151
|
Effective guidance of collective migration based on differences in cell states. Proc Natl Acad Sci U S A 2012; 109:2027-32. [PMID: 22308382 DOI: 10.1073/pnas.1115260109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Directed cell migration is important for normal animal development and physiology. The process can also be subverted by tumor cells to invade other tissues and to metastasize. Some cells, such as leukocytes, migrate individually; other cells migrate together in groups or sheets, called collective cell migration. Guidance of individually migrating cells depends critically on subcellularly localized perception and transduction of signals. For collective cell migration, guidance could result from cells within a group achieving different signaling levels, with directionality then encoded in the collective rather than in individual cells. Here we subject this collective guidance hypothesis to direct tests, using migration of border cells during Drosophila oogenesis as our model system. These cells normally use two receptor tyrosine kinases (RTKs), PDGF/VEGF-related receptor (PVR) and EGFR, to read guidance cues secreted by the oocyte. Elevated but delocalized RTK signaling in one cell of the cluster was achieved by overexpression of PVR in the absence of ligand or by overexpression of fusion receptors unable to detect Drosophila ligands; alternatively, Rac was photoactivated centrally within a single cell. In each case, one cell within the group was in a high signal state, whereas others were in low signal states. The high signal cell directed cluster movement effectively. We conclude that differences in cell signaling states are sufficient to direct collective migration and are likely a substantial contributor to normal guidance. Cell signaling states could manifest as differences in gene expression or metabolite levels and thus differ substantially from factors normally considered when analyzing eukaryotic cell guidance.
Collapse
|
152
|
Feng H, Hu B, Liu KW, Li Y, Lu X, Cheng T, Yiin JJ, Lu S, Keezer S, Fenton T, Furnari FB, Hamilton RL, Vuori K, Sarkaria JN, Nagane M, Nishikawa R, Cavenee WK, Cheng SY. Activation of Rac1 by Src-dependent phosphorylation of Dock180(Y1811) mediates PDGFRα-stimulated glioma tumorigenesis in mice and humans. J Clin Invest 2011; 121:4670-84. [PMID: 22080864 DOI: 10.1172/jci58559] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 10/05/2011] [Indexed: 01/06/2023] Open
Abstract
Two hallmarks of glioblastoma multiforme, the most common malignant brain cancer in humans, are aggressive growth and the ability of single glioma cells to disperse throughout the brain. These characteristics render tumors resistant to current therapies and account for the poor prognosis of patients. Although it is known that oncogenic signaling caused by overexpression of genes such as PDGFRA is responsible for robust glioma growth and cell infiltration, the mechanisms underlying glioblastoma malignancy remain largely elusive. Here, we report that PDGFRα signaling in glioblastomas leads to Src-dependent phosphorylation of the guanine nucleotide exchange factor Dock180 at tyrosine 1811 (Dock180(Y1811)) that results in activation of the GTPase Rac1 and subsequent cell growth and invasion. In human glioma cells, knockdown of Dock180 and reversion with an RNAi-resistant Dock180(Y1811F) abrogated, whereas an RNAi-resistant Dock180(WT) rescued, PDGFRα-promoted glioma growth, survival, and invasion. Phosphorylation of Dock180(Y1811) enhanced its association with CrkII and p130(Cas), causing activation of Rac1 and consequent cell motility. Dock180 also associated with PDGFRα to promote cell migration. Finally, phosphorylated Dock180(Y1811) was detected in clinical samples of gliomas and various types of human cancers, and coexpression of phosphorylated Dock180(Y1811), phosphorylated Src(Y418), and PDGFRα was predictive of extremely poor prognosis of patients with gliomas. Taken together, our findings provide insight into PDGFRα-stimulated gliomagenesis and suggest that phosphorylated Dock180(Y1811) contributes to activation of Rac1 in human cancers with PDGFRA amplification.
Collapse
Affiliation(s)
- Haizhong Feng
- Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Li A, Ma Y, Yu X, Mort RL, Lindsay CR, Stevenson D, Strathdee D, Insall RH, Chernoff J, Snapper SB, Jackson IJ, Larue L, Sansom OJ, Machesky LM. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod- driven motility and cell-cycle progression. Dev Cell 2011; 21:722-34. [PMID: 21924960 PMCID: PMC3464460 DOI: 10.1016/j.devcel.2011.07.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/03/2011] [Accepted: 07/17/2011] [Indexed: 01/16/2023]
Abstract
During embryogenesis, melanoblasts proliferate and migrate ventrally through the developing dermis and epidermis as single cells. Targeted deletion of Rac1 in melanoblasts during embryogenesis causes defects in migration, cell-cycle progression, and cytokinesis. Rac1 null cells migrate markedly less efficiently, but surprisingly, global steering, crossing the dermal/epidermal junction, and homing to hair follicles occur normally. Melanoblasts navigate in the epidermis using two classes of protrusion: short stubs and long pseudopods. Short stubs are distinct from blebs and are driven by actin assembly but are independent of Rac1, Arp2/3 complex, myosin, or microtubules. Rac1 positively regulates the frequency of initiation of long pseudopods, which promote migration speed and directional plasticity. Scar/WAVE and Arp2/3 complex drive actin assembly for long pseudopod extension, which also depends on microtubule dynamics. Myosin contractility balances the extension of long pseudopods by effecting retraction and allowing force generation for movement through the complex 3D epidermal environment.
Collapse
Affiliation(s)
- Ang Li
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Hsu T. NME genes in epithelial morphogenesis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 384:363-72. [PMID: 21336542 PMCID: PMC3337754 DOI: 10.1007/s00210-011-0607-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/27/2011] [Indexed: 01/29/2023]
Abstract
The NME family of genes encodes highly conserved multifunctional proteins that have been shown to participate in nucleic acid metabolism, energy homeostasis, cell signaling, and cancer progression. Some family members, particularly isoforms 1 and 2, have attracted extensive interests because of their potential anti-metastasis activity. Unfortunately, there have been few consensus mechanistic explanations for this critical function because of the numerous molecular functions ascribed to these proteins, including nucleoside diphosphate kinase, protein kinase, nuclease, transcription factor, growth factor, among others. In addition, different studies showed contradictory prognostic correlations between NME expression levels and tumor progression in clinical samples. Thus, analyses using pliable in vivo systems have become critical for unraveling at least some aspects of the complex functions of this family of genes. Recent works using the Drosophila genetic system have suggested a role for NME in regulating epithelial cell motility and morphogenesis, which has also been demonstrated in mammalian epithelial cell culture. This function is mediated by promoting internalization of growth factor receptors in motile epithelial cells, and the adherens junction components such as E-cadherin and β-catenin in epithelia that form the tissue linings. Interestingly, NME genes in epithelial cells appear to function in a defined range of expression levels. Either down-regulation or over-expression can perturb epithelial integrity, resulting in different aspects of epithelial abnormality. Such biphasic functions provide a plausible explanation for the documented anti-metastatic activity and the suspected oncogenic function. This review summarizes these recent findings and discusses their implications.
Collapse
Affiliation(s)
- Tien Hsu
- Department of Medicine, Boston University School of Medicine, 650 Albany St., Room 440, Boston, MA 02118, USA.
| |
Collapse
|
155
|
Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 2011; 21:612-9. [PMID: 21930372 DOI: 10.1016/j.gde.2011.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022]
Abstract
Drosophila oogenesis is a powerful model for the study of numerous questions in cell and developmental biology. In addition to its longstanding value as a genetically tractable model of organogenesis, recently it has emerged as an excellent system in which to combine genetics and live imaging. Rapidly improving ex vivo culture conditions, new fluorescent biosensors and photo-manipulation tools, and advances in microscopy have allowed direct observation in real time of processes such as stem cell self-renewal, collective cell migration, and polarized mRNA and protein transport. In addition, entirely new phenomena have been discovered, including revolution of the follicle within the basement membrane and oscillating assembly and disassembly of myosin on a polarized actin network, both of which contribute to elongating this tissue. This review focuses on recent advances in live-cell imaging techniques and the biological insights gleaned from live imaging of egg chamber development.
Collapse
|
156
|
Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409-20. [PMID: 21975550 PMCID: PMC3218608 DOI: 10.4161/cam.5.5.17644] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 01/22/2023] Open
Abstract
The goal of this review is to highlight how emerging new models of filopodia assembly, which include tissue specific actin-bundling proteins, could provide more comprehensive representations of filopodia assembly that would describe more adequately and effectively the complexity and plasticity of epithelial cells. This review also describes how the true diversity of actin bundling proteins must be considered to predict the far-reaching significance and versatile functions of filopodia in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | |
Collapse
|
157
|
Trepat X, Fredberg JJ. Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 2011; 21:638-46. [PMID: 21784638 DOI: 10.1016/j.tcb.2011.06.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 11/27/2022]
Abstract
For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Ciber Enfermedades Respiratorias, University of Barcelona, Spain.
| | | |
Collapse
|
158
|
Morris LX, Spradling AC. Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 2011; 138:2207-15. [PMID: 21558370 DOI: 10.1242/dev.065508] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Drosophila ovariole tip produces new ovarian follicles on a 12-hour cycle by controlling niche-based germline and follicle stem cell divisions and nurturing their developing daughters. Static images provide a thumbnail view of folliculogenesis but imperfectly capture the dynamic cellular interactions that underlie follicle production. We describe a live-imaging culture system that supports normal ovarian stem cell activity, cyst movement and intercellular interaction over 14 hours, which is long enough to visualize all the steps of follicle generation. Our results show that live imaging has unique potential to address diverse aspects of stem cell biology and gametogenesis. Stem cells in cultured tissue respond to insulin and orient their mitotic spindles. Somatic escort cells, the glial-like partners of early germ cells, do not adhere to and migrate along with germline stem cell daughters as previously proposed. Instead, dynamic, microtubule-rich cell membranes pass cysts from one escort cell to the next. Additionally, escort cells are not replenished by the regular division of escort stem cells as previously suggested. Rather, escort cells remain quiescent and divide only to maintain a constant germ cell:escort cell ratio.
Collapse
Affiliation(s)
- Lucy X Morris
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
159
|
Streichan SJ, Valentin G, Gilmour D, Hufnagel L. Collective cell migration guided by dynamically maintained gradients. Phys Biol 2011; 8:045004. [PMID: 21750360 DOI: 10.1088/1478-3975/8/4/045004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
How cell collectives move and deposit subunits within a developing embryo is a question of outstanding interest. In many cases, a chemotactic mechanism is employed, where cells move up or down a previously generated attractive or repulsive gradient of signalling molecules. Recent studies revealed the existence of systems with isotropic chemoattractant expression in the lateral line primordium of zebrafish. Here we propose a mechanism for a cell collective, which actively modulates an isotropically expressed ligand and encodes an initial symmetry breaking in its velocity. We derive a closed solution for the velocity and identify an optimal length that maximizes the tissues' velocity. A length dependent polar gradient is identified, its use for pro-neuromast deposition is shown by simulations and a critical time for cell deposition is derived. Experiments to verify this model are suggested.
Collapse
Affiliation(s)
- Sebastian J Streichan
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
160
|
Poukkula M, Cliffe A, Changede R, Rørth P. Cell behaviors regulated by guidance cues in collective migration of border cells. ACTA ACUST UNITED AC 2011; 192:513-24. [PMID: 21300853 PMCID: PMC3101089 DOI: 10.1083/jcb.201010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Border cells perform a collective, invasive, and directed migration during Drosophila melanogaster oogenesis. Two receptor tyrosine kinases (RTKs), the platelet-derived growth factor/vascular endothelial growth factor-related receptor (PVR) and the epidermal growth factor receptor (EGFR), are important for reading guidance cues, but how these cues steer migration is not well understood. During collective migration, front, back, and side extensions dynamically project from individual cells within the group. We find that guidance input from both RTKs affects the presence and size of these extensions, primarily by favoring the persistence of front extensions. Guidance cues also control the productivity of extensions, specifically rendering back extensions nonproductive. Early and late phases of border cell migration differ in efficiency of forward cluster movement, although motility of individual cells appears constant. This is caused by differences in behavioral effects of the RTKs: PVR dominantly induces large persistent front extensions and efficient streamlined group movement, whereas EGFR does not. Thus, guidance receptors steer movement of this cell group by differentially affecting multiple migration-related features.
Collapse
Affiliation(s)
- Minna Poukkula
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | |
Collapse
|
161
|
Bower DV, Sato Y, Lansford R. Dynamic lineage analysis of embryonic morphogenesis using transgenic quail and 4D multispectral imaging. Genesis 2011; 49:619-43. [PMID: 21509927 DOI: 10.1002/dvg.20754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022]
Abstract
We describe the development of transgenic quail that express various fluorescent proteins in targeted manners and their use as a model system that integrates advanced imaging approaches with conventional and emerging molecular genetics technologies. We also review the progression and complications of past fate mapping techniques that led us to generate transgenic quail, which permit dynamic imaging of amniote embryogenesis with unprecedented subcellular resolution.
Collapse
Affiliation(s)
- Danielle V Bower
- Department of Biology and the Biological Imaging Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
162
|
Quiñones GA, Oro AE. BAR domain competition during directional cellular migration. Cell Cycle 2011; 9:2522-8. [PMID: 20581461 DOI: 10.4161/cc.9.13.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While directed cellular migration facilitates the coordinated movement of cells during development and tissue repair, the precise mechanisms regulating the interplay between the extracellular environment, the actin cytoskeleton, and the overlying plasma membrane remain inadequately understood. The BAR domain family of lipid binding, actin cytoskeletal regulators are gaining greater appreciation for their role in these critical processes. BAR domain proteins are involved as both positive and negative regulators of endocytosis, membrane plasticity, and directional cell migration. This review focuses on the functional relationship between different classes of BAR domain proteins and their role in guiding cell migration through regulation of the endocytic machinery. Competition for key signaling substrates by positive and negative BAR domain endocytic regulators appears to mediate control of directional cell migration, and may have wider applicability to other trafficking functions associated with development and carcinogenesis.
Collapse
Affiliation(s)
- Gabriel A Quiñones
- Program in Epithelial Biology and Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
163
|
Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X. Collective cell guidance by cooperative intercellular forces. NATURE MATERIALS 2011; 10:469-75. [PMID: 21602808 PMCID: PMC3135682 DOI: 10.1038/nmat3025] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 04/12/2011] [Indexed: 05/17/2023]
Abstract
Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. Within that stress landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behaviour, as do breast cancer cell lines before but not after the epithelial-mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighbouring cells join forces to transmit appreciable normal stress across the cell-cell junction, but migrate along orientations of minimal intercellular shear stress.
Collapse
Affiliation(s)
- Dhananjay T Tambe
- Program in Molecular and Integrative Physiological Sciences, School of Public Health, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Clark IBN, Muha V, Klingseisen A, Leptin M, Müller HAJ. Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila. Development 2011; 138:2705-15. [PMID: 21613323 DOI: 10.1242/dev.060277] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.
Collapse
Affiliation(s)
- Ivan B N Clark
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
165
|
Abstract
Adhesion is fundamental to the survival and function of many different cell types, and regulates basic events such as mitosis, cell survival and migration, in both embryonic and adult organisms. Cell-matrix adhesion also regulates the dynamic interplay between cells and surrounding tissues during processes such as immune cell recruitment, wound healing and cancer cell metastasis. The study of cell adhesion has gained momentum in recent years, in large part because of the emergence of imaging techniques that have facilitated detailed analysis of the molecular composition and dynamics of the structures involved. In this Commentary, we discuss the recent application of different imaging techniques to study cell-matrix adhesions, emphasising common strategies used for the analysis of adhesion dynamics both in cells in culture and in whole organisms.
Collapse
Affiliation(s)
- Daniel C Worth
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | |
Collapse
|
166
|
Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T. Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 2011; 20:315-28. [PMID: 21397843 DOI: 10.1016/j.devcel.2011.02.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 12/13/2022]
Abstract
A newly emerged oncogenic cell in the epithelial population has to confront antitumor selective pressures in the host tissue. However, the mechanisms by which surrounding normal tissue exerts antitumor effects against oncogenically transformed cells are poorly understood. In Drosophila imaginal epithelia, clones of cells mutant for evolutionarily conserved tumor suppressor genes such as scrib or dlg lose their epithelial integrity and are eliminated from epithelia when surrounded by wild-type tissue. Here, we show that surrounding normal cells activate nonapoptotic JNK signaling in response to the emergence of oncogenic mutant cells. This JNK activation leads to upregulation of PVR, the Drosophila PDGF/VEGF receptor. Genetic and time-lapse imaging analyses reveal that PVR expression in surrounding cells activates the ELMO/Mbc-mediated phagocytic pathway, thereby eliminating oncogenic neighbors by engulfment. Our data indicate that JNK-mediated cell engulfment could be an evolutionarily conserved intrinsic tumor-suppression mechanism that eliminates premalignant cells from epithelia.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Department of Cell Biology, G-COE, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
167
|
Desai RA, Khan MK, Gopal SB, Chen CS. Subcellular spatial segregation of integrin subtypes by patterned multicomponent surfaces. Integr Biol (Camb) 2011; 3:560-7. [PMID: 21298148 PMCID: PMC3586560 DOI: 10.1039/c0ib00129e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While it is well known that individual integrins are critical mediators of cell behavior, recent work has shown that when multiple types of integrins simultaneously engage the ECM, cell functions are enhanced. However, it is not known how integrins spatially coordinate to regulate cell adhesion because no reliable method exists to segregate integrins on the cell membrane. Here, we use a microcontact printing-based strategy to pattern multiple ECMs that bind distinct integrins in order to study how integrins might interact. In our technique, proteins are first adsorbed uniformly to a poly(dimethyl siloxane) stamp, and then selectively "de-inked." Our strategy overcomes several inherent limitations of conventional microcontact printing, including stamp collapse and limited functionality of the surface patterns. We show that integrins spatially segregate on surfaces patterned with multiple ECMs, as expected. Interestingly, despite spatial segregation of distinct integrins, cells could form adhesions and migrate across multicomponent surfaces as well as they do on single component surfaces. Together, our data indicate that although cells can segregate individual integrins on the cell surface to mediate ECM-specific binding, integrins function cooperatively to guide cell adhesion and migration.
Collapse
Affiliation(s)
- Ravi A. Desai
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Mohammed K. Khan
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Smitha B. Gopal
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104
| |
Collapse
|
168
|
Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P, Giacomelli R. Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev 2011; 10:590-4. [PMID: 21549861 DOI: 10.1016/j.autrev.2011.04.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Systemic sclerosis is an autoimmune connective tissue disorder characterized by a widespread microangiopathy, autoimmunity and fibrosis of the skin and of various internal organs. Microangiopathy is characterized by a reduced capillary density and an irregular chaotic architecture that lead to chronic tissue hypoxia. Despite the hypoxic conditions, there is no evidence for a sufficient compensative angiogenesis in SSc. Furthermore, vasculogenesis is also impaired. An imbalance between angiogenic and angiostatic factors might explain the pathogenetic mechanisms of SSc vasculopathy. As far as angiogenic factors are concerned, within the most important are vascular endothelial growth factor (VEGF) and its receptors, platelet derived growth factor (PDGF), transforming growth factor beta (TGF-β), fibroblast growth factor -2 (FGF-2), angiopoietin 1 (Ang-1), stromal cell-derived factor 1 (SDF-1/CXCL12), endothelin-1 (ET-1), monocyte chemoattractant protein -1 (MCP-1), urokinase type plasminogen activator receptors (uPAR) and kallikreins, vascular adhesion molecules. On the other hand, angiostatic factors include: endostatin, angiostatin, thrombospodin-1 (TSP-1), angiopoietin 2 (Ang-2). Our knowledge concerning the dysregulation of angiogenic homeostasis is largely incomplete and needs further research, for the future.
Collapse
Affiliation(s)
- Vasiliki Liakouli
- Rheumatology Department of Internal Medicine and Public Health, University of L'Aquila, Italy.
| | | | | | | | | | | |
Collapse
|
169
|
Van de Bor V, Zimniak G, Cérézo D, Schaub S, Noselli S. Asymmetric localisation of cytokine mRNA is essential for JAK/STAT activation during cell invasiveness. Development 2011; 138:1383-93. [PMID: 21350010 DOI: 10.1242/dev.056184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transition from immotile epithelial cells to migrating cells occurs in all organisms during normal embryonic development, as well as during tumour metastasis. During Drosophila oogenesis, border cells (BCs) are recruited and delaminate from the follicular epithelium. This process is triggered by the polar cells (PCs), which secrete the cytokine Unpaired (Upd) and activate the JAK/STAT pathway in neighbouring cells, turning them into invasive BCs. Interestingly, either a decrease or an increase in BC number alters migration, indicating that mechanisms controlling the level of JAK/STAT signalling are crucial in this process. Here, we show that PCs have a highly stable and polarised network of microtubules along which upd transcripts are asymmetrically transported in a Dynein-dependent manner. We demonstrate that in the absence of upd mRNA localisation the ligand is no longer efficiently secreted, leading to a loss of signalling strength as well as recruitment and migration defects. These findings reveal a novel post-transcriptional regulatory mechanism of JAK/STAT signalling in the control of epithelial cell invasiveness.
Collapse
Affiliation(s)
- Véronique Van de Bor
- Institute of Developmental Biology and Cancer UMR6543/CNRS, University of Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France
| | | | | | | | | |
Collapse
|
170
|
Expression and functional validation of new p38α transcriptional targets in tumorigenesis. Biochem J 2011; 434:549-58. [DOI: 10.1042/bj20101410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
p38α MAPK (mitogen-activated protein kinase) plays an important tumour suppressor role, which is mediated by both its negative effect on cell proliferation and its pro-apoptotic activity. Surprisingly, most tumour suppressor mechanisms co-ordinated by p38α have been reported to occur at the post-translational level. This contrasts with the important role of p38α in the regulation of transcription and the profound changes in gene expression that normally occur during tumorigenesis. We have analysed whole-genome expression profiles of Ras-transformed wild-type and p38α-deficient cells and have identified 202 genes that are potentially regulated by p38α in transformed cells. Expression analysis has confirmed the regulation of these genes by p38α in tumours, and functional validation has identified several of them as probable mediators of the tumour suppressor effect of p38α on Ras-induced transformation. Interestingly, approx. 10% of the genes that are negatively regulated by p38α in transformed cells contribute to EGF (epidermal growth factor) receptor signalling. Our results suggest that inhibition of EGF receptor signalling by transcriptional targets of p38α is an important function of this signalling pathway in the context of tumour suppression.
Collapse
|
171
|
Kumar G, Chen B, Co CC, Ho CC. Differential migration and proliferation of geometrical ensembles of cell clusters. Exp Cell Res 2011; 317:1340-52. [PMID: 21338603 DOI: 10.1016/j.yexcr.2011.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 01/11/2011] [Accepted: 02/13/2011] [Indexed: 01/15/2023]
Abstract
Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.
Collapse
Affiliation(s)
- Girish Kumar
- Chemical & Materials Engineering Department, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | | | | | | |
Collapse
|
172
|
Zhang L, Luo J, Wan P, Wu J, Laski F, Chen J. Regulation of cofilin phosphorylation and asymmetry in collective cell migration during morphogenesis. Development 2011; 138:455-64. [PMID: 21205790 DOI: 10.1242/dev.046870] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During Drosophila oogenesis, two actin dynamics regulators, cofilin and Rac, are required for the collective migration of a coherent cluster of cells called border cells. Cell culture data have shown that Rac and cofilin are both essential for lamellipodium formation, but Rac signaling results in phosphorylation and hence inactivation of cofilin. So it remains unclear whether cofilin phosphorylation plays a promoting or inhibitory role during cell migration. We show here that cofilin is required for F-actin turnover and lamellipodial protrusion in the border cells. Interestingly, reducing the dosage of cofilin by half or expressing a phospho-mimetic mutant form, S3E, partially rescues the migration and protrusion defects of Rac-deficient border cells. Moreover, cofilin exhibits moderate accumulation in border cells at the migratory front of the cluster, whereas phospho-cofilin has a robust and uniform distribution pattern in all the outer border cells. Blocking or overactivating Rac signaling in border cells greatly reduces or increases cofilin phosphorylation, respectively, and each abolishes cell migration. Furthermore, Rac may signal through Pak and LIMK to result in uniform phosphorylation of cofilin in all the outer border cells, whereas the guidance receptor Pvr (PDGF/VEGF receptor) mediates the asymmetric localization of cofilin in the cluster but does not affect its phosphorylation. Our study provides one of the first models of how cofilin functions and is regulated in the collective migration of a group of cells in vivo.
Collapse
Affiliation(s)
- Lijun Zhang
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
173
|
Miller ED, Li K, Kanade T, Weiss LE, Walker LM, Campbell PG. Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 2011; 32:2775-85. [PMID: 21272933 DOI: 10.1016/j.biomaterials.2010.12.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/01/2010] [Indexed: 01/08/2023]
Abstract
We investigated how engineered gradients of exogenous growth factors, immobilized to an extracellular matrix material, influence collective guidance of stem cell populations over extended time (>1 day) and length (>1 mm) scales in vitro. Patterns of low-to-high, high-to-low, and uniform concentrations of heparin-binding epidermal growth factor-like growth factor were inkjet printed at precise locations on fibrin substrates. Proliferation and migration responses of mesenchymal stem cells seeded at pattern origins were observed with time-lapse video microscopy and analyzed using both manual and automated computer vision-based cell tracking techniques. Based on results of established chemotaxis studies, we expected that the low-to-high gradient would most effectively direct cell guidance away from the cell source. All printed patterns, however, were found to direct net collective cell guidance with comparable responses. Our analysis revealed that collective "cell diffusion" down a cell-to-cell confinement gradient originating at the cell starting lines and not the net sum of directed individual cell migration up a growth factor concentration gradient is the principal driving force for directing mesenchymal stem cell population outgrowth from a cell source. These results suggest that simple uniform distributions of growth factors immobilized to an extracellular matrix material may be as effective in directing cell migration into a wound site as more complex patterns with concentration gradients.
Collapse
Affiliation(s)
- Eric D Miller
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
174
|
Biersmith B, Liu Z, Bauman K, Geisbrecht ER. The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development. PLoS One 2011; 6:e16120. [PMID: 21283588 PMCID: PMC3026809 DOI: 10.1371/journal.pone.0016120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022] Open
Abstract
Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is
essential to coordinate the development of tissues such as the musculature and
nervous system during normal embryonic development. One class of signaling
proteins that regulate actin cytoskeletal rearrangement is the evolutionarily
conserved CDM (C. elegansCed-5, human DOCK180,
DrosophilaMyoblast city, or Mbc) family of proteins, which function
as unconventional guanine nucleotide exchange factors for the small GTPase Rac.
This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced
upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We
identified and characterized the role of Drosophila Sponge
(Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein.
Our analysis shows Spg mRNA and protein is expressed in the visceral musculature
and developing nervous system, suggesting a role for Spg in later embryogenesis.
As maternal null mutants of spg die early in development, we
utilized genetic interaction analysis to uncover the role of Spg in central
nervous system (CNS) development. Consistent with its role in ELMO-dependent
pathways, we found genetic interactions with spg and
elmo mutants exhibited aberrant axonal defects. In
addition, our data suggests Ncad may be responsible for recruiting Spg to the
membrane, possibly in CNS development. Our findings not only characterize the
role of a new DOCK family member, but help to further understand the role of
signaling downstream of N-cadherin in neuronal development.
Collapse
Affiliation(s)
- Bridget Biersmith
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- Ph.D. Program, School of Biological Sciences, University of Missouri,
Kansas City, Missouri, United States of America
| | - Ze Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- Ph.D. Program, School of Biological Sciences, University of Missouri,
Kansas City, Missouri, United States of America
| | - Kenneth Bauman
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
| | - Erika R. Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- * E-mail:
| |
Collapse
|
175
|
Abstract
Collective cell migration is emerging as a significant component of many biological processes including metazoan development, tissue maintenance and repair and tumor progression. Different contexts dictate different mechanisms by which migration is guided and maintained. In vascular endothelia subjected to significant shear stress, fluid flow is utilized to properly orient a migrating group of cells. Recently, we discovered that the developing zebrafish pronephric epithelium undergoes a similar response to luminal fluid flow, which guides pronephric epithelial migration towards the glomerulus. Intratubular migration leads to significant changes in kidney morphology. This novel process provides a powerful in vivo model for further exploration of the mechanisms underlying mechanotransduction and collective migration.
Collapse
Affiliation(s)
- Aleksandr Vasilyev
- Pathology Department, Massachusetts General Hospital, Charlestown, MA, USA.
| | | |
Collapse
|
176
|
Haigo SL, Bilder D. Global tissue revolutions in a morphogenetic movement controlling elongation. Science 2011; 331:1071-4. [PMID: 21212324 DOI: 10.1126/science.1199424] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polarized cell behaviors drive axis elongation in animal embryos, but the mechanisms underlying elongation of many tissues remain unknown. Eggs of Drosophila undergo elongation from a sphere to an ellipsoid during oogenesis. We used live imaging of follicles (developing eggs) to elucidate the cellular basis of egg elongation. We find that elongating follicles undergo repeated rounds of circumferential rotation around their long axes. Follicle epithelia mutant for integrin or collagen IV fail to rotate and elongate, which results in round eggs. We present evidence that polarized rotation is required to build a polarized, fibrillar extracellular matrix (ECM) that constrains tissue shape. Thus, global tissue rotation is a morphogenetic behavior that uses planar polarity information in the ECM to control tissue elongation.
Collapse
Affiliation(s)
- Saori L Haigo
- Department of Molecular and Cell Biology, 379 Life Sciences Addition no. 3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
177
|
Prasad M, Wang X, He L, Montell DJ. Border cell migration: a model system for live imaging and genetic analysis of collective cell movement. Methods Mol Biol 2011; 769:277-286. [PMID: 21748683 PMCID: PMC4006199 DOI: 10.1007/978-1-61779-207-6_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Border cell migration in the Drosophila ovary has emerged as a genetically tractable model for studying collective cell movement. Over many years border cell migration was exclusively studied in fixed samples due to the inability to culture stage 9 egg chambers in vitro. Although culturing late stage egg chambers was long feasible, stage 9 egg chambers survived only briefly outside the female body. We identified culture conditions that support stage 9 egg chamber development and sustain complete migration of border cells ex vivo. This protocol enables one to compare the dynamics of egg chamber development in wild type and mutant egg chambers using time-lapse microscopy and taking advantage of a multiposition microscope with a motorized imaging stage. In addition, this protocol has been successfully used in combination with fluorescence resonance energy transfer biosensors, photo-activatable proteins, and pharmacological agents and can be used with widefield or confocal microscopes in either an upright or inverted configuration.
Collapse
Affiliation(s)
- Mohit Prasad
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 855 N. Wolfe St, Rangos 456, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
178
|
Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L. Modeling cancers in Drosophila. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:51-82. [PMID: 21377624 DOI: 10.1016/b978-0-12-384878-9.00002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The basic cellular processes deregulated during carcinogenesis and the vast majority of the genes implicated in cancer appear conserved from humans to flies. This conservation, together with an ever-expanding fly genetic toolbox, has made of Drosophila melanogaster a remarkably profitable model to study many fundamental aspects of carcinogenesis. In particular, Drosophila has played a major role in the identification of genes and pathways implicated in cancer and in disclosing novel functional relationships between cancer genes. It has also proved to be a genetically tractable system where to mimic cancer-like situations and characterize the mode of action of human oncogenes. Here, we outline some advances in the study of cancer, both at the basic and more translational levels, which have benefited from research carried out in flies.
Collapse
Affiliation(s)
- Cédric Polesello
- Université de Toulouse, UPS, CBD, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062, CNRS, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|
179
|
Abstract
Cell migration is required for a wide variety of processes from bacteria seeking for food to correct patterning of neuronal networks. The ability to sense external cues is critical for cells to get directions and reach their goals. So far, studies on chemotaxis have mainly focused their attention on individual cells and therefore available tools are designed to monitor cell behavior at the single cell level. However, as collective cell migration is now widely accepted as a main mode of cell migration from development to cancer, the question of how chemotaxis is achieved has also to be asked on a bigger scale. Here, we present two chemotaxis assays suitable for single cells, cell sheets, and cell explants. Using a simple combination of heparin-coated beads and high vacuum silicone grease, these techniques can be adapted to a wide variety of culture conditions. They allow time-lapse study, high-resolution microscopy, and can be set up at no extra cost.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
180
|
Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proc Natl Acad Sci U S A 2010; 107:22558-63. [PMID: 21149700 DOI: 10.1073/pnas.1010795108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Border cell migration is a stereotyped migration occurring during the development of the Drosophila egg chamber. During this process, a cluster composed of six to eight follicle cells migrates between nurse cells toward the oocyte. Receptor tyrosine kinases (RTKs) are enriched at the leading edge of the follicle cells and establish the directionality of their migration. Endocytosis has been shown to play a role in the maintenance of this polarization; however, the mechanisms involved are largely unknown. In this study, we show that border cell migration requires the function of the small GTPases Rab5 and Rab11 that regulate trafficking through the early and the recycling endosome, respectively. Expression of a dominant negative form of rab11 induces a loss of the polarization of RTK activity, which correlates with a severe migration phenotype. In addition, we demonstrate that the exocyst component Sec15 is distributed in structures that are polarized during the migration process in a Rab11-dependent manner and that the down-regulation of different subunits of the exocyst also affects migration. Together, our data demonstrate a fundamental role for a plasma membrane-endosome trafficking cycle in the maintenance of active RTK at the leading edge of border cells during their migration.
Collapse
|
181
|
Patel M, Margaron Y, Fradet N, Yang Q, Wilkes B, Bouvier M, Hofmann K, Côté JF. An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling. Curr Biol 2010; 20:2021-7. [PMID: 21035343 DOI: 10.1016/j.cub.2010.10.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
Dedicator of cytokinesis (DOCK) proteins are guanine nucleotide exchange factors (GEFs) controlling the activity of Rac1/Cdc42 during migration, phagocytosis, and myoblast fusion [1-4]. Engulfment and cell motility (ELMO) proteins bind a subset of DOCK members and are emerging as critical regulators of Rac signaling [5-10]. Although formation of a DOCK180/ELMO complex is not essential for Rac1 activation, ELMO mutants deficient in binding to DOCK180 are unable to promote cytoskeleton remodeling [11]. How ELMO regulates signaling through DOCK GEFs is poorly understood. Here, we identify an autoinhibitory switch in ELMO presenting homology to a regulatory unit described for Dia formins. One part of the switch, composed of a Ras-binding domain (RBD) and Armadillo repeats, is positioned N-terminally while the other is housed in the C terminus. We demonstrate interaction between these fragments, suggesting autoinhibition of ELMO. Using a bioluminescence resonance energy transfer biosensor, we establish that ELMO undergoes conformational changes upon disruption of autoinhibition. We found that engagement of ELMO to RhoG, or with DOCK180, promotes the relief of autoinhibition in ELMO. Functionally, we found that ELMO mutants with impaired autoregulatory activity promote cell elongation. These results demonstrate an unsuspected level of regulation for Rac1 signaling via autoinhibition of ELMO.
Collapse
Affiliation(s)
- Manishha Patel
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, PQ H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Canaria CA, Lansford R. Advanced optical imaging in living embryos. Cell Mol Life Sci 2010; 67:3489-97. [PMID: 20614161 PMCID: PMC2943067 DOI: 10.1007/s00018-010-0440-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 06/12/2010] [Accepted: 06/15/2010] [Indexed: 11/28/2022]
Abstract
Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis.
Collapse
Affiliation(s)
- Christie A. Canaria
- California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA 91125 USA
| | - Rusty Lansford
- California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA 91125 USA
| |
Collapse
|
183
|
Cellular responses to extracellular guidance cues. EMBO J 2010; 29:2734-45. [PMID: 20717143 DOI: 10.1038/emboj.2010.170] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/05/2010] [Indexed: 01/20/2023] Open
Abstract
Extracellular guidance cues have a key role in orchestrating cell behaviour. They can take many forms, including soluble and cell-bound ligands (proteins, lipids, peptides or small molecules) and insoluble matrix substrates, but to act as guidance cues, they must be presented to the cell in a spatially restricted manner. Cells that recognize such cues respond by activating intracellular signal transduction pathways in a spatially restricted manner and convert the extracellular information into intracellular polarity. Although extracellular cues influence a broad range of cell polarity decisions, such as mitotic spindle orientation during asymmetric cell division, or the establishment of apical-basal polarity in epithelia, this review will focus specifically on guidance cues that promote cell migration (chemotaxis), or localized cell shape changes (chemotropism).
Collapse
|
184
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
185
|
Aldaz S, Escudero LM, Freeman M. Live imaging of Drosophila imaginal disc development. Proc Natl Acad Sci U S A 2010; 107:14217-22. [PMID: 20660765 PMCID: PMC2922528 DOI: 10.1073/pnas.1008623107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Live imaging has revolutionized the analysis of developmental biology over the last few years. The ability to track in real time the dynamic processes that occur at tissue and cellular levels gives a much clearer view of development, and allows greater temporal resolution, than is possible with fixed tissue. Drosophila imaginal discs are a particularly important model of many aspects of development, but their small size and location inside the larva and pupa has prevented live imaging techniques from extensively being used in their study. Here, we introduce the use of viscous culture medium to enable high resolution imaging of imaginal disc development. As a proof of principle, we have analyzed the transformation that occurs during metamorphosis of the wing imaginal disc into the mature wing and report several previously unobserved stages of this model of organogenesis. These imaging methods are especially useful to study the complex and dynamic changes that occur during morphogenesis, but we show that they can also be used to analyze other developmental and cellular events. Moreover, our viscous medium creates a platform for future adaptation of other tissue culture conditions to allow imaging of a wide range of developmental events and systems.
Collapse
Affiliation(s)
| | | | - Matthew Freeman
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
186
|
Migeotte I, Omelchenko T, Hall A, Anderson KV. Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse. PLoS Biol 2010; 8:e1000442. [PMID: 20689803 PMCID: PMC2914637 DOI: 10.1371/journal.pbio.1000442] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/23/2010] [Indexed: 11/21/2022] Open
Abstract
Live imaging and analysis of conditional mutants show that the embryonic organizer that determines the anterior-posterior axis in the mouse embryo moves by Rac1-dependent collective cell migration. Cell migration and cell rearrangements are critical for establishment of the body plan of vertebrate embryos. The first step in organization of the body plan of the mouse embryo, specification of the anterior-posterior body axis, depends on migration of the anterior visceral endoderm from the distal tip of the embryo to a more proximal region overlying the future head. The anterior visceral endoderm (AVE) is a cluster of extra-embryonic cells that secretes inhibitors of the Wnt and Nodal pathways to inhibit posterior development. Because Rac proteins are crucial regulators of cell migration and mouse Rac1 mutants die early in development, we tested whether Rac1 plays a role in AVE migration. Here we show that Rac1 mutant embryos fail to specify an anterior-posterior axis and, instead, express posterior markers in a ring around the embryonic circumference. Cells that express the molecular markers of the AVE are properly specified in Rac1 mutants but remain at the distal tip of the embryo at the time when migration should take place. Using tissue specific deletions, we show that Rac1 acts autonomously within the visceral endoderm to promote cell migration. High-resolution imaging shows that the leading wild-type AVE cells extend long lamellar protrusions that span several cell diameters and are polarized in the direction of cell movement. These projections are tipped by filopodia-like structures that appear to sample the environment. Wild-type AVE cells display hallmarks of collective cell migration: they retain tight and adherens junctions as they migrate and exchange neighbors within the plane of the visceral endoderm epithelium. Analysis of mutant embryos shows that Rac1 is not required for intercellular signaling, survival, proliferation, or adhesion in the visceral endoderm but is necessary for the ability of visceral endoderm cells to extend projections, change shape, and exchange neighbors. The data show that Rac1-mediated epithelial migration of the AVE is a crucial step in the establishment of the mammalian body plan and suggest that Rac1 is essential for collective migration in mammalian tissues. The specification of the anterior-posterior body axis of the mouse embryo depends on migration of the anterior visceral endoderm (AVE) to a position that overlies the future head. By high-resolution imaging of intact embryos we show that movement of the AVE is a form of collective cell migration, as the migrating cells retain tight and adherens junctions while they migrate and exchange neighbors within the plane of the visceral endoderm epithelium. Using conditional knockouts, we find that the small GTPase Rac1 is absolutely required for specification of the anterior-posterior axis and acts cell-autonomously within the AVE to allow cells to extend long, dynamic lamellar projections that are required for movement. Rac1-mediated epithelial migration of the AVE is a crucial step in the establishment of the mammalian body plan, and Rac1 may be important for collective migration in general in mammalian tissues, including invading tumor cells.
Collapse
Affiliation(s)
- Isabelle Migeotte
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Alan Hall
- Cell Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
187
|
López-Schier H. Fly fishing for collective cell migration. Curr Opin Genet Dev 2010; 20:428-32. [DOI: 10.1016/j.gde.2010.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 11/29/2022]
|
188
|
Van de Bor V, Noselli S. Cell migration: MIM takes the driver's seat. Curr Biol 2010; 20:R606-8. [PMID: 20656205 DOI: 10.1016/j.cub.2010.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recent study reports a novel and conserved function for the I-BAR protein MIM in guiding cell migration: MIM has an anti-endocytic activity that moderates intracellular signalling of guidance cues by sequestration of cortactin.
Collapse
Affiliation(s)
- Véronique Van de Bor
- Institute of Developmental Biology & Cancer UMR6543/CNRS, University of Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France
| | | |
Collapse
|
189
|
Abstract
Cell invasion and metastasis mark the most lethal phase of cancer, but little is known about the key molecular events that initiate this crucial turning point. Low oxygen, or hypoxia, is thought to be one trigger for metastasis. Hypoxic conditions within the tumor mass are thought to activate signaling pathways that stimulate invasiveness of cancer cells spreading the disease. However, the molecular basis of this process is not well understood. A recent study used Drosophila ovarian border cell migration to model the type of cell migration that occurs in tumors in response to oxygen deprivation through the activation of the hypoxia response pathway (Doronkin et al. Oncogene. 2009). This model organism approach revealed a highly sophisticated mechanism of control of cell migration that is regulated by multiple genetic inputs tied to the hypoxic response. Genetic manipulations with the components of the HIF-1 (hypoxia-inducible factor 1) pathway were able to either inhibit or block the migration of border cells or cause unprecedented acceleration of their migration. The HIF-1-mediated transcriptional cascade appears to be the major regulator of border cell locomotion. Based on the similarity of the fly and human HIF-1 pathways, this model organism study might lead to improvements in understanding hypoxia-induced metastasizing of human cancers. This article discusses new findings in the context of their relevance to cancer metastasis and speculates on the potential regulatory mechanisms and future research directions.
Collapse
Affiliation(s)
- Inna Djagaeva
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
190
|
Finetti F, Savino MT, Baldari CT. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters. Immunol Rev 2010; 232:115-34. [PMID: 19909360 DOI: 10.1111/j.1600-065x.2009.00826.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | | | |
Collapse
|
191
|
Hope H, Schmauch C, Arkowitz RA, Bassilana M. The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth. Mol Microbiol 2010; 76:1572-90. [PMID: 20444104 DOI: 10.1111/j.1365-2958.2010.07186.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of Rho G-proteins is critical for cytoskeletal organization and cell morphology in all eukaryotes. In the human opportunistic pathogen Candida albicans, Rac1 and its activator Dck1, a member of the CED5, Dock180, myoblast city family of guanine nucleotide exchange factors, are required for the budding to filamentous transition during invasive growth. We show that Lmo1, a protein with similarity to human ELMO1, is necessary for invasive filamentous growth, similar to Rac1 and Dck1. Furthermore, Rac1, Dck1 and Lmo1 are required for cell wall integrity, as the deletion mutants are sensitive to cell wall perturbing agents, but not to oxidative or osmotic stresses. The region of Lmo1 encompassing the ELMO and PH-like domains is sufficient for its function. Both Rac1 and Dck1 can bind Lmo1. Overexpression of a number of protein kinases in the rac1, dck1 and lmo1 deletion mutants indicates that Rac1, Dck1 and Lmo1 function upstream of the mitogen-activated protein kinases Cek1 and Mkc1, linking invasive filamentous growth to cell wall integrity. We conclude that the requirement of ELMO/CED12 family members for Rac1 function is conserved from fungi to humans.
Collapse
Affiliation(s)
- Hannah Hope
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice - Sophia Antipolis, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
192
|
Quinones GA, Jin J, Oro AE. I-BAR protein antagonism of endocytosis mediates directional sensing during guided cell migration. ACTA ACUST UNITED AC 2010; 189:353-67. [PMID: 20385776 PMCID: PMC2856902 DOI: 10.1083/jcb.200910136] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The I-BAR domain–containing protein, missing-in-metastasis, directs cell motility by opposing the endocytic activity of the endophilin–CD2AP–cortactin complex. Although directed cellular migration facilitates the coordinated movement of cells during development and repair, the mechanisms regulating such migration remain poorly understood. Missing-in-metastasis (MIM) is a defining member of the inverse Bin/Amphiphysin/Rvs domain (I-BAR) subfamily of lipid binding, cytoskeletal regulators whose levels are altered in a number of cancers. Here, we provide the first genetic evidence that an I-BAR protein regulates directed cell migration in vivo. Drosophila MIM (dmim) is involved in Drosophila border cell migration, with loss of dmim function resulting in a lack of directional movement by the border cell cluster. In vivo endocytosis assays combined with genetic analyses demonstrate that the dmim product regulates directed cell movement by inhibiting endocytosis and antagonizing the activities of the CD2-associated protein/cortactin complex in these cells. These studies demonstrate that DMIM antagonizes pro-endocytic components to facilitate polarity and localized guidance cue sensing during directional cell migration.
Collapse
Affiliation(s)
- Gabriel A Quinones
- Program in Epithelial Biology and Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
193
|
Direct detection of guidance receptor activity during border cell migration. Proc Natl Acad Sci U S A 2010; 107:7323-8. [PMID: 20368415 DOI: 10.1073/pnas.0915075107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guidance receptor signaling is crucial for steering migrating cells. Despite this, we generally lack direct measurements of such signaling. Border cells in Drosophila migrate as a tightly associated group, but dynamically, with front and rear cells exchanging places. They use the receptor tyrosine kinase (RTK) PDGF/VEGF receptor (PVR) as a guidance receptor, perceiving the attractant Pvf1. Here we determine the spatial distribution of PVR signaling by generating an antibody that specifically detects activated PVR in situ. PVR activity is very low in migrating border cells, due to strong activity of cellular phosphatases. Measurements of signal at the cell cortex show variability but a strong bias for both total active PVR and specific activity of PVR to be elevated at the front versus side of the leading cell, often with several-fold difference in signal levels. This polarized active PVR signal requires the E3 ubiquitin ligase Cbl and the recycling regulator Rab11, indicating a dependency on receptor trafficking. The endogenous ligand gradient contributes to shaping of signaling by increasing the specific activity of PVR toward the source in front cells. Surprisingly, signaling is also elevated at the back versus the side of rear cells. This distally polarized distribution of active PVR is ligand independent. Thus the actual guidance signal transmitted in border cells appears to integrate perceived ligand distribution with cell polarity or cell orientation with respect to the cluster. A general implication is that both group configuration and extrinsic cues can directly modulate guidance receptor signaling during collective cell migration.
Collapse
|
194
|
Abstract
Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.
Collapse
Affiliation(s)
- Ewa Paluch
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
195
|
Aquino G, Endres RG. Increased accuracy of ligand sensing by receptor internalization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:021909. [PMID: 20365597 DOI: 10.1103/physreve.81.021909] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/21/2009] [Indexed: 05/29/2023]
Abstract
Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.
Collapse
Affiliation(s)
- Gerardo Aquino
- Division of Molecular Biosciences and Centre for Integrated Systems Biology at Imperial College, Imperial College London, SW7 2AZ London, United Kingdom
| | | |
Collapse
|
196
|
Mavrakis M, Pourquié O, Lecuit T. Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 2010; 137:373-87. [DOI: 10.1242/dev.031690] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Embryology and genetics have given rise to a mechanistic framework that explains the architecture of a developing organism. Until recently, however, such studies suffered from a lack of quantification and real-time visualization at the subcellular level, limiting their ability to monitor the dynamics of developmental processes. Live imaging using fluorescent proteins has overcome these limitations, uncovering unprecedented insights that call many established models into question. We review how the study of patterning, cell polarization and morphogenesis has benefited from this technology and discuss the possibilities offered by fluorescence imaging and by the contributions of quantitative disciplines.
Collapse
Affiliation(s)
- Manos Mavrakis
- IBDML (Institut de Biologie du Développement de Marseille Luminy), UMR6216 CNRS—Université de la Méditerranée, Parc Scientifique de Luminy BP 907, 13009 Marseille, France
| | - Olivier Pourquié
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) / Inserm U964 / CNRS UMR7104, 67400 Illkirch, France; and Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas Lecuit
- IBDML (Institut de Biologie du Développement de Marseille Luminy), UMR6216 CNRS—Université de la Méditerranée, Parc Scientifique de Luminy BP 907, 13009 Marseille, France
| |
Collapse
|
197
|
Abstract
For all animals, cell migration is an essential and highly regulated process. Cells migrate to shape tissues, to vascularize tissues, in wound healing, and as part of the immune response. Unfortunately, tumor cells can also become migratory and invade surrounding tissues. Some cells migrate as individuals, but many cell types will, under physiological conditions, migrate collectively in tightly or loosely associated groups. This includes invasive tumor cells. This review discusses different types of collective cell migration, including sheet movement, sprouting and branching, streams, and free groups, and highlights recent findings that provide insight into cells' organization and behavior. Cells performing collective migration share many cell biological characteristics with independently migrating cells but, by affecting one another mechanically and via signaling, these cell groups are subject to additional regulation and constraints. New properties that emerge from this connectivity can contribute to shaping, guiding, and ultimately ensuring tissue function.
Collapse
Affiliation(s)
- Pernille Rørth
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore.
| |
Collapse
|
198
|
Costa P, Parsons M. New insights into the dynamics of cell adhesions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:57-91. [PMID: 20801418 DOI: 10.1016/s1937-6448(10)83002-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adhesion to the extracellular matrix (ECM) and to adjacent cells is a fundamental requirement for survival, differentiation, and migration of numerous cell types during both embryonic development and adult homeostasis. Different types of adhesion structures have been classified within different cell types or tissue environments. Much is now known regarding the complexity of protein composition of these critical points of cell contact with the extracellular environment. It has become clear that adhesions are highly ordered, dynamic structures under tight spatial control at the subcellular level to enable localized responses to extracellular cues. However, it is only in the last decade that the relative dynamics of these adhesion proteins have been closely studied. Here, we provide an overview of the recent data arising from such studies of cell-matrix and cell-cell contact and an overview of the imaging strategies that have been developed and implemented to study the intricacies and hierarchy of protein turnover within adhesions.
Collapse
Affiliation(s)
- Patricia Costa
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, United Kingdom
| | | |
Collapse
|
199
|
Abstract
Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
Collapse
|
200
|
Kuraishi T, Nakagawa Y, Nagaosa K, Hashimoto Y, Ishimoto T, Moki T, Fujita Y, Nakayama H, Dohmae N, Shiratsuchi A, Yamamoto N, Ueda K, Yamaguchi M, Awasaki T, Nakanishi Y. Pretaporter, a Drosophila protein serving as a ligand for Draper in the phagocytosis of apoptotic cells. EMBO J 2009; 28:3868-78. [PMID: 19927123 PMCID: PMC2797060 DOI: 10.1038/emboj.2009.343] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/15/2009] [Indexed: 11/09/2022] Open
Abstract
Phagocytic removal of cells undergoing apoptosis is necessary for animal development and tissue homeostasis. Draper, a homologue of the Caenorhabditis elegans phagocytosis receptor CED-1, is responsible for the phagocytosis of apoptotic cells in Drosophila, but its ligand presumably present on apoptotic cells remains unknown. An endoplasmic reticulum protein that binds to the extracellular region of Draper was isolated. Loss of this protein, which we name Pretaporter, led to a reduced level of apoptotic cell clearance in embryos, and the overexpression of pretaporter in the mutant flies rescued this defect. Results from genetic analyses suggested that Pretaporter functionally interacts with Draper and the corresponding signal mediators. Pretaporter was exposed at the cell surface after the induction of apoptosis, and cells artificially expressing Pretaporter at their surface became susceptible to Draper-mediated phagocytosis. Finally, the incubation with Pretaporter augmented the tyrosine-phosphorylation of Draper in phagocytic cells. These results collectively suggest that Pretaporter relocates from the endoplasmic reticulum to the cell surface during apoptosis to serve as a ligand for Draper in the phagocytosis of apoptotic cells.
Collapse
Affiliation(s)
- Takayuki Kuraishi
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukiko Nakagawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kaz Nagaosa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yumi Hashimoto
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Ishimoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Moki
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yu Fujita
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Naoshi Dohmae
- Biomolecule Characterization Team, RIKEN, Wako, Saitama, Japan
| | - Akiko Shiratsuchi
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
- Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naoko Yamamoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koichi Ueda
- Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Kyoto, Japan
| | - Takeshi Awasaki
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yoshinobu Nakanishi
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
- Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|