151
|
Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens Visual Spatial Perception in Humans. J Neurosci 2017; 37:4405-4415. [PMID: 28336568 DOI: 10.1523/jneurosci.2405-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
The neuromodulator acetylcholine modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target-flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine or norepinephrine. Unlike cholinergic enhancement, dopamine (bromocriptine) and norepinephrine (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors, effects that are notably similar to those of spatial selective attention.SIGNIFICANCE STATEMENT Acetylcholine influences how visual cortical neurons integrate signals across space, perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains unknown. Here we demonstrate that cholinergic enhancement improves detection of a target flanked by distractors, consistent with sharpened visuospatial perceptual representations. Furthermore, whereas most pharmacological studies focus on a single neurotransmitter, many neuromodulators can have related effects on cognition and perception. Thus, we also demonstrate that enhancing noradrenergic and dopaminergic systems does not systematically improve visuospatial perception or alter its tuning. Our results link visuospatial tuning effects of acetylcholine at the neuronal and perceptual levels and provide insights into the connection between cholinergic signaling and visual attention.
Collapse
|
152
|
Zhang M, Tu J, Dong B, Chen C, Bao M. Preliminary evidence for a role of the personality trait in visual perceptual learning. Neurobiol Learn Mem 2017; 139:22-27. [DOI: 10.1016/j.nlm.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022]
|
153
|
Weaver MD, van Zoest W, Hickey C. A temporal dependency account of attentional inhibition in oculomotor control. Neuroimage 2017; 147:880-894. [DOI: 10.1016/j.neuroimage.2016.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022] Open
|
154
|
The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults. eNeuro 2017; 3:eN-NWR-0190-16. [PMID: 28101524 PMCID: PMC5223055 DOI: 10.1523/eneuro.0190-16.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val158Met polymorphism and the SLC6A3 3′-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val158Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3′-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients.
Collapse
|
155
|
Madden DJ, Parks EL, Tallman CW, Boylan MA, Hoagey DA, Cocjin SB, Johnson MA, Chou YH, Potter GG, Chen NK, Packard LE, Siciliano RE, Monge ZA, Diaz MT. Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age. Hum Brain Mapp 2017; 38:2128-2149. [PMID: 28052456 DOI: 10.1002/hbm.23509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 11/09/2022] Open
Abstract
We conducted functional magnetic resonance imaging (fMRI) with a visual search paradigm to test the hypothesis that aging is associated with increased frontoparietal involvement in both target detection and bottom-up attentional guidance (featural salience). Participants were 68 healthy adults, distributed continuously across 19 to 78 years of age. Frontoparietal regions of interest (ROIs) were defined from resting-state scans obtained prior to task-related fMRI. The search target was defined by a conjunction of color and orientation. Each display contained one item that was larger than the others (i.e., a size singleton) but was not informative regarding target identity. Analyses of search reaction time (RT) indicated that bottom-up attentional guidance from the size singleton (when coincident with the target) was relatively constant as a function of age. Frontoparietal fMRI activation related to target detection was constant as a function of age, as was the reduction in activation associated with salient targets. However, for individuals 35 years of age and older, engagement of the left frontal eye field (FEF) in bottom-up guidance was more prominent than for younger individuals. Further, the age-related differences in left FEF activation were a consequence of decreasing resting-state functional connectivity in visual sensory regions. These findings indicate that age-related compensatory effects may be expressed in the relation between activation and behavior, rather than in the magnitude of activation, and that relevant changes in the activation-RT relation may begin at a relatively early point in adulthood. Hum Brain Mapp 38:2128-2149, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Emily L Parks
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Catherine W Tallman
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Maria A Boylan
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - David A Hoagey
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Sally B Cocjin
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Micah A Johnson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Ying-Hui Chou
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Guy G Potter
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Lauren E Packard
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Rachel E Siciliano
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Michele T Diaz
- Department of Psychology, and Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
156
|
Abstract
Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.
Collapse
Affiliation(s)
- Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305; , .,Howard Hughes Medical Institute, Stanford, California 94305
| | - Marc Zirnsak
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305; , .,Howard Hughes Medical Institute, Stanford, California 94305
| |
Collapse
|
157
|
Engel TA, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Boahen K. Selective modulation of cortical state during spatial attention. Science 2016; 354:1140-1144. [PMID: 27934763 DOI: 10.1126/science.aag1420] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Neocortical activity is permeated with endogenously generated fluctuations, but how these dynamics affect goal-directed behavior remains a mystery. We found that ensemble neural activity in primate visual cortex spontaneously fluctuated between phases of vigorous (On) and faint (Off) spiking synchronously across cortical layers. These On-Off dynamics, reflecting global changes in cortical state, were also modulated at a local scale during selective attention. Moreover, the momentary phase of local ensemble activity predicted behavioral performance. Our results show that cortical state is controlled locally within a cortical map according to cognitive demands and reveal the impact of these local changes in cortical state on goal-directed behavior.
Collapse
Affiliation(s)
- Tatiana A Engel
- Departments of Bioengineering and Electrical Engineering, Stanford University, Stanford, CA, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | | | - Marc A Gieselmann
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Tirin Moore
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.,Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Kwabena Boahen
- Departments of Bioengineering and Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
158
|
Rosell-Negre P, Bustamante JC, Fuentes-Claramonte P, Costumero V, Llopis-Llacer JJ, Barrós-Loscertales A. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts. PLoS One 2016; 11:e0167400. [PMID: 27907134 PMCID: PMC5131954 DOI: 10.1371/journal.pone.0167400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023] Open
Abstract
The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other non-drug reinforcers and the user's loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards.
Collapse
Affiliation(s)
- Patricia Rosell-Negre
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| | - Juan-Carlos Bustamante
- Departamento de Psicologia y Sociología. Universidad de Zaragoza, Zaragoza, Zaragoza, Spain
| | - Paola Fuentes-Claramonte
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
- FIDMAG Germanes Hospitalàries Research Foundation Barcelona, Cataluña, Spain
| | - Víctor Costumero
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| | - Juan-José Llopis-Llacer
- Unidad de Conductas Adictivas, Hospital General Universitario, Consellería de Sanitat, Castellón de la Plana, Spain
| | - Alfonso Barrós-Loscertales
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| |
Collapse
|
159
|
Fallon SJ, Zokaei N, Norbury A, Manohar SG, Husain M. Dopamine Alters the Fidelity of Working Memory Representations according to Attentional Demands. J Cogn Neurosci 2016; 29:728-738. [PMID: 27897674 PMCID: PMC5889096 DOI: 10.1162/jocn_a_01073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Capacity limitations in working memory (WM) necessitate the need to
effectively control its contents. Here, we examined the effect of cabergoline, a
dopamine D2 receptor agonist, on WM using a continuous report
paradigm that allowed us to assess the fidelity with which items are stored. We
assessed recall performance under three different gating conditions: remembering
only one item, being cued to remember one target among distractors, and having
to remember all items. Cabergoline had differential effects on recall
performance according to whether distractors had to be ignored and whether
mnemonic resources could be deployed exclusively to the target. Compared with
placebo, cabergoline improved mnemonic performance when there were no
distractors but significantly reduced performance when distractors were
presented in a precue condition. No significant difference in performance was
observed under cabergoline when all items had to be remembered. By applying a
stochastic model of response selection, we established that the causes of
drug-induced changes in performance were due to changes in the precision with
which items were stored in WM. However, there was no change in the extent to
which distractors were mistaken for targets. Thus, D2 agonism causes
changes in the fidelity of mnemonic representations without altering
interference between memoranda.
Collapse
Affiliation(s)
| | | | | | | | - Masud Husain
- University of Oxford.,John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
160
|
Cell-type-specific modulation of targets and distractors by dopamine D1 receptors in primate prefrontal cortex. Nat Commun 2016; 7:13218. [PMID: 27807366 PMCID: PMC5095292 DOI: 10.1038/ncomms13218] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/13/2016] [Indexed: 01/23/2023] Open
Abstract
The prefrontal cortex (PFC) is crucial for maintaining relevant information in working memory and resisting interference. PFC neurons are strongly regulated by dopamine, but it is unknown whether dopamine receptors are involved in protecting target memories from distracting stimuli. We investigated the prefrontal circuit dynamics and dopaminergic modulation of targets and distractors in monkeys trained to ignore interfering stimuli in a delayed-match-to-numerosity task. We found that dopamine D1 receptors (D1Rs) modulate the recovery of task-relevant information following a distracting stimulus. The direction of modulation is cell-type-specific: in putative pyramidal neurons, D1R inhibition enhances and D1R stimulation attenuates coding of the target stimulus after the interference, while the opposite pattern is observed in putative interneurons. Our results suggest that dopaminergic neuromodulation of PFC circuits regulates mental representations of behaviourally relevant stimuli that compete with task-irrelevant input and could play a central role for cognitive functioning in health and disease.
Collapse
|
161
|
Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 2016; 19:1733-1742. [PMID: 27749828 PMCID: PMC5127741 DOI: 10.1038/nn.4417] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices. Anterograde and retrograde tracing identified the cortical and subcortical structures belonging to each network. Furthermore, using new viral techniques to target subpopulations of frontal neurons projecting to the visual cortex versus the superior colliculus, we identified two distinct subnetworks within the visual network. These findings provide an anatomical foundation for understanding the brain mechanisms underlying top-down control of behavior.
Collapse
|
162
|
Arnsten AFT, Wang M. Targeting Prefrontal Cortical Systems for Drug Development: Potential Therapies for Cognitive Disorders. Annu Rev Pharmacol Toxicol 2016; 56:339-60. [PMID: 26738476 DOI: 10.1146/annurev-pharmtox-010715-103617] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medications to treat cognitive disorders are increasingly needed, yet researchers have had few successes in this challenging arena. Cognitive abilities in primates arise from highly evolved N-methyl-d-aspartate (NMDA) receptor circuits in layer III of the dorsolateral prefrontal cortex. These circuits have unique modulatory needs that can differ from the layer V neurons that predominate in rodents, but they offer multiple therapeutic targets. Cognitive improvement often requires low doses that enhance the pattern of information held in working memory, whereas higher doses can produce nonspecific changes that obscure information. Identifying appropriate doses for clinical trials may be helped by assessments in monkeys and by flexible, individualized dose designs. The use of guanfacine (Intuniv) for prefrontal cortical disorders was based on research in monkeys, supporting this approach. Coupling our knowledge of higher primate circuits with the powerful methods now available in drug design will help create effective treatments for cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| | - Min Wang
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| |
Collapse
|
163
|
Krock RM, Moore T. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements. J Neurophysiol 2016; 116:2882-2891. [PMID: 27683894 DOI: 10.1152/jn.01140.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/22/2016] [Indexed: 11/22/2022] Open
Abstract
Primate vision is continuously disrupted by saccadic eye movements, and yet this disruption goes unperceived. One mechanism thought to reduce perception of this self-generated movement is saccadic suppression, a global loss of visual sensitivity just before, during, and after saccadic eye movements. The frontal eye field (FEF) is a candidate source of neural correlates of saccadic suppression previously observed in visual cortex, because it contributes to the generation of visually guided saccades and modulates visual cortical responses. However, whether the FEF exhibits a perisaccadic reduction in visual sensitivity that could be transmitted to visual cortex is unknown. To determine whether the FEF exhibits a signature of saccadic suppression, we recorded the visual responses of FEF neurons to brief, full-field visual probe stimuli presented during fixation and before onset of saccades directed away from the receptive field in rhesus macaques (Macaca mulatta) We measured visual sensitivity during both epochs and found that it declines before saccade onset. Visual sensitivity was significantly reduced in visual but not visuomotor neurons. This reduced sensitivity was also present in visual neurons with no movement-related modulation during visually guided saccades and thus occurred independently from movement-related activity. Across the population of visual neurons, sensitivity began declining ∼80 ms before saccade onset. We also observed a similar presaccadic reduction in sensitivity to isoluminant, chromatic stimuli. Our results demonstrate that the signaling of visual information by FEF neurons is reduced during saccade preparation, and thus these neurons exhibit a signature of saccadic suppression.
Collapse
Affiliation(s)
- Rebecca M Krock
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California; and
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California; and .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
164
|
Ibos G, Freedman DJ. Interaction between Spatial and Feature Attention in Posterior Parietal Cortex. Neuron 2016; 91:931-943. [PMID: 27499082 DOI: 10.1016/j.neuron.2016.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features.
Collapse
Affiliation(s)
- Guilhem Ibos
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
165
|
Gómez-Laberge C, Smolyanskaya A, Nassi JJ, Kreiman G, Born RT. Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron 2016; 91:540-547. [PMID: 27427459 DOI: 10.1016/j.neuron.2016.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/28/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
Abstract
Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they underlie our stable sensory experiences. Although the nature of this variability is unknown, its ubiquity has encouraged the general view that each cell produces random spike patterns that noisily represent its response rate. In contrast, here we show that reversibly inactivating distant sources of either bottom-up or top-down input to cortical visual areas in the alert primate reduces both the spike train irregularity and the trial-to-trial variability of single neurons. A simple model in which a fraction of the pre-synaptic input is silenced can reproduce this reduction in variability, provided that there exist temporal correlations primarily within, but not between, excitatory and inhibitory input pools. A large component of the variability of cortical neurons may therefore arise from synchronous input produced by signals arriving from multiple sources.
Collapse
Affiliation(s)
- Camille Gómez-Laberge
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Alexandra Smolyanskaya
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Jonathan J Nassi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
166
|
Vijayraghavan S, Major AJ, Everling S. Dopamine D1 and D2 Receptors Make Dissociable Contributions to Dorsolateral Prefrontal Cortical Regulation of Rule-Guided Oculomotor Behavior. Cell Rep 2016; 16:805-16. [PMID: 27373147 DOI: 10.1016/j.celrep.2016.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022] Open
Abstract
Studies of neuromodulation of spatial short-term memory have shown that dopamine D1 receptor (D1R) stimulation in dorsolateral prefrontal cortex (DLPFC) dose-dependently modulates memory activity, whereas D2 receptors (D2Rs) selectively modulate activity related to eye movements hypothesized to encode movement feedback. We examined localized stimulation of D1Rs and D2Rs on DLPFC neurons engaged in a task involving rule representation in memory to guide appropriate eye movements toward or away from a visual stimulus. We found dissociable effects of D1R and D2R on DLPFC physiology. D1R stimulation degrades memory activity for the task rule and increases stimulus-related selectivity. In contrast, D2R stimulation affects motor activity tuning only when eye movements are made to the stimulus. Only D1R stimulation degrades task performance and increases impulsive responding. Our results suggest that D1Rs regulate rule representation and impulse control, whereas D2Rs selectively modulate eye-movement-related dynamics and not rule representation in the DLPFC.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Medical Sciences Building, Room 216, London, ON N6A 5C1, Canada
| | - Alex James Major
- Graduate Program in Neuroscience, The University of Western Ontario, Robarts Research Institute, RRI 3203, 1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Medical Sciences Building, Room 216, London, ON N6A 5C1, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Robarts Research Institute, RRI 3203, 1151 Richmond Street North, London, ON N6A 5B7, Canada; Robarts Research Institute, The University of Western Ontario, Room EB-120, 1151 Richmond Street North, London, ON N6A 5B7, Canada.
| |
Collapse
|
167
|
van der Togt C, Stănişor L, Pooresmaeili A, Albantakis L, Deco G, Roelfsema PR. Learning a New Selection Rule in Visual and Frontal Cortex. Cereb Cortex 2016; 26:3611-26. [PMID: 27269960 PMCID: PMC4961027 DOI: 10.1093/cercor/bhw155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process.
Collapse
Affiliation(s)
- Chris van der Togt
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Liviu Stănişor
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Arezoo Pooresmaeili
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Larissa Albantakis
- Madison School of Medicine, Department of Psychiatry, University of Wisconsin, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Gustavo Deco
- Dept. de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, C\ Tanger, 122-140, 08018 Barcelona, Spain
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands Psychiatry Department, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
168
|
Cicmil N, Krug K. Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140206. [PMID: 26240421 PMCID: PMC4528818 DOI: 10.1098/rstb.2014.0206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.
Collapse
Affiliation(s)
- Nela Cicmil
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
169
|
Strumpf H, Noesselt T, Schoenfeld MA, Voges J, Panther P, Kaufmann J, Heinze HJ, Hopf JM. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN) Influences Visual Contrast Sensitivity in Human Observers. PLoS One 2016; 11:e0155206. [PMID: 27167979 PMCID: PMC4864298 DOI: 10.1371/journal.pone.0155206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/26/2016] [Indexed: 01/24/2023] Open
Abstract
The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC). Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds) in a group of patients with Parkinson’s Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST). We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level.
Collapse
Affiliation(s)
| | - Toemme Noesselt
- Institute for Biological Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Mircea Ariel Schoenfeld
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Kliniken Schmieder, Allensbach, Germany
| | - Jürgen Voges
- Clinic for Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Patricia Panther
- Clinic for Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Joern Kaufmann
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens-Max Hopf
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
170
|
Vollebregt MA, Zumer JM, Ter Huurne N, Buitelaar JK, Jensen O. Posterior alpha oscillations reflect attentional problems in boys with Attention Deficit Hyperactivity Disorder. Clin Neurophysiol 2016; 127:2182-91. [PMID: 27072088 DOI: 10.1016/j.clinph.2016.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study aimed to characterize alpha modulations in children with ADHD in relation to their attentional performance. METHODS The posterior alpha activity (8-12Hz) was measured in 30 typically developing children and 30 children with ADHD aged 7-10years, using EEG while they performed a visuospatial covert attention task. We focused the analyses on typically developing boys (N=9) and boys with ADHD (N=17). RESULTS Alpha activity in typically developing boys was similar to previous results of healthy adults: it decreased in the hemisphere contralateral to the attended hemifield, whereas it relatively increased in the other hemisphere. However, in boys with ADHD this hemispheric lateralization in the alpha band was not obvious (group contrast, p=.018). A robust relation with behavioral performance was lacking in both groups. CONCLUSIONS The ability to modulate alpha oscillations in visual regions with the allocation of spatial attention was clearly present in typically developing boys, but not in boys with ADHD. SIGNIFICANCE These results open up the possibility to further study the underlying mechanisms of ADHD by examining how differences in the fronto-striatal network might explain different abilities in modulating the alpha band activity.
Collapse
Affiliation(s)
- Madelon A Vollebregt
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6526 GC Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Johanna M Zumer
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| | - Niels Ter Huurne
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6526 GC Nijmegen, The Netherlands.
| | - Jan K Buitelaar
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6526 GC Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Ole Jensen
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|
171
|
Johnston K, Lomber SG, Everling S. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection. J Neurophysiol 2016; 115:1468-76. [PMID: 26792881 DOI: 10.1152/jn.00563.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/11/2016] [Indexed: 11/22/2022] Open
Abstract
Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection.
Collapse
Affiliation(s)
- Kevin Johnston
- Brain and Mind Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; and
| | - Stephen G Lomber
- Brain and Mind Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; and
| | - Stefan Everling
- Brain and Mind Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; and Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
172
|
Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta H, Patenaude B, Ramakrishnan C, Kalanithi P, Etkin A, Knutson B, Glover GH, Deisseroth K. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 2016; 351:aac9698. [PMID: 26722001 DOI: 10.1126/science.aac9698] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions.
Collapse
Affiliation(s)
- Emily A Ferenczi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Kelly A Zalocusky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Conor Liston
- Brain Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Debha Amatya
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kiefer Katovich
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Hershel Mehta
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Brian Patenaude
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Paul Kalanithi
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
173
|
Happel MFK. Dopaminergic impact on local and global cortical circuit processing during learning. Behav Brain Res 2015; 299:32-41. [PMID: 26608540 DOI: 10.1016/j.bbr.2015.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 11/17/2022]
Abstract
We have learned to detect, predict and behaviorally respond to important changes in our environment on short and longer time scales. Therefore, brains of humans and higher animals build upon a perceptual and semantic salience stored in their memories mainly generated by associative reinforcement learning. Functionally, the brain needs to extract and amplify a small number of features of sensory input with behavioral relevance to a particular situation in order to guide behavior. In this review, I argue that dopamine action, particularly in sensory cortex, orchestrates layer-dependent local and long-range cortical circuits integrating sensory associated bottom-up and semantically relevant top-down information, respectively. Available evidence reveals that dopamine thereby controls both the selection of perceptually or semantically salient signals as well as feedback processing from higher-order areas in the brain. Sensory cortical dopamine thereby governs the integration of selected sensory information within a behavioral context. This review proposes that dopamine enfolds this function by temporally distinct actions on particular layer-dependent local and global cortical circuits underlying the integration of sensory, and non-sensory cognitive and behavioral variables.
Collapse
Affiliation(s)
- Max F K Happel
- Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany; Institute of Biology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany.
| |
Collapse
|
174
|
Abstract
Advances on several fronts have refined our understanding of the neuronal mechanisms of attention. This review focuses on recent progress in understanding visual attention through single-neuron recordings made in behaving subjects. Simultaneous recordings from populations of individual cells have shown that attention is associated with changes in the correlated firing of neurons that can enhance the quality of sensory representations. Other work has shown that sensory normalization mechanisms are important for explaining many aspects of how visual representations change with attention, and these mechanisms must be taken into account when evaluating attention-related neuronal modulations. Studies comparing different brain structures suggest that attention is composed of several cognitive processes, which might be controlled by different brain regions. Collectively, these and other recent findings provide a clearer picture of how representations in the visual system change when attention shifts from one target to another.
Collapse
Affiliation(s)
- John H R Maunsell
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
175
|
Affiliation(s)
- Jeffrey D. Schall
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, and Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203;
| |
Collapse
|
176
|
Dotson NM, Goodell B, Salazar RF, Hoffman SJ, Gray CM. Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate. Front Syst Neurosci 2015; 9:149. [PMID: 26578906 PMCID: PMC4630292 DOI: 10.3389/fnsys.2015.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field.
Collapse
Affiliation(s)
- Nicholas M. Dotson
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| | - Baldwin Goodell
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| | - Rodrigo F. Salazar
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
- Faculty of Medicine, Department of Basic Neurosciences, University of GenevaGeneva, Switzerland
| | - Steven J. Hoffman
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| | - Charles M. Gray
- Department of Cell Biology and Neuroscience, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
177
|
DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation. J Neurosci 2015; 35:9990-10004. [PMID: 26156999 DOI: 10.1523/jneurosci.0940-15.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Neuromodulation of self-amplifying circuits directs context-dependent behavioral executions. Although recurrent networks are found throughout the Caenorhabditis elegans connectome, few reports describe the mechanisms that regulate reciprocal neural activity during complex behavior. We used C. elegans male copulation to dissect how a goal-oriented motor behavior is regulated by recurrently wired sensory-motor neurons. As the male tail presses against the hermaphrodite's vulva, cholinergic and glutamatergic reciprocal innervations of post cloaca sensilla (PCS) neurons (PCA, PCB, and PCC), hook neurons (HOA, HOB), and their postsynaptic sex muscles execute rhythmic copulatory spicule thrusts. These repetitive spicule movements continue until the male shifts off the vulva or genital penetration is accomplished. However, the signaling mechanism that temporally and spatially restricts repetitive intromission attempts to vulva cues was unclear. Here, we report that confinement of spicule insertion attempts to the vulva is facilitated by D2-like receptor modulation of gap-junctions between PCB and the hook sensillum. We isolated a missense mutation in the UNC-7(L) gap-junction isoform, which perturbs DOP-2 signaling in the PCB neuron and its electrical partner, HOA. The glutamate-gated chloride channel AVR-14 is expressed in HOA. Our analysis of the unc-7 mutant allele indicates that when DOP-2 promotes UNC-7 electrical communication, AVR-14-mediated inhibitory signals pass from HOA to PCB. As a consequence, PCB is less receptive to be stimulated by its recurrent synaptic partner, PCA. Behavioral observations suggest that dopamine neuromodulation of UNC-7 ensures attenuation of recursive intromission attempts when the male disengages or is dislodged from the hermaphrodite genitalia. SIGNIFICANCE STATEMENT Using C. elegans male copulation as a model, we found that the neurotransmitter dopamine stimulates D2-like receptors in two sensory circuits to terminate futile behavioral loops. The D2-like receptors promote inhibitory electrical junction activity between a chemosensory and a mechanosensory circuit. Therefore, both systems are attenuated and the animal ceases the recursive behavior.
Collapse
|
178
|
Ranganath A, Jacob SN. Doping the Mind: Dopaminergic Modulation of Prefrontal Cortical Cognition. Neuroscientist 2015; 22:593-603. [PMID: 26338491 DOI: 10.1177/1073858415602850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is the center of cognitive control. Processing in prefrontal cortical circuits enables us to direct attention to behaviorally relevant events; to memorize, structure, and categorize information; and to learn new concepts. The prefrontal cortex receives strong projections from midbrain neurons that use dopamine as a transmitter. In this article, we review the crucial role dopamine plays as a modulator of prefrontal cognitive functions, in the primate brain in particular. Following a summary of the anatomy and physiology of the midbrain dopamine system, we focus on recent studies that investigated dopaminergic effects in prefrontal cortex at the cellular level. We then discuss how unregulated prefrontal dopamine signaling could contribute to major disorders of cognition. The studies highlighted in this review demonstrate the powerful influence dopamine exerts on the mind.
Collapse
Affiliation(s)
- Ajit Ranganath
- Institute of Neuroscience, Technische Universität München, Germany
| | - Simon N Jacob
- Institute of Neuroscience, Technische Universität München, Germany
| |
Collapse
|
179
|
|
180
|
Clark K, Squire RF, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Prog Neurobiol 2015; 132:59-80. [PMID: 26159708 DOI: 10.1016/j.pneurobio.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/26/2022]
Abstract
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.
Collapse
Affiliation(s)
- Kelsey Clark
- Montana State University, Bozeman, MT, United States
| | - Ryan Fox Squire
- Stanford University, Stanford, CA, United States; Lumos Labs, San Francisco, CA, United States
| | - Yaser Merrikhi
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
181
|
Arnsten AFT, Wang M, Paspalas CD. Dopamine's Actions in Primate Prefrontal Cortex: Challenges for Treating Cognitive Disorders. Pharmacol Rev 2015; 67:681-96. [PMID: 26106146 PMCID: PMC4485014 DOI: 10.1124/pr.115.010512] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prefrontal cortex (PFC) elaborates and differentiates in primates, and there is a corresponding elaboration in cortical dopamine (DA). DA cells that fire to both aversive and rewarding stimuli likely project to the dorsolateral PFC (dlPFC), signaling a salient event. Since 1979, we have known that DA has an essential influence on dlPFC working memory functions. DA has differing effects via D1 (D1R) versus D2 receptor (D2R) families. D1R are concentrated on dendritic spines, and D1/5R stimulation produces an inverted U-shaped dose response on visuospatial working memory performance and Delay cell firing, the neurons that generate representations of visual space. Optimal levels of D1R stimulation gate out "noise," whereas higher levels, e.g., during stress, suppress Delay cell firing. These effects likely involve hyperpolarization-activated cyclic nucleotide-gated channel opening, activation of GABA interneurons, and reduced glutamate release. Dysregulation of D1R has been related to cognitive deficits in schizophrenia, and there is a need for new, lower-affinity D1R agonists that may better mimic endogenous DA to enhance mental representations and improve cognition. In contrast to D1R, D2R are primarily localized on layer V pyramidal cell dendrites, and D2/3R stimulation speeds and magnifies the firing of Response cells, including Response Feedback cells. Altered firing of Feedback neurons may relate to positive symptoms in schizophrenia. Emerging research suggests that DA may have similar effects in the ventrolateral PFC and frontal eye fields. Research on the orbital PFC in monkeys is just beginning and could be a key area for future discoveries.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Min Wang
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
182
|
Hickey C, Peelen MV. Neural mechanisms of incentive salience in naturalistic human vision. Neuron 2015; 85:512-8. [PMID: 25654257 DOI: 10.1016/j.neuron.2014.12.049] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022]
Abstract
What role does reward play in real-world human vision? Reward coding in the midbrain is thought to cause the rapid prioritization of reward-associated visual stimuli. However, existing evidence for this incentive salience hypothesis in vision is equivocal, particularly in naturalistic circumstances, and little is known about underlying neural systems. Here we use human fMRI to test whether reward primes perceptual encoding of naturalistic visual stimuli and to identify the neural mechanisms underlying this function. Participants detected a cued object category in briefly presented images of city- and landscapes. Using multivoxel pattern analysis in visual cortex, we found that the encoding of reward-associated targets was enhanced, whereas encoding of reward-associated distractors was suppressed, with the strength of this effect predicted by activity in the dopaminergic midbrain and a connected cortical network. These results identify a novel interaction between neural systems responsible for reward processing and visual perception in the human brain.
Collapse
Affiliation(s)
- Clayton Hickey
- VU University Amsterdam, De Boelelaan 1105, 1081HV Amsterdam, the Netherlands; Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, Italy.
| | - Marius V Peelen
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068 Rovereto, Italy
| |
Collapse
|
183
|
Opris I, Gerhardt GA, Hampson RE, Deadwyler SA. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 2015; 9:79. [PMID: 26074787 PMCID: PMC4448003 DOI: 10.3389/fnsys.2015.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/06/2015] [Indexed: 02/01/2023] Open
Abstract
Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs) were trained in a visual delayed match-to-sample (DMS) task while the activity of prefrontal cortical neurons (areas 46, 8 and 6) was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control) was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match Response (MR) in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional' interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine: administration.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Greg A. Gerhardt
- Department of Anatomy and Neurobiology, University of KentuckyKentucky, KY, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
184
|
Reavis EA, Frank SM, Tse PU. Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions. Neuroimage 2015; 110:171-81. [PMID: 25652392 DOI: 10.1016/j.neuroimage.2015.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022] Open
Abstract
Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest.
Collapse
Affiliation(s)
- Eric A Reavis
- Department of Psychological & Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA.
| | - Sebastian M Frank
- Department of Psychological & Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA
| | - Peter U Tse
- Department of Psychological & Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA
| |
Collapse
|
185
|
Matsumoto M. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson's disease. Mov Disord 2015; 30:472-83. [PMID: 25773863 DOI: 10.1002/mds.26177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 11/12/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the degeneration of midbrain dopamine neurons. Cognitive dysfunction is a feature of PD patients even at the early stages of the disease. Electrophysiological studies on dopamine neurons in awake animals provide contradictory accounts of the role of dopamine. These studies have established that dopamine neurons convey a unique signal associated with rewards rather than cognitive functions. Emphasizing their role in reward processing leads to difficulty in developing hypothesis as to how cognitive impairments in PD are associated with the degeneration of dopamine circuitry. A hint to resolve this contradiction came from recent electrophysiological studies reporting that dopamine neurons transmit more diverse signals than previously thought. These studies suggest that dopamine neurons are divided into at least two functional subgroups, one signaling "motivational value" and the other signaling "salience." The former subgroup fits well with the conventional reward theory, whereas the latter subgroup has been shown to transmit signals related to salient but non-rewarding experiences such as aversive stimulations and cognitively demanding situations. This article reviews recent advances in understanding the non-reward functions of dopamine, and then discusses the possibility that cognitive dysfunction in PD is at least partially caused by the degeneration of the dopamine neuron subgroup signaling the salience of events in the environment.
Collapse
Affiliation(s)
- Masayuki Matsumoto
- Laboratory of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
186
|
Khorsand P, Moore T, Soltani A. Combined contributions of feedforward and feedback inputs to bottom-up attention. Front Psychol 2015; 6:155. [PMID: 25784883 PMCID: PMC4345765 DOI: 10.3389/fpsyg.2015.00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 01/30/2015] [Indexed: 11/30/2022] Open
Abstract
In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention.
Collapse
Affiliation(s)
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine , Stanford, CA, USA ; Howard Hughes Medical Institute , Stanford, CA, USA
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College , Hanover, NH, USA
| |
Collapse
|
187
|
|
188
|
Tremblay S, Pieper F, Sachs A, Martinez-Trujillo J. Attentional Filtering of Visual Information by Neuronal Ensembles in the Primate Lateral Prefrontal Cortex. Neuron 2015; 85:202-215. [DOI: 10.1016/j.neuron.2014.11.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
|
189
|
Kesner L. The predictive mind and the experience of visual art work. Front Psychol 2014; 5:1417. [PMID: 25566111 PMCID: PMC4267174 DOI: 10.3389/fpsyg.2014.01417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/19/2014] [Indexed: 11/14/2022] Open
Abstract
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.
Collapse
Affiliation(s)
- Ladislav Kesner
- Department of Art History, Masaryk UniversityBrno, Czech Republic
| |
Collapse
|
190
|
Dopamine Receptors Differentially Enhance Rule Coding in Primate Prefrontal Cortex Neurons. Neuron 2014; 84:1317-28. [DOI: 10.1016/j.neuron.2014.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 12/15/2022]
|
191
|
Dopamine-Induced Dissociation of BOLD and Neural Activity in Macaque Visual Cortex. Curr Biol 2014; 24:2805-11. [PMID: 25456449 DOI: 10.1016/j.cub.2014.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/12/2023]
|
192
|
Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VAF, Donner TH. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion. J Neurophysiol 2014; 113:1063-76. [PMID: 25411458 DOI: 10.1152/jn.00338.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conscious perception sometimes fluctuates strongly, even when the sensory input is constant. For example, in motion-induced blindness (MIB), a salient visual target surrounded by a moving pattern suddenly disappears from perception, only to reappear after some variable time. Whereas such changes of perception result from fluctuations of neural activity, mounting evidence suggests that the perceptual changes, in turn, may also cause modulations of activity in several brain areas, including visual cortex. In this study, we asked whether these latter modulations might affect the subsequent dynamics of perception. We used magnetoencephalography (MEG) to measure modulations in cortical population activity during MIB. We observed a transient, retinotopically widespread modulation of beta (12-30 Hz)-frequency power over visual cortex that was closely linked to the time of subjects' behavioral report of the target disappearance. This beta modulation was a top-down signal, decoupled from both the physical stimulus properties and the motor response but contingent on the behavioral relevance of the perceptual change. Critically, the modulation amplitude predicted the duration of the subsequent target disappearance. We propose that the transformation of the perceptual change into a report triggers a top-down mechanism that stabilizes the newly selected perceptual interpretation.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands;
| | - Thomas Meindertsma
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Bob W van Dijk
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands; Faculty of Movement Sciences, VU University, Amsterdam, The Netherlands; and
| | - Victor A F Lamme
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias H Donner
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
193
|
Abstract
Visual processing is influenced by stimulus-driven and goal-driven factors. Recent interest has centered on understanding how reward might provide additional contributions to visual perception and unraveling the underlying neural mechanisms. In this review, I suggest that the impact of reward on vision is not unitary and depends on the type of experimental manipulation. With this in mind, I outline a possible classification of the main paradigms employed in the literature and discuss potential brain processes that operate during some of the experimental manipulations described.
Collapse
|
194
|
Dagnino B, Gariel-Mathis MA, Roelfsema PR. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. J Neurophysiol 2014; 113:730-9. [PMID: 25392172 DOI: 10.1152/jn.00645.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception.
Collapse
Affiliation(s)
- Bruno Dagnino
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Academy of Arts and Sciences of the Netherlands), Amsterdam, The Netherlands
| | - Marie-Alice Gariel-Mathis
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Academy of Arts and Sciences of the Netherlands), Amsterdam, The Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Academy of Arts and Sciences of the Netherlands), Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands; and Psychiatry Department, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
195
|
Zirnsak M, Moore T. Saccades and shifting receptive fields: anticipating consequences or selecting targets? Trends Cogn Sci 2014; 18:621-8. [PMID: 25455690 DOI: 10.1016/j.tics.2014.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022]
Abstract
Saccadic eye movements cause frequent and substantial displacements of the retinal image, but those displacements go unnoticed. It has been widely assumed that this perceived stability emerges from the shifting of visual receptive fields from their current, presaccadic locations to their future, postsaccadic locations in anticipation of the retinal consequences of saccades. Although evidence consistent with this anticipatory remapping has accumulated over the years, more recent work suggests an alternative view. In this opinion article, we examine the evidence of presaccadic receptive field shifts and their relationship to the perceptual changes that accompany saccades. We argue that both reflect the selection of targets for saccades rather than the anticipation of a displaced retinal image.
Collapse
Affiliation(s)
- Marc Zirnsak
- Department of Neurobiology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Tirin Moore
- Department of Neurobiology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
196
|
Petro LS, Vizioli L, Muckli L. Contributions of cortical feedback to sensory processing in primary visual cortex. Front Psychol 2014; 5:1223. [PMID: 25414677 PMCID: PMC4222340 DOI: 10.3389/fpsyg.2014.01223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 11/13/2022] Open
Abstract
Closing the structure-function divide is more challenging in the brain than in any other organ (Lichtman and Denk, 2011). For example, in early visual cortex, feedback projections to V1 can be quantified (e.g., Budd, 1998) but the understanding of feedback function is comparatively rudimentary (Muckli and Petro, 2013). Focusing on the function of feedback, we discuss how textbook descriptions mask the complexity of V1 responses, and how feedback and local activity reflects not only sensory processing but internal brain states.
Collapse
Affiliation(s)
- Lucy S Petro
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Luca Vizioli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Lars Muckli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| |
Collapse
|
197
|
Apitz T, Bunzeck N. Early effects of reward anticipation are modulated by dopaminergic stimulation. PLoS One 2014; 9:e108886. [PMID: 25285436 PMCID: PMC4186816 DOI: 10.1371/journal.pone.0108886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
The abilities to predict future rewards and assess the value of reward delivery are crucial aspects of adaptive behavior. While the mesolimbic system, including dopaminergic midbrain, ventral striatum and prefrontal cortex have long been associated with reward processing, recent studies also indicate a prominent role of early visual brain regions. However, the precise underlying neural mechanisms still remain unclear. To address this issue, we presented participants with visual cues predicting rewards of high and low magnitudes and probability (2×2 factorial design), while neural activity was scanned using magnetoencephalography. Importantly, one group of participants received 150 mg of the dopamine precursor levodopa prior to the experiment, while another group received a placebo. For the placebo group, neural signals of reward probability (but not magnitude) emerged at ∼100 ms after cue presentation at occipital sensors in the event-related magnetic fields. Importantly, these probability signals were absent in the levodopa group indicating a close link. Moreover, levodopa administration reduced oscillatory power in the high (20–30 Hz) and low (13–20 Hz) beta band during both reward anticipation and delivery. Taken together, our findings indicate that visual brain regions are involved in coding prospective reward probability but not magnitude and that these effects are modulated by dopamine.
Collapse
Affiliation(s)
- Thore Apitz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Bunzeck
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
198
|
Murphy PR, Vandekerckhove J, Nieuwenhuis S. Pupil-linked arousal determines variability in perceptual decision making. PLoS Comput Biol 2014; 10:e1003854. [PMID: 25232732 PMCID: PMC4168983 DOI: 10.1371/journal.pcbi.1003854] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/10/2014] [Indexed: 02/06/2023] Open
Abstract
Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of arousal, while human subjects performed a motion-discrimination task, and decomposed task behavior into latent decision making parameters using an established computational model of the decision process. In direct contrast to previous theoretical accounts specifying a role for arousal in several discrete aspects of decision making, we found that pupil diameter was uniquely related to a model parameter representing variability in the rate of decision evidence accumulation: Periods of increased pupil size, reflecting heightened arousal, were characterized by greater variability in accumulation rate. Pupil diameter also correlated trial-by-trial with specific patterns of behavior that collectively are diagnostic of changing accumulation rate variability, and explained substantial individual differences in this computational quantity. These findings provide a uniquely clear account of how arousal state impacts decision making, and may point to a relationship between pupil-linked neuromodulation and behavioral variability. They also pave the way for future studies aimed at augmenting the precision with which people make decisions. Variability is a hallmark of how we make decisions between different alternatives: Even when we are presented with identical repetitions of a stimulus, the timing and accuracy of our associated decisions vary dramatically. Representations of variability or ‘noise’ have necessarily been a prominent feature of how cognitive scientists model the decision making process. However, very little is known about the underlying neural processes or psychophysiological states that determine the magnitude of this variability. In this study, we measured people's pupil size as an indicator of their physiological arousal state during performance of a challenging motion-discrimination task, and modelled decisions on this task using an established computational model of the decision process in which evidence gradually accumulates toward a response threshold. We found that arousal state was tightly and uniquely linked to a computational parameter that specifically represents variability in the rate at which people accumulate evidence to inform their decisions: Larger pupil size, both within- and between-individuals, corresponded to greater variability in this critical aspect of decision making. Our findings uncover a potent source of variability in how people make decisions, and forge a new link between the classical construct of arousal and modern theories of decision making.
Collapse
Affiliation(s)
- Peter R. Murphy
- Department of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- * E-mail:
| | - Joachim Vandekerckhove
- Department of Cognitive Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Sander Nieuwenhuis
- Department of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
199
|
Steinmetz NA, Moore T. Eye movement preparation modulates neuronal responses in area V4 when dissociated from attentional demands. Neuron 2014; 83:496-506. [PMID: 25033188 DOI: 10.1016/j.neuron.2014.06.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/26/2022]
Abstract
We examined whether the preparation of saccadic eye movements, when behaviorally dissociated from covert attention, modulates activity within visual cortex. We measured single-neuron and local field potential (LFP) responses to visual stimuli in area V4 while monkeys covertly attended a stimulus at one location and prepared saccades to a potential target at another. In spite of the irrelevance of visual information at the saccade target, visual activity at that location was modulated at least as much as, and often more than, activity at the covertly attended location. Modulations of activity at the attended and saccade target locations were qualitatively similar and included increased response magnitude, stimulus selectivity, and spiking reliability, as well as increased gamma and decreased low-frequency power of LFPs. These results demonstrate that saccade preparation is sufficient to modulate visual cortical representations and suggest that the interrelationship of oculomotor and attention-related mechanisms extends to posterior visual cortex.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
200
|
Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, Miyamichi K, Luo L, Dan Y. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 2014; 345:660-5. [PMID: 25104383 DOI: 10.1126/science.1254126] [Citation(s) in RCA: 562] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Top-down modulation of sensory processing allows the animal to select inputs most relevant to current tasks. We found that the cingulate (Cg) region of the mouse frontal cortex powerfully influences sensory processing in the primary visual cortex (V1) through long-range projections that activate local γ-aminobutyric acid-ergic (GABAergic) circuits. Optogenetic activation of Cg neurons enhanced V1 neuron responses and improved visual discrimination. Focal activation of Cg axons in V1 caused a response increase at the activation site but a decrease at nearby locations (center-surround modulation). Whereas somatostatin-positive GABAergic interneurons contributed preferentially to surround suppression, vasoactive intestinal peptide-positive interneurons were crucial for center facilitation. Long-range corticocortical projections thus act through local microcircuits to exert spatially specific top-down modulation of sensory processing.
Collapse
Affiliation(s)
- Siyu Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Min Xu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Tsukasa Kamigaki
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Johnny Phong Hoang Do
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Wei-Cheng Chang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Sean Jenvay
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Kazunari Miyamichi
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|