151
|
Winge SB, Soraggi S, Schierup MH, Rajpert-De Meyts E, Almstrup K. Integration and reanalysis of transcriptomics and methylomics data derived from blood and testis tissue of men with 47,XXY Klinefelter syndrome indicates the primary involvement of Sertoli cells in the testicular pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:239-255. [PMID: 32449318 DOI: 10.1002/ajmg.c.31793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Klinefelter syndrome (KS; 47,XXY) is the most common sex chromosomal anomaly and causes a multitude of symptoms. Often the most noticeable symptom is infertility caused by azoospermia with testicular histology showing hyalinization of tubules, germ cells loss, and Leydig cell hyperplasia. The germ cell loss begins early in life leading to partial hyalinization of the testis at puberty, but the mechanistic drivers behind this remain poorly understood. In this systematic review, we summarize the current knowledge on developmental changes in the cellularity of KS gonads supplemented by a comparative analysis of the fetal and adult gonadal transcriptome, and blood transcriptome and methylome of men with KS. We identified a high fraction of upregulated genes that escape X-chromosome inactivation, thus supporting previous hypotheses that these are the main drivers of the testicular phenotype in KS. Enrichment analysis showed overrepresentation of genes from the X- and Y-chromosome and testicular transcription factors. Furthermore, by re-evaluation of recent single cell RNA-sequencing data originating from adult KS testis, we found novel evidence that the Sertoli cell is the most affected cell type. Our results are consistent with disturbed cross-talk between somatic and germ cells in the KS testis, and with X-escapee genes acting as mediators.
Collapse
Affiliation(s)
- Sofia B Winge
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Samuele Soraggi
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
152
|
Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int J Mol Sci 2020; 21:E3474. [PMID: 32423094 PMCID: PMC7278991 DOI: 10.3390/ijms21103474] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
In December 2019, a novel severe acute respiratory syndrome (SARS) from a new coronavirus (SARS-CoV-2) was recognized in the city of Wuhan, China. Rapidly, it became an epidemic in China and has now spread throughout the world reaching pandemic proportions. High mortality rates characterize SARS-CoV-2 disease (COVID-19), which mainly affects the elderly, causing unrestrained cytokines-storm and subsequent pulmonary shutdown, also suspected micro thromboembolism events. At the present time, no specific and dedicated treatments, nor approved vaccines, are available, though very promising data come from the use of anti-inflammatory, anti-malaria, and anti-coagulant drugs. In addition, it seems that males are more susceptible to SARS-CoV-2 than females, with males 65% more likely to die from the infection than females. Data from the World Health Organization (WHO) and Chinese scientists show that of all cases about 1.7% of women who contract the virus will die compared with 2.8% of men, and data from Hong Kong hospitals state that 32% of male and 15% of female COVID-19 patients required intensive care or died. On the other hand, the long-term fallout of coronavirus may be worse for women than for men due to social and psychosocial reasons. Regardless of sex- or gender-biased data obtained from WHO and those gathered from sometimes controversial scientific journals, some central points should be considered. Firstly, SARS-CoV-2 has a strong interaction with the human ACE2 receptor, which plays an essential role in cell entry together with transmembrane serine protease 2 (TMPRSS2); it is interesting to note that the ACE2 gene lays on the X-chromosome, thus allowing females to be potentially heterozygous and differently assorted compared to men who are definitely hemizygous. Secondly, the higher ACE2 expression rate in females, though controversial, might ascribe them the worst prognosis, in contrast with worldwide epidemiological data. Finally, several genes involved in inflammation are located on the X-chromosome, which also contains high number of immune-related genes responsible for innate and adaptive immune responses to infection. Other genes, out from the RAS-pathway, might directly or indirectly impact on the ACE1/ACE2 balance by influencing its main actors (e.g., ABO locus, SRY, SOX3, ADAM17). Unexpectedly, the higher levels of ACE2 or ACE1/ACE2 rebalancing might improve the outcome of COVID-19 in both sexes by reducing inflammation, thrombosis, and death. Moreover, X-heterozygous females might also activate a mosaic advantage and show more pronounced sex-related differences resulting in a sex dimorphism, further favoring them in counteracting the progression of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Morphology, Surgery and Experimental Medicine and Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Barbara Bramanti
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Department of Biomedical & Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Luisa Serino
- Department of Medical Sciences and Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (G.Z.); (V.T.)
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (G.Z.); (V.T.)
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (G.Z.); (V.T.)
| |
Collapse
|
153
|
Brooks W. An Epigenetics-Based Hypothesis of Autoantigen Development in Systemic Lupus Erythematosus. EPIGENOMES 2020; 4:epigenomes4020006. [PMID: 34968240 PMCID: PMC8594704 DOI: 10.3390/epigenomes4020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
Currently, we have a limited understanding of mechanisms leading to systemic lupus erythematosus, but we know that genetics, environmental factors, and epigenetics contribute to the disease. One common aspect of the various environmental triggers is that they can cause cellular stress. When extraordinary stress occurs, such as viral activation, a cell's response can include increased nucleolar volume and activity to produce more machinery (e.g., ribosomes) to help the cell recover. However, nucleolar expansion can disrupt the epigenetic control in neighboring heterochromatin that comprises the nucleolar shell. This disruption can open underlying vulnerabilities that provoke an autoimmune reaction. Here, we review the "X chromosome-nucleolus nexus" hypothesis, which explains how nucleolar stress can disrupt epigenetically silenced chromatin, especially the neighboring inactive X chromosome (aka the nucleolar satellite). Chromatin disruption can lead to the expression of sequestered DNA, such as Alu elements and fully functional LINE-1 reverse transcriptase genes. In addition, Alu transcripts can disrupt the nucleolar structural integrity, leading to nucleolar disintegration. Such disintegration can leave nucleolar components and products in autoantigenic forms, such as abnormal conformations or incomplete macromolecular assemblies. Recent research on DNA sensing pathways can now be incorporated into the hypothesis to provide further details explaining how autoantibodies to endogenous nucleic acids arise.
Collapse
Affiliation(s)
- Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
154
|
Shang D, Wang L, Klionsky DJ, Cheng H, Zhou R. Sex differences in autophagy-mediated diseases: toward precision medicine. Autophagy 2020; 17:1065-1076. [PMID: 32264724 DOI: 10.1080/15548627.2020.1752511] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nearly all diseases in humans, to a certain extent, exhibit sex differences, including differences in the onset, progression, prevention, therapy, and prognosis of diseases. Accumulating evidence shows that macroautophagy/autophagy, as a mechanism for development, differentiation, survival, and homeostasis, is involved in numerous aspects of sex differences in diseases such as cancer, neurodegeneration, and cardiovascular diseases. Advances in our knowledge regarding sex differences in autophagy-mediated diseases have enabled an understanding of their roles in human diseases, although the underlying molecular mechanisms of sex differences in autophagy remain largely unexplored. In this review, we discuss current advances in our insight into the biology of sex differences in autophagy and disease, information that will facilitate precision medicine.Abbreviations: AD: Azheimer disease; AMBRA1: autophagy and beclin 1 regulator 1; APP: amyloid beta precursor protein; AR: androgen receptor; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP6AP2: ATPase H+ transporting accessory protein 2; BCL2L1: BCL2 like 1; BECN1: beclin 1; CTSD: cathepsin D; CYP19A1: cytochrome P450 family 19 subfamily A member 1; DSD: disorders of sex development; eALDI: enhancer alternate long-distance initiator; ESR1: estrogen receptor 1; ESR2: estrogen receptor 2; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GABARAP: GABA type A receptor-associated protein; GLA: galactosidase alpha; GTEx: genotype-tissue expression; HDAC6: histone deacetylase 6; I-R: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; m6A: N6-methyladenosine; MYBL2: MYB proto-oncogene like 2; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB9A, RAB9A: member RAS oncogene family; RAB9B, RAB9B: member RAS oncogene family; RAB40AL: RAB40A like; SF1: splicing factor 1; SOX9: SRY-box transcription factor 9; SRY: sex determining region Y; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; VDAC2: voltage dependent anion channel 2; WDR45: WD repeat domain 45; XPDS: X-linked parkinsonism and spasticity; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.
Collapse
Affiliation(s)
- Dangtong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Lingling Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
155
|
Tosi L, Mitchell F, Porter GF, Ruland L, Gropman A, Lasutschinkow PC, Tran SL, Rajah EN, Gillies AP, Hendrie P, Peret R, Sadeghin T, Samango-Sprouse CA. Musculoskeletal abnormalities in a large international cohort of boys with 49,XXXXY. Am J Med Genet A 2020; 185:3531-3540. [PMID: 32243688 DOI: 10.1002/ajmg.a.61578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 11/09/2022]
Abstract
49,XXXXY is the rarest X and Y chromosomal variation, with an incidence of 1 in 80,000-100,000 live male births and has been associated with numerous musculoskeletal abnormalities. Data was collected from an international cohort of boys with 49,XXXXY over 10 years. Children were evaluated by a multidisciplinary team consisting of a pediatric orthopedist, a neurogeneticist, a neurodevelopmentalist, and two physical therapists. Increased rates of torticollis (32.4%), hamstring tightness (42%), radioulnar synostosis (67.6%), pes planus (65.2%), and other foot abnormalities (86.9%) were observed. Several anomalies increased with age, specifically hamstring tightness, kyphosis, and scoliosis. The elucidation of the orthopedic profile of this population is necessary in order to provide healthcare providers with current medical information. This research further supports the necessity for the comprehensive multidisciplinary treatment of boys with 49,XXXXY.
Collapse
Affiliation(s)
- Laura Tosi
- Children's National Hospital, Washington, District of Columbia, USA.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | | | | | - Leigh Ruland
- The Focus Foundation, Davidsonville, Maryland, USA
| | - Andrea Gropman
- Children's National Hospital, Washington, District of Columbia, USA.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | | | | | - Elmer N Rajah
- Children's National Hospital, Washington, District of Columbia, USA
| | - Austin P Gillies
- Children's National Hospital, Washington, District of Columbia, USA
| | | | - Rick Peret
- The Focus Foundation, Davidsonville, Maryland, USA
| | | | - Carole A Samango-Sprouse
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,The Focus Foundation, Davidsonville, Maryland, USA.,Florida International University, Miami, Florida, USA
| |
Collapse
|
156
|
Zou X, Wang J, Qu H, Lv XH, Shu DM, Wang Y, Ji J, He YH, Luo CL, Liu DW. Comprehensive analysis of miRNAs, lncRNAs, and mRNAs reveals potential players of sexually dimorphic and left-right asymmetry in chicken gonad during gonadal differentiation. Poult Sci 2020; 99:2696-2707. [PMID: 32359607 PMCID: PMC7597365 DOI: 10.1016/j.psj.2019.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite thousands of sex-biased genes being found in chickens, the genetic control of sexually dimorphic and left-right asymmetry during gonadal differentiation is not yet completely understood. This study aimed to identify microRNAs (miRNAs), long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), and signaling pathways during gonadal differentiation in chick embryos (day 6/stage 29). The left and right gonads were collected for RNA sequencing. Sex-biased, side-biased miRNAs, lncRNAs, mRNAs, and shared differentially expressed miRNAs (DEmiRNA)–differentially expressed mRNAs (DEmRNA)–differentially expressed lncRNAs (DElncRNA) interaction networks were performed. A total of 8 DEmiRNAs, 183 DElncRNAs, and 123 DEmRNAs were identified for the sex-biased genes, and 7 DEmiRNAs, 189 DElncRNAs, and 183 DEmRNAs for the side-biased genes. The results of quantitative real-time PCR were generally consistent with the RNA-sequencing results. The study suggested that miRNAs and lncRNAs regulation were novel gene-specific dosage compensation mechanism and they could contribute to left-right asymmetry of chicken, but sex-biased and side-biased miRNAs, lncRNAs, and mRNAs were independent of each other. The competing endogenous RNA (ceRNA) networks showed that 17 target pairs including miR-7b (CYP19A1, FSHR, GREB1, STK31, CORIN, and TDRD9), miR-211 (FSHR, GREB1, STK31, CORIN, and TDRD9), miR-204 (FSHR, GREB1, CORIN, and TDRD9), and miR-302b-5p (CYP19A1 and TDRD9) may play crucial roles in ovarian development. These analyses provide new clues to uncover molecular mechanisms and signaling networks of ovarian development.
Collapse
Affiliation(s)
- X Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - J Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - H Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - X H Lv
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - D M Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - J Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y H He
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - C L Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - D W Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
157
|
Santos-Rebouças CB, Boy R, Vianna EQ, Gonçalves AP, Piergiorge RM, Abdala BB, Dos Santos JM, Calassara V, Machado FB, Medina-Acosta E, Pimentel MMG. Skewed X-Chromosome Inactivation and Compensatory Upregulation of Escape Genes Precludes Major Clinical Symptoms in a Female With a Large Xq Deletion. Front Genet 2020; 11:101. [PMID: 32194616 PMCID: PMC7064548 DOI: 10.3389/fgene.2020.00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
In mammalian females, X-chromosome inactivation (XCI) acts as a dosage compensation mechanism that equalizes X-linked genes expression between homo- and heterogametic sexes. However, approximately 12–23% of X-linked genes escape from XCI, being bi-allelic expressed. Herein, we report on genetic and functional data from an asymptomatic female of a Fragile X syndrome family, who harbors a large deletion on the X-chromosome. Array-CGH uncovered that the de novo, terminal, paternally originated 32 Mb deletion on Xq25-q28 spans 598 RefSeq genes, including escape and variable escape genes. Androgen receptor (AR) and retinitis pigmentosa 2 (RP2) methylation assays showed extreme skewed XCI ratios from both peripheral blood and buccal mucosa, silencing the abnormal X-chromosome. Surprisingly, transcriptome-wide analysis revealed that escape and variable escape genes spanning the deletion are mostly upregulated on the active X-chromosome, precluding major clinical/cognitive phenotypes in the female. Metaphase high count, hemizygosity concordance for microsatellite markers, and monoallelic expression of genes within the deletion suggest the absence of mosaicism in both blood and buccal mucosa. Taken together, our data suggest that an additional protective gene-by-gene mechanism occurs at the transcriptional level in the active X-chromosome to counterbalance detrimental phenotype effects of large Xq deletions.
Collapse
Affiliation(s)
- Cíntia B Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Boy
- Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelyn Q Vianna
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa P Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael M Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca B Abdala
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jussara M Dos Santos
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veluma Calassara
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe B Machado
- Department of Biological Sciences, Minas Gerais State University, Ubá, Brazil
| | - Enrique Medina-Acosta
- Laboratory of Biotechnology, State University of Northern Rio de Janeiro Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Márcia M G Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
158
|
Wilson J, Staley JM, Wyckoff GJ. Extinction of chromosomes due to specialization is a universal occurrence. Sci Rep 2020; 10:2170. [PMID: 32034231 PMCID: PMC7005762 DOI: 10.1038/s41598-020-58997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
The human X and Y chromosomes evolved from a pair of autosomes approximately 180 million years ago. Despite their shared evolutionary origin, extensive genetic decay has resulted in the human Y chromosome losing 97% of its ancestral genes while gene content and order remain highly conserved on the X chromosome. Five 'stratification' events, most likely inversions, reduced the Y chromosome's ability to recombine with the X chromosome across the majority of its length and subjected its genes to the erosive forces associated with reduced recombination. The remaining functional genes are ubiquitously expressed, functionally coherent, dosage-sensitive genes, or have evolved male-specific functionality. It is unknown, however, whether functional specialization is a degenerative phenomenon unique to sex chromosomes, or if it conveys a potential selective advantage aside from sexual antagonism. We examined the evolution of mammalian orthologs to determine if the selective forces that led to the degeneration of the Y chromosome are unique in the genome. The results of our study suggest these forces are not exclusive to the Y chromosome, and chromosomal degeneration may have occurred throughout our evolutionary history. The reduction of recombination could additionally result in rapid fixation through isolation of specialized functions resulting in a cost-benefit relationship during times of intense selective pressure.
Collapse
Affiliation(s)
- Jason Wilson
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.
| | - Joshua M Staley
- Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA
| | - Gerald J Wyckoff
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.,Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA.,University of Missouri-Kansas City School of Biological and Chemical Sciences, Department of Molecular Biology and Biochemistry, Kansas City, 64108, Missouri, USA
| |
Collapse
|
159
|
Ciaccio C, Redaelli S, Bentivegna A, Marelli S, Crosti F, Sala EM, Cavallari U. Unbalanced X;Autosome Translocations May Lead to Mild Phenotypes and Are Associated with Autoimmune Diseases. Cytogenet Genome Res 2020; 160:80-84. [PMID: 32018271 DOI: 10.1159/000506097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 11/19/2022] Open
Abstract
Unbalanced X;autosome translocations are a rare occurrence with a wide variability in clinical presentation in which the X chromosome unbalance is usually mitigated by a favorable X inactivation pattern. In most cases, this compensation mechanism is incomplete, and the patients show a syndromic clinical presentation. We report the case of a family with 4 women, of 3 different generations, carrying an unbalanced X;7 translocation with a derivative X;7 chromosome and showing a skewed X inactivation pattern with a preferential activation of the normal X. None of the carriers show intellectual disability, and all of them have a very mild clinical presentation mainly characterized by gynecological/hormonal issues and autoimmune disorders. We underline the necessity of family testing for a correct genetic consultation, especially in the field of prenatal diagnosis. We indeed discuss the fact that X;autosome translocations may lead to self-immunization, as skewed X chromosome inactivation has already been proved to be related to autoimmune disorders.
Collapse
|
160
|
Hvitfeldt E, Xia C, Siegmund KD, Shibata D, Marjoram P. Epigenetic Conservation Is a Beacon of Function: An Analysis Using Methcon5 Software for Studying Gene Methylation. JCO Clin Cancer Inform 2020; 4:100-107. [PMID: 32078366 PMCID: PMC7049248 DOI: 10.1200/cci.19.00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Different epigenetic configurations allow one genome to develop into multiple cell types. Although the rules governing what epigenetic features confer gene expression are increasingly being understood, much remains uncertain. Here, we used a novel software package, Methcon5, to explore whether the principle of biologic conservation can be used to identify expressed genes. The hypothesis is that epigenetic configurations of important expressed genes will be conserved within a tissue. MATERIALS AND METHODS We compared the DNA methylation of approximately 850,000 CpG sites between multiple clonal crypts or glands of human colon, small intestine, and endometrium. We performed this analysis using the new software package, Methcon5, which enables detection of regions of high (or low) conservation. RESULTS We showed that DNA methylation is preferentially conserved at gene-associated CpG sites, particularly in gene promoters (eg, near the transcription start site) or the first exon. Furthermore, higher conservation correlated well with gene expression levels and performed better than promoter DNA methylation levels. Most conserved genes are in canonical housekeeping pathways. CONCLUSION This study introduces the new software package, Methcon5. In this example application, we showed that epigenetic conservation provides an alternative method for identifying functional genomic regions in human tissues.
Collapse
Affiliation(s)
- Emil Hvitfeldt
- Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Chao Xia
- Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kimberly D. Siegmund
- Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Paul Marjoram
- Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
161
|
Afzal S, Ramzan K, Ullah S, Wakil SM, Jamal A, Basit S, Waqar AB. A novel nonsense mutation in the STS gene in a Pakistani family with X-linked recessive ichthyosis: including a very rare case of two homozygous female patients. BMC MEDICAL GENETICS 2020; 21:20. [PMID: 32005174 PMCID: PMC6995215 DOI: 10.1186/s12881-020-0964-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/24/2020] [Indexed: 01/29/2023]
Abstract
Background X-linked ichthyosis (XLI; OMIM# 308100) is a recessive keratinization disorder characterized by the presence of dark brown, polygonal, adherent scales on different parts of the body surface. It almost exclusively affects males and the estimated prevalence ranges from 1:2000–6000 in males worldwide. Extracutaneous manifestations are frequent including corneal opacities, cryptorchidism, neuropsychiatric symptoms or others. Up to 90% of XLI cases are caused by recurrent hemizygous microdeletion encompassing entire STS gene on chromosome Xp22.3, while only a minority of patients shows partial deletions or loss of function point mutations in STS. Larger deletions also involving contiguous genes are identified in syndromic patients. Methods Here, we report clinical and genetic findings of a large Pakistani family having 16 affected individuals including 2 females with XLI. Molecular karyotyping and direct DNA sequencing of coding region of the STS gene was performed. Results The clinical manifestations in affected individuals involved generalized dryness and scaling of the skin with polygonal, dark scales of the skin on scalp, trunk, limbs, and neck while sparing face, palms and soles. There were no associated extra-cutaneous features such as short stature, cryptorchidism, photophobia, corneal opacities, male baldness, and behavioral, cognitive, or neurological phenotypes including intellectual disability, autism or attention deficit hyperactivity disorder. Molecular karyotyping was normal and no copy number variation was found. Sanger sequencing identified a novel hemizygous nonsense mutation (c.287G > A; p.W96*), in exon 4 of STS gene in all affected male individuals. In addition, two XLI affected females in the family were found to be homozygous for the identified variant. Conclusions This study is useful for understanding the genetic basis of XLI in the patients studied, for extending the known mutational spectrum of STS, diagnosis of female carriers and for further application of mutation screening in the genetic counseling of this family.
Collapse
Affiliation(s)
- Sibtain Afzal
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Sajjad Ullah
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Arshad Jamal
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah Al-Munawarah, Medina, Saudi Arabia
| | - Ahmed Bilal Waqar
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.
| |
Collapse
|
162
|
Webster TH, Couse M, Grande BM, Karlins E, Phung TN, Richmond PA, Whitford W, Wilson MA. Identifying, understanding, and correcting technical artifacts on the sex chromosomes in next-generation sequencing data. Gigascience 2020; 8:5530326. [PMID: 31289836 PMCID: PMC6615978 DOI: 10.1093/gigascience/giz074] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/04/2018] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
Background Mammalian X and Y chromosomes share a common evolutionary origin and retain regions of high sequence similarity. Similar sequence content can confound the mapping of short next-generation sequencing reads to a reference genome. It is therefore possible that the presence of both sex chromosomes in a reference genome can cause technical artifacts in genomic data and affect downstream analyses and applications. Understanding this problem is critical for medical genomics and population genomic inference. Results Here, we characterize how sequence homology can affect analyses on the sex chromosomes and present XYalign, a new tool that (1) facilitates the inference of sex chromosome complement from next-generation sequencing data; (2) corrects erroneous read mapping on the sex chromosomes; and (3) tabulates and visualizes important metrics for quality control such as mapping quality, sequencing depth, and allele balance. We find that sequence homology affects read mapping on the sex chromosomes and this has downstream effects on variant calling. However, we show that XYalign can correct mismapping, resulting in more accurate variant calling. We also show how metrics output by XYalign can be used to identify XX and XY individuals across diverse sequencing experiments, including low- and high-coverage whole-genome sequencing, and exome sequencing. Finally, we discuss how the flexibility of the XYalign framework can be leveraged for other uses including the identification of aneuploidy on the autosomes. XYalign is available open source under the GNU General Public License (version 3). Conclusions Sex chromsome sequence homology causes the mismapping of short reads, which in turn affects downstream analyses. XYalign provides a reproducible framework to correct mismapping and improve variant calling on the sex chromsomes.
Collapse
Affiliation(s)
- Timothy H Webster
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.,Department of Anthropology, University of Utah, 260 S Central Drive, Carolyn and Kem Gardner Commons, Suite 4625, Salt Lake City, UT 84112, USA
| | - Madeline Couse
- University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.,BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9776, Bethesda, MD 20892, USA
| | - Tanya N Phung
- Interdepartmental Program in Bioinformatics, UCLA, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Phillip A Richmond
- BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V52 4H4, Canada
| | - Whitney Whitford
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.,Center for Evolution and Medicine, Arizona State University, 401 E. Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
163
|
Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, Chen J. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci 2020; 6:e251. [PMID: 33816903 PMCID: PMC7924719 DOI: 10.7717/peerj-cs.251] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/19/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Owing to the rapid advances in DNA sequencing technologies, whole genome from more and more species are becoming available at increasing pace. For whole-genome analysis, idiograms provide a very popular, intuitive and effective way to map and visualize the genome-wide information, such as GC content, gene and repeat density, DNA methylation distribution, genomic synteny, etc. However, most available software programs and web servers are available only for a few model species, such as human, mouse and fly, or have limited application scenarios. As more and more non-model species are sequenced with chromosome-level assembly being available, tools that can generate idiograms for a broad range of species and be capable of visualizing more data types are needed to help better understanding fundamental genome characteristics. RESULTS The R package RIdeogram allows users to build high-quality idiograms of any species of interest. It can map continuous and discrete genome-wide data on the idiograms and visualize them in a heat map and track labels, respectively. CONCLUSION The visualization of genome-wide data mapping and comparison allow users to quickly establish a clear impression of the chromosomal distribution pattern, thus making RIdeogram a useful tool for any researchers working with omics.
Collapse
Affiliation(s)
- Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
- Laboratory of Biochemistry, Wageningen University, Wageningen, Haarlem, Netherlands
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Ge
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Haarlem, Netherlands
| | - Guangchuang Yu
- Institute of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
164
|
The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes (Basel) 2019; 11:genes11010040. [PMID: 31905733 PMCID: PMC7016774 DOI: 10.3390/genes11010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization (WHO) defines infertility as the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy within one year. Statistics show that the two sexes are equally at risk. Several causes may be responsible for male infertility; however, in 30–40% of cases a diagnosis of idiopathic male infertility is made in men with normal urogenital anatomy, no history of familial fertility-related diseases and a normal panel of values as for endocrine, genetic and biochemical markers. Idiopathic male infertility may be the result of gene/environment interactions, genetic and epigenetic abnormalities. Numerical and structural anomalies of the Y chromosome represent a minor yet significant proportion and are the topic discussed in this review. We searched the PubMed database and major search engines for reports about Y-linked male infertility. We present cases of Y-linked male infertility in terms of (i) anomalies of the Y chromosome structure/number; (ii) Y chromosome misbehavior in a normal genetic background; (iii) Y chromosome copy number variations (CNVs). We discuss possible explanations of male infertility caused by mutations, lower or higher number of copies of otherwise wild type, Y-linked sequences. Despite Y chromosome structural anomalies are not a major cause of male infertility, in case of negative results and of normal DNA sequencing of the ascertained genes causing infertility and mapping on this chromosome, we recommend an analysis of the karyotype integrity in all cases of idiopathic fertility impairment, with an emphasis on the structure and number of this chromosome.
Collapse
|
165
|
Vockel M, Riera-Escamilla A, Tüttelmann F, Krausz C. The X chromosome and male infertility. Hum Genet 2019; 140:203-215. [PMID: 31875237 PMCID: PMC7864851 DOI: 10.1007/s00439-019-02101-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
The X chromosome is a key player in germ cell development, as has been highlighted for males in previous studies revealing that the mammalian X chromosome is enriched in genes expressed in early spermatogenesis. In this review, we focus on the X chromosome’s unique biology as associated with human male infertility. Male infertility is most commonly caused by spermatogenic defects to which X chromosome dosage is closely linked; for example, any supernumerary X chromosome as in Klinefelter syndrome will lead to male infertility. Furthermore, because males normally only have a single X chromosome and because X-linked genetic anomalies are generally only present in a single copy in males, any loss-of-function mutations in single-copy X-chromosomal genes cannot be compensated by a normal allele. These features make X-linked genes particularly attractive for studying male spermatogenic failure. However, to date, only very few genetic causes have been identified as being definitively responsible for male infertility in humans. Although genetic studies of germ cell-enriched X-chromosomal genes in mice suggest a role of certain human orthologs in infertile men, these genes in mice and humans have striking evolutionary differences. Furthermore, the complexity and highly repetitive structure of the X chromosome hinder the mutational analysis of X-linked genes in humans. Therefore, we conclude that additional methodological approaches are urgently warranted to advance our understanding of the genetics of X-linked male infertility.
Collapse
Affiliation(s)
- Matthias Vockel
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, 48149, Münster, Germany
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB- Sant Pau), Barcelona, Catalonia, Spain
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, 48149, Münster, Germany.
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB- Sant Pau), Barcelona, Catalonia, Spain. .,Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Centre of Excellence DeNothe, University of Florence, Viale PIeraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
166
|
Jons WA, Colby CL, McElroy SL, Frye MA, Biernacka JM, Winham SJ. Statistical methods for testing X chromosome variant associations: application to sex-specific characteristics of bipolar disorder. Biol Sex Differ 2019; 10:57. [PMID: 31818333 PMCID: PMC6902568 DOI: 10.1186/s13293-019-0272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) affects both sexes, but important sex differences exist with respect to its symptoms and comorbidities. For example, rapid cycling (RC) is more prevalent in females, and alcohol use disorder (AUD) is more prevalent in males. We hypothesize that X chromosome variants may be associated with sex-specific characteristics of BD. Few studies have explored the role of the X chromosome in BD, which is complicated by X chromosome inactivation (XCI). This process achieves "dosage compensation" for many X chromosome genes by silencing one of the two copies in females, and most statistical methods either ignore that XCI occurs or falsely assume that one copy is inactivated at all loci. We introduce new statistical methods that do not make these assumptions. METHODS We investigated this hypothesis in 1001 BD patients from the Genetic Association Information Network (GAIN) and 957 BD patients from the Mayo Clinic Bipolar Disorder Biobank. We examined the association of over 14,000 X chromosome single nucleotide polymorphisms (SNPs) with sex-associated BD traits using two statistical approaches that account for whether a SNP may be undergoing or escaping XCI. In the "XCI-informed approach," we fit a sex-adjusted logistic regression model assuming additive genetic effects where we coded the SNP either assuming one copy is expressed or two copies are expressed based on prior knowledge about which regions are inactivated. In the "XCI-robust approach," we fit a logistic regression model with sex, SNP, and SNP-sex interaction effects that is flexible to whether the region is inactivated or escaping XCI. RESULTS Using the "XCI-informed approach," which considers only the main effect of SNP and does not allow the SNP effect to differ by sex, no significant associations were identified for any of the phenotypes. Using the "XCI-robust approach," intergenic SNP rs5932307 was associated with BD (P = 8.3 × 10-8), with a stronger effect in females (odds ratio in males (ORM) = 1.13, odds ratio in females for a change of two allele copies (ORW2) = 3.86). CONCLUSION X chromosome association studies should employ methods which account for its unique biology. Future work is needed to validate the identified associations with BD, to formally assess the performance of both approaches under different true genetic architectures, and to apply these approaches to study sex differences in other conditions.
Collapse
Affiliation(s)
- William A. Jons
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Colin L. Colby
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Susan L. McElroy
- Lindner Center of HOPE, University of Cincinnati College of Medicine, Mason, OH 45040 USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Joanna M. Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Stacey J. Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
167
|
Sigeman H, Ponnikas S, Chauhan P, Dierickx E, Brooke MDL, Hansson B. Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proc Biol Sci 2019; 286:20192051. [PMID: 31771477 PMCID: PMC6939255 DOI: 10.1098/rspb.2019.2051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
Sex chromosomes have evolved from the same autosomes multiple times across vertebrates, suggesting that selection for recombination suppression has acted repeatedly and independently on certain genetic backgrounds. Here, we perform comparative genomics of a bird clade (larks and their sister lineage; Alaudidae and Panuridae) where multiple autosome-sex chromosome fusions appear to have formed expanded sex chromosomes. We detected the largest known avian sex chromosome (195.3 Mbp) and show that it originates from fusions between parts of four avian chromosomes: Z, 3, 4A and 5. Within these four chromosomes, we found evidence of five evolutionary strata where recombination had been suppressed at different time points, and show that stratum age explained the divergence rate of Z-W gametologs. Next, we analysed chromosome content and found that chromosome 3 was significantly enriched for genes with predicted sex-related functions. Finally, we demonstrate extensive homology to sex chromosomes in other vertebrate lineages: chromosomes Z, 3, 4A and 5 have independently evolved into sex chromosomes in fish (Z), turtles (Z, 5), lizards (Z, 4A), mammals (Z, 4A) and frogs (Z, 3, 4A, 5). Our results provide insights into and support for repeated evolution of sex chromosomes in vertebrates.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Suvi Ponnikas
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Pallavi Chauhan
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Elisa Dierickx
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | - M. de L. Brooke
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
168
|
Haupt S, Caramia F, Herschtal A, Soussi T, Lozano G, Chen H, Liang H, Speed TP, Haupt Y. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun 2019; 10:5385. [PMID: 31772231 PMCID: PMC6879765 DOI: 10.1038/s41467-019-13266-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
The disproportionately high prevalence of male cancer is poorly understood. We tested for sex-disparity in the functional integrity of the major tumor suppressor p53 in sporadic cancers. Our bioinformatics analyses expose three novel levels of p53 impact on sex-disparity in 12 non-reproductive cancer types. First, TP53 mutation is more frequent in these cancers among US males than females, with poorest survival correlating with its mutation. Second, numerous X-linked genes are associated with p53, including vital genomic regulators. Males are at unique risk from alterations of their single copies of these genes. High expression of X-linked negative regulators of p53 in wild-type TP53 cancers corresponds with reduced survival. Third, females exhibit an exceptional incidence of non-expressed mutations among p53-associated X-linked genes. Our data indicate that poor survival in males is contributed by high frequencies of TP53 mutations and an inability to shield against deregulated X-linked genes that engage in p53 networks.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alan Herschtal
- Department of Biometrics Novotech, Carlton, Victoria, 3053, Australia
| | - Thierry Soussi
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, Solna, Sweden.,INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Guillermina Lozano
- The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hu Chen
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Terence P Speed
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
169
|
The Evolution of Unusually Small Amelogenin Genes in Cetaceans; Pseudogenization, X-Y Gene Conversion, and Feeding Strategy. J Mol Evol 2019; 88:122-135. [PMID: 31754761 DOI: 10.1007/s00239-019-09917-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Among extant cetaceans, mysticetes are filter feeders that do not possess teeth and use their baleen for feeding, while most odontocetes are considered suction feeders, which capture prey by suction without biting or chewing with teeth. In the present study, we address the functionality of amelogenin (AMEL) genes in cetaceans. AMEL encodes a protein that is specifically involved in dental enamel formation and is located on the sex chromosomes in eutherians. The X-copy AMELX is functional in enamel-bearing eutherians, whereas the Y-copy AMELY appears to have undergone decay and was completely lost in some species. Consistent with these premises, we detected various deleterious mutations and/or non-canonical splice junctions in AMELX of mysticetes and four suction feeding odontocetes, Delphinapterus leucas, Monodon monoceros, Kogia breviceps, and Physeter macrocephalus, and in AMELY of mysticetes and odontocetes. Regardless of the functionality, both AMELX and AMELY are equally and unusually small in cetaceans, and even their functional AMELX genes presumably encode a degenerate core region, which is thought to be essential for enamel matrix assembly and enamel crystal growth. Furthermore, our results suggest that the most recent common ancestors of extant cetaceans had functional AMELX and AMELY, both of which are similar to AMELX of Platanista minor. Similar small AMELX and AMELY in archaic cetaceans can be explained by gene conversion between AMELX and AMELY. We speculate that common ancestors of modern cetaceans employed a degenerate AMELX, transferred from a decaying AMELY by gene conversion, at an early stage of their transition to suction feeders.
Collapse
|
170
|
Ghafouri-Kesbi F, Abbasi MA. Autosomal and X-linked additive genetic effects on body weight, body measurements and efficiency-related traits in sheep. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
171
|
Li X, Veltsos P, Cossard GG, Gerchen J, Pannell JR. YY males of the dioecious plant Mercurialis annua are fully viable but produce largely infertile pollen. THE NEW PHYTOLOGIST 2019; 224:1394-1404. [PMID: 31230365 PMCID: PMC6852596 DOI: 10.1111/nph.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 05/07/2023]
Abstract
The suppression of recombination during sex-chromosome evolution is thought to be favoured by linkage between the sex-determining locus and sexually antagonistic loci, and leads to the degeneration of the chromosome restricted to the heterogametic sex. Despite substantial evidence for genetic degeneration at the sequence level, the phenotypic effects of the earliest stages of sex-chromosome evolution are poorly known. Here, we compare the morphology, viability and fertility between XY and YY individuals produced by crossing seed-producing males in the dioecious plant Mercurialis annua, which has young sex chromosomes with limited X-Y sequence divergence. We found no significant difference in viability or vegetative morphology between XY and YY males. However, electron microscopy revealed clear differences in pollen anatomy, and YY males were significantly poorer sires in competition with their XY counterparts. Our study suggests either that the X chromosome is required for full male fertility in M. annua, or that male fertility is sensitive to the dosage of relevant Y-linked genes. We discuss the possibility that the maintenance of male-fertility genes on the X chromosome might have been favoured in recent population expansions that selected for the ability of females to produce pollen in the absence of males.
Collapse
Affiliation(s)
- Xinji Li
- Department of Ecology and EvolutionUniversity of Lausanne1015LausanneSwitzerland
| | - Paris Veltsos
- Department of BiologyIndiana University1001 East Third StreetBloomingtonIN47405USA
| | - Guillaume G. Cossard
- Integrative Biology of Marine Organisms DepartmentStation Biologique CNRSPlace Georges TeissierRoscoff29688France
| | - Jörn Gerchen
- Department of Ecology and EvolutionUniversity of Lausanne1015LausanneSwitzerland
| | - John R. Pannell
- Department of Ecology and EvolutionUniversity of Lausanne1015LausanneSwitzerland
| |
Collapse
|
172
|
Yuen GJ. Autoimmunity in women: an eX amination of eX isting models. Clin Immunol 2019; 210:108270. [PMID: 31669190 DOI: 10.1016/j.clim.2019.108270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023]
Abstract
Women comprise over 80% of the affected individuals for many autoimmune conditions. Although sex-specific differences in sex hormones are thought to contribute to the female predisposition to autoimmunity, emerging evidence also suggests an intriguing role of both physiological and dysregulated X-chromosome inactivation. Furthermore, recent studies have demonstrated that many immune genes encoded on the X chromosome are expressed biallelically, and the contribution of these sex-specific differences in immune gene dosage to autoimmunity remains to be fully explored. This review highlights recent developments in this field and discusses questions that remain unanswered.
Collapse
Affiliation(s)
- Grace J Yuen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
173
|
Posynick BJ, Brown CJ. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:241. [PMID: 31696116 PMCID: PMC6817483 DOI: 10.3389/fcell.2019.00241] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes originate as a pair of homologus autosomes that then follow a general pattern of divergence. This is evident in mammalian sex chromosomes, which have undergone stepwise recombination suppression events that left footprints of evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which is achieved through X-chromosome inactivation (XCI). This process transcriptionally silences all but one X chromosome in each female cell, although 15–30% of human X-linked genes still escape inactivation. There are multiple evolutionary pathways that may lead to a gene escaping XCI, including remaining Y chromosome homology, or female advantage to escape. The conservation of some escape genes across multiple species and the ability of the mouse inactive X to recapitulate human escape status both suggest that escape from XCI is controlled by conserved processes. Evolutionary pressures to minimize dosage imbalances have led to the accumulation of genetic elements that favor either silencing or escape; lack of dosage sensitivity might also allow for the escape of flanking genes near another escapee, if a boundary element is not present between them. Delineation of the elements involved in escape is progressing, but mechanistic understanding of how they interact to allow escape from XCI is still lacking. Although increasingly well-studied in humans and mice, non-trivial challenges to studying escape have impeded progress in other species. Mouse models that can dissect the role of the sex chromosomes distinct from sex of the organism reveal an important contribution for escape genes to multiple diseases. In humans, with their elevated number of escape genes, the phenotypic consequences of sex chromosome aneuplodies and sexual dimorphism in disease both highlight the importance of escape genes.
Collapse
Affiliation(s)
- Bronwyn J Posynick
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
174
|
Shi W, Massaia A, Louzada S, Handsaker J, Chow W, McCarthy S, Collins J, Hallast P, Howe K, Church DM, Yang F, Xue Y, Tyler-Smith C. Birth, expansion, and death of VCY-containing palindromes on the human Y chromosome. Genome Biol 2019; 20:207. [PMID: 31610793 PMCID: PMC6790999 DOI: 10.1186/s13059-019-1816-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Large palindromes (inverted repeats) make up substantial proportions of mammalian sex chromosomes, often contain genes, and have high rates of structural variation arising via ectopic recombination. As a result, they underlie many genomic disorders. Maintenance of the palindromic structure by gene conversion between the arms has been documented, but over longer time periods, palindromes are remarkably labile. Mechanisms of origin and loss of palindromes have, however, received little attention. RESULTS Here, we use fiber-FISH, 10x Genomics Linked-Read sequencing, and breakpoint PCR sequencing to characterize the structural variation of the P8 palindrome on the human Y chromosome, which contains two copies of the VCY (Variable Charge Y) gene. We find a deletion of almost an entire arm of the palindrome, leading to death of the palindrome, a size increase by recruitment of adjacent sequence, and other complex changes including the formation of an entire new palindrome nearby. Together, these changes are found in ~ 1% of men, and we can assign likely molecular mechanisms to these mutational events. As a result, healthy men can have 1-4 copies of VCY. CONCLUSIONS Gross changes, especially duplications, in palindrome structure can be relatively frequent and facilitate the evolution of sex chromosomes in humans, and potentially also in other mammalian species.
Collapse
Affiliation(s)
- Wentao Shi
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Andrea Massaia
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Present address: National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Sandra Louzada
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Juliet Handsaker
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - William Chow
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Shane McCarthy
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Present address: Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Joanna Collins
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Pille Hallast
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Institute of Biomedicine and Translational Medicine, University of Tartu, 51011, Tartu, Estonia
| | - Kerstin Howe
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Deanna M Church
- 10x Genomics, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA, 94566, USA
- Present address: Inscripta Inc., 5500 Central Avenue #220, Boulder, CO, 80301, USA
| | - Fengtang Yang
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
175
|
Lambert NC. Nonendocrine mechanisms of sex bias in rheumatic diseases. Nat Rev Rheumatol 2019; 15:673-686. [PMID: 31597952 DOI: 10.1038/s41584-019-0307-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
Rheumatic diseases affect a wide range of individuals of all ages, but the most common diseases occur more frequently in women than in men, at ratios of up to ten women to one man. Despite a growing number of studies on sex bias in rheumatic diseases, sex-specific health care is limited and sex specificity is not systematically integrated into treatment regimens. Women and men differ in three major biological points: the number of X chromosomes per cell, the type and quantities of sex hormones present and the ability to be pregnant, all of which have immunological consequences. Could a greater understanding of these differences lead to a new era of personalized sex-specific medicine? This Review focuses on the main genetic and epigenetic mechanisms that have been put forward to explain sex bias in rheumatic diseases, including X chromosome inactivation, sex chromosome aneuploidy and microchimerism. The influence of sex hormones is not discussed in detail in this Review, as it has been well described elsewhere. Understanding the sex-specific factors that contribute to the initiation and progression of rheumatic diseases will enable progress to be made in the diagnosis, treatment and management of all patients with these conditions.
Collapse
Affiliation(s)
- Nathalie C Lambert
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France.
| |
Collapse
|
176
|
Yarahmadi E, Borjian Boroujeni P, Totonchi M, Gourabi H. Genotyping of the EIF1AY Gene in Iranian Patients with Non-Obstructive Azoospermia. Curr Urol 2019; 13:46-50. [PMID: 31579209 DOI: 10.1159/000499295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022] Open
Abstract
Background EIF1AY is one of the genes essential for normal spermatogenesis and is located in azoospermic factors region. Objective The present study was designed to investigate the EIF1AY gene nucleotide variations, and correlate it with spermatogenic maturation arrest and azoospermia in Iranian population. Methods A total number of 30 Iranian idiopathic non-obstructive azoospermic patients were selected as case group and 30 fertile men served as a control group who had at least 1 child. Nucleotide variation was analyzed in exon 3 and exon 5 in EIF1AY gene of both groups. DNA extraction from peripheral blood samples of selected individuals was done followed by amplification by PCR and sequencing with Sangar method. Results Totally 3 single nucleotide variations were identified: one in the intronic region of exon 3, next one in non-coding transcript exon variant (rs13447352) and the third one in the exonic region of exon 5, all were registered in NCBI-Gene database. Conclusion There was no statistically significant difference in the incidence of nucleotide variation between 2 study populations (p > 0.05). Further studies are required to specify the effects of Y: T20588295G variation on modification of protein structure, as well as the expression pattern of the gene and its association with azoospermia.
Collapse
Affiliation(s)
- Elham Yarahmadi
- Jawaharlal Nehru Technological University, IST, Hyderabad, India.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine
| |
Collapse
|
177
|
Syrett CM, Anguera MC. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J Leukoc Biol 2019; 106:919-932. [PMID: 31125996 PMCID: PMC7206452 DOI: 10.1002/jlb.6ri0319-094r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022] Open
Abstract
Women and men exhibit differences in innate and adaptive immunity, and women are more susceptible to numerous autoimmune disorders. Two or more X chromosomes increases the risk for some autoimmune diseases, and increased expression of some X-linked immune genes is frequently observed in female lymphocytes from autoimmune patients. Evidence from mouse models of autoimmunity also supports the idea that increased expression of X-linked genes is a feature of female-biased autoimmunity. Recent studies have begun to elucidate the correlation between abnormal X-chromosome inactivation (XCI), an essential mechanism female somatic cells use to equalize X-linked gene dosage between the sexes, and autoimmunity in lymphocytes. In this review, we highlight research describing overexpression of X-linked immunity-related genes and female-biased autoimmunity in both humans and mouse models, and make connections with our recent work elucidating lymphocyte-specific mechanisms of XCI maintenance that become altered in lupus patients.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
178
|
Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biol 2019; 17:e3000398. [PMID: 31408454 PMCID: PMC6691984 DOI: 10.1371/journal.pbio.3000398] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
In most mammals, the male to female sex ratio of offspring is about 50% because half of the sperm contain either the Y chromosome or X chromosome. In mice, the Y chromosome encodes fewer than 700 genes, whereas the X chromosome encodes over 3,000 genes. Although overall gene expression is lower in sperm than in somatic cells, transcription is activated selectively in round spermatids. By regulating the expression of specific genes, we hypothesized that the X chromosome might exert functional differences in sperm that are usually masked during fertilization. In this study, we found that Toll-like receptors 7/8 (TLR7/8) coding the X chromosome were expressed by approximately 50% of the round spermatids in testis and in approximately 50% of the epididymal sperm. Especially, TLR7 was localized to the tail, and TLR8 was localized to the midpiece. Ligand activation of TLR7/8 selectively suppressed the mobility of the X chromosome–bearing sperm (X-sperm) but not the Y-sperm without altering sperm viability or acrosome formation. The difference in sperm motility allowed for the separation of Y-sperm from X-sperm. Following in vitro fertilization using the ligand-selected high-mobility sperm, 90% of the embryos were XY male. Likewise, 83% of the pups obtained following embryo transfer were XY males. Conversely, the TLR7/8-activated, slow mobility sperm produced embryos and pups that were 81% XX females. Therefore, the functional differences between Y-sperm and X-sperm motility were revealed and related to different gene expression patterns, specifically TLR7/8 on X-sperm. The Toll-like receptors TLR7 and TLR8 are encoded by the X chromosome and expressed in X-containing sperm but not Y-containing sperm. TLR7/8 ligands suppress the motility of X-containing sperm, indicating that this receptor can differentially affect sperm function on the basis of the sex chromosome they bear.
Collapse
|
179
|
Bi H, Liu Y, Pu R, Xia T, Sun H, Huang H, Zhang L, Zhang Y, Liu Y, Xu J, Rong J, Zhao Y. CHST7 Gene Methylation and Sex-Specific Effects on Colorectal Cancer Risk. Dig Dis Sci 2019; 64:2158-2166. [PMID: 30815821 DOI: 10.1007/s10620-019-05530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND X chromosome aberrations are involved in carcinogenesis and are associated with gender differences in cancer development. Abnormal DNA methylation also contributes to cancer. Carbohydrate Sulfotransferase 7 (CHST7), encoded by the X chromosome, is abnormally expressed during tumor development. However, its impact on colorectal cancer (CRC) and the effect of CHST7 methylation on sex-specific CRC risk remain unclear. AIMS To investigate the effect of CHST7 methylation in white blood cells on CRC risk and to evaluate its impact on gender-specific differences. METHODS CHST7 methylation in white blood cells was determined using methylation-sensitive high-resolution melting. A propensity score analysis was performed to control potential confounders. Furthermore, extensive sensitivity analyses were applied to assess the robustness of our findings. In addition, we validated the initial findings with a GEO dataset (GSE51032). RESULTS CHST7 hypermethylation in white blood cells was associated with an increased CRC risk [odds ratio (OR)adj = 4.447, 95% confidence interval (CI) 2.662-7.430; p < 0.001]. The association was validated with the GEO dataset (ORadj = 2.802, 95% CI 1.235-6.360; p = 0.014). In particular, CHST7 hypermethylation significantly increased the CRC risk in females (ORadj = 7.704, 95% CI 4.222-14.058; p < 0.001) and younger patients (≤ 60 years) (ORadj = 5.755, 95% CI 2.540-13.038; p < 0.001). Subgroup analyses by tumor location and Duke's stage also observed these associations. CONCLUSION CHST7 methylation in white blood cells is positively associated with CRC risk, especially in females, and may potentially serve as a blood-based predictive biomarker for CRC risk.
Collapse
Affiliation(s)
- Haoran Bi
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rui Pu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Tingting Xia
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jiesheng Rong
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, 246, Xuefu Street, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
180
|
Deng WQ, Mao S, Kalnapenkis A, Esko T, Mägi R, Paré G, Sun L. Analytical strategies to include the X-chromosome in variance heterogeneity analyses: Evidence for trait-specific polygenic variance structure. Genet Epidemiol 2019; 43:815-830. [PMID: 31332826 DOI: 10.1002/gepi.22247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Genotype-stratified variance of a quantitative trait could differ in the presence of gene-gene or gene-environment interactions. Genetic markers associated with phenotypic variance are thus considered promising candidates for follow-up interaction or joint location-scale analyses. However, as in studies of main effects, the X-chromosome is routinely excluded from "whole-genome" scans due to analytical challenges. Specifically, as males carry only one copy of the X-chromosome, the inherent sex-genotype dependency could bias the trait-genotype association, through sexual dimorphism in quantitative traits with sex-specific means or variances. Here we investigate phenotypic variance heterogeneity associated with X-chromosome single nucleotide polymorphisms (SNPs) and propose valid and powerful strategies. Among those, a generalized Levene's test has adequate power and remains robust to sexual dimorphism. An alternative approach is a sex-stratified analysis but at the cost of slightly reduced power and modeling flexibility. We applied both methods to an Estonian study of gene expression quantitative trait loci (eQTL; n = 841), and two complex trait studies of height, hip, and waist circumferences, and body mass index from Multi-Ethnic Study of Atherosclerosis (MESA; n = 2,073) and UK Biobank (UKB; n = 327,393). Consistent with previous eQTL findings on mean, we found some but no conclusive evidence for cis regulators being enriched for variance association. SNP rs2681646 is associated with variance of waist circumference (p = 9.5E-07) at X-chromosome-wide significance in UKB, with a suggestive female-specific effect in MESA (p = 0.048). Collectively, an enrichment analysis using permutated UKB (p < 0.1) and MESA (p < 0.01) datasets, suggests a possible polygenic structure for the variance of human height.
Collapse
Affiliation(s)
- Wei Q Deng
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Shihong Mao
- Department of Pathology and Molecular Medicine, Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada
| | - Anette Kalnapenkis
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Lei Sun
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
181
|
Olivotto I, Favilli S. Rare X-linked storage heart diseases are tougher on men but not kind to women. Int J Cardiol 2019; 286:113-114. [DOI: 10.1016/j.ijcard.2019.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
182
|
Stolle E, Pracana R, Howard P, Paris CI, Brown SJ, Castillo-Carrillo C, Rossiter SJ, Wurm Y. Degenerative Expansion of a Young Supergene. Mol Biol Evol 2019; 36:553-561. [PMID: 30576522 PMCID: PMC6389315 DOI: 10.1093/molbev/msy236] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long-term suppression of recombination ultimately leads to gene loss, as demonstrated by the depauperate Y and W chromosomes of long-established pairs of XY and ZW chromosomes. The young social supergene of the Solenopsis invicta red fire ant provides a powerful system to examine the effects of suppressed recombination over a shorter timescale. The two variants of this supergene are carried by a pair of heteromorphic chromosomes, referred to as the social B and social b (SB and Sb) chromosomes. The Sb variant of this supergene changes colony social organization and has an inheritance pattern similar to a Y or W chromosome because it is unable to recombine. We used high-resolution optical mapping, k-mer distribution analysis, and quantification of repetitive elements on haploid ants carrying alternate variants of this young supergene region. We find that instead of shrinking, the Sb variant of the supergene has increased in length by more than 30%. Surprisingly, only a portion of this length increase is due to consistent increases in the frequency of particular classes of repetitive elements. Instead, haplotypes of this supergene variant differ dramatically in the amounts of other repetitive elements, indicating that the accumulation of repetitive elements is a heterogeneous and dynamic process. This is the first comprehensive demonstration of degenerative expansion in an animal and shows that it occurs through nonlinear processes during the early evolution of a region of suppressed recombination.
Collapse
Affiliation(s)
- Eckart Stolle
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, Halle, Germany
| | - Rodrigo Pracana
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Philip Howard
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Carolina I Paris
- Departamento Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| | | | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
183
|
Winham SJ, Larson NB, Armasu SM, Fogarty ZC, Larson MC, McCauley BM, Wang C, Lawrenson K, Gayther S, Cunningham JM, Fridley BL, Goode EL. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum Mol Genet 2019; 28:1331-1342. [PMID: 30576442 DOI: 10.1093/hmg/ddy444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
X chromosome inactivation (XCI) is a key epigenetic gene expression regulatory process, which may play a role in women's cancer. In particular tissues, some genes are known to escape XCI, yet patterns of XCI in ovarian cancer (OC) and their clinical associations are largely unknown. To examine XCI in OC, we integrated germline genotype with tumor copy number, gene expression and DNA methylation information from 99 OC patients. Approximately 10% of genes showed different XCI status (either escaping or being subject to XCI) compared with the studies of other tissues. Many of these genes are known oncogenes or tumor suppressors (e.g. DDX3X, TRAPPC2 and TCEANC). We also observed strong association between cis promoter DNA methylation and allele-specific expression imbalance (P = 2.0 × 10-10). Cluster analyses of the integrated data identified two molecular subgroups of OC patients representing those with regulated (N = 47) and dysregulated (N = 52) XCI. This XCI cluster membership was associated with expression of X inactive specific transcript (P = 0.002), a known driver of XCI, as well as age, grade, stage, tumor histology and extent of residual disease following surgical debulking. Patients with dysregulated XCI (N = 52) had shorter time to recurrence (HR = 2.34, P = 0.001) and overall survival time (HR = 1.87, P = 0.02) than those with regulated XCI, although results were attenuated after covariate adjustment. Similar findings were observed when restricted to high-grade serous tumors. We found evidence of a unique OC XCI profile, suggesting that XCI may play an important role in OC biology. Additional studies to examine somatic changes with paired tumor-normal tissue are needed.
Collapse
Affiliation(s)
- Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Brian M McCauley
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
184
|
Natri H, Garcia AR, Buetow KH, Trumble BC, Wilson MA. The Pregnancy Pickle: Evolved Immune Compensation Due to Pregnancy Underlies Sex Differences in Human Diseases. Trends Genet 2019; 35:478-488. [PMID: 31200807 PMCID: PMC6611699 DOI: 10.1016/j.tig.2019.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
We hypothesize that, ancestrally, sex-specific immune modulation evolved to facilitate survival of the pregnant person in the presence of an invasive placenta and an immunologically challenging pregnancy - an idea we term the 'pregnancy compensation hypothesis' (PCH). Further, we propose that sex differences in immune function are mediated, at least in part, by the evolution of gene content and dosage on the sex chromosomes, and are regulated by reproductive hormones. Finally, we propose that changes in reproductive ecology in industrialized environments exacerbate these evolved sex differences, resulting in the increasing risk of autoimmune disease observed in females, and a counteracting reduction in diseases such as cancer that can be combated by heightened immune surveillance. The PCH generates a series of expectations that can be tested empirically and that may help to identify the mechanisms underlying sex differences in modern human diseases.
Collapse
Affiliation(s)
- Heini Natri
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Angela R Garcia
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
185
|
Gokhman D, Kelman G, Amartely A, Gershon G, Tsur S, Carmel L. Gene ORGANizer: linking genes to the organs they affect. Nucleic Acids Res 2019; 45:W138-W145. [PMID: 28444223 PMCID: PMC5570240 DOI: 10.1093/nar/gkx302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022] Open
Abstract
One of the biggest challenges in studying how genes work is understanding their effect on the physiology and anatomy of the body. Existing tools try to address this using indirect features, such as expression levels and biochemical pathways. Here, we present Gene ORGANizer (geneorganizer.huji.ac.il), a phenotype-based tool that directly links human genes to the body parts they affect. It is built upon an exhaustive curated database that links >7000 genes to ∼150 anatomical parts using >150 000 gene-organ associations. The tool offers user-friendly platforms to analyze the anatomical effects of individual genes, and identify trends within groups of genes. We demonstrate how Gene ORGANizer can be used to make new discoveries, showing that chromosome X is enriched with genes affecting facial features, that positive selection targets genes with more constrained phenotypic effects, and more. We expect Gene ORGANizer to be useful in a variety of evolutionary, medical and molecular studies aimed at understanding the phenotypic effects of genes.
Collapse
Affiliation(s)
- David Gokhman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Kelman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Adir Amartely
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Gershon
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Shira Tsur
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.,Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
186
|
Laskowski AI, Neems DS, Laster K, Strojny-Okyere C, Rice EL, Konieczna IM, Voss JH, Mathew JM, Leventhal JR, Ramsey-Goldman R, Smith ED, Kosak ST. Varying levels of X chromosome coalescence in female somatic cells alters the balance of X-linked dosage compensation and is implicated in female-dominant systemic lupus erythematosus. Sci Rep 2019; 9:8011. [PMID: 31142749 PMCID: PMC6541617 DOI: 10.1038/s41598-019-44229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
The three-dimensional organization of the genome in mammalian interphase nuclei is intrinsically linked to the regulation of gene expression. Whole chromosome territories and their encoded gene loci occupy preferential positions within the nucleus that changes according to the expression profile of a given cell lineage or stage. To further illuminate the relationship between chromosome organization, epigenetic environment, and gene expression, here we examine the functional organization of chromosome X and corresponding X-linked genes in a variety of healthy human and disease state X diploid (XX) cells. We observe high frequencies of homologous chromosome X colocalization (or coalescence), typically associated with initiation of X-chromosome inactivation, occurring in XX cells outside of early embryogenesis. Moreover, during chromosome X coalescence significant changes in Xist, H3K27me3, and X-linked gene expression occur, suggesting the potential exchange of gene regulatory information between the active and inactive X chromosomes. We also observe significant differences in chromosome X coalescence in disease-implicated lymphocytes isolated from systemic lupus erythematosus (SLE) patients compared to healthy controls. These results demonstrate that X chromosomes can functionally interact outside of embryogenesis when X inactivation is initiated and suggest a potential gene regulatory mechanism aberration underlying the increased frequency of autoimmunity in XX individuals.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daniel S Neems
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle Laster
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chelsee Strojny-Okyere
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellen L Rice
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Iwona M Konieczna
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica H Voss
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - James M Mathew
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalind Ramsey-Goldman
- Deparment of Medicine, Rheumatology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Erica D Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
187
|
Li Z, Wen C, Li J, Meng H, Ji C, Han Z, An G, Yang L. Zkscan3 gene is a potential negative regulator of plasma cell differentiation. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219850008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously showed that the ZKSCAN3 gene codes for a zinc-finger transcription factor that regulates the expression of important genes and plays crucial roles in the development, metastasis, and pathogenesis of rectal cancer, prostate cancer, myeloma, and so on, and in the regulation of autophagy. However, its biological functions under normal physiological conditions remain unclear. In addition, our previous studies showed that the ZKSCAN3 gene may negatively regulate B cell functions. Therefore, we constructed a zkscan3-knockout mouse model and observed that knockout mice contained a greater number of plasma cells than wild-type mice. We also found that the number of plasma cells was significantly increased in either colorectal cancer xenografts or under lipopolysaccharide-induced conditions. RNA-seq and quantitative-polymerase chain reaction assay indicated that the X-inactive-specific transcript is upregulated in B cells of zkscan3-knockout mice, which may represent a potential mechanism how zkscan3 modulates plasma cell differentiation.
Collapse
Affiliation(s)
- Zixuan Li
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Chunmei Wen
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jialu Li
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Huimin Meng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Cheng Ji
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zhichao Han
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Gangli An
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Persongen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, China
| |
Collapse
|
188
|
Odhams CA, Roberts AL, Vester SK, Duarte CST, Beales CT, Clarke AJ, Lindinger S, Daffern SJ, Zito A, Chen L, Jones LL, Boteva L, Morris DL, Small KS, Fernando MMA, Cunninghame Graham DS, Vyse TJ. Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in Systemic Lupus Erythematosus. Nat Commun 2019; 10:2164. [PMID: 31092820 PMCID: PMC6520347 DOI: 10.1038/s41467-019-10106-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, characterised by increased expression of type I interferon (IFN)-regulated genes and a striking sex imbalance towards females. Through combined genetic, in silico, in vitro, and ex vivo approaches, we define CXorf21, a gene of hitherto unknown function, which escapes X-chromosome inactivation, as a candidate underlying the Xp21.2 SLE association. We demonstrate that CXorf21 is an IFN-response gene and that the sexual dimorphism in expression is magnified by immunological challenge. Fine-mapping reveals a single haplotype as a potential causal cis-eQTL for CXorf21. We propose that expression is amplified through modification of promoter and 3'-UTR chromatin interactions. Finally, we show that the CXORF21 protein colocalises with TLR7, a pathway implicated in SLE pathogenesis. Our study reveals modulation in gene expression affected by the combination of two hallmarks of SLE: CXorf21 expression increases in a both an IFN-inducible and sex-specific manner.
Collapse
Affiliation(s)
- Christopher A Odhams
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- Genomics England, Queen Mary University of London, Dawson Hall, London, EC1M 6BQ, UK
| | - Amy L Roberts
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Susan K Vester
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Carolina S T Duarte
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Charlie T Beales
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Alexander J Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Sonja Lindinger
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- University of Applied Sciences - FH Campus Wien, Favoritenstrasse 226, 1100, Wien, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Samuel J Daffern
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Antonino Zito
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Lingyan Chen
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- MRC/BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Leonardo L Jones
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Lora Boteva
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- MRC Human Genetics Unit MRC IGMM, University of Edinburgh Western General Hospital, Edinburgh, EH4 2XU, UK
| | - David L Morris
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Kerrin S Small
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Michelle M A Fernando
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
| | | | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
189
|
Laffont S, Guéry JC. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019; 142:35-64. [PMID: 31296302 DOI: 10.1016/bs.ai.2019.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Men and women differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections. Mechanisms responsible for this sexual dimorphism are still poorly documented and probably multifactorial. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in the enhanced susceptibility of women to develop immunological disorders, such as allergic asthma or systemic lupus erythematosus (SLE). We choose to more specifically discuss the impact of sex hormones on the development and function of immune cell populations directly involved in type-2 immunity, and the role of the X-linked Toll like receptor 7 (TLR7) in anti-viral immunity and in SLE. We will also elaborate on the recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in the immune cells of women, and how this may contribute to endow woman immune system with enhanced responsiveness to RNA-virus and susceptibility to SLE.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
190
|
Smeds L, Kojola I, Ellegren H. The evolutionary history of grey wolf Y chromosomes. Mol Ecol 2019; 28:2173-2191. [PMID: 30788868 PMCID: PMC6850511 DOI: 10.1111/mec.15054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male-specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y-linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ilpo Kojola
- Natural Resources Institute Finland (Luke), Rovaniemi, Finland
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
191
|
A high-resolution X chromosome copy-number variation map in fertile females and women with primary ovarian insufficiency. Genet Med 2019; 21:2275-2284. [PMID: 30948856 DOI: 10.1038/s41436-019-0505-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/20/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Sex-biased expression of genes on the X chromosome is accomplished by a complex mechanism of dosage regulation that leads to anatomical and physiological differences between males and females. Copy-number variations (CNVs) may impact the human genome by either affecting gene dosage or disturbing a chromosome structural and/or functional integrity. METHODS We performed a high-resolution CNV profiling to investigate the X chromosome integrity in cohorts of 269 fertile females and 111 women affected with primary ovarian insufficiency (POI) and assessed CNVs impact into functional and nonfunctional genomic elements. RESULTS In POI patients, we observed a 2.5-fold enrichment for rare CNVs comprising ovary-expressed genes, and genes implicated in autoimmune response and apoptotic signaling. Moreover, there was a higher prevalence of deletions encompassing genes that escape X inactivation, noncoding RNAs, and intergenic DNA sequences among POI females, highlighting structural differences between X chromosomes of fertile and POI females. Furthermore, we discovered a ~4% carrier incidence for X-linked disorders among fertile women. CONCLUSION We constructed a high-resolution map of female-specific CNVs that provides critical insights into the spectrum of human genetic variation, sex-specific disease risk factors, and reproductive potential. We discovered novel CNVs associated with ovarian dysfunction and support polygenic models for POI.
Collapse
|
192
|
Syrett CM, Paneru B, Sandoval-Heglund D, Wang J, Banerjee S, Sindhava V, Behrens EM, Atchison M, Anguera MC. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019; 4:126751. [PMID: 30944248 DOI: 10.1172/jci.insight.126751] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that predominantly affects women and is driven by autoreactive T cell-mediated inflammation. It is known that individuals with multiple X-chromosomes are at increased risk for developing SLE; however, the mechanisms underlying this genetic basis are unclear. Here, we use single cell imaging to determine the epigenetic features of the inactive X (Xi) in developing thymocytes, mature T cell subsets, and T cells from SLE patients and mice. We show that Xist RNA and heterochromatin modifications transiently reappear at the Xi and are missing in mature single positive T cells. Activation of mature T cells restores Xist RNA and heterochromatin marks simultaneously back to the Xi. Notably, X-chromosome inactivation (XCI) maintenance is altered in T cells of SLE patients and late-stage-disease NZB/W F1 female mice, and we show that X-linked genes are abnormally upregulated in SLE patient T cells. SLE T cells also have altered expression of XIST RNA interactome genes, accounting for perturbations of Xi epigenetic features. Thus, abnormal XCI maintenance is a feature of SLE disease, and we propose that Xist RNA localization at the Xi could be an important factor for maintaining dosage compensation of X-linked genes in T cells.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bam Paneru
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donavon Sandoval-Heglund
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianle Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmistha Banerjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia (CHOP), Philadelphia Pennsylvania, USA
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
193
|
Li Z, Li Z, Wang L, Long C, Zheng Z, Zhuang X. ZCCHC13-mediated induction of human liver cancer is associated with the modulation of DNA methylation and the AKT/ERK signaling pathway. J Transl Med 2019; 17:108. [PMID: 30940166 PMCID: PMC6444591 DOI: 10.1186/s12967-019-1852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have shown that zinc-finger CCHC-type containing 13 (ZCCHC13) is located in an imprinted gene cluster in the X-inactivation centre, but few published studies have provided evidence of its expression in cancers. The CCHC-type zinc finger motif has numerous biological activities (such as DNA binding and RNA binding) and mediates protein-protein interactions. In an effort to examine the clinical utility of ZCCHC13 in oncology, we investigated the expression of the ZCCHC13 mRNA and protein in hepatocellular carcinoma (HCC). METHODS The expression of the ZCCHC13 mRNA and protein was evaluated using real-time reverse transcriptase-PCR, Western blotting and immunochemistry. DNA methylation was measured by methylation-specific PCR and bisulfite sequencing. The role of ZCCHC13 methylation was further evaluated using the demethylating agent, 5-aza-2'-deoxycytidine. The presence of anti-ZCCHC13 antibodies was determined by an ELISA. RESULTS ZCCHC13 expression was frequently upregulated in human liver cancer cells and tissues. Compared with heathy individuals, sera from patients with HCC displayed a significant response to the recombinant ZCCHC13 protein. The overexpression of ZCCHC13 in HCC was attributed to DNA hypomethylation in the promoter region. Moreover, overexpression of ZCCHC13 in liver cancer cells promoted cell cycle progression by facilitating the G1-S transition, which was related to aberrant activation of the ATK/ERK/c-MYC/CDK pathway. CONCLUSIONS Based on our findings, ZCCHC13 functions an oncogene for HCC, and DNA hypomethylation is a driving factor in carcinogenesis.
Collapse
Affiliation(s)
- Zhiming Li
- Institute of Reproductive Health/Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
| | - Zhi Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Linjun Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Chen Long
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Zaozao Zheng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 Fujian China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| |
Collapse
|
194
|
Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat Ecol Evol 2019; 3:834-844. [DOI: 10.1038/s41559-019-0850-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
|
195
|
Wainer Katsir K, Linial M. Human genes escaping X-inactivation revealed by single cell expression data. BMC Genomics 2019; 20:201. [PMID: 30871455 PMCID: PMC6419355 DOI: 10.1186/s12864-019-5507-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In mammals, sex chromosomes pose an inherent imbalance of gene expression between sexes. In each female somatic cell, random inactivation of one of the X-chromosomes restores this balance. While most genes from the inactivated X-chromosome are silenced, 15-25% are known to escape X-inactivation (termed escapees). The expression levels of these genes are attributed to sex-dependent phenotypic variability. RESULTS We used single-cell RNA-Seq to detect escapees in somatic cells. As only one X-chromosome is inactivated in each cell, the origin of expression from the active or inactive chromosome can be determined from the variation of sequenced RNAs. We analyzed primary, healthy fibroblasts (n = 104), and clonal lymphoblasts with sequenced parental genomes (n = 25) by measuring the degree of allelic-specific expression (ASE) from heterozygous sites. We identified 24 and 49 candidate escapees, at varying degree of confidence, from the fibroblast and lymphoblast transcriptomes, respectively. We critically test the validity of escapee annotations by comparing our findings with a large collection of independent studies. We find that most genes (66%) from the unified set were previously reported as escapees. Furthermore, out of the overlooked escapees, 11 are long noncoding RNA (lncRNAs). CONCLUSIONS X-chromosome inactivation and escaping from it are robust, permanent phenomena that are best studies at a single-cell resolution. The cumulative information from individual cells increases the potential of identifying escapees. Moreover, despite the use of a limited number of cells, clonal cells (i.e., same X- chromosomes are coordinately inhibited) with genomic phasing are valuable for detecting escapees at high confidence. Generalizing the method to uncharacterized genomic loci resulted in lncRNAs escapees which account for 20% of the listed candidates. By confirming genes as escapees and propose others as candidates from two different cell types, we contribute to the cumulative knowledge and reliability of human escapees.
Collapse
Affiliation(s)
- Kerem Wainer Katsir
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel.
| |
Collapse
|
196
|
Oliveira da Silva W, Rodrigues da Costa MJ, Pieczarka JC, Rissino J, Pereira JC, Ferguson-Smith MA, Nagamachi CY. Identification of two independent X-autosome translocations in closely related mammalian (Proechimys) species. Sci Rep 2019; 9:4047. [PMID: 30858413 PMCID: PMC6411977 DOI: 10.1038/s41598-019-40593-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Multiple sex chromosome systems have been described for several mammalian orders, with different species from the same genus sharing the same system (e.g., X1X2Y or XY1Y2). This is important because the translocated autosome may be influenced by the evolution of the recipient sex chromosome, and this may be related to speciation. It is often thought that the translocation of an autosome to a sex chromosome may share a common origin among phylogenetically related species. However, the neo-X chromosomes of Proechimys goeldii (2n = 24♀, 25♂/NFa = 42) and Proechimys gr. goeldii (2n = 16♀, 17♂/NFa = 14) have distinct sizes and morphologies that have made it difficult to determine whether they have the same or different origins. This study investigates the origins of the XY1Y2 sex chromosome determination system in P. goeldii (PGO) and P. gr. goeldii (PGG) and elucidates the chromosomal rearrangements in this low-diploid-number group of Proechimys species. Toward this end, we produced whole-chromosome probes for P. roberti (PRO; 2n = 30♂/NFa = 54) and P. goeldii (2n = 25♂/NFa = 42) and used them in comparative chromosomal mapping. Our analysis reveals that multiple translocations and inversions are responsible for the karyotype diversity of these species, with only three whole-chromosomes conserved between PRO and PGO and eight between PGO and PGG. Our data indicate that multiple sex chromosome systems have originated twice in Proechimys. As small populations are prone to the fixation of chromosomal rearrangements, we speculate that biological features of Rodentia contribute to this fixation. We also highlight the potential of these rodents as a model for studying sex chromosome evolution.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil.,Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Jorge Rissino
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Jorge C Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, ICB, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
197
|
Abstract
Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
198
|
The Problem of Non-Shared Environment in Behavioral Genetics. Behav Genet 2019; 49:259-269. [DOI: 10.1007/s10519-019-09950-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
|
199
|
Mitotic antipairing of homologous and sex chromosomes via spatial restriction of two haploid sets. Proc Natl Acad Sci U S A 2018; 115:E12235-E12244. [PMID: 30530674 PMCID: PMC6310853 DOI: 10.1073/pnas.1809583115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic recombination must be prevented to maintain genetic stability across daughter cells, but the underlying mechanism remains elusive. We report that mammalian cells impede homologous chromosome pairing during mitosis by keeping the two haploid chromosome sets apart, positioning them to either side of a meridional plane defined by the centrosomes. Chromosome oscillation analysis revealed collective genome behavior of noninteracting chromosome sets. Male translocation mice with a maternal-derived supernumerary chromosome display the tracer chromosome exclusively to the haploid set containing the X chromosome. This haploid set-based antipairing motif is shared by multiple cell types, is doubled in tetraploid cells, and is lost in carcinoma cells. The data provide a model of nuclear polarity through the antipairing of homologous chromosomes during mitosis. Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.
Collapse
|
200
|
Review of the "X chromosome-nucleolus nexus" hypothesis of autoimmune diseases with an update explaining disruption of the nucleolus. Immunol Res 2018; 66:790-799. [PMID: 30515730 DOI: 10.1007/s12026-018-9044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The "X chromosome-nucleolus nexus" hypothesis provides a comprehensive explanation of how autoantibodies can develop following cellular stress. The hypothesis connects autoimmune diseases with the impact of environmental factors, such as viruses, through epigenetic disruption. The inactive X chromosome, a major epigenetic structure in the female cell's nucleus, is a key component of the hypothesis. The inactive X is vulnerable to disruption due to the following: (1) its heavy requirements for methylation to suppress gene expression, (2) its peripheral location at the nuclear envelope, (3) its late replication timing, and (4) its frequently observed close association with the nucleolus. The dynamic nucleolus can expand dramatically in response to cellular stress and this could disrupt the neighboring inactive X, particularly during replication, leading to expression from previously suppressed chromatin. Especially vulnerable at the surface of the inactive X chromosome would be genes and elements from Xp22 to the terminus of the short arm of the X. Expression of these genes and elements could interfere with nucleolar integrity, nucleolar efficiency, and future nucleolar stress response, and even lead to fragmentation of the nucleolus. Ribonucleoprotein complexes assembled in the nucleolus could be left in incomplete states and inappropriate conformations, and/or contain viral components when the nucleolus is disrupted and these abnormal complexes could initiate an autoimmune response when exposed to the immune system. Epitope spreading could then lead to an autoimmune reaction to the more abundant normal complexes. Many autoantigens reported in lupus and other autoimmune diseases are, at least transiently, nucleolar components.
Collapse
|