151
|
Blocking the FSTL1-DIP2A Axis Improves Anti-tumor Immunity. Cell Rep 2019; 24:1790-1801. [PMID: 30110636 DOI: 10.1016/j.celrep.2018.07.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Immune dysfunction is a strong factor in the resistance of cancer to treatment. Blocking immune checkpoint pathways is a promising approach to improve anti-tumor immunity, but the clinical efficacies are still limited. We previously identified follistatin-like 1 (FSTL1) as a determinant of immune dysfunction mediated by mesenchymal stromal/stem cells (MSCs) and immunoregulatory cells. Here, we demonstrate that blocking FSTL1 but not immune checkpoint pathways significantly suppresses cancer progression and metastasis in several mouse tumor models with increased MSCs. Expression of DIP2A (the receptor of FSTL1) in tumor cells is critical for FSTL1-induced immunoresistance. FSTL1/DIP2A co-positivity in tumor tissues correlates with poor prognosis in NSCLC patients. Thus, breaking the FSTL1-DIP2A axis may be a useful strategy for successfully inducing anti-tumor immunity.
Collapse
|
152
|
Godoy JAP, Paiva RMA, Souza AM, Kondo AT, Kutner JM, Okamoto OK. Clinical Translation of Mesenchymal Stromal Cell Therapy for Graft Versus Host Disease. Front Cell Dev Biol 2019; 7:255. [PMID: 31824942 PMCID: PMC6881464 DOI: 10.3389/fcell.2019.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Graft versus host disease (GVHD) is a common condition in patients subjected to allogeneic hematopoietic stem cell transplantation (HSCT). The immune cells derived from the grafted stem cells attack recipient's tissues, including those from the skin, liver, eyes, mouth, lungs, gastrointestinal tract, neuromuscular system, and genitourinary tract, may lead to severe morbidity and mortality. Acute GVHD can occur within few weeks after the allogeneic cells have engrafted in the recipient while chronic GVHD may occur any time after transplant, typically within months. Although treatable by systemic corticosteroid administration, effective responses are not achieved for a significant proportion of patients, a condition associated with poor prognosis. The use of multipotent mesenchymal stromal cells (MSCs) as an alternative to treat steroid-refractory GVHD had improved last decade, but the results are still controversial. Some studies have shown improvement in the life quality of patients after MSCs treatment, while others have found no significant benefits. In addition to variations in trial design, discrepancies in protocols for MSCs isolation, characterization, and ex vivo manipulation, account for inconsistent clinical results. In this review, we discuss the immunomodulatory properties supporting the therapeutic use of MSCs in GVHD and contextualize the main clinical findings of recent trials using these cells. Critical parameters for the clinical translation of MSCs, including consistent production of MSCs according to Good Manufacturing Practices (GMPs) and informative potency assays for product quality control (QC), are addressed.
Collapse
Affiliation(s)
- Juliana A. P. Godoy
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel M. A. Paiva
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Aline M. Souza
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Andrea T. Kondo
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose M. Kutner
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Oswaldo K. Okamoto
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
153
|
Rockel JS, Rabani R, Viswanathan S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Semin Cell Dev Biol 2019; 101:87-103. [PMID: 31757583 DOI: 10.1016/j.semcdb.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Most chronic diseases involving inflammation have a fibrotic component that involves remodeling and excess accumulation of extracellular matrix components. Left unchecked, fibrosis leads to organ failure and death. Mesenchymal stromal cells (MSCs) are emerging as a potent cell-based therapy for a wide spectrum of fibrotic conditions due to their immunomodulatory, anti-inflammatory and anti-fibrotic properties. This review provides an overview of known mechanisms by which MSCs mediate their anti-fibrotic actions and in relation to animal models of pulmonary, liver, renal and cardiac fibrosis. Recent MSC clinical trials results in liver, lung, skin, kidney and hearts are discussed and next steps for future MSC-based therapies including pre-activated or genetically-modified cells, or extracellular vesicles are also considered.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Razieh Rabani
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
154
|
Jahanbani Y, Davaran S, Ghahremani-Nasab M, Aghebati-Maleki L, Yousefi M. Scaffold-based tissue engineering approaches in treating infertility. Life Sci 2019; 240:117066. [PMID: 31738881 DOI: 10.1016/j.lfs.2019.117066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023]
Abstract
Tissue engineering and the use of scaffolds have shown high therapeutic potentialities about male and female infertility. Nowadays, many couples are suffering from infertility problems. There are different causes for infertility including chemotherapy (for male and female), uterine injuries, and intrauterine adhesions. Extra-cellular matrix in tissue engineering provides a supportive medium for blood or lymphatic vessels making it a suitable substrate for cell implantation and growth. Dominant successes in this branch have been in use of patient-derived primary cells, these cells loaded in scaffolds and used to generate tissue for re-implantation. However, this method has limitations, because of the invasive nature of cell collection, also the cells patient-derived may be not healthy and become the source of disease. Therefore, use of stem cells, including embryonic stem (ES) cells, bone marrow mesenchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been considered. Cell/scaffold systems have a substantial role in fertility organs or agents repair or regeneration. This review summarizes the novel scaffold-based tissue engineering approaches to treat infertility.
Collapse
Affiliation(s)
- Yalda Jahanbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
155
|
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold strategies for modulating immune microenvironment during bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110411. [PMID: 31923946 DOI: 10.1016/j.msec.2019.110411] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Implanted bone scaffolds often fail to successfully integrate with the host tissue because they do not elicit a favorable immune reaction. Properties of bone scaffold not only provide mechanical and chemical signals to support cell adhesion, migration, proliferation and differentiation, but also play a pivotal role in determining the extent of immune response during bone regeneration. Appropriate design parameters of bone scaffold are of great significance in the process of developing a new generation of bone implants. Herein, this article addresses the recent advances in the field of bone scaffolds for immune response, particularly focusing on the physical and chemical properties of bone scaffold in manipulating the host response. Furthermore, incorporation of bioactive molecules and cells with immunoregulatory function in bone scaffolds are also presented. Finally, continuing challenges and future directions of scaffold-based strategies for modulating immune microenvironment are discussed.
Collapse
Affiliation(s)
- Jianhua He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Hua Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
156
|
Cancer Conditioned Medium Modulates Functional and Phenotypic Properties of Human Decidua Parietalis Mesenchymal Stem/Stromal Cells. Tissue Eng Regen Med 2019; 16:615-630. [PMID: 31824824 DOI: 10.1007/s13770-019-00207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal Stem/Stromal Cells (MSCs) from the decidua parietalis (DPMSCs) of human term placenta express several molecules with important biological and immunological properties. DPMSCs induce natural killer cell expression of inflammatory receptors and their cytotoxic activity against cancer cells. These properties make DPMSCs promising therapeutical agent for cancer. The successful development of MSCs as an anti-cancer therapeutic cells rely on their ability to function in a hostile inflammatory and oxidative stress cancer environment. Here, we studied the effects of conditioned medium obtained from the culture of breast cancer cells (CMMDA-231) on the functional and phenotypic properties of DPMSCs. Methods DPMSCs were cultured with CMMDA-231 and important functions of DPMSCs were measured. The effect of CMMDA-231 on DPMSC expression of several genes with different functions was also evaluated. Results DPMSCs were able to function in response to CMMDA-231, but with reduced proliferative and adhesive potentials. Preconditioning of DPMSCs with CMMDA-231 enhanced their adhesion while reducing their invasion. In addition, CMMDA-231 modulated DPMSC expression of many genes with various functional (i.e., proliferation, adhesion, and invasion) properties. DPMSCs also showed increased expression of genes with anti-cancer property. Conclusion These data show the ability of DPMSCs to survive and function in cancer environment. In addition, preconditioning of DPMSCs with CMMDA-231 enhanced their anti-cancer properties and thus demonstrating their potential as an anti-cancer therapeutic agent. However, future studies are essential to reveal the mechanism underlying the effects of MDA-231 on DPMSC functional activities and also to confirm the anti-cancer therapeutic potential of DPMSCs.
Collapse
|
157
|
Holopainen M, Colas RA, Valkonen S, Tigistu-Sahle F, Hyvärinen K, Mazzacuva F, Lehenkari P, Käkelä R, Dalli J, Kerkelä E, Laitinen S. Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1350-1362. [DOI: 10.1016/j.bbalip.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
158
|
Xu J, Su Y, Hu L, Cain A, Gu Y, Liu B, Wu R, Wang S, Wang H. Effect of Bone Morphogenetic Protein 6 on Immunomodulatory Functions of Salivary Gland-Derived Mesenchymal Stem Cells in Sjögren's Syndrome. Stem Cells Dev 2019; 27:1540-1548. [PMID: 30132383 DOI: 10.1089/scd.2017.0161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sjögren's syndrome (SS) is characterized by autoimmune activation and loss of function in the salivary glands. Recent studies reported that bone morphogenetic protein 6 (BMP6), which is a member of transforming growth factor beta (TGF-β) superfamily, was highly expressed in SS patients. To investigate the role of BMP6 in SS, we treated the salivary gland-derived mesenchymal stem cells (SGMSCs) with BMP6 and found that BMP6 could impair immunomodulatory properties of normal SGMSCs by downregulating the Prostaglandin E2 synthase through DNA-binding protein inhibitor-1. Neutralizing the BMP6 could significantly restore the SGMSC's immunoregulatory function in vitro and delay the SS disease activity in vivo. In conclusion, BMP6 could not only affect the secreting function of epithelial cells in the salivary gland but also influence the immunomodulatory properties of SGMSCs, which may trigger or enhance the autoimmune reflection in SS.
Collapse
Affiliation(s)
- Junji Xu
- 1 Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China .,2 Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland
| | - Yingying Su
- 3 Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University , Beijing, China
| | - Lei Hu
- 1 Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Alexander Cain
- 2 Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland
| | - Yi Gu
- 4 Department of Pediatrics, Beijing Chaoyang Hospital, Capital Medical University , Beijing, China
| | - Bowen Liu
- 1 Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Ruiqing Wu
- 3 Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University , Beijing, China
| | - Songlin Wang
- 1 Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Hao Wang
- 3 Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
159
|
O'Connor KC. Molecular Profiles of Cell-to-Cell Variation in the Regenerative Potential of Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5924878. [PMID: 31636675 PMCID: PMC6766122 DOI: 10.1155/2019/5924878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell variation in the regenerative potential of mesenchymal stromal cells (MSCs) impedes the translation of MSC therapies into clinical practice. Cellular heterogeneity is ubiquitous across MSC cultures from different species and tissues. This review highlights advances to elucidate molecular profiles that identify cell subsets with specific regenerative properties in heterogeneous MSC cultures. Cell surface markers and global signatures are presented for proliferation and differentiation potential, as well as immunomodulation and trophic properties. Key knowledge gaps are discussed as potential areas of future research. Molecular profiles of MSC heterogeneity have the potential to enable unprecedented control over the regenerative potential of MSC therapies through the discovery of new molecular targets and as quality attributes to develop robust and reproducible biomanufacturing processes. These advances would have a positive impact on the nascent field of MSC therapeutics by accelerating the development of therapies with more consistent and effective treatment outcomes.
Collapse
Affiliation(s)
- Kim C. O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
160
|
Protection of the Peritoneal Membrane by Peritoneal Dialysis Effluent-Derived Mesenchymal Stromal Cells in a Rat Model of Chronic Peritoneal Dialysis. Stem Cells Int 2019; 2019:8793640. [PMID: 31636678 PMCID: PMC6766137 DOI: 10.1155/2019/8793640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/09/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Peritoneal dialysis (PD) is a renal replacement option for patients with end-stage renal disease. However, a long-term exposure to hypertonic PD solutions leads to peritoneal membrane (PM) injury, resulting in ultrafiltration (UF) failure. This study was designed to primarily evaluate efficacy of PD effluent-derived mesenchymal stromal cells (pMSCs) in the prevention of PM injury in rats. The pMSCs were isolated from PD effluent. Male Wistar rats received daily intraperitoneal (IP) injection of 10 mL of Dianeal (4.25% dextrose) and were treated with pMSCs (1.2‐1.5 × 106/rat/wk, IP). UF was determined by IP injection of 30 mL of Dianeal (4.25% dextrose) with dwell time of 1.5 h, and PM injury was examined by histology. Apoptosis was quantitated by using flow cytometric analysis, and gene expression by using the PCR array and Western blot. Here, we showed that as compared to naive control, daily IP injection of the Dianeal PD solution for 6 weeks without pMSC treatment significantly reduced UF, which was associated with an increase in both PM thickness and blood vessel, while pMSC treatment prevented the UF loss and reduced PM injury and blood vessels. In vitro incubation with pMSC-conditioned medium prevented cell death in cultured human peritoneal mesothelial cells (HPMCs) and downregulated proinflammatory (i.e., CXCL6, NOS2, IL1RN, CCL5, and NR3C1) while upregulated anti-inflammatory (i.e., CCR1, CCR4, IL9, and IL-10) gene expression in activated THP1 cells. In conclusion, pMSCs prevent bioincompatible PD solution-induced PM injury and UF decline, suggesting that infusing back ex vivo-expanded pMSCs intraperitoneally may have therapeutic potential for reduction of UF failure in PD patients.
Collapse
|
161
|
Kim OH, Yoon OJ, Lee HJ. Silk fibroin scaffolds potentiate immunomodulatory function of human mesenchymal stromal cells. Biochem Biophys Res Commun 2019; 519:323-329. [PMID: 31506179 DOI: 10.1016/j.bbrc.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Although mesenchymal stromal cells (MSCs) show great potential for use in regenerative medicine, their therapeutic efficacy remains limited because of their low adaptation efficiency and viability observed in clinical trials. To potentiate the adaptation and survival efficiency of MSCs after administration in vivo, silk fibroin nanofibers (SFNs) were applied as a scaffold. SFNs are biocompatible, biodegradable polymers with tunable architectures and mechanical properties. Treatment with interferon (IFN)-γ for 18 h increased the expression of immunomodulatory functional cytokines, IDO and COX2 in MSCs. Further, the MSCs grown on SFN sheets showed enhanced IDO1 and COX2 expression following IFN-γ treatment. MSCs showed significantly greater migratory ability on SFN sheets than on glass surfaces or PLGA control sheets. Though IFN-γ treatment slightly reduced the migration ability of MSCs cultured on glass or poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets, it did not alter MSC motility on SFN sheets. Furthermore, MSCs cultured on SFN sheets dramatically suppressed TNF-α secretion from lipopolysaccharide-activated murine splenocytes, suggesting that the immunomodulatory function of MSCs was enhanced by the SFN sheets. Taken together, these data demonstrate that SFN sheets potentiate the reparative and regenerative properties of MSCs.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Ok Ja Yoon
- Da Vinci College of General Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
162
|
Shi X, Chen Q, Wang F. Mesenchymal stem cells for the treatment of ulcerative colitis: a systematic review and meta-analysis of experimental and clinical studies. Stem Cell Res Ther 2019; 10:266. [PMID: 31443677 PMCID: PMC6708175 DOI: 10.1186/s13287-019-1336-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To explore the promising use of mesenchymal stem cells (MSCs) for ulcerative colitis (UC). METHODS Studies reporting MSC treatment on UC were searched on five databases. Methodological quality was assessed based on the SYRCLE's Risk of Bias (RoB) tool and MINORS tool. Data analysis was conducted using Engauge Digitizer 10.8 and Stata 14.0. RESULTS A total of 15 studies met the inclusion criteria including 8 animal (n = 132) and 7 human (n = 216) trials. In animal studies, mice treated with MSCs had significantly lower disease activity index (DAI) than that in the control group: the 1st day (standardized mean difference (SMD) - 0.753, p = 0.027), the 3rd day (SMD - 1.634, p = 0.000), the 5th day (SMD - 2.124, p = 0.000), the 7th day (SMD - 5.327, p = 0.000), the 9th day (SMD - 2.979, p = 0.000), and the 14th day (SMD - 5.032, p = 0.000). Lower histopathological score (HS) (SMD - 5.15, p < 0.05) and longer colon length (SMD 2.147, p = 0.001) in mice treated with MSCs were also indicated. The main outcome in clinical trials showed, compared with control group, healing rate of patients accompanied by MSC therapy elevated obviously: MSCs vs 5-aminosalicylic acids (5-ASA) (RR = 2.317, p = 0.000) and MSCs + 5-ASA vs placebo + 5-ASA (RR = 5.118). The analytical data in 4 trials conducted with single-arm studies also demonstrated increased healing rate (0.787) after MSC treatment (p = 0.000). CONCLUSION Our meta-analysis results supported that MSCs could be an underlying method of treating UC.
Collapse
Affiliation(s)
- Xiao Shi
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Gastroenterology, Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, 138 Tongzi Road, Changsha, 410013, Hunan, People's Republic of China
| | - Qi Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Gastroenterology, Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, 138 Tongzi Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
163
|
Mesenchymal Stem Cells Therapy Improved the Streptozotocin-Induced Behavioral and Hippocampal Impairment in Rats. Mol Neurobiol 2019; 57:600-615. [DOI: 10.1007/s12035-019-01729-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
164
|
Leveque X, Hochane M, Geraldo F, Dumont S, Gratas C, Oliver L, Gaignier C, Trichet V, Layrolle P, Heymann D, Herault O, Vallette FM, Olivier C. Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. Stem Cells 2019; 37:1083-1094. [PMID: 30977188 PMCID: PMC6850038 DOI: 10.1002/stem.3014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
The general population is chronically exposed to multiple environmental contaminants such as pesticides. We have previously demonstrated that human mesenchymal stem cells (MSCs) exposed in vitro to low doses of a mixture of seven common pesticides showed a permanent phenotype modification with a specific induction of an oxidative stress-related senescence. Pesticide mixture also induced a shift in MSC differentiation toward adipogenesis. Thus, we hypothesized that common combination of pesticides may induce a premature cellular aging of adult MSCs. Our goal was to evaluate if the prolonged exposure to pesticide mixture could accelerate aging-related markers and in particular deteriorate the immunosuppressive properties of MSCs. MSCs exposed to pesticide mixture, under long-term culture and obtained from aging donor, were compared by bulk RNA sequencing analysis. Aging, senescence, and immunomodulatory markers were compared. The protein expression of cellular aging-associated metabolic markers and immune function of MSCs were analyzed. Functional analysis of the secretome impacts on immunomodulatory properties of MSCs was realized after 21 days' exposure to pesticide mixture. The RNA sequencing analysis of MSCs exposed to pesticide showed some similarities with cells from prolonged culture, but also with the MSCs of an aged donor. Changes in the metabolic markers MDH1, GOT and SIRT3, as well as an alteration in the modulation of active T cells and modifications in cytokine production are all associated with cellular aging. A modified functional profile was found with similarities to aging process. Stem Cells 2019;37:1083-1094.
Collapse
Affiliation(s)
| | | | - Fanny Geraldo
- CRCINAINSERM U1232, Université de NantesNantesFrance
| | - Solene Dumont
- CRCINAINSERM U1232, Université de NantesNantesFrance
| | - Catherine Gratas
- CRCINAINSERM U1232, Université de NantesNantesFrance
- LabEx Immunotherapy, Graft, OncologyNantesFrance
- CHU de NantesNantesFrance
| | - Lisa Oliver
- CRCINAINSERM U1232, Université de NantesNantesFrance
- LabEx Immunotherapy, Graft, OncologyNantesFrance
- CHU de NantesNantesFrance
| | - Claire Gaignier
- CRCINAINSERM U1232, Université de NantesNantesFrance
- Université de Nantes, UFR Sciences Biologiques et PharmaceutiquesNantesFrance
| | - Valérie Trichet
- UMR1238 INSERM, Université de Nantes, PHY‐OS, “Bone Sarcomas and Remodeling of Calcified Tissues,” Medical SchoolNantesFrance
| | - Pierre Layrolle
- UMR1238 INSERM, Université de Nantes, PHY‐OS, “Bone Sarcomas and Remodeling of Calcified Tissues,” Medical SchoolNantesFrance
| | - Dominique Heymann
- CRCINAINSERM U1232, Université de NantesNantesFrance
- LaBCTInstitut de Cancérologie de l'OuestSt. Herblain CedexFrance
| | - Olivier Herault
- Centre Hospitalier Régional Universitaire de ToursService d'Hématologie BiologiqueCedex 9 ToursFrance
- National Center for Scientific Research ERL 7001 LNOxUniversité de ToursToursFrance
- National Center for Scientific Research GDR 3697ParisFrance
| | - François M. Vallette
- CRCINAINSERM U1232, Université de NantesNantesFrance
- LabEx Immunotherapy, Graft, OncologyNantesFrance
- LaBCTInstitut de Cancérologie de l'OuestSt. Herblain CedexFrance
- National Center for Scientific Research GDR 3697ParisFrance
| | - Christophe Olivier
- CRCINAINSERM U1232, Université de NantesNantesFrance
- Université de Nantes, UFR Sciences Biologiques et PharmaceutiquesNantesFrance
- National Center for Scientific Research GDR 3697ParisFrance
| |
Collapse
|
165
|
Carvello M, Lightner A, Yamamoto T, Kotze PG, Spinelli A. Mesenchymal Stem Cells for Perianal Crohn's Disease. Cells 2019; 8:cells8070764. [PMID: 31340546 PMCID: PMC6679174 DOI: 10.3390/cells8070764] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Perianal fistulizing Crohn’s disease (PFCD) is associated with significant morbidity and might negatively impact the quality of life of CD patients. In the last two decades, the management of PFCD has evolved in terms of the multidisciplinary approach involving gastroenterologists and colorectal surgeons. However, the highest fistula healing rates, even combining surgical and anti-TNF agents, reaches 50% of treated patients. More recently, the administration of mesenchymal stem cells (MSCs) have shown notable promising results in the treatment of PFCD. The aim of this review is to describe the rationale and the possible mechanism of action of MSC application for PFCD and the most recent results of randomized clinical trials. Furthermore, the unmet needs of the current administration process and the expected next steps to improve the outcomes will be addressed.
Collapse
Affiliation(s)
- Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Italy
| | - Amy Lightner
- Department of Colon and Rectal Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takayuki Yamamoto
- Inflammatory Bowel Disease Centre, Yokkaichi Hazu Medical Centre, Yokkaichi, Mie 510-0016, Japan
| | - Paulo Gustavo Kotze
- Colorectal Surgery Unit, Cajuru University Hospital, Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Antonino Spinelli
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| |
Collapse
|
166
|
Stem cell therapy for perianal Crohn's. Curr Opin Gastroenterol 2019; 35:311-320. [PMID: 33216484 DOI: 10.1097/mog.0000000000000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Perianal Crohn's disease is a morbid and disabling condition, notoriously difficult to successfully treat with conventional medical and surgical therapies. Mesenchymal stem cells (MSCs) are an emerging novel therapy for perianal Crohn's disease. RECENT FINDINGS Over 300 patients with perianal Crohn's disease have now been treated with MSCs in the context of clinical trials. All trials have demonstrated safety, and efficacy superior to conventional therapy with biologics and surgical intervention. This was consistent despite the heterogeneity in study protocols including variability in cell dosing, mode of delivery, repeat dosing, and allogeneic versus autologous donors. Sustained healing to 1 year has also been demonstrated in a recent extension of the largest phase III study confirming superior efficacy of MSCs to placebo at 1-year follow-up. However, several outstanding questions regarding the use of MSCs for perianal Crohn's disease remain, which, if answered, could enhance MSCs' treatment efficacy. These include defining the optimal MSC donor, optimal MSC source (e.g., bone marrow versus adipose tissue), investigating a potential alloimmune response following allogeneic cellular delivery, and determining the optimal mode for MSC delivery. In addition to these unanswered questions, significant challenges in the required infrastructure and cost required for cell-based therapies may drive future research toward identifying novel acellular therapies. SUMMARY Novel regenerative therapies offer promising new treatment options for perianal Crohn's disease, without the risk of opportunistic infection seen with biologics and incontinence with surgical techniques. Future research will help define the optimal MSC product and treatment protocol, and may even expand our horizon of regenerative medicine into acellular therapy as well as cell-based therapies.
Collapse
|
167
|
Hillmann A, Paebst F, Brehm W, Piehler D, Schubert S, Tárnok A, Burk J. A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells. PLoS One 2019; 14:e0218949. [PMID: 31247035 PMCID: PMC6597077 DOI: 10.1371/journal.pone.0218949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
The immunomodulatory potential of multipotent mesenchymal stromal cells (MSC) provides a basis for current and future regenerative therapies. In this study, we established an approach that allows to address the effects of pro-inflammatory stimulation and co-culture with MSC on different specific leukocyte subpopulations. Equine peripheral blood leukocyte recovery was optimized to preserve all leukocyte subpopulations and leukocyte activation regimes were evaluated. Allogeneic labeled equine adipose-derived MSC were then subjected to direct co-culture with either non-stimulated, concanavalin A (ConA)-activated or phosphate 12-myristate 13-acetate and ionomycin (PMA/I)-activated leukocytes. Subsequently, production of the cytokines interferon-γ (IFN- γ), interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) and presence of FoxP3 were determined in specific cell populations using multicolor flow cytometry. Prostaglandin E2 (PGE2) was measured in the supernatants. ConA-stimulation induced mild activation of leukocytes, whereas PMA/I-stimulation led to strong activation. In T cells, PMA/I promoted production of all cytokines, with no distinct suppressive effects of MSC. However, increased numbers of CD25/FoxP3-positive cells indicated that MSC supported regulatory T cell differentiation in PMA/I-activated leukocyte cultures. MSC also reduced numbers of cytokine-producing B cells and granulocytes, mostly irrespective of preceding leukocyte activation, and reversed the stimulatory effect of ConA on IFN-γ production in monocytes. Illustrating the possible suppressive mechanisms, higher numbers of MSC produced IL-10 when co-cultured with non-stimulated or ConA-activated leukocytes. This was not observed in co-culture with PMA/I-activated leukocytes. However, PGE2 concentration in the supernatant was highest in the co-culture with PMA/I-activated leukocytes, suggesting that PGE2 could still mediate modulatory effects in strongly inflammatory environment. These context- and cell type-specific modulatory effects observed give insight into the interactions between MSC and different types of immune cells and highlight the roles of IL-10 and PGE2 in MSC-mediated immunomodulation. The approach presented could provide a basis for further functional MSC characterization and the development of potency assays.
Collapse
Affiliation(s)
- Aline Hillmann
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Equine Clinic & Hospital, University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Felicitas Paebst
- Faculty of Veterinary Medicine, Equine Clinic & Hospital, University of Leipzig, Leipzig, Germany
- Horse Power Veterinary Center, Naharya, Israel
| | - Walter Brehm
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Equine Clinic & Hospital, University of Leipzig, Leipzig, Germany
| | | | - Susanna Schubert
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Janina Burk
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
- Equine Clinic (Surgery), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
168
|
Induction of Macrophage M2b/c Polarization by Adipose Tissue-Derived Mesenchymal Stem Cells. J Immunol Res 2019; 2019:7059680. [PMID: 31321244 PMCID: PMC6607735 DOI: 10.1155/2019/7059680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADMSCs) can promote healing and inhibit inflammation/immune response in local tissues, while the detailed mechanism remains unknown. Results ADMSCs and peritoneal macrophages were collected from C57BL/6 mice. The culture medium (CM) from ADMSCs (24 hours cultured) was collected. The CM was added to the Mφ culture system with lipopolysaccharide (LPS) or IL-4/IL-13 or blank. And those Mφ cultures without adding CM were used as controls. A series of classification markers and signaling pathways for Mφ polarization were detected by using flow cytometry, RT-PCR, and western blotting. Furthermore, the cell viability of all the groups was detected by CCK8 assay. After CM induction in different groups, M1-Mφ markers and M2a-Mφ were decreased; however, M2b/c-Mφ markers increased. STAT3/SOCS3 and STAT6/IRF4 were suppressed in all 3 CM-treated groups. Moreover, the cell viability of all 3 groups which were induced by CM significantly increased as compared to that of the control groups without adding CM. Conclusion ADMSCs can induce nonactivated macrophage and M1-Mφ into M2b/c-Mφ. Downregulation of the STAT3 and STAT6 pathway may involve in this process. This data shows that the anti-inflammatory role of ADMSC in local tissues may be partly due to their effect on Mφ to M2b/c-Mφ.
Collapse
|
169
|
Therapeutic effect of human umbilical cord mesenchymal stem cells on tubal factor infertility using a chronic salpingitis murine model. Arch Gynecol Obstet 2019; 300:421-429. [PMID: 31190174 DOI: 10.1007/s00404-019-05209-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The study was conducted to evaluate the application of human umbilical cord mesenchymal stem cells (hUCMSCs) in the treatment of tubal factor infertility (TFI) caused by Chlamydia trachomatis, and investigate their effect on fertility in animal models of chronic salpingitis. METHODS In this study, we investigated the therapy effects of the transplantation of hUCMSCs in tubal factor infertility using a chronic salpingitis murine model which induced Chlamydia trachomatis. Twenty rats were divided into two groups: control group (n = 10) and treatment group (n = 10). hUCMSCs were given to mice after exposure to C. trachomatis for 4 weeks. After treatment for 4 weeks, five mice were randomly selected from each of the two groups to sacrifice and we examined the organ morphology and pathology, inflammatory cytokines, proliferation, and apoptosis in fallopian tube (FT).The remaining five mice from each group were caged 2:1 with male mice for another 4 weeks, the numbers of pregnant mice and the mean number of pups in the different groups were enumerated and calculated. RESULTS Intravaginal inoculation of hUCMSCs alleviated hydrosalpinx of the oviduct. EdU-labeled hUCMSCs are located at the interstitial site of the fallopian tube. Macrophage (F4/80) infiltration was significantly reduced in the treatment group compared with the control group and expression levels of the anti-inflammatory cytokine IL10 were increased after hUCMSCs treatment. Furthermore, mRNA and protein expression levels of PCNA and Caspase-3 were increased and decreased, respectively, in the hUCMSCs' treatment group compared with the control. Moreover, hUCMSCs' transplantation improved murine fertility. CONCLUSIONS Anti-inflammatory and anti-apoptotic effects of hUCMSCs may play an important role in TFI. Our data suggest that hUCMSCs' transplantation contributed to the repair of tubal injury and improvement of fertility, providing a basis for assessing the contribution of stem cells in the oviduct for direct repair of the tube to assist reproduction.
Collapse
|
170
|
Mittal SK, Foulsham W, Shukla S, Elbasiony E, Omoto M, Chauhan SK. Mesenchymal Stromal Cells Modulate Corneal Alloimmunity via Secretion of Hepatocyte Growth Factor. Stem Cells Transl Med 2019; 8:1030-1040. [PMID: 31179638 PMCID: PMC6766689 DOI: 10.1002/sctm.19-0004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent stem cells that participate in tissue repair and possess considerable immunomodulatory potential. MSCs have been shown to promote allograft survival, yet the mechanisms behind this phenomenon have not been fully defined. Here, we investigate the capacity of MSCs to suppress the allogeneic immune response by secreting the pleiotropic molecule hepatocyte growth factor (HGF). Using an in vivo mouse model of corneal transplantation, we report that MSCs promote graft survival in an HGF‐dependent manner. Moreover, our data indicate that topically administered recombinant HGF (a) suppresses antigen‐presenting cell maturation in draining lymphoid tissue, (b) limits T‐helper type‐1 cell generation, (c) decreases inflammatory cell infiltration into grafted tissue, and (d) is itself sufficient to promote transplant survival. These findings have potential translational implications for the development of HGF‐based therapeutics. stem cells translational medicine2019;8:1030–1040
Collapse
Affiliation(s)
- Sharad K Mittal
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - William Foulsham
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ocular Immunology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sachin Shukla
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.,Center for Ocular Regeneration, L. V. Prasad Eye Institute, Hyderabad, India
| | - Elsayed Elbasiony
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Masahiro Omoto
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
171
|
Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front Immunol 2019; 10:1228. [PMID: 31214185 PMCID: PMC6557974 DOI: 10.3389/fimmu.2019.01228] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid progress is occurring in understanding the mechanisms underlying mesenchymal stromal cell (MSC)-based cell therapies (MSCT). However, the results of clinical trials, while demonstrating safety, have been varied in regard to efficacy. Recent data from different groups have shown profound and significant influences of the host inflammatory environment on MSCs delivered systemically or through organ-specific routes, for example intratracheal, with subsequent actions on potential MSC efficacies. Intriguingly in some models, it appears that dead or dying cells or subcellular particles derived from them, may contribute to therapeutic efficacy, at least in some circumstances. Thus, the broad cellular changes that accompany MSC death, autophagy, pre-apoptotic function, or indeed the host response to these processes may be essential to therapeutic efficacy. In this review, we summarize the existing literature concerning the necrobiology of MSCs and the available evidence that MSCs undergo autophagy, apoptosis, transfer mitochondria, or release subcellular particles with effector function in pathologic or inflammatory in vivo environments. Advances in understanding the role of immune effector cells in cell therapy, especially macrophages, suggest that the reprogramming of immunity associated with MSCT has a weighty influence on therapeutic efficacy. If correct, these data suggest novel approaches to enhancing the beneficial actions of MSCs that will vary with the inflammatory nature of different disease targets and may influence the choice between autologous or allogeneic or even xenogeneic cells as therapeutics.
Collapse
Affiliation(s)
- Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Karen English
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Anna Krasnodembskaya
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Johana M. Isaza-Correa
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Ian J. Hawthorne
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Bernard P. Mahon
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| |
Collapse
|
172
|
Dubey NK, Wei HJ, Yu SH, Williams DF, Wang JR, Deng YH, Tsai FC, Wang PD, Deng WP. Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade. Aging Dis 2019; 10:483-496. [PMID: 31164994 PMCID: PMC6538220 DOI: 10.14336/ad.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- 1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Jian Wei
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,3School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsun Yu
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - David F Williams
- 5Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA
| | - Joseph R Wang
- 6Department of Periodontics, College of Dental Medicine, Columbia University, New York, USA
| | - Yue-Hua Deng
- 7Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Feng-Chou Tsai
- 8Stem Cell Research Center, Cosmetic Clinic Group, Taipei, Taiwan
| | - Peter D Wang
- 4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,9Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Win-Ping Deng
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,10Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
173
|
Neri S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci 2019; 20:ijms20102406. [PMID: 31096604 PMCID: PMC6566307 DOI: 10.3390/ijms20102406] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) show widespread application for a variety of clinical conditions; therefore, their use necessitates continuous monitoring of their safety. The risk assessment of mesenchymal stem cell-based therapies cannot be separated from an accurate and deep knowledge of their biological properties and in vitro and in vivo behavior. One of the most relevant safety issues is represented by the genetic stability of MSCs, that can be altered during in vitro manipulation, frequently required before clinical application. MSC genetic stability has the potential to influence the transformation and the therapeutic effect of these cells. At present, karyotype evaluation represents the definitely prevailing assessment of MSC stability, but DNA alterations of smaller size should not be underestimated. This review will focus on current scientific knowledge about the genetic stability of mesenchymal stem cells. The techniques used and possible improvements together with regulatory aspects will also be discussed.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
174
|
Razmkhah M, Abtahi S, Ghaderi A. Mesenchymal Stem Cells, Immune Cells and Tumor Cells Crosstalk: A Sinister Triangle in the Tumor Microenvironment. Curr Stem Cell Res Ther 2019; 14:43-51. [PMID: 30112998 DOI: 10.2174/1574888x13666180816114809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal Stem Cells [MSCs] are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency. Many studies have demonstrated the immunomodulatory effects of MSCs on the innate and adaptive immune cells. As a result of interactions with tumor cells, microenvironment and immune-stimulating milieu, MSCs contribute to tumor progression by several mechanisms, including sustained proliferative signal in cancer stem cells [CSCs], inhibition of tumor cell apoptosis, transition to tumor-associated fibroblasts [TAFs], promotion of angiogenesis, stimulation of epithelial-mesenchymal transition [EMT], suppression of immune responses, and consequential promotion of tumor metastasis. Here, we present an overview of the latest findings on Janusfaced roles that MSCs play in the tumor microenvironment [TME], with a concise focus on innate and adaptive immune responses.
Collapse
Affiliation(s)
- Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
175
|
Abstract
PURPOSE OF REVIEW Stem cell therapies have demonstrated safety and efficacy in the treatment of perianal Crohn's disease as compared to conventional therapy. Thus, an understanding of their place in the treatment algorithm for inflammatory bowel disease has become imperative as we move into an era of regenerative medicine. RECENT FINDINGS There have now been over a dozen clinical trials highlighting stem cells as a useful therapeutic in Crohn's disease. Due to the success in the local treatment for perianal Crohn's disease, investigation is continuing in the space of targeted systemic delivery for the treatment of luminal disease. As we increase the number of patients treated in clinical trials, it is imperative to define the optimal cell donor, optimize treatment dosing and retreatment protocols, and understand methods for safely targeting and treating intraluminal disease.
Collapse
Affiliation(s)
- Amy L Lightner
- Department of Colon and Rectal Surgery, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
176
|
Kim SH, Das A, Choi HI, Kim KH, Chai JC, Choi MR, Binas B, Park KS, Lee YS, Jung KH, Chai YG. Forkhead box O1 (FOXO1) controls the migratory response of Toll-like receptor (TLR3)-stimulated human mesenchymal stromal cells. J Biol Chem 2019; 294:8424-8437. [PMID: 30944148 DOI: 10.1074/jbc.ra119.008673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can potently regulate the functions of immune cells and are being investigated for the management of inflammatory diseases. Toll-like receptor 3 (TLR3)-stimulated human MSCs (hMSCs) exhibit increased migration and chemotaxis within and toward damaged tissues. However, the regulatory mechanisms underlying these migratory activities are unclear. Therefore, we analyzed the migration capability and gene expression profiles of TLR3-stimulated hMSCs using RNA-Seq, wound healing, and transwell cell migration assay. Along with increased cell migration, the TLR3 stimulation also increased the expression of cytokines, chemokines, and cell migration-related genes. The promoter regions of the latter showed an enrichment of putative motifs for binding the transcription factors forkhead box O1 (FOXO1), FOXO3, NF-κB (NF-κB1), and RELA proto-oncogene and NF-κB subunit. Of note, FOXO1 inhibition by the FOXO1-selective inhibitor AS1842856 significantly reduced both migration and the expression of migration-related genes. In summary, our results indicate that TLR3 stimulation induces hMSC migration through the expression of FOXO1-activated genes.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul 04673, Republic of Korea
| | - Ki Hoon Kim
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Mi Ran Choi
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588
| | - Bert Binas
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Kyoung Sun Park
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588.
| | - Young Gyu Chai
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea; Department of Bionanotechnology, Hanyang University, Seoul 04673, Republic of Korea.
| |
Collapse
|
177
|
The Effect of Conditioned Media of Stem Cells Derived from Lipoma and Adipose Tissue on Macrophages' Response and Wound Healing in Indirect Co-culture System In Vitro. Int J Mol Sci 2019; 20:ijms20071671. [PMID: 30987193 PMCID: PMC6479913 DOI: 10.3390/ijms20071671] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023] Open
Abstract
Immunomodulatory and wound healing activities of adipose-derived stem cells (ADSCs) have been reported in various in vitro and in vivo experimental models suggesting their beneficial role in regenerative medicine and treatments of inflammatory-related disorders. Lipoma-derived stem cells (LDSCs) were reported as a potential tool in regenerative medicine due to the similarity with ADSCs but we have previously shown that LDSCs have different differentiation capacity than ADSCs despite a similar mesenchymal phenotype. To further analyze the potential differences and/or similarities between those two stem cell types, in the present study we examined the macrophages (MΦs)’ response, immunomodulatory and wound healing effect of conditioned media (CM) of LDSCs and ADSCs in indirect co-culture system in vitro. We confirmed similar mesenchymal phenotype and stemness state of LDSCs and ADSCs but indicated differences in expression of some inflammatory-related genes. Anti-inflammatory potential of CM of LDSCs and ADSCs, with pronounced effect of LDSCs, in unstimulated RAW 264.7 MΦs was evaluated by decrease in Tnf and increase in Il10 gene expression, which was confirmed by corresponding cytokines’ secretion analysis. Conditioned media of both LDSCs and ADSCs led to the functional activation of MΦs, with slightly more pronounced effect of CM of LDSCs, while both stimulated wound healing in vitro in a similar manner. Results of this study suggest that LDSCs secrete soluble factors like ADSCs and therefore may have a potential for application in regenerative medicine, due to immunomodulatory and wound healing activity, and indicate that LDSCs through secretome may interact with other cells in lipoma tissue.
Collapse
|
178
|
Mohamadi Y, Noori Moghahi SMH, Mousavi M, Borhani-Haghighi M, Abolhassani F, Kashani IR, Hassanzadeh G. Intrathecal transplantation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. J Chem Neuroanat 2019; 97:1-8. [DOI: 10.1016/j.jchemneu.2019.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
|
179
|
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019; 10:282. [PMID: 30941062 PMCID: PMC6433879 DOI: 10.3389/fphys.2019.00282] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | - Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jordan Naylor
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T, Incubator and Technology Transfer, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jameel M. Inal
- Extracellular Vesicle Research Unit and Bioscience Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
180
|
Torán JL, López JA, Gomes-Alves P, Aguilar S, Torroja C, Trevisan-Herraz M, Moscoso I, Sebastião MJ, Serra M, Brito C, Cruz FM, Sepúlveda JC, Abad JL, Galán-Arriola C, Ibanez B, Martínez F, Fernández ME, Fernández-Aviles F, Palacios I, R-Borlado L, Vázquez J, Alves PM, Bernad A. Definition of a cell surface signature for human cardiac progenitor cells after comprehensive comparative transcriptomic and proteomic characterization. Sci Rep 2019; 9:4647. [PMID: 30874584 PMCID: PMC6420620 DOI: 10.1038/s41598-019-39571-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Adult cardiac progenitor/stem cells (CPC/CSC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Assisted by complementary RNAseq analysis, we defined the fraction of the CPC proteome associable with specific functions by comparison with human bone marrow mesenchymal stem cells (MSC), the reference population for cell therapy, and human dermal fibroblasts (HDF), as a distant reference. Label-free proteomic analysis identified 526 proteins expressed differentially in CPC. iTRAQ analysis confirmed differential expression of a substantial proportion of those proteins in CPC relative to MSC, and systems biology analysis defined a clear overrepresentation of several categories related to enhanced angiogenic potential. The CPC plasma membrane compartment comprised 1,595 proteins, including a minimal signature of 167 proteins preferentially or exclusively expressed by CPC. CDH5 (VE-cadherin), OX2G (OX-2 membrane glycoprotein; CD200), GPR4 (G protein-coupled receptor 4), CACNG7 (calcium voltage-gated channel auxiliary subunit gamma 7) and F11R (F11 receptor; junctional adhesion molecule A; JAM-A; CD321) were selected for validation. Their differential expression was confirmed both in expanded CPC batches and in early stages of isolation, particularly when compared against cardiac fibroblasts. Among them, GPR4 demonstrated the highest discrimination capacity between all cell lineages analyzed.
Collapse
Affiliation(s)
- José Luis Torán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Juan Antonio López
- Laboratory of Cardiovascular Proteomics, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Patricia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Susana Aguilar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Marco Trevisan-Herraz
- Laboratory of Cardiovascular Proteomics, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Isabel Moscoso
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,CIMUS, Avda Barcelona s/n, Santiago de Compostela, 15782A, Coruña, Spain
| | - Maria João Sebastião
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Francisco Miguel Cruz
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Juan Carlos Sepúlveda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - José Luis Abad
- Coretherapix S.L. U. Santiago Grisolia 2, 28769, Tres Cantos, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fernando Martínez
- Bioinformatics Unit, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - María Eugenia Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Dr Esquerdo, 46, 28007, Madrid, Spain
| | - Francisco Fernández-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Dr Esquerdo, 46, 28007, Madrid, Spain
| | - Itziar Palacios
- Coretherapix S.L. U. Santiago Grisolia 2, 28769, Tres Cantos, Madrid, Spain
| | - Luis R-Borlado
- Coretherapix S.L. U. Santiago Grisolia 2, 28769, Tres Cantos, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Antonio Bernad
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
181
|
Yin M, Shen Z, Yang L, Zheng W, Song H. Protective effects of CXCR3/HO‑1 gene‑modified BMMSCs on damaged intestinal epithelial cells: Role of the p38‑MAPK signaling pathway. Int J Mol Med 2019; 43:2086-2102. [PMID: 30864680 PMCID: PMC6445595 DOI: 10.3892/ijmm.2019.4120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
The purpose of the present study was to investigate whether bone marrow mesenchymal stem cells (BMMSCs) modified by CXC-chemokine receptor type 3 (CXCR3) and heme oxygenase-1 (HO-1) genes can repair damaged intestinal epithelial cells in vitro, and the role of the p38 mitogen-activated protein kinase (p38-MAPK) pathway in this process. A model of intestinal epithelial crypt cell line-6 (IEC-6) damage was created, and BMMSCs were transfected with either the CXCR3 and/or HO-1 gene in vitro. There were nine experimental groups in which the damaged IEC-6 cells were co-cultured with differentially-treated BMMSCs and lymphocytes for 24 h. Reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemistry and a western blot analysis were performed to detect stem cell transfection, the repair of damaged intestinal epithelial cells and the expression of related molecules in the P38-MAPK pathway, respectively. Crystal violet staining and live cell imaging were used to detect the chemotaxis of BMMSCs. Flow cytometry was used to detect T lymphocyte activity and the surface markers expressed on BMMSCs. An ELISA was used to quantify cytokine production. The adenovirus (Ad)-CXCR3/MSCs exhibited the characteristics of stem cells and exhibited chemotaxis. The Ad-CXCR3/MSCs and Ad-(CXCR3 + HO)/MSCs exhibited increased expression of tight junction protein zonula occludens-1 (ZO-1) and anti-proliferating cell nuclear antigen in the damaged IEC-6 cells, and apoptosis of the damaged IEC-6 cells was decreased. BMMSCs inhibited the phosphorylation of p38, in addition to downstream molecules of the p38MAPK signaling pathway. The Ad-CXCR3/MSCs and Ad-(CXCR3 + HO)/MSCs exhibited significantly decreased expression levels of downstream molecules, including phosphorylated (p)-p38, p-activated transcription factor 2, p-C/EBP homologous protein-10, and p-myocyte enhancer factor 2C, and target molecules (e.g., apoptotic bodies). The effects of Ad-(CXCR3 + HO)/MSCs on the repair of the damaged intestinal tract and inhibition of the p38-MAPK pathway was more marked than those in other groups on day 7 post-surgery in the rejection model for small bowel transplantation. BMMSCs modified by the CXCR3 and HO-1 genes exhibited superior ability to repair damaged intestinal epithelial cells and served this role via the p38-MAPK pathway.
Collapse
Affiliation(s)
- Mingli Yin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
182
|
Bertheuil N, Chaput B, Ménard C, Varin A, Laloze J, Watier E, Tarte K. Adipose mesenchymal stromal cells: Definition, immunomodulatory properties, mechanical isolation and interest for plastic surgery. ANN CHIR PLAST ESTH 2019; 64:1-10. [DOI: 10.1016/j.anplas.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
|
183
|
Holan V, Cechova K, Zajicova A, Kossl J, Hermankova B, Bohacova P, Hajkova M, Krulova M, Svoboda P, Javorkova E. The Impact of Morphine on the Characteristics and Function Properties of Human Mesenchymal Stem Cells. Stem Cell Rev Rep 2019; 14:801-811. [PMID: 30136142 DOI: 10.1007/s12015-018-9843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphine is an analgesic drug therapeutically administered to relieve pain. However, this drug has numerous side effects, which include impaired healing and regeneration after injuries or tissue damages. It suggests negative effects of morphine on stem cells which are responsible for tissue regeneration. Therefore, we studied the impact of morphine on the properties and functional characteristics of human bone marrow-derived mesenchymal stem cells (MSCs). The presence of μ-, δ- and κ-opioid receptors (OR) in untreated MSCs, and the enhanced expression of OR in MSCs pretreated with proinflammatory cytokines, was demonstrated using immunoblotting and by flow cytometry. Morphine modified in a dose-dependent manner the MSC phenotype, inhibited MSC proliferation and altered the ability of MSCs to differentiate into adipocytes or osteoblasts. Furthermore, morphine rather enhanced the expression of genes for various immunoregulatory molecules in activated MSCs, but significantly inhibited the production of the vascular endothelial growth factor, hepatocyte growth factor or leukemia inhibitory factor. All of these observations are underlying the selective impact of morphine on stem cells, and offer an explanation for the mechanisms of the negative effects of opioid drugs on stem cells and regenerative processes after morphine administration or in opioid addicts.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic. .,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic.
| | - Kristina Cechova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic
| | - Jan Kossl
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Barbora Hermankova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Pavla Bohacova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Michaela Hajkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Magdalena Krulova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic
| | - Eliska Javorkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| |
Collapse
|
184
|
Dai YY, Ni SY, Ma K, Ma YS, Wang ZS, Zhao XL. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther 2019; 10:39. [PMID: 30670101 PMCID: PMC6341645 DOI: 10.1186/s13287-019-1134-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background Several studies have demonstrated that mesenchymal stem cells can ameliorate the inflammation of allergic rhinitis (AR) and correct the Th1/Th2 immune imbalance. Methods This study was performed to explore the immunomodulation properties of stem cells from human exfoliated deciduous teeth (SHEDs) in the treatment of AR in vivo and in vitro. BALB/c mice were sensitized to ovalbumin (OVA) by intraperitoneal injection, and then SHEDs or bone marrow mesenchymal stem cells (BMMSCs) were injected intravenously before challenge. We evaluated nasal symptoms, inflammatory infiltration of nasal mucosa, immunoglobulin secretion, cytokine production, and mRNA expression in the spleen. In addition, peripheral blood mononuclear cells (PBMCs) from AR patients were cultured with SHEDs or BMMSCs in the presence of phytohemagglutinin (PHA). PBMCs cultured alone with or without PHA served as controls. After 3 days of culture, we examined the effect of SHEDs on T lymphocyte proliferation, cytokine secretion, and the proportion of Foxp3+ Treg cells via flow cytometry. Finally, to determine the role of soluble factors (TGF-β1, PGE2) in the immunomodulatory mechanism, a cytokine neutralization assay was performed. Results Nasal symptoms and inflammatory infiltration were significantly reduced after SHED administration. The OVA-specific IgE and IgG1 levels in serum were significantly decreased, and the increased IL-4, IL-5, IL-13, and IL-17A levels in the spleen after OVA challenge were markedly downregulated, while the level of IFN-γ was upregulated by SHED administration. The mRNA expression levels also changed correspondingly. SHEDs significantly inhibited the proliferation of T lymphocytes; increased the levels of IFN-γ, IL-10, PGE2, and TGF-β1; decreased the levels of IL-4 and IL-17A; and induced the expansion of Treg cells in the coculture system. The neutralization of TGF-β1 partly relieved the immunosuppression of SHEDs, but blocking PGE2 did not. In addition, SHEDs were superior to BMMSCs in inhibiting the Th2 immune response in vivo and inducing the expansion of Treg cells in vitro. Conclusion These results suggest that SHEDs could correct the CD4+ T cell immune imbalance via Treg cells and may be potential therapeutic agents for the treatment of allergic diseases, such as AR, in the future. Electronic supplementary material The online version of this article (10.1186/s13287-019-1134-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Yang Dai
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiaominxiang Road, Beijing, 100730, China.,College of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, 10 Xitoutiao Road, Beijing, 100069, China
| | - Si-Yang Ni
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiaominxiang Road, Beijing, 100730, China
| | - Ke Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 9 Chongwenmennei Road, Beijing, 100005, China
| | - Yu-Shi Ma
- Beijing Tason Biotech Co. Ltd., 10 PKUCare Industrial Park, Beijing, 102206, China
| | - Zhi-Shi Wang
- Beijing Tason Biotech Co. Ltd., 10 PKUCare Industrial Park, Beijing, 102206, China
| | - Xiu-Li Zhao
- National Institute for Drug Clinical Trial, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiaominxiang Road, Beijing, 100730, China.
| |
Collapse
|
185
|
Andrews S, Cheng A, Stevens H, Logun MT, Webb R, Jordan E, Xia B, Karumbaiah L, Guldberg RE, Stice S. Chondroitin Sulfate Glycosaminoglycan Scaffolds for Cell and Recombinant Protein-Based Bone Regeneration. Stem Cells Transl Med 2019; 8:575-585. [PMID: 30666821 PMCID: PMC6525555 DOI: 10.1002/sctm.18-0141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP‐2)‐loaded collagen sponges remain the clinical standard for treatment of large bone defects when there is insufficient autograft, despite associated complications. Recent efforts to negate comorbidities have included biomaterials and gene therapy approaches to extend the duration of BMP‐2 release and activity. In this study, we compared the collagen sponge clinical standard to chondroitin sulfate glycosaminoglycan (CS‐GAG) scaffolds as a delivery vehicle for recombinant human BMP‐2 (rhBMP‐2) and rhBMP‐2 expression via human BMP‐2 gene inserted into mesenchymal stem cells (BMP‐2 MSC). We demonstrated extended release of rhBMP‐2 from CS‐GAG scaffolds compared to their collagen sponge counterparts, and further extended release from CS‐GAG gels seeded with BMP‐2 MSC. When used to treat a challenging critically sized femoral defect model in rats, both rhBMP‐2 and BMP‐2 MSC in CS‐GAG induced comparable bone formation to the rhBMP‐2 in collagen sponge, as measured by bone volume, strength, and stiffness. We conclude that CS‐GAG scaffolds are a promising delivery vehicle for controlling the release of rhBMP‐2 and to mediate the repair of critically sized segmental bone defects. stem cells translational medicine2019;8:575–585
Collapse
Affiliation(s)
- Seth Andrews
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Albert Cheng
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hazel Stevens
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Biomedical Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Robin Webb
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Erin Jordan
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Boao Xia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of ADS, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven Stice
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of ADS, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
186
|
Silveira GDP, Ishimura ME, Teixeira D, Galindo LT, Sardinha AA, Porcionatto M, Longo-Maugéri IM. Improvement of Mesenchymal Stem Cell Immunomodulatory Properties by Heat-Killed Propionibacterium acnes via TLR2. Front Mol Neurosci 2019; 11:489. [PMID: 30687005 PMCID: PMC6336115 DOI: 10.3389/fnmol.2018.00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are an essential tool for regenerative medicine, which aims to develop new technologies to improve their effects to obtain useful transplantation results. MSC immunomodulatory role has been just demonstrated; however, how they react when they are stimulated by an adjuvant is poorly understood. Our group showed the adjuvant effect of killed Propionibacterium acnes (P. acnes) on hematopoietic stem cells. As these cells share the same MSCs bone marrow (BM) site and interact with each other, here we evaluated the P. acnes and its soluble polysaccharide (PS) effect on MSCs and their immunomodulatory role in a murine model of traumatic brain injury (TBI). The bacteria increased the absolute number of MSCs, including MSC subpopulations, and maintained MSC plasticity. P. acnes and PS enhanced MSC proliferation and improved their immunomodulatory effect. P. acnes-MSC and PS-MSC transplantation increased anti-inflammatory cytokine expression and diminished pro-inflammatory cytokine expression after injury. This effect seemed to be mediated via TLR2 since P. acnes-KOTLR2-MSC transplantation decreased TGF-β and IL-10 expression. Increasing in neural stem cells and neuroblasts after PS-MSC transplantation was also observed. The adjuvant effect of P. acnes is an alternative means of expanding MSCs and important to identify their subpopulations to know better their role under exogenous stimuli including inflammation resolution in an experimental model.
Collapse
Affiliation(s)
- Gabriela da Paz Silveira
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Mayari Eika Ishimura
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Layla Tesla Galindo
- Division of Molecular Biology, Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Agnes Araujo Sardinha
- Division of Molecular Biology, Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Marimelia Porcionatto
- Division of Molecular Biology, Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ieda Maria Longo-Maugéri
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
187
|
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol 2018; 9:2837. [PMID: 30564236 PMCID: PMC6288292 DOI: 10.3389/fimmu.2018.02837] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
Collapse
Affiliation(s)
- Joana R Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Raquel M Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
188
|
Park HW, Oh S, Lee KH, Lee BH, Chang MS. Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury. Int J Stem Cells 2018; 11:177-186. [PMID: 30408408 PMCID: PMC6285288 DOI: 10.15283/ijsc18071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. Methods Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. Results Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. Conclusions We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.
Collapse
Affiliation(s)
- Hwan-Woo Park
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea.,Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Korea
| | - Soonyi Oh
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea
| | - Kyung Hee Lee
- Department of Dental Hygiene, Dongseo University, Busan, Korea
| | - Bae Hwan Lee
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea.,Neuroscience Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
189
|
Longoni A, Knežević L, Schepers K, Weinans H, Rosenberg AJWP, Gawlitta D. The impact of immune response on endochondral bone regeneration. NPJ Regen Med 2018; 3:22. [PMID: 30510772 PMCID: PMC6265275 DOI: 10.1038/s41536-018-0060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin.
Collapse
Affiliation(s)
- A Longoni
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands.,Regenerative Medicine Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - L Knežević
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands.,3Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD UK
| | - K Schepers
- 4Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - H Weinans
- 5Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands.,6Department of Rheumatology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands.,7Department of Biomechanical Engineering, Delft University of Technology, 2628CD Delft, The Netherlands
| | - A J W P Rosenberg
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands
| | - D Gawlitta
- 1Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, G05.222, PO Box 85500, 3508 GA The Netherlands.,Regenerative Medicine Center Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
190
|
Zeira O, Scaccia S, Pettinari L, Ghezzi E, Asiag N, Martinelli L, Zahirpour D, Dumas MP, Konar M, Lupi DM, Fiette L, Pascucci L, Leonardi L, Cliff A, Alessandri G, Pessina A, Spaziante D, Aralla M. Intra-Articular Administration of Autologous Micro-Fragmented Adipose Tissue in Dogs with Spontaneous Osteoarthritis: Safety, Feasibility, and Clinical Outcomes. Stem Cells Transl Med 2018; 7:819-828. [PMID: 30035380 PMCID: PMC6216453 DOI: 10.1002/sctm.18-0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Similar to the disease affecting humans, osteoarthritis (OA) is a painful musculoskeletal condition affecting 20% of the adult canine population. Several solutions have been proposed, but the results achieved to date are far from being satisfactory. New approaches, such as intra-articular delivery of cells (including mesenchymal stromal cells), have been proposed. Among the many sources, the adipose tissue is considered very promising. We evaluated the safety, feasibility, and efficacy of a single intra-articular injection of autologous and micro-fragmented adipose tissue (MFAT) in 130 dogs with spontaneous OA. MFAT was obtained using a minimally invasive technique in a closed system and injected in the intra- and/or peri-articular space. Clinical outcomes were determined using orthopedic examination and owners' scores for up to 6 months. In 78% of the dogs, improvement in the orthopedic score was registered 1 month after treatment and continued gradually up to 6 months when 88% of the dogs improved, 11% did not change, and 1% worsened compared with baseline. Considering the owners' scores at 6 months, 92% of the dogs significantly improved, 6% improved only slightly, and 2% worsened compared with baseline. No local or systemic major adverse effects were recorded. The results of this study suggest that MFAT injection in dogs with OA is safe, feasible, and beneficial. The procedure is time sparing and cost-effective. Post injection cytological investigation, together with the clinical evidence, suggests a long-term pain control role of this treatment. The spontaneous OA dog model has a key role in developing successful treatments for translational medicine. Stem Cells Translational Medicine 2018;7:819-828.
Collapse
Affiliation(s)
- Offer Zeira
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Simone Scaccia
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | | | - Erica Ghezzi
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Nimrod Asiag
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Laura Martinelli
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | | | - Maria P. Dumas
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Martin Konar
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Davide M. Lupi
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| | - Laurence Fiette
- Unité d'Histopathologie Humaine et Modèles AnimauxInstitut PasteurParisFrance
| | - Luisa Pascucci
- Department of Veterinary MedicineUniversity of PerugiaItaly
| | | | | | - Giulio Alessandri
- Department of Cerebrovascular DiseasesIRCCS Besta Neurological InstituteMilanItaly
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanItaly
| | | | - Marina Aralla
- San Michele Veterinary HospitalTavazzano con Villavesco (LO)Italy
| |
Collapse
|
191
|
Henstock JR, Rotherham M, El Haj AJ. Magnetic ion channel activation of TREK1 in human mesenchymal stem cells using nanoparticles promotes osteogenesis in surrounding cells. J Tissue Eng 2018; 9:2041731418808695. [PMID: 30397432 PMCID: PMC6207961 DOI: 10.1177/2041731418808695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Magnetic ion channel activation technology uses superparamagnetic nanoparticles conjugated with targeting antibodies to apply mechanical force directly to stretch-activated ion channels on the cell surface, stimulating mechanotransduction and downstream processes. This technique has been reported to promote differentiation towards musculoskeletal cell types and enhance mineralisation. Previous studies have shown how mesenchymal stem cells injected into a pre-mineralised environment such as a foetal chick epiphysis, results in large-scale osteogenesis at the target site. However, the relative contributions of stem cells and surrounding host tissue has not been resolved, that is, are the mesenchymal stem cells solely responsible for the observed mineralisation or do mechanically stimulated mesenchymal stem cells also promote a host-tissue mineralisation response? To address this, we established a novel two-dimensional co-culture assay, which indicated that magnetic ion channel activation stimulation of human mesenchymal stem cells does not significantly promote migration but does enhance collagen deposition and mineralisation in the surrounding cells. We conclude that one of the important functions of injected human mesenchymal stem cells is to release biological factors (e.g., cytokines and microvesicles) which guide the surrounding tissue response, and that remote control of this signalling process using magnetic ion channel activation technology may be a useful way to both drive and regulate tissue regeneration and healing.
Collapse
Affiliation(s)
- James R Henstock
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- James R Henstock, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool L7 8TX, UK.
| | - Michael Rotherham
- Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - Alicia J El Haj
- Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| |
Collapse
|
192
|
Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Görgülü A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther 2018; 9:286. [PMID: 30359316 PMCID: PMC6202843 DOI: 10.1186/s13287-018-1039-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background During the last decade, mesenchymal stem cells (MSCs) have gained much attention in the field of regenerative medicine due to their capacity to differentiate into different cell types and to promote immunosuppressive effects. However, the underlying mechanism of MSC-mediated immunoregulation is not fully understood so far. Macrophages are distinguished in classical activated, pro-inflammatory M1 and alternatively activated M2 cells, which possess different functions and transcriptional profiles with respect to inflammatory responses. As polarization is not fixed, macrophage functional plasticity might be modulated by the microenvironment allowing them to rapidly react to danger signals and maintaining tissue homeostasis. Methods Murine MSCs were preconditioned with IL-1ß and IFN-ɣ to enhance their immunosuppressive capacity regarding macrophage polarization under M1- and M2a-polarizing conditions. Macrophage polarization was analyzed by real-time PCR, flow cytometry, and cytokine detection in culture supernatants. The role of MSC-derived nitric oxide (NO), prostaglandin E2 (PGE2), and IL-6 in this process has been evaluated using siRNA transfection and IL-6 receptor-deficient macrophages, respectively. Results Preconditioned, but not unprimed, MSCs secreted high levels of NO, IL-6, and PGE2. Co-culture with macrophages (M0) in the presence of M1 inducers (LPS + IFN-ɣ) led to significant reduction of CD86 and iNOS protein in macrophages and diminished TNF-α secretion. Additionally, CD86 and iNOS protein expression as well as NO and IL-10 secretion were markedly increased under M2a-polarizing culture conditions (IL-4). MSC-dependent macrophage polarization did not depend on direct cell-cell contact. Co-culturing in the presence of LPS and IFN-ɣ resulted in the upregulation of M2a, M2b, and M2c marker genes, whereas in the presence of IL-4 only M2b markers were significantly increased. In turn, IL-10-producing regulatory M2b cells significantly inhibited IFN-ɣ expression in CD4+ T lymphocytes. Finally, we show that MSC-mediated macrophage polarization strongly depends on IL-6, whereas a minor role for NO and PGE2 was found. Conclusions Preconditioning of MSCs highly strengthens their capacity to regulate macrophage features and to promote immunosuppression. Repression of M1 polarization during inflammation and M2b polarization under anti-inflammatory conditions strongly depend on functional IL-6 signaling in macrophages. The potential benefit of preconditioned MSCs and IL-6 should be considered for future clinical treatment. Electronic supplementary material The online version of this article (10.1186/s13287-018-1039-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Philipp
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Laura Suhr
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany.
| |
Collapse
|
193
|
Im GI. Tissue Engineering in Osteoarthritis: Current Status and Prospect of Mesenchymal Stem Cell Therapy. BioDrugs 2018; 32:183-192. [PMID: 29704190 DOI: 10.1007/s40259-018-0276-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis. Over the last 20 years, attempts have been made to regenerate articular cartilage to overcome the limitations of conventional treatments. As OA is generally associated with larger and diffuse involvement of articular surfaces and alteration of joint homeostasis, a tissue engineering approach for cartilage regeneration is more difficult than in simple chondral defects. Autologous and allogeneic mesenchymal stem cells (MSCs) have rapidly emerged as investigational products for cartilage regeneration. This review outlines points to consider in MSC-based approaches for OA treatment, including allogeneic MSCs, sources of MSCs, dosages, feasibility of multiple injections, indication according to severity of OA lesion and patient age, and issues regarding implantation versus injection. We introduce possible mechanisms of action of implanted or injected MSCs as well as the immunological aspects of MSC therapy and provide a summary of clinical trials of MSCs in the treatment of OA. Given current knowledge, it is too early to draw conclusions on the ultimate effectiveness of intra-articular application of MSCs in terms of regenerative effects. Further radiological and histological data will be needed, with a larger pool of patients, before this question can be answered.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Research Institute for Integrative Regenerative Medical Engineering, Dongguk University Ilsan Hospital, 814 Siksa-Dong, Goyang, 410-773, Republic of Korea.
| |
Collapse
|
194
|
El-Sherbiny YM, El-Jawhari JJ, Moseley TA, McGonagle D, Jones E. T cell immunomodulation by clinically used allogeneic human cancellous bone fragments: a potential novel immunotherapy tool. Sci Rep 2018; 8:13535. [PMID: 30201960 PMCID: PMC6131386 DOI: 10.1038/s41598-018-31979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Multipotential stromal cells (MSCs) demonstrate strong immunomodulation capabilities following culture expansion. We have previously demonstrated that human cancellous bone fragments (CBFs) clinically used as viable allografts for spinal fusion have resident MSCs that exhibit T cell immunomodulation after monolayer expansion. This study investigated the immunomodulatory ability of these CBFs without MSC culture-expansion. CD4 positive T cells were induced to proliferate using CD3/CD28 stimulation and added to CBFs at different ratios of T cells per gram of CBF. A dose-dependent suppressive effect on T cell proliferation was evident and correlated with increased culture supernatant levels of TGF-ß1, but not PGE2. CBF-driven immunosuppression was reduced in co-cultures with TGF-ß neutralising antibodies and was higher in cell contact compared to non-contact cultures. CBF gene expression profile identified vascular cell adhesion molecule-1, bone marrow stromal antigen 2/CD317 and other interferon signalling pathway members as potential immunomodulatory mediators. The CD317 molecule was detected on the surface of CBF-resident cells confirming the gene expression data. Taken together, these data demonstrate that human clinically used CBFs are inherently immunomodulatory and suggest that these viable allografts may be used to deliver therapeutic immunomodulation for immune-related diseases.
Collapse
Affiliation(s)
- Yasser M El-Sherbiny
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Jehan J El-Jawhari
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Dennis McGonagle
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Elena Jones
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
195
|
Chao YH, Lin CW, Pan HH, Yang SF, Weng TF, Peng CT, Wu KH. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia. Pediatr Blood Cancer 2018; 65:e27247. [PMID: 29870142 DOI: 10.1002/pbc.27247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. METHODS To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. RESULTS SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). CONCLUSIONS Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM.
Collapse
Affiliation(s)
- Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsien Pan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Fu Weng
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Tien Peng
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
196
|
Li Q, Zhang B, Kasoju N, Ma J, Yang A, Cui Z, Wang H, Ye H. Differential and Interactive Effects of Substrate Topography and Chemistry on Human Mesenchymal Stem Cell Gene Expression. Int J Mol Sci 2018; 19:E2344. [PMID: 30096912 PMCID: PMC6121573 DOI: 10.3390/ijms19082344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Variations in substrate chemistry and the micro-structure were shown to have a significant effect on the biology of human mesenchymal stromal cells (hMSCs). This occurs when differences in the surface properties indirectly modulate pathways within numerous signaling networks that control cell fate. To understand how the surface features affect hMSC gene expression, we performed RNA-sequencing analysis of bone marrow-derived hMSCs cultured on tissue culture-treated polystyrene (TCP) and poly(l-lactide) (PLLA) based substrates of differing topography (Fl: flat and Fs: fibrous) and chemistry (Pr: pristine and Am: aminated). Whilst 80% of gene expression remained similar for cells cultured on test substrates, the analysis of differentially expressed genes (DEGs) revealed that surface topography significantly altered gene expression more than surface chemistry. The Fl and Fs topologies introduced opposite directional alternations in gene expression when compared to TCP control. In addition, the effect of chemical treatment interacted with that of topography in a synergistic manner with the Pr samples promoting more DEGs than Am samples in all gene ontology function groups. These findings not only highlight the significance of the culture surface on regulating the overall gene expression profile but also provide novel insights into cell-material interactions that could help further design the next-generation biomaterials to facilitate hMSC applications. At the same time, further studies are required to investigate whether or not the observations noted correlate with subsequent protein expression and functionality of cells.
Collapse
Affiliation(s)
- Qiongfang Li
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Naresh Kasoju
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Jinmin Ma
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Hui Wang
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, 215123 Suzhou, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| |
Collapse
|
197
|
Abstract
PURPOSE OF REVIEW The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord St, Evans 243, Boston, MA, 02118, USA.
| | - Chelsea S Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
198
|
Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:515-528. [PMID: 28490258 DOI: 10.1089/ten.teb.2016.0365] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a large variety of bioactive trophic factors that stimulate neighboring parenchymal cells to start repairing damaged tissues. These new findings could potentially replace the classical paradigm of MSC differentiation and cell replacement. These bioactive factors have diverse actions like modulating the local immune system, enhancing angiogenesis, preventing cell apoptosis, and stimulating survival, proliferation, and differentiation of resident tissue specific cells. Therefore, MSCs are referred to as conductors of tissue repair and regeneration by secreting trophic mediators. In this review article, we have summarized the studies that focused on the trophic effects of MSC within the context of tissue regeneration. We will also highlight the various underlying mechanisms used by MSCs to act as trophic mediators. Besides the secretion of growth factors, we discuss two additional mechanisms that are likely to mediate MSC's beneficial effects in tissue regeneration, namely the production of extracellular vesicles and the formation of membrane nanotubes, which can both connect different cells and transfer a variety of trophic factors varying from proteins to mRNAs and miRNAs. Furthermore, we postulate that apoptosis of the MSCs is an integral part of the trophic effect during tissue repair.
Collapse
Affiliation(s)
- Yao Fu
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Lisanne Karbaat
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Ling Wu
- 2 Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, Los Angeles, California
| | - Jeroen Leijten
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Sanne K Both
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Marcel Karperien
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| |
Collapse
|
199
|
Wan S, Fu X, Ji Y, Li M, Shi X, Wang Y. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 2018; 171:107-117. [DOI: 10.1016/j.biomaterials.2018.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 01/14/2023]
|
200
|
Holan V, Hermankova B, Kossl J. Perspectives of Stem Cell-Based Therapy for Age-Related Retinal Degenerative Diseases. Cell Transplant 2018; 26:1538-1541. [PMID: 29113466 PMCID: PMC5680954 DOI: 10.1177/0963689717721227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Retinal degenerative diseases, which include age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and glaucoma, mostly affect the elderly population and are the most common cause of decreased quality of vision or even blindness. So far, there is no satisfactory treatment protocol to prevent, stop, or cure these disorders. A great hope and promise for patients suffering from retinal diseases is represented by stem cell-based therapy that could replace diseased or missing retinal cells and support regeneration. In this respect, mesenchymal stem cells (MSCs) that can be obtained from the particular patient and used as autologous cells have turned out to be a promising stem cell type for treatment. Here we show that MSCs can differentiate into cells expressing markers of retinal cells, inhibit production of pro-inflammatory cytokines by retinal tissue, and produce a number of growth and neuroprotective factors for retinal regeneration. All of these properties make MSCs a prospective cell type for cell-based therapy of age-related retinal degenerative diseases.
Collapse
Affiliation(s)
- Vladimir Holan
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Cell Biology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | - Barbora Hermankova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Cell Biology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | - Jan Kossl
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Cell Biology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| |
Collapse
|