151
|
Beckstead MJ, Howell RD. Progressive parkinsonism due to mitochondrial impairment: Lessons from the MitoPark mouse model. Exp Neurol 2021; 341:113707. [PMID: 33753138 PMCID: PMC8169575 DOI: 10.1016/j.expneurol.2021.113707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
The cardinal pathophysiological finding of Parkinson's disease (PD) is a chronic, progressive degeneration of dopamine (DA) neurons in the substantia nigra, which is responsible for the motor and some of the non-motor symptomatology. While the primary causes of nigrostriatal degeneration are hotly debated, considerable evidence supports a central role for impaired mitochondrial function. Postmortem analysis of PD patients reveals impaired respiratory chains and increased mutations of mitochondrial DNA (mtDNA), in addition to increased markers of oxidative stress indicative of mitochondrial impairment. Most animal models of PD, both genetic and toxin-based, target some component of mitochondrial function to reproduce aspects of the human disease. One model that continues to gain attention is the MitoPark mouse, created through a cell type-specific knockout of mitochondrial transcription factor A specifically in midbrain DA neurons. This model effectively recapitulates the slowly developing, adult onset motor decline seen in PD due to mass loss of DA neurons. MitoPark mice therefore represent an effective tool for studying the sequence of events that occurs in the early stages of DA neuron degeneration following mitochondrial impairment, as well as for testing the efficacy of potential disease-modifying therapies in a progressive model of neurodegeneration. A targeted review of key findings from MitoPark mice has not been published since the early years following the initial report of the model in 2007. The current review synthesizes findings from several groups that are exploring MitoPark mice and discusses implications for the future identification of disease-modifying treatments for PD.
Collapse
Affiliation(s)
- Michael J Beckstead
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA.
| | - Rebecca D Howell
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA
| |
Collapse
|
152
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Aleya L, Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37060-37081. [PMID: 34053042 DOI: 10.1007/s11356-021-14619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson's disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
153
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
154
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
155
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
156
|
Parkinson's disease-associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy. Transl Neurodegener 2021; 10:19. [PMID: 34127073 PMCID: PMC8204421 DOI: 10.1186/s40035-021-00243-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction plays a prominent role in the pathogenesis of Parkinson’s disease (PD), and several genes linked to familial PD, including PINK1 (encoding PTEN-induced putative kinase 1 [PINK1]) and PARK2 (encoding the E3 ubiquitin ligase Parkin), are directly involved in processes such as mitophagy that maintain mitochondrial health. The dominant p.D620N variant of vacuolar protein sorting 35 ortholog (VPS35) gene is also associated with familial PD but has not been functionally connected to PINK1 and PARK2. Methods To better mimic and study the patient situation, we used CRISPR-Cas9 to generate heterozygous human SH-SY5Y cells carrying the PD-associated D620N variant of VPS35. These cells were treated with a protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to induce the PINK1/Parkin-mediated mitophagy, which was assessed using biochemical and microscopy approaches. Results Mitochondria in the VPS35-D620N cells exhibited reduced mitochondrial membrane potential and appeared to already be damaged at steady state. As a result, the mitochondria of these cells were desensitized to the CCCP-induced collapse in mitochondrial potential, as they displayed altered fragmentation and were unable to accumulate PINK1 at their surface upon this insult. Consequently, Parkin recruitment to the cell surface was inhibited and initiation of the PINK1/Parkin-dependent mitophagy was impaired. Conclusion Our findings extend the pool of evidence that the p.D620N mutation of VPS35 causes mitochondrial dysfunction and suggest a converging pathogenic mechanism among VPS35, PINK1 and Parkin in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00243-4.
Collapse
|
157
|
Complicity of α-synuclein oligomer and calcium dyshomeostasis in selective neuronal vulnerability in Lewy body disease. Arch Pharm Res 2021; 44:564-573. [PMID: 34114191 PMCID: PMC8254713 DOI: 10.1007/s12272-021-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
α-Synuclein oligomers and Ca2+ dyshomeostasis have been thoroughly investigated with respect to the pathogenesis of Lewy body disease (LBD). In LBD, α-synuclein oligomers exhibit a neuron-specific cytoplasmic distribution. Highly active neurons and neurons with a high Ca2+ burden are prone to damage in LBD. The neuronal vulnerability may be determined by transneuronal axonal transmission of the pathological processes; however, this hypothesis seems inconsistent with pathological findings that neurons anatomically connected to LBD-vulnerable neurons, such as neurons in the ventral tegmentum, are spared in LBD. This review focuses on and discusses the crucial roles played by α-synuclein oligomers and Ca2+ dyshomeostasis in early intraneural pathophysiology in LBD-vulnerable neurons. A challenging view is proposed on the synergy between retrograde transport of α-synuclein and vesicular Ca release, whereby neuronal vulnerability is propagated backward along repeatedly activated signaling pathway.
Collapse
|
158
|
Marcantoni M, Fuchs A, Löw P, Bartsch D, Kiehn O, Bellardita C. Early delivery and prolonged treatment with nimodipine prevents the development of spasticity after spinal cord injury in mice. Sci Transl Med 2021; 12:12/539/eaay0167. [PMID: 32295897 DOI: 10.1126/scitranslmed.aay0167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Spasticity, one of the most frequent comorbidities of spinal cord injury (SCI), disrupts motor recovery and quality of life. Despite major progress in neurorehabilitative and pharmacological approaches, therapeutic strategies for treating spasticity are lacking. Here, we show in a mouse model of chronic SCI that treatment with nimodipine-an L-type calcium channel blocker already approved from the European Medicine Agency and from the U.S. Food and Drug Administration-starting in the acute phase of SCI completely prevents the development of spasticity measured as increased muscle tone and spontaneous spasms. The aberrant muscle activities associated with spasticity remain inhibited even after termination of the treatment. Constitutive and conditional silencing of the L-type calcium channel CaV1.3 in neuronal subtypes demonstrated that this channel mediated the preventive effect of nimodipine on spasticity after SCI. This study identifies a treatment protocol and suggests that targeting CaV1.3 could prevent spasticity after SCI.
Collapse
Affiliation(s)
- Maite Marcantoni
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen Denmark
| | - Andrea Fuchs
- Department of Neuroscience, Karolinska Institutet, 17162 Solna, Sweden
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, 17162 Solna, Sweden
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, 28159 Mannheim, Germany
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen Denmark. .,Department of Neuroscience, Karolinska Institutet, 17162 Solna, Sweden
| | - Carmelo Bellardita
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen Denmark
| |
Collapse
|
159
|
Vitalakumar D, Sharma A, Flora SJS. Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol 2021; 35:e22830. [PMID: 34047408 DOI: 10.1002/jbt.22830] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Ferroptosis is a newly identified regulated form of cell death, which is thought to play a major role in neurodegenerative diseases. In this review, we discuss recent studies elucidating the molecular mechanisms involved in the regulation and execution of ferroptotic cell death and also its role in the brain. Ferroptosis is regulated mainly via iron homeostasis, glutathione metabolism, and lipid peroxidation. Ferroptotic cell death and pro-ferroptotic factors are correlated with the etiopathogenesis of Parkinson's disease (PD) and Alzheimer's disease (AD). Ferroptosis and etiological factors act synergistically in PD and AD pathogenesis. Furthermore, several preclinical and clinical studies targeting ferroptosis in PD and AD have also shown positive results. Evidence of ferroptosis in the brain thus gives new insights into understanding neurodegenerative diseases. Ferroptosis studies in the brain are still in their infancy, but the existing pieces of evidence suggest a strong correlation between ferroptotic cell death and neurodegenerative diseases. Thus, ferroptosis might be a promising target for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- D Vitalakumar
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ankita Sharma
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Swaran J S Flora
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
160
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
161
|
Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR. Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 2021; 41:101896. [PMID: 33799121 PMCID: PMC8044696 DOI: 10.1016/j.redox.2021.101896] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca+2 channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.
Collapse
Affiliation(s)
- L Ma
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Gholam Azad
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Dharmasivam
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - V Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - R J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Y Feng
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - D L Pountney
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - K F Tonissen
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - G D Mellick
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - I Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - D R Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
162
|
Milanese C, Gabriels S, Barnhoorn S, Cerri S, Ulusoy A, Gornati SV, Wallace DF, Blandini F, Di Monte DA, Subramaniam VN, Mastroberardino PG. Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death Differ 2021; 28:1720-1732. [PMID: 33323945 PMCID: PMC8166951 DOI: 10.1038/s41418-020-00698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023] Open
Abstract
Alterations in the metabolism of iron and its accumulation in the substantia nigra pars compacta accompany the pathogenesis of Parkinson's disease (PD). Changes in iron homeostasis also occur during aging, which constitutes a PD major risk factor. As such, mitigation of iron overload via chelation strategies has been considered a plausible disease modifying approach. Iron chelation, however, is imperfect because of general undesired side effects and lack of specificity; more effective approaches would rely on targeting distinctive pathways responsible for iron overload in brain regions relevant to PD and, in particular, the substantia nigra. We have previously demonstrated that the Transferrin/Transferrin Receptor 2 (TfR2) iron import mechanism functions in nigral dopaminergic neurons, is perturbed in PD models and patients, and therefore constitutes a potential therapeutic target to halt iron accumulation. To validate this hypothesis, we generated mice with targeted deletion of TfR2 in dopaminergic neurons. In these animals, we modeled PD with multiple approaches, based either on neurotoxin exposure or alpha-synuclein proteotoxic mechanisms. We found that TfR2 deletion can provide neuroprotection against dopaminergic degeneration, and against PD- and aging-related iron overload. The effects, however, were significantly more pronounced in females rather than in males. Our data indicate that the TfR2 iron import pathway represents an amenable strategy to hamper PD progression. Data also suggest, however, that therapeutic strategies targeting TfR2 should consider a potential sexual dimorphism in neuroprotective response.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Rotterdam, the Netherlands ,grid.7678.e0000 0004 1757 7797IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Sylvia Gabriels
- Department of Molecular Genetics, Rotterdam, the Netherlands
| | | | | | - Ayse Ulusoy
- grid.424247.30000 0004 0438 0426German Centre for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - S. V. Gornati
- grid.5645.2000000040459992XDepartment of Neuroscience Erasmus MC, Rotterdam, the Netherlands
| | - Daniel F. Wallace
- grid.1024.70000000089150953School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Fabio Blandini
- IRCCS Mondino Foundation, 27100 Pavia, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Donato A. Di Monte
- grid.424247.30000 0004 0438 0426German Centre for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - V. Nathan Subramaniam
- grid.1024.70000000089150953School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Pier G. Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands ,grid.7678.e0000 0004 1757 7797IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy ,grid.158820.60000 0004 1757 2611Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
163
|
Zhang W, Chen H, Ding L, Gong J, Zhang M, Guo W, Xu P, Li S, Zhang Y. Trojan Horse Delivery of 4,4'-Dimethoxychalcone for Parkinsonian Neuroprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004555. [PMID: 33977069 PMCID: PMC8097374 DOI: 10.1002/advs.202004555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive deterioration of dopamine (DA) neurons, and therapeutic endeavors are aimed at preventing DA loss. However, lack of effective brain delivery approaches limits this strategy. In this study, a "Trojan horse" system is used for substantia nigra-targeted delivery of a blood brain barrier-penetrating peptide (RVG29) conjugated to the surface of nanoparticles loaded with the natural autophagy inducer 4,4'-dimethoxychalcone (DMC) (designated as RVG-nDMC). Here, the neuroprotective effects of DMC are demonstrated in PD. Specifically, RVG-nDMC penetrates the blood brain barrier with enhanced brain-targeted delivery efficiency and is internalized by DA neurons and microglia. In vivo studies demonstrate that RVG-nDMC ameliorates motor deficits and nigral DA neuron death in PD mice without causing overt adverse effects in the brain or other major organs. Moreover, RVG-nDMC reverses tyrosine hydroxylase ubiquitination and degradation, alleviates oxidative stress in DA neurons, and exerts antiinflammatory effects in microglia. The "Trojan horse" strategy for targeted delivery of DMC thus provides a potentially powerful and clinically feasible approach for PD intervention.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Huaqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Liuyan Ding
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Junwei Gong
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Mengran Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Wenyuan Guo
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Pingyi Xu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Yunlong Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
164
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
165
|
Intersection between Redox Homeostasis and Autophagy: Valuable Insights into Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10050694. [PMID: 33924878 PMCID: PMC8146521 DOI: 10.3390/antiox10050694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a main degradation pathway for maintaining cellular homeostasis, and redox homeostasis have recently been considered to play protective roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Increased levels of reactive oxygen species (ROS) in neurons can induce mitochondrial damage and protein aggregation, thereby resulting in neurodegeneration. Oxidative stress is one of the major activation signals for the induction of autophagy. Upon activation, autophagy can remove ROS, damaged mitochondria, and aggregated proteins from the cells. Thus, autophagy can be an effective strategy to maintain redox homeostasis in the brain. However, the interaction between redox homeostasis and autophagy is not clearly elucidated. In this review, we discuss recent studies on the relationship between redox homeostasis and autophagy associated with neurodegenerative diseases and propose that autophagy induction through pharmacological intervention or genetic activation might be a promising strategy to treat these disorders.
Collapse
|
166
|
Tseng YF, Lin HC, Chao JCJ, Hsu CY, Lin HL. Calcium Channel blockers are associated with reduced risk of Parkinson's disease in patients with hypertension: A population-based retrospective cohort study. J Neurol Sci 2021; 424:117412. [PMID: 33799214 DOI: 10.1016/j.jns.2021.117412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The use of dihydropyridine calcium channel blockers (DCCBs) was proposed to reduce the risk of Parkinson's disease (PD). This study aimed to evaluate the association between DCCB and its dose effect and the risk of PD in patients with newly diagnosed hypertension. METHODS This population-based retrospective cohort study enrolled 107,207 patients with newly diagnosed hypertension, between 2001 and 2013, from Taiwan's National Health Insurance Research Database. Patients who had PD before hypertension or were taking antipsychotics for more than 30 days in the 6 months prior to the end of the observation period were excluded. A Cox proportional hazard model was used to estimate the risk of PD in different groups. The dose-related effects of DCCB on the risk of PD were evaluated according to the cumulative defined daily dose (DDD). RESULTS We observed 832 (1.2%) PD cases in patients treated with DCCB as compared to 950 (2.4%) PD cases in those not treated with DCCB, during a median follow-up duration of 8.3 years and 6.2 years, respectively. The risk of PD in the DCCB-treated group (hazard ratio [HR] = 0.50) was significantly lower than that in the group without DCCB treatment. DCCB reduced the risk of PD in a dose-dependent manner, with HRs ranging from 0.61 to 0.37 for DDDs of 90-180 to >720. CONCLUSIONS DCCB treatment was associated with a significantly reduced risk of PD in patients with newly diagnosed hypertension. Further clinical trials are needed to confirm the proposed neuroprotective effects of DCCB in PD.
Collapse
Affiliation(s)
- Yuan-Fu Tseng
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jane Chen-Jui Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hsiu-Li Lin
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City, Taiwan.
| |
Collapse
|
167
|
Jiang MC, Birch DV, Heckman CJ, Tysseling VM. The Involvement of Ca V1.3 Channels in Prolonged Root Reflexes and Its Potential as a Therapeutic Target in Spinal Cord Injury. Front Neural Circuits 2021; 15:642111. [PMID: 33867945 PMCID: PMC8044857 DOI: 10.3389/fncir.2021.642111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in not only the loss of voluntary muscle control, but also in the presence of involuntary movement or spasms. These spasms post-SCI involve hyperexcitability in the spinal motor system. Hyperactive motor commands post SCI result from enhanced excitatory postsynaptic potentials (EPSPs) and persistent inward currents in voltage-gated L-type calcium channels (LTCCs), which are reflected in evoked root reflexes with different timings. To further understand the contributions of these cellular mechanisms and to explore the involvement of LTCC subtypes in SCI-induced hyperexcitability, we measured root reflexes with ventral root recordings and motoneuron activities with intracellular recordings in an in vitro preparation using a mouse model of chronic SCI (cSCI). Specifically, we explored the effects of 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CPT), a selective negative allosteric modulator of CaV1.3 LTCCs. Our results suggest a hyperexcitability in the spinal motor system in these SCI mice. Bath application of CPT displayed slow onset but dose-dependent inhibition of the root reflexes with the strongest effect on LLRs. However, the inhibitory effect of CPT is less potent in cSCI mice than in acute SCI (aSCI) mice, suggesting changes either in composition of CaV1.3 or other cellular mechanisms in cSCI mice. For intracellular recordings, the intrinsic plateau potentials, was observed in more motoneurons in cSCI mice than in aSCI mice. CPT inhibited the plateau potentials and reduced motoneuron firings evoked by intracellular current injection. These results suggest that the LLR is an important target and that CPT has potential in the therapy of SCI-induced muscle spasms.
Collapse
Affiliation(s)
- Mingchen C Jiang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Derin V Birch
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
168
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non-cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non-cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.
Collapse
Affiliation(s)
- Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| |
Collapse
|
169
|
Generation of Reactive Oxygen Species by Mitochondria. Antioxidants (Basel) 2021; 10:antiox10030415. [PMID: 33803273 PMCID: PMC8001687 DOI: 10.3390/antiox10030415] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are series of chemical products originated from one or several electron reductions of oxygen. ROS are involved in physiology and disease and can also be both cause and consequence of many biological scenarios. Mitochondria are the main source of ROS in the cell and, particularly, the enzymes in the electron transport chain are the major contributors to this phenomenon. Here, we comprehensively review the modes by which ROS are produced by mitochondria at a molecular level of detail, discuss recent advances in the field involving signalling and disease, and the involvement of supercomplexes in these mechanisms. Given the importance of mitochondrial ROS, we also provide a schematic guide aimed to help in deciphering the mechanisms involved in their production in a variety of physiological and pathological settings.
Collapse
|
170
|
Weng Q, Sun H, Fang C, Xia F, Liao H, Lee J, Wang J, Xie A, Ren J, Guo X, Li F, Yang B, Ling D. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun 2021; 12:1436. [PMID: 33664241 PMCID: PMC7933428 DOI: 10.1038/s41467-021-21714-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) is a prevalent and lethal adverse event that severely affects cancer patients receiving chemotherapy. It is correlated with the collateral damage to renal cells caused by reactive oxygen species (ROS). Currently, ROS management is a practical strategy that can reduce the risk of chemotherapy-related AKI, but at the cost of chemotherapeutic efficacy. Herein, we report catalytic activity tunable ceria nanoparticles (CNPs) that can prevent chemotherapy-induced AKI without interference with chemotherapeutic agents. Specifically, in the renal cortex, CNPs exhibit catalytic activity that decomposes hydrogen peroxide, and subsequently regulate the ROS-involved genes by activating the Nrf2/Keap1 signaling pathway. These restore the redox homeostasis for the protection of kidney tubules. Under an acidic tumor microenvironment, CNPs become inert due to the excessive H+ that disrupts the re-exposure of active catalytic sites, allowing a buildup of chemotherapy-mediated ROS generation to kill cancer cells. As ROS-modulating agents, CNPs incorporated with context-dependent catalytic activity, hold a great potential for clinical prevention and treatment of AKI in cancer patients.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chunyan Fang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fan Xia
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Liao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - An Xie
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiafeng Ren
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xia Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
171
|
Ortner NJ. Voltage-Gated Ca 2+ Channels in Dopaminergic Substantia Nigra Neurons: Therapeutic Targets for Neuroprotection in Parkinson's Disease? Front Synaptic Neurosci 2021; 13:636103. [PMID: 33716705 PMCID: PMC7952618 DOI: 10.3389/fnsyn.2021.636103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
The loss of dopamine (DA)-producing neurons in the substantia nigra pars compacta (SN) underlies the core motor symptoms of the progressive movement disorder Parkinson's disease (PD). To date, no treatment to prevent or slow SN DA neurodegeneration exists; thus, the identification of the underlying factors contributing to the high vulnerability of these neurons represents the basis for the development of novel therapies. Disrupted Ca2+ homeostasis and mitochondrial dysfunction seem to be key players in the pathophysiology of PD. The autonomous pacemaker activity of SN DA neurons, in combination with low cytosolic Ca2+ buffering, leads to large somatodendritic fluctuations of intracellular Ca2+ levels that are linked to elevated mitochondrial oxidant stress. L-type voltage-gated Ca2+ channels (LTCCs) contribute to these Ca2+ oscillations in dendrites, and LTCC inhibition was beneficial in cellular and in vivo animal models of PD. However, in a recently completed phase 3 clinical trial, the dihydropyridine (DHP) LTCC inhibitor isradipine failed to slow disease progression in early PD patients, questioning the feasibility of DHPs for PD therapy. Novel evidence also suggests that R- and T-type Ca2+ channels (RTCCs and TTCCs, respectively) represent potential PD drug targets. This short review aims to (re)evaluate the therapeutic potential of LTCC, RTCC, and TTCC inhibition in light of novel preclinical and clinical data and the feasibility of available Ca2+ channel blockers to modify PD disease progression. I also summarize their cell-specific roles for SN DA neuron function and describe how their gating properties allow activity (and thus their contribution to stressful Ca2+ oscillations) during pacemaking.
Collapse
Affiliation(s)
- Nadine J. Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
172
|
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med 2021; 27:17. [PMID: 33632120 PMCID: PMC7905684 DOI: 10.1186/s10020-021-00279-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second more common neurodegenerative disease with increasing incidence worldwide associated to the population ageing. Despite increasing awareness and significant research advancements, treatment options comprise dopamine repleting, symptomatic therapies that have significantly increased quality of life and life expectancy, but no therapies that halt or reverse disease progression, which remain a great, unmet goal in PD research. Large biomarker development programs are undertaken to identify disease signatures that will improve patient selection and outcome measures in clinical trials. In this review, we summarize PD-related mechanisms that can serve as targets of therapeutic interventions aiming to slow or modify disease progression, as well as previous and ongoing clinical trials in each field, and discuss future perspectives.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden
| | - Paraskevi-Evita Papathoma
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Danderyd Hospital Stockholm, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden.
| |
Collapse
|
173
|
Mencke P, Boussaad I, Romano CD, Kitami T, Linster CL, Krüger R. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson's Disease. Cells 2021; 10:347. [PMID: 33562311 PMCID: PMC7915027 DOI: 10.3390/cells10020347] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
DJ-1 is a multifunctional protein associated with pathomechanisms implicated in different chronic diseases including neurodegeneration, cancer and diabetes. Several of the physiological functions of DJ-1 are not yet fully understood; however, in the last years, there has been increasing evidence for a potential role of DJ-1 in the regulation of cellular metabolism. Here, we summarize the current knowledge on specific functions of DJ-1 relevant to cellular metabolism and their role in modulating metabolic pathways. Further, we illustrate pathophysiological implications of the metabolic effects of DJ-1 in the context of neurodegeneration in Parkinson´s disease.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Chiara D. Romano
- Biospecimen Research Group, Integrated Biobank of Luxembourg, Luxembourg Institute of Health (LIH), 3531 Dudelange, Luxembourg;
- Enzymology & Metabolism, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Toshimori Kitami
- RIKEN Outpost Laboratory, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Carole L. Linster
- Enzymology & Metabolism, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg (Belair), Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
174
|
Konno T, Melo EP, Chambers JE, Avezov E. Intracellular Sources of ROS/H 2O 2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells 2021; 10:233. [PMID: 33504070 PMCID: PMC7912550 DOI: 10.3390/cells10020233] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) are produced continuously throughout the cell as products of various redox reactions. Yet these products function as important signal messengers, acting through oxidation of specific target factors. Whilst excess ROS production has the potential to induce oxidative stress, physiological roles of ROS are supported by a spatiotemporal equilibrium between ROS producers and scavengers such as antioxidative enzymes. In the endoplasmic reticulum (ER), hydrogen peroxide (H2O2), a non-radical ROS, is produced through the process of oxidative folding. Utilisation and dysregulation of H2O2, in particular that generated in the ER, affects not only cellular homeostasis but also the longevity of organisms. ROS dysregulation has been implicated in various pathologies including dementia and other neurodegenerative diseases, sanctioning a field of research that strives to better understand cell-intrinsic ROS production. Here we review the organelle-specific ROS-generating and consuming pathways, providing evidence that the ER is a major contributing source of potentially pathologic ROS.
Collapse
Affiliation(s)
- Tasuku Konno
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Eduardo Pinho Melo
- CCMAR—Centro de Ciências do Mar, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Joseph E. Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Edward Avezov
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
175
|
Patra S, Mahapatra KK, Praharaj PP, Panigrahi DP, Bhol CS, Mishra SR, Behera BP, Singh A, Jena M, Bhutia SK. Intricate role of mitochondrial calcium signalling in mitochondrial quality control for regulation of cancer cell fate. Mitochondrion 2021; 57:230-240. [PMID: 33476771 DOI: 10.1016/j.mito.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial quality control is crucial for sustaining cellular maintenance. Mitochondrial Ca2+ plays an important role in the maintenance of mitochondrial quality control through regulation of mitochondrial dynamics, mitophagy and mitochondrial biogenesis for preserving cellular homeostasis. The regulation of this dynamic interlink between these mitochondrial networks and mitochondrial Ca2+ appears indispensable for the adaptation of cells under external stimuli. Moreover, dysregulation of mitochondrial Ca2+ divulges impaired mitochondrial control that results in several pathological conditions such as cancer. Hence this review untangles the interplay between mitochondrial Ca2+ and quality control that govern mitochondrial health and mitochondrial coordinates in the development of cancer.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mrutyunjay Jena
- PG Department of Botany, Berhampur University, Berhampur 760007, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
176
|
Jungling A, Reglodi D, Maasz G, Zrinyi Z, Schmidt J, Rivnyak A, Horvath G, Pirger Z, Tamas A. Alterations of Nigral Dopamine Levels in Parkinson's Disease after Environmental Enrichment and PACAP Treatment in Aging Rats. Life (Basel) 2021; 11:life11010035. [PMID: 33429934 PMCID: PMC7827131 DOI: 10.3390/life11010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The neuroprotective effects of environmental enrichment and PACAP (pituitary adenylate cyclase-activating polypeptide) are well-described in Parkinson’s disease. The aim of our study is to investigate the beneficial effects of these factors in aging parkinsonian rats. Newborn Wistar rats were divided into standard and enriched groups according to their environmental conditions. Standard animals were raised under regular conditions. During the first five postnatal weeks, enriched pups were placed in larger cages with different objects. Aging animals received (1) saline, (2) 6-hydroxidopamine (6-OHDA), or (3) 6-OHDA + PACAP injections into the left substantia nigra (s.n.). On the seventh postoperative day, the left and right s.n. were collected. The s.n. of young and aging unoperated animals were also examined in our experiment. We determined the dopamine (DA) levels by the HPLC-MS technique, while the sandwich ELISA method was used to measure the Parkinson disease protein 7 (PARK7) protein levels. In healthy animals, we found an age-related decrease of DA levels. In aging parkinsonian-enriched rats, the operation did not result in a significant DA loss. PACAP treatment could prevent the DA loss in both the standard and enriched groups. All injured PACAP-treated rats showed remarkably higher protective PARK7 levels. The protective effect of PACAP correlated with the increase of the DA and PARK7 levels.
Collapse
Affiliation(s)
- Adel Jungling
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Dora Reglodi
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Gabor Maasz
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Zita Zrinyi
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Adam Rivnyak
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Gabor Horvath
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Zsolt Pirger
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Andrea Tamas
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
- Correspondence: or ; Tel.: +36-72-536-001 (ext. 36421)
| |
Collapse
|
177
|
Inoshita T, Imai Y. Cytosolic and Mitochondrial Ca 2+ Imaging in Drosophila Dopaminergic Neurons. Methods Mol Biol 2021; 2322:207-214. [PMID: 34043206 DOI: 10.1007/978-1-0716-1495-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ATP-producing organelle mitochondrion controls cellular or synaptic Ca2+ concentrations through temporal uptake of Ca2+ outside of the mitochondria. Although intracellular Ca2+ influx occurs during neuronal activity, a persistently higher concentration of intracellular Ca2+ is neurotoxic. Healthy mitochondria ensure rapid Ca2+ uptake, which is necessary for proper neuronal activity. Mitochondrial Ca2+ buffering activity decreases in aged or sick neurons. In this chapter, we will introduce our protocol for evaluating Ca2+ buffering activity through the mitochondria during neuronal activity of dopaminergic neurons.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
178
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
179
|
Clark EH, Vázquez de la Torre A, Hoshikawa T, Briston T. Targeting mitophagy in Parkinson's disease. J Biol Chem 2021; 296:100209. [PMID: 33372898 PMCID: PMC7948953 DOI: 10.1074/jbc.rev120.014294] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The genetics and pathophysiology of Parkinson's disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signaling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1-Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving preclinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.
Collapse
Affiliation(s)
- Emily H Clark
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | | | - Tamaki Hoshikawa
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | - Thomas Briston
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom.
| |
Collapse
|
180
|
Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:949-970. [PMID: 34120916 PMCID: PMC8461657 DOI: 10.3233/jpd-212671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Evidence shows that altered retinoic acid signaling may contribute to the pathogenesis and pathophysiology of Parkinson's disease (PD). Retinoic acid is the bioactive derivative of the lipophilic vitamin A. Vitamin A is involved in several important homeostatic processes, such as cell differentiation, antioxidant activity, inflammation and neuronal plasticity. The role of vitamin A and its derivatives in the pathogenesis and pathophysiology of neurodegenerative diseases, and their potential as therapeutics, has drawn attention for more than 10 years. However, the literature sits in disparate fields. Vitamin A could act at the crossroad of multiple environmental and genetic factors of PD. The purpose of this review is to outline what is known about the role of vitamin A metabolism in the pathogenesis and pathophysiology of PD. We examine key biological systems and mechanisms that are under the control of vitamin A and its derivatives, which are (or could be) exploited for therapeutic potential in PD: the survival of dopaminergic neurons, oxidative stress, neuroinflammation, circadian rhythms, homeostasis of the enteric nervous system, and hormonal systems. We focus on the pivotal role of ALDH1A1, an enzyme expressed by dopaminergic neurons for the detoxification of these neurons, which is under the control of retinoic acid. By providing an integrated summary, this review will guide future studies on the potential role of vitamin A in the management of symptoms, health and wellbeing for PD patients.
Collapse
Affiliation(s)
- Anaıs Marie
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Morgane Darricau
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Katia Touyarot
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand (Center of Research Excellence), Dunedin, New Zealand
| | | |
Collapse
|
181
|
Chin TY, Wang CC, Ma KH, Kuo CW, Hu MK, Chueh SH. Antioxidative effect of DJ-1 is enhanced in NG108-15 cells by DPMQ-induced copper influx. Am J Physiol Cell Physiol 2020; 320:C635-C651. [PMID: 33356946 DOI: 10.1152/ajpcell.00515.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of copper homeostasis is closely involved in neurodegenerative disorders. This study examined whether a hybrid copper-binding compound, (E)-2-(4-(dimethylamino)phenylimino)methyl)quinolin-8-ol (DPMQ), is able to protect NG108-15 cells against oxidative stress. We found that treatment of cells with rotenone or hydrogen peroxide increased cellular oxidative stress and resulted in mitochondrial dysfunction and apoptosis. The cellular levels of Nrf2 and the Cu2+ chaperone DJ-1 were also decreased. These oxidative detrimental effects were all inhibited when cells were cotreated with DPMQ. DPMQ increased cellular Cu2+ content, DJ-1 protein level, superoxide dismutase (SOD) activity, and Nrf2 nuclear translocation under basal state. The activity of SOD decreased under redox imbalance and this decrease was blocked by DPMQ treatment, while the protein level of SOD1 remained unaltered regardless of the oxidative stress and DPMQ treatment. Using endogenous proteins, coimmunoprecipitation showed that DJ-1 bound with SOD1 and Nrf2 individually. The amount of Nrf2, bound to DJ-1, consistently reflected its cellular level, while the amount of SOD1, bound to DJ-1, was potentiated by DPMQ, being greater in the basal state than under redox imbalance. Simultaneous inclusion of nonpermeable Cu2+ chelator tetrathiomolybdate or triethylenetetramine during DPMQ treatment blocked all aforementioned effects of DPMQ, showing that the dependency of the effect of DPMQ on extracellular Cu2+. In addition, silencing of DJ-1 blocked the protection of DPMQ against oxidative stress. Taken all together, our results suggest that DPMQ stabilizes DJ-1 in a Cu2+-dependent manner, which then brings about SOD1 activation and Nrf2 nuclear translocation; these together alleviate cellular oxidative stress.
Collapse
Affiliation(s)
- Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Wei Kuo
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Kuan Hu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
182
|
Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK. Dysfunction of Mitochondrial Ca 2+ Regulatory Machineries in Brain Aging and Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:599792. [PMID: 33392190 PMCID: PMC7775422 DOI: 10.3389/fcell.2020.599792] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) play critical roles in neuronal processes, such as signaling pathway activation, transcriptional regulation, and synaptic transmission initiation. Therefore, the regulation of Ca2+ homeostasis is one of the most important processes underlying the basic cellular viability and function of the neuron. Multiple components, including intracellular organelles and plasma membrane Ca2+-ATPase, are involved in neuronal Ca2+ control, and recent studies have focused on investigating the roles of mitochondria in synaptic function. Numerous mitochondrial Ca2+ regulatory proteins have been identified in the past decade, with studies demonstrating the tissue- or cell-type-specific function of each component. The mitochondrial calcium uniporter and its binding subunits are major inner mitochondrial membrane proteins contributing to mitochondrial Ca2+ uptake, whereas the mitochondrial Na+/Ca2+ exchanger (NCLX) and mitochondrial permeability transition pore (mPTP) are well-studied proteins involved in Ca2+ extrusion. The level of cytosolic Ca2+ and the resulting characteristics of synaptic vesicle release properties are controlled via mitochondrial Ca2+ uptake and release at presynaptic sites, while in dendrites, mitochondrial Ca2+ regulation affects synaptic plasticity. During brain aging and the progress of neurodegenerative disease, mitochondrial Ca2+ mishandling has been observed using various techniques, including live imaging of Ca2+ dynamics. Furthermore, Ca2+ dysregulation not only disrupts synaptic transmission but also causes neuronal cell death. Therefore, understanding the detailed pathophysiological mechanisms affecting the recently discovered mitochondrial Ca2+ regulatory machineries will help to identify novel therapeutic targets. Here, we discuss current research into mitochondrial Ca2+ regulatory machineries and how mitochondrial Ca2+ dysregulation contributes to brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Hyunsu Jung
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Su Yeon Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Fatma Sema Canbakis Cecen
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| | - Yongcheol Cho
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
183
|
Minakaki G, Krainc D, Burbulla LF. The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Front Cell Dev Biol 2020; 8:580634. [PMID: 33381501 PMCID: PMC7767856 DOI: 10.3389/fcell.2020.580634] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by progressive bradykinesia, rigidity, resting tremor, and gait impairment, as well as a spectrum of non-motor symptoms including autonomic and cognitive dysfunction. The cardinal motor symptoms of PD stem from the loss of substantia nigra (SN) dopaminergic (DAergic) neurons, and it remains unclear why SN DAergic neurons are preferentially lost in PD. However, recent identification of several genetic PD forms suggests that mitochondrial and lysosomal dysfunctions play important roles in the degeneration of midbrain dopamine (DA) neurons. In this review, we discuss the interplay of cell-autonomous mechanisms linked to DAergic neuron vulnerability and alpha-synuclein homeostasis. Emerging studies highlight a deleterious feedback cycle, with oxidative stress, altered DA metabolism, dysfunctional lysosomes, and pathological alpha-synuclein species representing key events in the pathogenesis of PD. We also discuss the interactions of alpha-synuclein with toxic DA metabolites, as well as the biochemical links between intracellular iron, calcium, and alpha-synuclein accumulation. We suggest that targeting multiple pathways, rather than individual processes, will be important for developing disease-modifying therapies. In this context, we focus on current translational efforts specifically targeting lysosomal function, as well as oxidative stress via calcium and iron modulation. These efforts could have therapeutic benefits for the broader population of sporadic PD and related synucleinopathies.
Collapse
Affiliation(s)
- Georgia Minakaki
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
184
|
Martinez-Banaclocha M. Proteomic Complexity in Parkinson's Disease: A Redox Signaling Perspective of the Pathophysiology and Progression. Neuroscience 2020; 453:287-300. [PMID: 33212217 DOI: 10.1016/j.neuroscience.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a prevalent age-related neurodegenerative disorder that results in the progressive impairment of motor and cognitive functions. The majority of PD cases are sporadic, and only 5% of patients are associated with mutations in a few genes, which cause the early onset or familial PD. Environmental toxic substances and the individual genetic susceptibility play a role in sporadic cases, but despite significant efforts to treat and prevent the disease, the pathophysiological mechanisms leading to its onset and progress are not fully understood. In the last decade, genomic and proteomic studies have shown an increasing molecular complexity of sporadic PD, suggesting that a broad spectrum of biochemical pathways underlie its progression. Recent investigations and the literature review suggest the potential role of deregulation of the sensitive-cysteine proteome as a convergent pathogenic mechanism that may contribute to this complexity, opening new therapeutic opportunities.
Collapse
|
185
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
186
|
Pan G, Zhang H, Zhu A, Lin Y, Zhang L, Ye B, Cheng J, Shen W, Jin L, Liu C, Xie Q, Chen X. Treadmill exercise attenuates cerebral ischaemic injury in rats by protecting mitochondrial function via enhancement of caveolin-1. Life Sci 2020; 264:118634. [PMID: 33148419 DOI: 10.1016/j.lfs.2020.118634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
AIMS Exercise training has a neuroprotective effect against ischaemic injury, but the underlying mechanism is not completely clear. This study explored the potential mechanisms underlying the protective effects of treadmill training and caveolin-1 regulation against mitochondrial dysfunction in cerebral ischaemic injury. MAIN METHODS After middle cerebral artery occlusion (MCAO) surgery, rats were subjected to treadmill training and received daidzein injections and combined therapy. A series of analyses, including neurological function scoring; body weight measurement; Nissl, haematoxylin and eosin staining; cerebral infarction volume assessment; mitochondrial morphology examination; caveolin-1, cytoplasmic and mitochondrial cytochrome C (CytC), and translocase of outer membrane 20 (TOM20) expression analysis; apoptosis index analysis; and transmission electron microscopy were conducted. KEY FINDINGS Treadmill training increased caveolin-1 expression, reduced neurobehavioral scores and cerebral infarction volumes, improved tissue morphology, reduced neuronal loss, inhibited mitochondrial outer membrane permeabilization (MOMP) through the caveolin-1 pathway, prevented excessive Cyt-C release from mitochondria, and reduced the degrees of apoptosis and mitochondrial damage. In addition, treadmill training increased the expression of TOM20 through the caveolin-1 pathway and maintained import signal function, thereby protecting mitochondrial integrity. SIGNIFICANCE Treadmill exercise protected mitochondrial integrity and inhibited the endogenous mitochondrial apoptosis pathway. The damage of cerebral ischaemia was alleviated in rats through enhancement of caveolin-1 by treadmill exercise.
Collapse
Affiliation(s)
- Guoyuan Pan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China; Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, Zhejiang Province 310012, China
| | - Huimei Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Anqi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Yao Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Lili Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Bingyun Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Jingyan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Weimin Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Lingqin Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Chan Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Qingfeng Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China
| | - Xiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang Province 325027, China.
| |
Collapse
|
187
|
Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science 2020; 370:66-69. [PMID: 33004513 DOI: 10.1126/science.abb8587] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dementia is a rapidly rising global health crisis that silently disables families and ends lives and livelihoods around the world. To date, however, no early biomarkers or effective therapies exist. It is now clear that brain microglia are more than mere bystanders or amyloid phagocytes; they can act as governors of neuronal function and homeostasis in the adult brain. Here, we highlight the fundamental role of microglia as tissue-resident macrophages in neuronal health. Then, we suggest how chronic impairment in microglia-neuron cross-talk may secure the permanence of the failure of synaptic and neuronal function and health in Alzheimer's and Parkinson's diseases. Understanding how to assess and modulate microglia-neuron interactions critical for brain health will be key to developing effective therapies for dementia.
Collapse
Affiliation(s)
- Tim Bartels
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
188
|
Sun Y, Nascimento Da Conceicao V, Ahamad N, Madesh M, Singh BB. Spatial localization of SOCE channels and its modulators regulate neuronal physiology and contributes to pathology. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
189
|
Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. ACTA ACUST UNITED AC 2020; 91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
190
|
Cooper G, Kang S, Perez-Rosello T, Guzman JN, Galtieri D, Xie Z, Kondapalli J, Mordell J, Silverman RB, Surmeier DJ. A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of Ca V1.3 L-Type Calcium Channels. ACS Chem Biol 2020; 15:2539-2550. [PMID: 32881483 DOI: 10.1021/acschembio.0c00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ channels with a CaV1.3 pore-forming α1 subunit have been implicated in both neurodegenerative and neuropsychiatric disorders, motivating the development of selective and potent inhibitors of CaV1.3 versus CaV1.2 channels, the calcium channels implicated in hypertensive disorders. We have previously identified pyrimidine-2,4,6-triones (PYTs) that preferentially inhibit CaV1.3 channels, but the structural determinants of their interaction with the channel have not been identified, impeding their development into drugs. By a combination of biochemical, computational, and molecular biological approaches, it was found that PYTs bind to the dihydropyridine (DHP) binding pocket of the CaV1.3 subunit, establishing them as negative allosteric modulators of channel gating. Site-directed mutagenesis, based on homology models of CaV1.3 and CaV1.2 channels, revealed that a single amino acid residue within the DHP binding pocket (M1078) is responsible for the selectivity of PYTs for CaV1.3 over CaV1.2. In addition to providing direction for chemical optimization, these results suggest that, like dihydropyridines, PYTs have pharmacological features that could make them of broad clinical utility.
Collapse
Affiliation(s)
- Garry Cooper
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Soosung Kang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Tamara Perez-Rosello
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jaime N. Guzman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniel Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jack Mordell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - D. James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
191
|
Jun YW, Kool ET. Small Substrate or Large? Debate Over the Mechanism of Glycation Adduct Repair by DJ-1. Cell Chem Biol 2020; 27:1117-1123. [PMID: 32783963 PMCID: PMC8442549 DOI: 10.1016/j.chembiol.2020.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Glycation, the term for non-enzymatic covalent reactions between aldehyde metabolites and nucleophiles on biopolymers, results in deleterious cellular damage and diseases. Since Parkinsonism-associated protein DJ-1 was proposed as a novel deglycase that directly repairs glycated adducts, it has been considered a major contributor to glycation damage repair. Recently, an interesting debate over the mechanism of glycation repair by DJ-1 has emerged, focusing on whether the substrate of DJ-1 is glycated adducts or the free small aldehydes. The physiological significance of DJ-1 on glycation defense also remains in question. This debate is complicated by the fact that glycated biomolecular adducts are in rapid equilibrium with free aldehydes. Here, we summarize experimental evidence for the two possibilities, highlighting both consistencies and conflicts. We discuss the experimental complexities from a mechanistic perspective, and suggest classes of experiments that should help clarify this debate.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
192
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
193
|
Radhakrishnan S, Norley J, Wendt S, LeRoy N, Hall H, Norcross S, Doan S, Snaider J, MacVicar BA, Weake VM, Huang L, Tantama M. Neuron Activity Dependent Redox Compartmentation Revealed with a Second Generation Red-Shifted Ratiometric Sensor. ACS Chem Neurosci 2020; 11:2666-2678. [PMID: 32786310 PMCID: PMC7526680 DOI: 10.1021/acschemneuro.0c00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress is a hallmark of several aging and trauma related neurological disorders, but the precise details of how altered neuronal activity elicits subcellular redox changes have remained difficult to resolve. Current redox sensitive dyes and fluorescent proteins can quantify spatially distinct changes in reactive oxygen species levels, but multicolor probes are needed to accurately analyze compartment-specific redox dynamics in single cells that can be masked by population averaging. We previously engineered genetically encoded red-shifted redox-sensitive fluorescent protein sensors using a Förster resonance energy transfer relay strategy. Here, we developed a second-generation excitation ratiometric sensor called rogRFP2 with improved red emission for quantitative live-cell imaging. Using this sensor to measure activity-dependent redox changes in individual cultured neurons, we observed an anticorrelation in which mitochondrial oxidation was accompanied by a concurrent reduction in the cytosol. This behavior was dependent on the activity of Complex I of the mitochondrial electron transport chain and could be modulated by the presence of cocultured astrocytes. We also demonstrated that the red fluorescent rogRFP2 facilitates ratiometric one- and two-photon redox imaging in rat brain slices and Drosophila retinas. Overall, the proof-of-concept studies reported here demonstrate that this new rogRFP2 redox sensor can be a powerful tool for understanding redox biology both in vitro and in vivo across model organisms.
Collapse
Affiliation(s)
- Saranya Radhakrishnan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jacob Norley
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Stefan Wendt
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan LeRoy
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Hana Hall
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
| | - Stevie Norcross
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Sara Doan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jordan Snaider
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Brian A. MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Vikki M. Weake
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
- Purdue Center for Cancer Research, 175 South University Street, West Lafayette, IN 47907, United States
| | - Libai Huang
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Mathew Tantama
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
- Biochemistry Program, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
| |
Collapse
|
194
|
Li Z, Zhou J, Li Y, Yang F, Lian X, Liu W. Overexpression of DJ-1 alleviates autosomal dominant polycystic kidney disease by regulating cell proliferation, apoptosis, and mitochondrial metabolism in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1175. [PMID: 33241024 PMCID: PMC7576093 DOI: 10.21037/atm-20-5761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND DJ-1 is critical for the mitochondrial function associated with autosomal dominant polycystic kidney disease (ADPKD). We aimed to investigate DJ-1's function in the pathogenesis of ADPKD. METHODS DJ-1 was knocked-down in IMCD3 cells to evaluate the effects of DJ-1 on cell phenotype and mitochondrial function in vitro. Furthermore, we generated three groups of mice with different expression levels of DJ-1 within an established ADPKD model: ADPKD, ADPKDpcDNA, and ADPKDpcDNA-DJ-1. RESULTS DJ-1 knock-down significantly increased oxidative stress as well as the proliferation and apoptosis rate of IMCD3 cells, along with Bcl-2 down-regulation and the up-regulation of Ki67, PCNA, Bax, cleaved caspase-3, and cleaved caspase-9. DJ-1 knock-down suppressed the cellular respiration, Ca2+ absorption, and mitochondrial complex I activity in mitochondria. In vivo, we verified that DJ-1 was down-regulated in ADPKD models, and its overexpression attenuated the renal dysfunction in ADPKD models. The transgenic mice had a significantly smaller renal cyst and less interstitial fibrosis than control, accompanied byα-SMA, fibronectin, and TGF-β1 up-regulation. Moreover, in vivo results confirmed DJ-1 overexpression inhibited the proliferation and apoptosis of tubular epithelial cells along with down-regulation of Ki67, PCNA, p53, intracellular Cyt c, cleaved caspase-3, and cleaved caspase-9 and the up-regulation of Bcl-2. CONCLUSIONS DJ-1 was down-regulated in ADPKD models, and its overexpression may attenuate the renal dysfunction and pathological damage by regulating the proliferation, apoptosis, oxidative stress and mitochondrial metabolism, which may be mediated by the p53 signaling pathway.
Collapse
Affiliation(s)
- Zhongxin Li
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fan Yang
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Lian
- Department of Nephrology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
195
|
Aman Y, Ryan B, Torsetnes SB, Knapskog AB, Watne LO, McEwan WA, Fang EF. Enhancing mitophagy as a therapeutic approach for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:169-202. [PMID: 32854854 DOI: 10.1016/bs.irn.2020.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases are highly debilitating illnesses and a growing cause of morbidity and mortality worldwide. Mitochondrial dysfunction and impairment of mitochondrial-specific autophagy, namely mitophagy, have emerged as important components of the cellular processes underlying neurodegeneration. Defective mitophagy has been highlighted as the cause of the accumulation of damaged mitochondria, which consequently leads to cellular dysfunction and/or death in neurodegenerative diseases. Here, we highlight the recent advances in the molecular mechanisms of mitochondrial homeostasis and mitophagy in neurodegenerative diseases. In particular, we evaluate how mitophagy is altered in Alzheimer's, Parkinson's, and Huntington's diseases, as well as in amyotrophic lateral sclerosis, and the potential of restoring mitophagy as a therapeutic intervention. We also discuss the interlinked connections between mitophagy and innate immunity (e.g., the involvement of Parkin, interferons and TRIM21) as well as the opportunity these pathways provide to develop combinational therapeutic strategies targeting them and related molecular mechanisms in such neurodegenerative diseases.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Brent Ryan
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Silje Bøen Torsetnes
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway; Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - William A McEwan
- Department of Clinical Neurosciences, UK Dementia Research Institute at the University of Cambridge, Cambridge, United Kingdom
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
196
|
Wang R, Sun H, Ren H, Wang G. α-Synuclein aggregation and transmission in Parkinson's disease: a link to mitochondria and lysosome. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1850-1859. [PMID: 32681494 DOI: 10.1007/s11427-020-1756-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
The presence of intraneuronal Lewy bodies (LBs) and Lewy neurites (LNs) in the substantia nigra (SN) composed of aggregated α-synuclein (α-syn) has been recognized as a hallmark of pathological changes in Parkinson's disease (PD). Numerous studies have shown that aggregated α-syn is necessary for neurotoxicity. Meanwhile, the mitochondrial and lysosomal dysfunctions are associated with α-syn pathogenicity The hypothesis that α-syn transmission in the human brain contributes to the instigation and progression of PD has provided insights into PD pathology. This review will provide a brief overview of increasing researches that shed light on the relationship of α-syn aggregation with mitochondrial and lysosomal dysfunctions, and highlight recent understanding of α-syn transmission in PD pathology.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
197
|
González-Casacuberta I, Juárez-Flores DL, Ezquerra M, Fucho R, Catalán-García M, Guitart-Mampel M, Tobías E, García-Ruiz C, Fernández-Checa JC, Tolosa E, Martí MJ, Grau JM, Fernández-Santiago R, Cardellach F, Morén C, Garrabou G. Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations. Aging (Albany NY) 2020; 11:3750-3767. [PMID: 31180333 PMCID: PMC6594812 DOI: 10.18632/aging.102014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/01/2019] [Indexed: 12/28/2022]
Abstract
PRKN encodes an E3-ubiquitin-ligase involved in multiple cell processes including mitochondrial homeostasis and autophagy. Previous studies reported alterations of mitochondrial function in fibroblasts from patients with PRKN mutation-associated Parkinson’s disease (PRKN-PD) but have been only conducted in glycolytic conditions, potentially masking mitochondrial alterations. Additionally, autophagy flux studies in this cell model are missing. We analyzed mitochondrial function and autophagy in PRKN-PD skin-fibroblasts (n=7) and controls (n=13) in standard (glucose) and mitochondrial-challenging (galactose) conditions. In glucose, PRKN-PD fibroblasts showed preserved mitochondrial bioenergetics with trends to abnormally enhanced mitochondrial respiration that, accompanied by decreased CI, may account for the increased oxidative stress. In galactose, PRKN-PD fibroblasts exhibited decreased basal/maximal respiration vs. controls and reduced mitochondrial CIV and oxidative stress compared to glucose, suggesting an inefficient mitochondrial oxidative capacity to meet an extra metabolic requirement. PRKN-PD fibroblasts presented decreased autophagic flux with reduction of autophagy substrate and autophagosome synthesis in both conditions. The alterations exhibited under neuron-like oxidative environment (galactose), may be relevant to the disease pathogenesis potentially explaining the increased susceptibility of dopaminergic neurons to undergo degeneration. Abnormal PRKN-PD phenotype supports the usefulness of fibroblasts to model disease and the view of PD as a systemic disease where molecular alterations are present in peripheral tissues.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Diana-Luz Juárez-Flores
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Mario Ezquerra
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - Raquel Fucho
- Cell Death and Proliferation, IDIBAPS, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain.,Liver Unit, HCB, IDIBAPS and CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Ester Tobías
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Carmen García-Ruiz
- Cell Death and Proliferation, IDIBAPS, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain.,Liver Unit, HCB, IDIBAPS and CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,USC Research Center for ALPD, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - José Carlos Fernández-Checa
- Cell Death and Proliferation, IDIBAPS, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain.,Liver Unit, HCB, IDIBAPS and CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,USC Research Center for ALPD, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Eduard Tolosa
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - María-José Martí
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - Josep Maria Grau
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| |
Collapse
|
198
|
The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection. Mol Neurobiol 2020; 57:3646-3657. [PMID: 32564285 PMCID: PMC7398899 DOI: 10.1007/s12035-020-01947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/13/2020] [Indexed: 01/27/2023]
Abstract
Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.
Collapse
|
199
|
Li M, Xu H, Chen G, Sun S, Wang Q, Liu B, Wu X, Zhou L, Chai Z, Sun X, Lu Y, Younus M, Zheng L, Zhu F, Jia H, Chen X, Wang C, Zhou Z. Impaired D2 receptor-dependent dopaminergic transmission in prefrontal cortex of awake mouse model of Parkinson's disease. Brain 2020; 142:3099-3115. [PMID: 31504219 DOI: 10.1093/brain/awz243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/02/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
The loss-of-function mutation in PARK7/DJ-1 is one of the most common causes of autosomal recessive Parkinson's disease, and patients carrying PARK7 mutations often exhibit both a progressive movement disorder and emotional impairment, such as anxiety. However, the causes of the emotional symptom accompanying PARK7-associated and other forms of Parkinson's disease remain largely unexplored. Using two-photon microscopic Ca2+ imaging in awake PARK7-/- and PARK7+/+ mice, we found that (i) PARK7-/- neurons in the frontal association cortex showed substantially higher circuit activity recorded as spontaneous somatic Ca2+ signals; (ii) both basal and evoked dopamine release remained intact, as determined by both electrochemical dopamine recordings and high performance liquid chromatography in vivo; (iii) D2 receptor expression was significantly decreased in postsynaptic frontal association cortical neurons, and the hyper-neuronal activity were rescued by D2 receptor intervention using either local pharmacology or viral D2 receptor over-expression; and (iv) PARK7-/- mice showed anxiety-like behaviours that were rescued by either local D2 receptor pharmacology or overexpression. Thus, for first time, we demonstrated a robust D2 receptor-dependent phenotype of individual neurons within the prefrontal cortex circuit in awake parkinsonian mice that linked with anxiety. Our work sheds light on early-onset phenotypes and the mechanisms underlying Parkinson's disease by imaging brain circuits in an awake mouse model.
Collapse
Affiliation(s)
- Mingli Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huadong Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Guoqing Chen
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Li Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiaoxuan Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yang Lu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
200
|
Kadnikov IA, Voronkov DN, Voronin MV, Seredenin SB. Analysis of Quinone Reductase 2 Implication in Mechanism of Antiparkinsonian Action of Afobazole. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|