMCID: PMC5004144 DOI: 10.1038/srep32579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022] Open
Abstract
Epigenetic modifications are essential regulators of biological processes. Decreased DNA methylation of OAS2 (2′-5′-Oligoadenylate Synthetase 2), encoding an antiviral protein, has been seen in psoriasis. To provide further insight into the epigenetic regulation of OAS2, we performed pyrosequencing to detect OAS2 DNA methylation status at 11 promoter and first exon located CpG sites in psoriasis (n = 12) and two common subtypes of squamous cell carcinoma (SCC) of the head and neck: tongue (n = 12) and tonsillar (n = 11). Compared to corresponding controls, a general hypomethylation was seen in psoriasis. In tongue and tonsillar SCC, hypomethylation was found at only two CpG sites, the same two sites that were least demethylated in psoriasis. Despite differences in the specific residues targeted for methylation/demethylation, OAS2 expression was upregulated in all conditions and correlations between methylation and expression were seen in psoriasis and tongue SCC. Distinctive methylation status at four successively located CpG sites within a genomic area of 63 bp reveals a delicately integrated epigenetic program and indicates that detailed analysis of individual CpGs provides additional information into the mechanisms of epigenetic regulation in specific disease states. Methylation analyses as clinical biomarkers need to be tailored according to disease-specific sites.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.,RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Elisabet Nylander
- Department of Public Health and Clinical Medicine/Dermatology and Venereology, Umeå University, Umeå, Sweden
| | - Christos Loizou
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | | | | | - Ola Gärskog
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
161
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
162
|
Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proc Natl Acad Sci U S A 2016; 113:8496-501. [PMID: 27402752 DOI: 10.1073/pnas.1601942113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most strains of rhinovirus (RV), the common cold virus, replicate better at cool temperatures found in the nasal cavity (33-35 °C) than at lung temperature (37 °C). Recent studies found that although 37 °C temperature suppressed RV growth largely by engaging the type 1 IFN response in infected epithelial cells, a significant temperature dependence to viral replication remained in cells devoid of IFN induction or signaling. To gain insight into IFN-independent mechanisms limiting RV replication at 37 °C, we studied RV infection in human bronchial epithelial cells and H1-HeLa cells. During the single replication cycle, RV exhibited temperature-dependent replication in both cell types in the absence of IFN induction. At 37 °C, earlier signs of apoptosis in RV-infected cells were accompanied by reduced virus production. Furthermore, apoptosis of epithelial cells was enhanced at 37 °C in response to diverse stimuli. Dynamic mathematical modeling and B cell lymphoma 2 (BCL2) overexpression revealed that temperature-dependent host cell death could partially account for the temperature-dependent growth observed during RV amplification, but also suggested additional mechanisms of virus control. In search of a redundant antiviral pathway, we identified a role for the RNA-degrading enzyme RNAseL. Simultaneous antagonism of apoptosis and RNAseL increased viral replication and dramatically reduced temperature dependence. These findings reveal two IFN-independent mechanisms active in innate defense against RV, and demonstrate that even in the absence of IFNs, temperature-dependent RV amplification is largely a result of host cell antiviral restriction mechanisms operating more effectively at 37 °C than at 33 °C.
Collapse
|
163
|
Tremblay É, Thibault MP, Ferretti E, Babakissa C, Bertelle V, Bettolli M, Burghardt KM, Colombani JF, Grynspan D, Levy E, Lu P, Mayer S, Ménard D, Mouterde O, Renes IB, Seidman EG, Beaulieu JF. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn's disease. BMC Med Genomics 2016; 9:6. [PMID: 26801768 PMCID: PMC4722613 DOI: 10.1186/s12920-016-0166-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most frequent life-threatening gastrointestinal disease experienced by premature infants in neonatal intensive care units. The challenge for neonatologists is to detect early clinical manifestations of NEC. One strategy would be to identify specific markers that could be used as early diagnostic tools to identify preterm infants most at risk of developing NEC or in the event of a diagnostic dilemma of suspected disease. As a first step in this direction, we sought to determine the specific gene expression profile of NEC. METHODS Deep sequencing (RNA-Seq) was used to establish the gene expression profiles in ileal samples obtained from preterm infants diagnosed with NEC and non-NEC conditions. Data were analyzed with Ingenuity Pathway Analysis and ToppCluster softwares. RESULTS Data analysis indicated that the most significant functional pathways over-represented in NEC neonates were associated with immune functions, such as altered T and B cell signaling, B cell development, and the role of pattern recognition receptors for bacteria and viruses. Among the genes that were strongly modulated in neonates with NEC, we observed a significant degree of similarity when compared with those reported in Crohn's disease, a chronic inflammatory bowel disease. CONCLUSIONS Gene expression profile analysis revealed a predominantly altered immune response in the intestine of NEC neonates. Moreover, comparative analysis between NEC and Crohn's disease gene expression repertoires revealed a surprisingly high degree of similarity between these two conditions suggesting a new avenue for identifying NEC biomarkers.
Collapse
Affiliation(s)
- Éric Tremblay
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| | - Marie-Pier Thibault
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| | - Emanuela Ferretti
- Division of Neonatology, Department of Pediatrics, CHEO, Ottawa, ON, Canada.
| | - Corentin Babakissa
- Department of Pediatrics, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Valérie Bertelle
- Division of Neonatology, Department of Pediatrics, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | | - David Grynspan
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Emile Levy
- Department of Nutrition, Centre de recherche, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada.
| | - Peng Lu
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherland.
| | - Sandeep Mayer
- Department of Surgery, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Daniel Ménard
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| | | | - Ingrid B Renes
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherland. .,Emma Children's Hospital-AMC, Amsterdam, The Netherlands.
| | - Ernest G Seidman
- Division of Gastroenterology, McGill University, Montréal, QC, Canada.
| | - Jean-François Beaulieu
- Department of Anatomy and Cell Biology, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, 3001, 12th Avec North, J1H 5N4, Sherbrooke, QC, Canada.
| |
Collapse
|
164
|
Ewald DA, Malajian D, Krueger JG, Workman CT, Wang T, Tian S, Litman T, Guttman-Yassky E, Suárez-Fariñas M. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genomics 2015; 8:60. [PMID: 26459294 PMCID: PMC4603338 DOI: 10.1186/s12920-015-0133-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
Background Atopic dermatitis (AD) is a common inflammatory skin disease with limited treatment options. Several microarray experiments have been conducted on lesional/LS and non-lesional/NL AD skin to develop a genomic disease phenotype. Although these experiments have shed light on disease pathology, inter-study comparisons reveal large differences in resulting sets of differentially expressed genes (DEGs), limiting the utility of direct comparisons across studies. Methods We carried out a meta-analysis combining 4 published AD datasets to define a robust disease profile, termed meta-analysis derived AD (MADAD) transcriptome. Results This transcriptome enriches key AD pathways more than the individual studies, and associates AD with novel pathways, such as atherosclerosis signaling (IL-37, selectin E/SELE). We identified wide lipid abnormalities and, for the first time in vivo, correlated Th2 immune activation with downregulation of key epidermal lipids (FA2H, FAR2, ELOVL3), emphasizing the role of cytokines on the barrier disruption in AD. Key AD “classifier genes” discriminate lesional from nonlesional skin, and may evaluate therapeutic responses. Conclusions Our meta-analysis provides novel and powerful insights into AD disease pathology, and reinforces the concept of AD as a systemic disease. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David A Ewald
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Molecular Biomedicine, LEO Pharma AS, Ballerup, Denmark. .,Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Dana Malajian
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Columbia University, College of Physicians and Surgeons, New York, NY, USA.
| | - James G Krueger
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA.
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Tianjiao Wang
- School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012, China.
| | - Suyan Tian
- School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012, China.
| | - Thomas Litman
- Molecular Biomedicine, LEO Pharma AS, Ballerup, Denmark.
| | - Emma Guttman-Yassky
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mayte Suárez-Fariñas
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Icahn Institute for Genomics and Multiscale Biology at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
165
|
Simon-Loriere E, Lin RJ, Kalayanarooj SM, Chuansumrit A, Casademont I, Lin SY, Yu HP, Lert-itthiporn W, Chaiyaratana W, Tangthawornchaikul N, Tangnararatchakit K, Vasanawathana S, Chang BL, Suriyaphol P, Yoksan S, Malasit P, Despres P, Paul R, Lin YL, Sakuntabhai A. High Anti–Dengue Virus Activity of theOASGene Family Is Associated With Increased Severity of Dengue. J Infect Dis 2015; 212:2011-20. [DOI: 10.1093/infdis/jiv321] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/21/2015] [Indexed: 12/24/2022] Open
|