151
|
Izabel da Silva Hage-Melim L, Curtolo Poiani JG, Tomich de Paula da Silva CH, Boylan F. In silico study of the mechanism of action, pharmacokinetic and toxicological properties of some N-methylanthranilates and their analogs. Food Chem Toxicol 2019; 131:110556. [DOI: 10.1016/j.fct.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
|
152
|
Human H1 receptor (HRH1) gene polymorphism is associated with the severity of side effects after desloratadine treatment in Chinese patients with chronic spontaneous uticaria. THE PHARMACOGENOMICS JOURNAL 2019; 20:87-93. [PMID: 31406237 DOI: 10.1038/s41397-019-0094-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 01/30/2023]
Abstract
H1 nonsedating antihistamines, such as desloratadine, are first-line treatment options for chronic spontaneous urticaria (CSU). However, desloratadine induces various degrees of sedation side effect in CSU patients, and no biomarkers currently exist for predicting the severity of such side effect. Herein, we evaluated the association between HRH1 gene rs901865 polymorphism and the severity of sedation side effect following desloratadine therapy in patients with CSU. We found that 20 of the 114 patients (17.50%) showed sedation side effect after desloratadine treatment, and 3 patients (2.63%) experienced serious sleepiness. The frequency of HRH1 rs901865 G allele was significantly higher in patients who experienced sedation than in patients with rs901865 A allele (p = 0.0009). Moreover, patients with the rs901865 G/G genotype suffered a more serious sedation side effect than patients with the rs901865 G/A genotype (p = 0.005). These results provide evidence that the HRH1 rs901865 G/G polymorphism is associated with severe sedation side effect after desloratadine treatment. Thus, the HRH1 rs901865 allele may potentially be used as a biomarker for predicting the severity of sedation side effect in patients suffering from CSU and treated with desloratadine.
Collapse
|
153
|
Yaginuma K, Aoki W, Miura N, Ohtani Y, Aburaya S, Kogawa M, Nishikawa Y, Hosokawa M, Takeyama H, Ueda M. High-throughput identification of peptide agonists against GPCRs by co-culture of mammalian reporter cells and peptide-secreting yeast cells using droplet microfluidics. Sci Rep 2019; 9:10920. [PMID: 31358824 PMCID: PMC6662714 DOI: 10.1038/s41598-019-47388-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022] Open
Abstract
Since G-protein coupled receptors (GPCRs) are linked to various diseases, screening of functional ligands against GPCRs is vital for drug discovery. In the present study, we developed a high-throughput functional cell-based assay by combining human culture cells producing a GPCR, yeast cells secreting randomized peptide ligands, and a droplet microfluidic device. We constructed a reporter human cell line that emits fluorescence in response to the activation of human glucagon-like peptide-1 receptor (hGLP1R). We then constructed a yeast library secreting an agonist of hGLP1R or randomized peptide ligands. We demonstrated that high-throughput identification of functional ligands against hGLP1R could be performed by co-culturing the reporter cells and the yeast cells in droplets. We identified functional ligands, one of which had higher activity than that of an original sequence. The result suggests that our system could facilitate the discovery of functional peptide ligands of GPCRs.
Collapse
Affiliation(s)
- Kenshi Yaginuma
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.,JST, PRESTO, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuta Ohtani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Masato Kogawa
- Department of Life Science & Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Shinjuku-ku, Tokyo, 169-0072, Japan
| | - Yohei Nishikawa
- Department of Life Science & Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Shinjuku-ku, Tokyo, 169-0072, Japan
| | - Masahito Hosokawa
- JST, PRESTO, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Haruko Takeyama
- Department of Life Science & Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Shinjuku-ku, Tokyo, 169-0072, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan. .,JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
154
|
Santos GDA, Dhoke GV, Davari MD, Ruff AJ, Schwaneberg U. Directed Evolution of P450 BM3 towards Functionalization of Aromatic O-Heterocycles. Int J Mol Sci 2019; 20:E3353. [PMID: 31288417 PMCID: PMC6651506 DOI: 10.3390/ijms20133353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/04/2023] Open
Abstract
The O-heterocycles, benzo-1,4-dioxane, phthalan, isochroman, 2,3-dihydrobenzofuran, benzofuran, and dibenzofuran are important building blocks with considerable medical application for the production of pharmaceuticals. Cytochrome P450 monooxygenase (P450) Bacillus megaterium 3 (BM3) wild type (WT) from Bacillus megaterium has low to no conversion of the six O-heterocycles. Screening of in-house libraries for active variants yielded P450 BM3 CM1 (R255P/P329H), which was subjected to directed evolution and site saturation mutagenesis of four positions. The latter led to the identification of position R255, which when introduced in the P450 BM3 WT, outperformed all other variants. The initial oxidation rate of nicotinamide adenine dinucleotide phosphate (NADPH) consumption increased ≈140-fold (WT: 8.3 ± 1.3 min-1; R255L: 1168 ± 163 min-1), total turnover number (TTN) increased ≈21-fold (WT: 40 ± 3; R255L: 860 ± 15), and coupling efficiency, ≈2.9-fold (WT: 8.8 ± 0.1%; R255L: 25.7 ± 1.0%). Computational analysis showed that substitution R255L (distant from the heme-cofactor) does not have the salt bridge formed with D217 in WT, which introduces flexibility into the I-helix and leads to a heme rearrangement allowing for efficient hydroxylation.
Collapse
Affiliation(s)
| | - Gaurao V Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52074 Aachen, Germany.
| |
Collapse
|
155
|
Bosma R, Wang Z, Kooistra AJ, Bushby N, Kuhne S, van den Bor J, Waring MJ, de Graaf C, de Esch IJ, Vischer HF, Sheppard RJ, Wijtmans M, Leurs R. Route to Prolonged Residence Time at the Histamine H 1 Receptor: Growing from Desloratadine to Rupatadine. J Med Chem 2019; 62:6630-6644. [PMID: 31274307 PMCID: PMC6750840 DOI: 10.1021/acs.jmedchem.9b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Drug–target
binding kinetics are an important predictor of in vivo drug efficacy,
yet the relationship
between ligand structures and their binding kinetics is often poorly
understood. We show that both rupatadine (1) and desloratadine
(2) have a long residence time at the histamine H1 receptor (H1R). Through development of a [3H]levocetirizine radiolabel, we find that the residence time
of 1 exceeds that of 2 more than 10-fold.
This was further explored with 22 synthesized rupatadine and desloratadine
analogues. Methylene-linked cycloaliphatic or β-branched substitutions
of desloratadine increase the residence time at the H1R,
conveying a longer duration of receptor antagonism. However, cycloaliphatic
substituents directly attached to the piperidine amine (i.e., lacking
the spacer) have decreased binding affinity and residence time compared
to their methylene-linked structural analogues. Guided by docking
studies, steric constraints within the binding pocket are hypothesized
to explain the observed differences in affinity and binding kinetics
between analogues.
Collapse
Affiliation(s)
- Reggie Bosma
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Zhiyong Wang
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Nick Bushby
- Operations, BioPharmaceuticals R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Sebastiaan Kuhne
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Michael J Waring
- Medicinal Chemistry, Research and Early Development, Oncology R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Chris de Graaf
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Iwan J de Esch
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Robert J Sheppard
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D , AstraZeneca , Gothenburg 431 50 , Sweden
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
156
|
Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 2019; 26:535-544. [PMID: 31270468 DOI: 10.1038/s41594-019-0252-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.
Collapse
|
157
|
Chagas C, Alisaraie L. Metabolites of Vinca Alkaloid Vinblastine: Tubulin Binding and Activation of Nausea-Associated Receptors. ACS OMEGA 2019; 4:9784-9799. [PMID: 31460070 PMCID: PMC6648052 DOI: 10.1021/acsomega.9b00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 05/16/2023]
Abstract
Vinblastine (VLB) is an antimitotic drug that binds to the vinca site of tubulin. The molecule possesses a high molecular weight and a complex chemical structure with many possibilities of metabolization. Despite advances in drug discovery research in reducing drug toxicity, the cause and mechanism of VLB-induced adverse drug reactions (ADRs) remains poorly understood. VLB is metabolized to at least 35 known metabolites, which have been identified and collected in this present work. This study also explores how VLB metabolites affect nausea-associated receptors such as muscarinic, dopaminergic, and histaminic. The metabolites have stronger binding interactions than acetylcholine (ACh) for muscarinic M1, M4, and M5 receptors and demonstrate similar binding profiles to that of the natural substrate, ACh. The affinities of VLB metabolites to dopaminergic and histaminic receptors, their absorption, distribution, metabolism, excretion, toxicity properties, and the superiority of VLB to ACh for binding to M5R, indicate their potential to trigger activation of nausea-associated receptors during chemotherapy with VLB. It has been shown that metabolite 20-hydroxy-VLB (metabolite 10) demonstrates a stronger binding affinity to the vinca site of tubulin than VLB; however, they have similar modes of action. VLB and metabolite 10 have similar gastric solubility (FaSSGF), intestinal solubility (FeSSIF), and log P values. Metabolite 10 has a more acceptable pharmacokinetic profile than VLB, a better gastric and intestinal solubility. Furthermore, metabolite 10 was found to be less bound to plasma proteins than VLB. These are desired and essential features for effective drug bioavailability. Metabolite 10 is not a substrate of CYP2D6 and thus is less likely to cause drug-drug interactions and ADRs compared to its parent drug. The hydroxyl group added upon metabolism of VLB suggests that it can also be a reasonable starting compound for designing the next generation of antimitotic drugs to overcome P-glycoprotein-mediated multidrug resistance, which is often observed with vinca alkaloids.
Collapse
Affiliation(s)
- Caroline
Manto Chagas
- School
of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr., A1B 3V6 St. John’s, Newfoundland, Canada
| | - Laleh Alisaraie
- School
of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr., A1B 3V6 St. John’s, Newfoundland, Canada
- Department
of Chemistry, Memorial University of Newfoundland, A1B 3X7 St. John’s, Newfoundland, Canada
- E-mail:
| |
Collapse
|
158
|
Schaller D, Hagenow S, Stark H, Wolber G. Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. PLoS One 2019; 14:e0218820. [PMID: 31237914 PMCID: PMC6592549 DOI: 10.1371/journal.pone.0218820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
In this study, we report a ligand-guided homology modeling approach allowing the analysis of relevant binding site residue conformations and the identification of two novel histamine H3 receptor ligands with binding affinity in the nanomolar range. The newly developed method is based on exploiting an essential charge interaction characteristic for aminergic G-protein coupled receptors for ranking 3D receptor models appropriate for the discovery of novel compounds through virtual screening.
Collapse
Affiliation(s)
- David Schaller
- Molecular Design Lab, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Gerhard Wolber
- Molecular Design Lab, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
159
|
Szczepańska K, Karcz T, Siwek A, Kuder KJ, Latacz G, Bednarski M, Szafarz M, Hagenow S, Lubelska A, Olejarz-Maciej A, Sobolewski M, Mika K, Kotańska M, Stark H, Kieć-Kononowicz K. Structural modifications and in vitro pharmacological evaluation of 4-pyridyl-piperazine derivatives as an active and selective histamine H 3 receptor ligands. Bioorg Chem 2019; 91:103071. [PMID: 31362197 DOI: 10.1016/j.bioorg.2019.103071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
A novel series of 4-pyridylpiperazine derivatives with varying alkyl linker length and eastern part substituents proved to be potent histamine H3 receptor (hH3R) ligands in the nanomolar concentration range. While paying attention to their alkyl linker length, derivatives with a six methylene linker tend to be more potent than their five methylene homologues. Moreover, in the case of both phenoxyacetyl- and phenoxypropionyl- derivatives, an eight methylene linkers possess lower activity than their seven methylene homologues. However, in global analysis of collected data on the influence of alkyl linker length, a three methylene homologues appeared to be of highest hH3R affinity among all described 4-pyridylpiperazine derivatives from our group up to date. In the case of biphenyl and benzophenone derivatives, compounds with para- substituted second aromatic ring were of higher affinity than their meta analogues. Interestingly, benzophenone derivative 18 showed the highest affinity among all tested compounds (hH3R Ki = 3.12 nM). The likely protein-ligand interactions, responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at H3R, as well as drug-like properties of selected ligands were evaluated using in vitro methods.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marek Bednarski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Michał Sobolewski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Kamil Mika
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
160
|
Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor. Sci Rep 2019; 9:7906. [PMID: 31133718 PMCID: PMC6536503 DOI: 10.1038/s41598-019-44025-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023] Open
Abstract
Drug-target binding kinetics are suggested to be important parameters for the prediction of in vivo drug-efficacy. For G protein-coupled receptors (GPCRs), the binding kinetics of ligands are typically determined using association binding experiments in competition with radiolabelled probes, followed by analysis with the widely used competitive binding kinetics theory developed by Motulsky and Mahan. Despite this, the influence of the radioligand binding kinetics on the kinetic parameters derived for the ligands tested is often overlooked. To address this, binding rate constants for a series of histamine H1 receptor (H1R) antagonists were determined using radioligands with either slow (low koff) or fast (high koff) dissociation characteristics. A correlation was observed between the probe-specific datasets for the kinetic binding affinities, association rate constants and dissociation rate constants. However, the magnitude and accuracy of the binding rate constant-values was highly dependent on the used radioligand probe. Further analysis using recently developed fluorescent binding methods corroborates the finding that the Motulsky-Mahan methodology is limited by the employed assay conditions. The presented data suggest that kinetic parameters of GPCR ligands depend largely on the characteristics of the probe used and results should therefore be viewed within the experimental context and limitations of the applied methodology.
Collapse
|
161
|
Phenothiazine antipsychotics exhibit dual properties in pseudo-allergic reactions: Activating MRGPRX2 and inhibiting the H 1 receptor. Mol Immunol 2019; 111:118-127. [PMID: 31051313 DOI: 10.1016/j.molimm.2019.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 11/23/2022]
Abstract
Phenothiazines are a class of antipsychotics that share the same tricyclic structure and are widely used in clinical settings. Adverse reactions from these drugs, however, have been regularly reported, with allergic skin reactions noted in some cases. Nevertheless, the mechanisms underlying anaphylaxis by these drugs have not been described. In the present study, we found that phenothiazine antipsychotics increased calcium mobilization and activated mast cells to release β-hexosaminidase, histamine, and tumor necrosis factor-α via Mas-related G-protein-coupled receptor member X2 (MRGPRX2) in vitro. In addition, they induced histamine release in serum via Mrgprb2 in C57BL/6 mice without Evans blue extravasation or paw swell. Further experiments indicated these drugs had good interaction with the histamine H1 receptor (H1R) and show an anti-calcium mobilization effect on H1R-HEK293 cells, which confirmed a potential antagonist effect of these drugs on the H1R. The molecular docking and activity experiments indicated that the N-methyl substitution on the side chain of these drugs played a significant role in activating MRGPRX2, while the phenothiazine tricyclic ring was associated with the inhibiting effect on the H1R. Therefore, due to their dual properties of increasing histamine levels without obvious allergic symptoms, clinicians should be highly vigilant for damage from histamine accumulation and long-term inflammatory reactions during the clinical use of phenothiazine antipsychotics.
Collapse
|
162
|
A Metadynamics-Based Protocol for the Determination of GPCR-Ligand Binding Modes. Int J Mol Sci 2019; 20:ijms20081970. [PMID: 31013635 PMCID: PMC6514967 DOI: 10.3390/ijms20081970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a main drug target and therefore a hot topic in pharmaceutical research. One important prerequisite to understand how a certain ligand affects a GPCR is precise knowledge about its binding mode and the specific underlying interactions. If no crystal structure of the respective complex is available, computational methods can be used to deduce the binding site. One of them are metadynamics simulations which have the advantage of an enhanced sampling compared to conventional molecular dynamics simulations. However, the enhanced sampling of higher-energy states hampers identification of the preferred binding mode. Here, we present a novel protocol based on clustering of multiple walker metadynamics simulations which allows identifying the preferential binding mode from such conformational ensembles. We tested this strategy for three different model systems namely the histamine H1 receptor in combination with its physiological ligand histamine, as well as the β2 adrenoceptor with its agonist adrenaline and its antagonist alprenolol. For all three systems, the proposed protocol was able to reproduce the correct binding mode known from the literature suggesting that the approach can more generally be applied to the prediction of GPCR ligand binding in future.
Collapse
|
163
|
Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands. Bioorg Med Chem 2019; 27:1254-1262. [DOI: 10.1016/j.bmc.2019.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
|
164
|
Casiraghi M, Point E, Pozza A, Moncoq K, Banères JL, Catoire LJ. NMR analysis of GPCR conformational landscapes and dynamics. Mol Cell Endocrinol 2019; 484:69-77. [PMID: 30690069 DOI: 10.1016/j.mce.2018.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Understanding the signal transduction mechanism mediated by the G Protein-Coupled Receptors (GPCRs) in eukaryote cells represents one of the main issues in modern biology. At the molecular level, various biophysical approaches have provided important insights on the functional plasticity of these complex allosteric machines. In this context, X-ray crystal structures published during the last decade represent a major breakthrough in GPCR structural biology, delivering important information on the activation process of these receptors through the description of the three-dimensional organization of their active and inactive states. In complement to crystals and cryo-electronic microscopy structures, information on the probability of existence of different GPCR conformations and the dynamic barriers separating those structural sub-states is required to better understand GPCR function. Among the panel of techniques available, nuclear magnetic resonance (NMR) spectroscopy represents a powerful tool to characterize both conformational landscapes and dynamics. Here, we will outline the potential of NMR to address such biological questions, and we will illustrate the functional insights that NMR has brought in the field of GPCRs in the recent years.
Collapse
Affiliation(s)
- Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS/Université; Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Elodie Point
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS/Université; Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Alexandre Pozza
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS/Université; Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS/Université; Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jean-Louis Banères
- Institut des Biomoléćules Max Mousseron (IBMM), UMR 5247 CNRS, Université; Montpellier, ENSCM, 15 av. Charles Flahault, 34093, Montpellier, France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS/Université; Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
165
|
Kögler LM, Stichel J, Kaiser A, Beck-Sickinger AG. Cell-Free Expression and Photo-Crosslinking of the Human Neuropeptide Y 2 Receptor. Front Pharmacol 2019; 10:176. [PMID: 30881304 PMCID: PMC6405639 DOI: 10.3389/fphar.2019.00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of different proteins, which are involved in physiological processes throughout the entire body. Furthermore, they represent important drug targets. For rational drug design, it is important to get further insights into the binding mode of endogenous ligands as well as of therapeutic agents at the respective target receptors. However, structural investigations usually require homogenous, solubilized and functional receptors, which is still challenging. Cell-free expression methods have emerged in the last years and many different proteins are successfully expressed, including hydrophobic membrane proteins like GPCRs. In this work, an Escherichia coli based cell-free expression system was used to express the neuropeptide Y2 receptor (Y2R) for structural investigations. This GPCR was expressed in two different variants, a C-terminal enhanced green fluorescent fusion protein and a cysteine deficient variant. In order to obtain soluble receptors, the expression was performed in the presence of mild detergents, either Brij-35 or Brij-58, which led to high amounts of soluble receptor. Furthermore, the influence of temperature, pH value and additives on protein expression and solubilization was tested. For functional and structural investigations, the receptors were expressed at 37°C, pH 7.4 in the presence of 1 mM oxidized and 5 mM reduced glutathione. The expressed receptors were purified by ligand affinity chromatography and functionality of Y2R_cysteine_deficient was verified by a homogenous binding assay. Finally, photo-crosslinking studies were performed between cell-free expressed Y2R_cysteine_deficient and a neuropeptide Y (NPY) analog bearing the photoactive, unnatural amino acid p-benzoyl-phenylalanine at position 27 and biotin at position 22 for purification. After enzymatic digestion, fragments of crosslinked receptor were identified by mass spectrometry. Our findings demonstrate that, in contrast to Y1R, NPY position 27 remains flexible when bound to Y2R. These results are in agreement with the suggested binding mode of NPY at Y2R.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
166
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
167
|
Pockes S, Wifling D, Buschauer A, Elz S. Structure-Activity Relationship of Hetarylpropylguanidines Aiming at the Development of Selective Histamine Receptor Ligands †. ChemistryOpen 2019; 8:285-297. [PMID: 30886786 PMCID: PMC6401531 DOI: 10.1002/open.201900011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Indexed: 11/05/2022] Open
Abstract
New classes of alkylated hetarylpropylguanidines with different functionality and variation in spacer length were synthesized to determine their behavior at the four histamine receptor (H1R, H2R, H3R, H4R) subtypes. Alkylated guanidines with different terminal functional groups and varied basicity, like amine, guanidine and urea were developed, based on the lead structure SK&F 91486 (2). Furthermore, heteroatomic exchange at the guanidine structure of 2 led to simple analogues of the lead compound. Radioassays at all histamine receptor subtypes were accomplished, as well as organ bath studies at the guinea pig (gp) ileum (gpH1R) and right atrium (gpH2R). Ligands with terminal functionalization led to, partially, highly affine and potent structures (two digit nanomolar), which showed up a bad selectivity profile within the histamine receptor family. While the benzoylurea derivative 144 demonstrated a preference towards the human (h) H3R, S-methylisothiourea analogue 143 obtained high affinity at the hH4R (pKi=8.14) with moderate selectivity. The molecular basis of the latter finding was supported by computational studies.
Collapse
Affiliation(s)
- Steffen Pockes
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 31D-93053RegensburgGermany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 31D-93053RegensburgGermany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 31D-93053RegensburgGermany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 31D-93053RegensburgGermany
| |
Collapse
|
168
|
Behrens M, Briand L, de March CA, Matsunami H, Yamashita A, Meyerhof W, Weyand S. Structure-Function Relationships of Olfactory and Taste Receptors. Chem Senses 2019; 43:81-87. [PMID: 29342245 DOI: 10.1093/chemse/bjx083] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The field of chemical senses has made major progress in understanding the cellular mechanisms of olfaction and taste in the past 2 decades. However, the molecular understanding of odor and taste recognition is still lagging far behind and will require solving multiple structures of the relevant full-length receptors in complex with native ligands to achieve this goal. However, the development of multiple complimentary strategies for the structure determination of G protein-coupled receptors (GPCRs) makes this goal realistic. The common conundrum of how multi-specific receptors that recognize a large number of different ligands results in a sensory perception in the brain will only be fully understood by a combination of high-resolution receptor structures and functional studies. This review discusses the first steps on this pathway, including biochemical and physiological assays, forward genetics approaches, molecular modeling, and the first steps towards the structural biology of olfactory and taste receptors.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. de Bourgogne- Franche-Comté, France
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, USA
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
169
|
Hebscher M, Meltzer JA, Gilboa A. A causal role for the precuneus in network-wide theta and gamma oscillatory activity during complex memory retrieval. eLife 2019; 8:43114. [PMID: 30741161 PMCID: PMC6397002 DOI: 10.7554/elife.43114] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/09/2019] [Indexed: 12/17/2022] Open
Abstract
Complex memory of personal events is thought to depend on coordinated reinstatement of cortical representations by the medial temporal lobes (MTL). MTL-cortical theta and gamma coupling is believed to mediate such coordination, but which cortical structures are critical for retrieval and how they influence oscillatory coupling is unclear. We used magnetoencephalography (MEG) combined with continuous theta burst stimulation (cTBS) to (i) clarify the roles of theta and gamma oscillations in network-wide communication during naturalistic memory retrieval, and (ii) understand the causal relationship between cortical network nodes and oscillatory communication. Retrieval was associated with MTL-posterior neocortical theta phase coupling and theta-gamma phase-amplitude coupling relative to a rest period. Precuneus cTBS altered MTL-neocortical communication by modulating theta and gamma oscillatory coupling. These findings provide a mechanistic account for MTL-cortical communication and demonstrate that the precuneus is a critical cortical node of oscillatory activity, coordinating cross-regional interactions that drive remembering. When you recall an event from your past, such as a meal you ate last week, many regions of your brain become active. The coordinated activity of these regions enables you to recall the event in detail. This coordination depends on rhythmic waves of electrical activity called neural oscillations. These arise whenever large numbers of neurons synchronize when they fire. Electrodes on the scalp can be used to measure neural oscillations. Recordings show that the number of times each wave repeats per second (also known as the frequency of the oscillation), varies from one brain region to the next. Two types of oscillations are particularly important for memory: theta waves and gamma waves. Theta waves repeat between three and seven times every second, and help coordinate activity between areas of the brain that are far apart. Gamma waves are faster, repeating 65 to 85 times per second, and help to support activity within individual regions of the brain. Importantly, theta and gamma waves also interact. Hebscher et al. set out to understand whether interactions between theta and gamma waves help us to recall personal memories. Healthy volunteers were asked to recall memories in response to cues such as ‘my kitchen’, while sitting inside a brain scanner. As predicted, interactions between theta and gamma waves contributed to memory recall. Theta waves recorded from the medial temporal lobe, a region deep within the brain, altered gamma waves in another area called the precuneus. The latter forms part of the inner surface of the brain where the two hemispheres face one another, and is important for memory vividness and visual imagery. Hebscher et al. briefly disrupted the activity of the precuneus by applying harmless magnetic fields to the scalp above it. Doing so altered theta-gamma interactions across the brain, which was related to reduced vividness of the memories. Remembering events from our past is fundamental to our sense of self and our interactions with others. The results presented by Hebscher et al. show that reducing the activity of a single brain region, the precuneus, impairs memory recall. It does so by disrupting interactions between oscillations throughout the brain. This raises the possibility that stimulating the brain to enhance – rather than disrupt – oscillations could have the opposite effect and improve memory. Future studies could investigate whether enhancing oscillations could help to treat memory disorders.
Collapse
Affiliation(s)
- Melissa Hebscher
- Rotman Research Institute, Baycrest, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Jed A Meltzer
- Rotman Research Institute, Baycrest, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| | - Asaf Gilboa
- Rotman Research Institute, Baycrest, Toronto, Canada
| |
Collapse
|
170
|
Structures of the 5-HT 2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 2019; 26:121-128. [PMID: 30723326 DOI: 10.1038/s41594-018-0180-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/14/2018] [Indexed: 01/15/2023]
Abstract
Many drugs target the serotonin 2A receptor (5-HT2AR), including second-generation antipsychotics that also target the dopamine D2 receptor (D2R). These drugs often produce severe side effects due to non-selective binding to other aminergic receptors. Here, we report the structures of human 5-HT2AR in complex with the second-generation antipsychotics risperidone and zotepine. These antipsychotics effectively stabilize the inactive conformation by forming direct contacts with the residues at the bottom of the ligand-binding pocket, the movements of which are important for receptor activation. 5-HT2AR is structurally similar to 5-HT2CR but possesses a unique side-extended cavity near the orthosteric binding site. A docking study and mutagenic studies suggest that a highly 5-HT2AR-selective antagonist binds the side-extended cavity. The conformation of the ligand-binding pocket in 5-HT2AR significantly differs around extracellular loops 1 and 2 from that in D2R. These findings are beneficial for the rational design of safer antipsychotics and 5-HT2AR-selective drugs.
Collapse
|
171
|
Ghamari N, Zarei O, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M. Histamine H 3 receptor ligands by hybrid virtual screening, docking, molecular dynamics simulations, and investigation of their biological effects. Chem Biol Drug Des 2019; 93:832-843. [PMID: 30586225 DOI: 10.1111/cbdd.13471] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Histamine H3 receptors (H3 R), belonging to G-protein coupled receptors (GPCR) class A superfamily, are responsible for modulating the release of histamine as well as of other neurotransmitters by a negative feedback mechanism mainly in the central nervous system (CNS). These receptors have gained increased attention as therapeutic target for several CNS related neurological diseases. In the current study, we aimed to identify novel H3 R ligands using in silico virtual screening methods. To this end, a combination of ligand- and structure-based approaches was utilized for screening of ZINC database on the homology model of human H3 R. Structural similarity- and pharmacophore-based approaches were employed to generate compound libraries. Various molecular modeling methodologies such as molecular docking and dynamics simulation along with different drug likeness filtering criteria were applied to select anti-H3 R ligands as promising candidate molecules based on different known parent lead compounds. In vitro binding assays of the selected molecules demonstrated three of them being active within the micromolar and submicromolar Ki range. The current integrated computational and experimental methods used in this work can provide new general insights for systematic hit identification for novel anti-H3 R agents from large compound libraries.
Collapse
Affiliation(s)
- Nakisa Ghamari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
172
|
Antihistamines for Allergic Rhinitis Treatment from the Viewpoint of Nonsedative Properties. Int J Mol Sci 2019; 20:ijms20010213. [PMID: 30626077 PMCID: PMC6337346 DOI: 10.3390/ijms20010213] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022] Open
Abstract
Antihistamines targeting the histamine H1 receptor play an important role in improving and maintaining the quality of life of patients with allergic rhinitis. For more effective and safer use of second-generation drugs, which are recommended by various guidelines, a classification based on their detailed characteristics is necessary. Antihistamines for first-line therapy should not have central depressant/sedative activities. Sedative properties (drowsiness and impaired performance) are associated with the inhibition of central histamine neurons. Brain H1 receptor occupancy (H1RO) is a useful index shown to be correlated with indices based on clinical findings. Antihistamines are classified into non-sedating (<20%), less-sedating (20–50%), and sedating (≥50%) groups based on H1RO. Among the non-sedating group, fexofenadine and bilastine are classified into “non-brain-penetrating antihistamines” based on the H1RO. These two drugs have many common chemical properties. However, bilastine has more potent binding affinity to the H1 receptor, and its action tends to last longer. In well-controlled studies using objective indices, bilastine does not affect psychomotor or driving performance even at twice the usual dose (20 mg). Upon selecting antihistamines for allergic rhinitis, various situations should be taken into our consideration. This review summarizes that the non-brain-penetrating antihistamines should be chosen for the first-line therapy of mild allergic rhinitis.
Collapse
|
173
|
Isotopic Labeling of Eukaryotic Membrane Proteins for NMR Studies of Interactions and Dynamics. Methods Enzymol 2018; 614:37-65. [PMID: 30611431 DOI: 10.1016/bs.mie.2018.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Membrane proteins, and especially G-protein coupled receptors (GPCRs), are increasingly important targets of structural biology studies due to their involvement in many biomedically critical pathways in humans. These proteins are often highly dynamic and thus benefit from studies by NMR spectroscopy in parallel with complementary crystallographic and cryo-EM analyses. However, such studies are often complicated by a range of practical concerns, including challenges in preparing suitably isotopically labeled membrane protein samples, large sizes of protein/detergent or protein/lipid complexes, and limitations on sample concentrations and stabilities. Here we describe our approach to addressing these challenges via the use of simple eukaryotic expression systems and modified NMR experiments, using the human adenosine A2A receptor as an example. Protocols are provided for the preparation of U-2H (13C,1H-Ile δ1)-labeled membrane proteins from overexpression in the methylotrophic yeast Pichia pastoris, as well as techniques for studying the fast ns-ps sidechain dynamics of the methyl groups of such samples. We believe that, with the proper optimization, these protocols should be generalizable to other GPCRs and human membrane proteins.
Collapse
|
174
|
Hishinuma S, Tamura Y, Kobayashi C, Akatsu C, Shoji M. Differential Regulation of Thermodynamic Binding Forces of Levocetirizine and ( S)-Cetirizine by Lys191 in Human Histamine H₁ Receptors. Int J Mol Sci 2018; 19:ijms19124067. [PMID: 30558340 PMCID: PMC6321019 DOI: 10.3390/ijms19124067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023] Open
Abstract
Cetirizine is a zwitterionic second-generation antihistamine containing R- and S-enantiomers, levocetirizine, and (S)-cetirizine. Levocetirizine is known to have a higher affinity for the histamine H₁ receptors than (S)-cetirizine; ligand-receptor docking simulations have suggested the importance of the formation of a salt bridge (electrostatic interaction) between the carboxylic group of levocetirizine and the Lys191 residue at the fifth transmembrane domain of human histamine H₁ receptors. In this study, we evaluated the roles of Lys191 in the regulation of the thermodynamic binding forces of levocetirizine in comparison with (S)-cetirizine. The binding enthalpy and entropy of these compounds were estimated from the van 't Hoff equation, by using the dissociation constants obtained from their displacement curves against the binding of [³H]mepyramine to the membrane preparations of Chinese hamster ovary cells expressing wild-type human H₁ receptors and their Lys191 mutants to alanine at various temperatures. We found that the higher binding affinity of wild-type H₁ receptors for levocetirizine than (S)-cetirizine was achieved by stronger forces of entropy-dependent hydrophobic binding of levocetirizine. The mutation of Lys191 to alanine reduced the affinities for levocetirizine and (S)-cetirizine, through a reduction in the entropy-dependent hydrophobic binding forces of levocetirizine and the enthalpy-dependent electrostatic binding forces of (S)-cetirizine. These results suggested that Lys191 differentially regulates the binding enthalpy and entropy of these enantiomers, and that Lys191 negatively regulates the enthalpy-dependent electrostatic binding forces of levocetirizine, contrary to the predictions derived from the ligand-receptor docking simulations.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Yuri Tamura
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Chihiro Kobayashi
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Chizuru Akatsu
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
175
|
Tiligada E, Ennis M. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br J Pharmacol 2018; 177:469-489. [PMID: 30341770 DOI: 10.1111/bph.14524] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Histamine has been one of the most studied substances in medicine, playing a major role in diverse (patho)physiological processes. It elicits its multifaceted modulatory functions by activating four types of GPCRs, designated as H1-4 . Despite the heterogeneity and the complexity of histamine receptor pharmacology, many discoveries over the past 100 years resulted in the development of H1 antihistamines and H2 -targeting 'blockbuster' therapeutics for the management of allergies and gastrointestinal disorders respectively. Recently, a first-in-class H3 inverse agonist was approved for the treatment of narcolepsy, whereas H4 antagonists are under clinical evaluation for their potential therapeutic exploitation in immune-related diseases. This review critically presents the past successes and drawbacks in histamine research, complemented by the modern conceptual innovations in molecular and receptor pharmacology. It targets both young and experienced researchers in an ongoing effort to stimulate novel insights for the dissection of the translational potential of histamine pharmacology. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
176
|
Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure. Mol Divers 2018; 23:603-613. [PMID: 30484023 PMCID: PMC6682580 DOI: 10.1007/s11030-018-9894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
Three-dimensional descriptors are often used to search for new biologically active compounds, in both ligand- and structure-based approaches, capturing the spatial orientation of molecules. They frequently constitute an input for machine learning-based predictions of compound activity or quantitative structure-activity relationship modeling; however, the distribution of their values and the accuracy of depicting compound orientations might have an impact on the power of the obtained predictive models. In this study, we analyzed the distribution of three-dimensional descriptors calculated for docking poses of active and inactive compounds for all aminergic G protein-coupled receptors with available crystal structures, focusing on the variation in conformations for different receptors and crystals. We demonstrated that the consistency in compound orientation in the binding site is rather not correlated with the affinity itself, but is more influenced by other factors, such as the number of rotatable bonds and crystal structure used for docking studies. The visualizations of the descriptors distributions were prepared and made available online at http://chem.gmum.net/vischem_stability , which enables the investigation of chemical structures referring to particular data points depicted in the figures. Moreover, the performed analysis can assist in choosing crystal structure for docking studies, helping in selection of conditions providing the best discrimination between active and inactive compounds in machine learning-based experiments.
Collapse
|
177
|
Söldner CA, Horn AHC, Sticht H. Binding of histamine to the H1 receptor-a molecular dynamics study. J Mol Model 2018; 24:346. [PMID: 30498974 DOI: 10.1007/s00894-018-3873-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Binding of histamine to the G-protein coupled histamine H1 receptor plays an important role in the context of allergic reactions; however, no crystal structure of the resulting complex is available yet. To deduce the histamine binding site, we performed unbiased molecular dynamics (MD) simulations on a microsecond time scale, which allowed to monitor one binding event, in which particularly the residues of the extracellular loop 2 were involved in the initial recognition process. The final histamine binding pose in the orthosteric pocket is characterized by interactions with Asp1073.32, Tyr1083.33, Thr1945.43, Asn1985.46, Trp4286.48, Tyr4316.51, Phe4326.52, and Phe4356.55, which is in agreement with existing mutational data. The conformational stability of the obtained complex structure was subsequently confirmed in 2 μs equilibrium MD simulations, and a metadynamics simulation proved that the detected binding site represents an energy minimum. A complementary investigation of a D107A mutant, which has experimentally been shown to abolish ligand binding, revealed that this exchange results in a significantly weaker interaction and enhanced ligand dynamics. This finding underlines the importance of the electrostatic interaction between the histamine ammonium group and the side chain of Asp1073.32 for histamine binding.
Collapse
Affiliation(s)
- Christian A Söldner
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), , Fahrstraße 17, 91054, Erlangen, Germany
| | - Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), , Fahrstraße 17, 91054, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), , Fahrstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
178
|
Vass M, Podlewska S, de Esch IJP, Bojarski AJ, Leurs R, Kooistra AJ, de Graaf C. Aminergic GPCR-Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. J Med Chem 2018; 62:3784-3839. [PMID: 30351004 DOI: 10.1021/acs.jmedchem.8b00836] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aminergic family of G protein-coupled receptors (GPCRs) plays an important role in various diseases and represents a major drug discovery target class. Structure determination of all major aminergic subfamilies has enabled structure-based ligand design for these receptors. Site-directed mutagenesis data provides an invaluable complementary source of information for elucidating the structural determinants of binding of different ligand chemotypes. The current study provides a comparative analysis of 6692 mutation data points on 34 aminergic GPCR subtypes, covering the chemical space of 540 unique ligands from mutagenesis experiments and information from experimentally determined structures of 52 distinct aminergic receptor-ligand complexes. The integrated analysis enables detailed investigation of structural receptor-ligand interactions and assessment of the transferability of combined binding mode and mutation data across ligand chemotypes and receptor subtypes. An overview is provided of the possibilities and limitations of using mutation data to guide the design of novel aminergic receptor ligands.
Collapse
Affiliation(s)
- Márton Vass
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Sabina Podlewska
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Sosei Heptares , Steinmetz Building, Granta Park, Great Abington , Cambridge CB21 6DG , U.K
| |
Collapse
|
179
|
High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. mBio 2018; 9:mBio.01894-18. [PMID: 30425146 PMCID: PMC6234866 DOI: 10.1128/mbio.01894-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity. Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.
Collapse
|
180
|
Szczepańska K, Karcz T, Kotańska M, Siwek A, Kuder KJ, Latacz G, Mogilski S, Hagenow S, Lubelska A, Sobolewski M, Stark H, Kieć-Kononowicz K. Optimization and preclinical evaluation of novel histamine H 3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives. Bioorg Med Chem 2018; 26:6056-6066. [PMID: 30448256 DOI: 10.1016/j.bmc.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
As a continuation of our search for novel histamine H3 receptor ligands, a series of new acetyl and propionyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer, composed of six various 4N-substituted piperazine moieties were evaluated for their binding properties at human histamine H3 receptors (hH3R). In vitro test results proved the 4-pyridylpiperazine moiety as crucial element for high hH3R affinity (hH3R Ki = 5.2-115 nM). Moreover introduction of carbonyl group containing residues in the lipophilic part of molecules instead of branched alkyl substituents resulted in increased affinity in correlation to previously described series, whereas propionyl derivatives showed slightly higher affinities than those of acetyl (16 and 22vs.4 and 10; hH3R Ki = 5.2 and 15.4 nM vs. 10.2 and 115 nM, respectively). These findings were confirmed by molecular modelling studies, demonstrating multiple ligand-receptor interactions. Furthermore, pharmacological in vivo test results of compound 4 clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound. Likewise, its protective action against hyperglycemia and the development of overweight has been shown. In order to estimate drug-likeness of compound 4, in silico and experimental evaluation of metabolic stability in human liver microsomes was performed.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf , Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Michał Sobolewski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf , Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
181
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
182
|
Kurczab R, Śliwa P, Rataj K, Kafel R, Bojarski AJ. Salt Bridge in Ligand-Protein Complexes-Systematic Theoretical and Statistical Investigations. J Chem Inf Model 2018; 58:2224-2238. [PMID: 30351056 DOI: 10.1021/acs.jcim.8b00266] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand-receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS-NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.
Collapse
Affiliation(s)
- Rafał Kurczab
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| | - Paweł Śliwa
- Faculty of Chemical Engineering and Technology , Cracow University of Technology , Warszawska 24 , 31-155 Cracow , Poland
| | - Krzysztof Rataj
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| | - Rafał Kafel
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smetna 12 , 31-343 Cracow , Poland
| |
Collapse
|
183
|
Castleman PN, Sears CK, Cole JA, Baker DL, Parrill AL. GPCR homology model template selection benchmarking: Global versus local similarity measures. J Mol Graph Model 2018; 86:235-246. [PMID: 30390544 DOI: 10.1016/j.jmgm.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for drug development. GPCR ligand interaction studies often have a starting point with either crystal structures or comparative models. The majority of GPCR do not have experimentally-characterized 3-dimensional structures, so comparative modeling, also called homology modeling, is a good structure-based starting point. Comparative modeling is a widely used method for generating models of proteins with unknown structures by analogy to crystallized proteins that are expected to exhibit structural conservation. Traditionally, comparative modeling template selection is based on global sequence identity and shared function. However high sequence identity localized to the ligand binding pocket may produce better models to examine protein-ligand interactions. This in silico benchmark study examined the performance of a global versus local similarity measure applied to comparative modeling template selection for 6 previously crystallized, class A GCPR (CXCR4, FFAR1, NOP, P2Y12, OPRK, and M1) with the long-term goal of optimizing GPCR ligand identification efforts. Comparative models were generated from templates selected using both global and local similarity measures. Similarity to reference crystal structures was reflected in RMSD values between atom positions throughout the structure or localized to the ligand binding pocket. Overall, models deviated from the reference crystal structure to a similar degree regardless of whether the template was selected using a global or local similarity measure. Ligand docking simulations were performed to assess relative performance in predicting protein-ligand complex structures and interaction networks. Calculated RMSD values between ligand poses from docking simulations and crystal structures indicate that models based on locally selected templates give docked poses that better mimic crystallographic ligand positions than those based on globally-selected templates in five of the six benchmark cases. However, protein model refinement strategies in advance of ligand docking applications are clearly essential as the average RMSD between crystallographic poses and poses docked into local template models was 9.7 Å and typically less than half of the ligand interaction sites are shared between the docked and crystallographic poses. These data support the utilization of local similarity measures to guide template selection in protocols using comparative models to investigate ligand-receptor interactions.
Collapse
Affiliation(s)
| | | | - Judith A Cole
- The University of Memphis, Department of Biological Sciences, USA
| | | | - Abby L Parrill
- The University of Memphis, Department of Chemistry, USA; The University of Memphis, Computational Research on Materials Institute (CROMIUM), USA.
| |
Collapse
|
184
|
Exploring Halogen Bonds in 5-Hydroxytryptamine 2B Receptor-Ligand Interactions. ACS Med Chem Lett 2018; 9:1019-1024. [PMID: 30344910 DOI: 10.1021/acsmedchemlett.8b00300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Here, we predicted the potential halogen bonding interaction between compound 2 and the 5-hydroxytryptamine 2B (5-HT2B) receptor and systematically assessed this interaction via structure-activity relationship analysis and molecular dynamics simulations. A physics-based computational protocol was then developed to further explore the opportunity of "designing in" halogen bonding interactions in structure-based ligand design for the 5-HT2B receptor, which not only facilitated the identification of previously uncharacterized halogen bonds in known 5-HT2B ligands but also enabled the rational design of halogen bonding interactions for the optimization of 5-HT2B ligands. As a proof-of-concept, a series of halogen-substituted analogues of doxepin was synthesized and evaluated, which showed improved in vitro and in vivo potency.
Collapse
|
185
|
Iliopoulos-Tsoutsouvas C, Kulkarni RN, Makriyannis A, Nikas SP. Fluorescent probes for G-protein-coupled receptor drug discovery. Expert Opin Drug Discov 2018; 13:933-947. [DOI: 10.1080/17460441.2018.1518975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Rohit N. Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center. Department of Medicine, Brigham and Women’s Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Spyros P. Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
186
|
Basavanhally T, Fonseca R, Uversky VN. Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Proteomics 2018; 18:e1800307. [PMID: 30156382 DOI: 10.1002/pmic.201800307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Recently, genome-wide association study reveals a significant association between specific single nucleotide polymorphisms (SNPs) in men and their sexual orientation. These SNPs (rs9547443 and rs1035144) reside in the intergenic region between the SLITRK5 and SLITRK6 genes and in the intronic region of the TSHR gene and might affect functionality of SLITRK5, SLITRK6, and TSHR proteins that are engaged in tight control of key developmental processes, such as neurite outgrowth and modulation, cellular differentiation, and hormonal regulation. SLITRK5 and SLITRK6 are single-pass transmembrane proteins, whereas TSHR is a heptahelical G protein-coupled receptor (GPCR). Mutations in these proteins are associated with various diseases and are linked to phenotypes found at a higher rate in homosexual men. A bioinformatics analysis of SLITRK5, SLITRK6, and TSHR proteins is conducted to look at their structure, protein interaction networks, and propensity for intrinsic disorder. It is assumed that this information might improve understanding of the roles that SLITRK5, SLITRK6, and TSHR play within neuronal and thyroidal tissues and give insight into the phenotypes associated with male homosexuality.
Collapse
Affiliation(s)
- Tara Basavanhally
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Renée Fonseca
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290, Pushchino, Moscow, Russia
| |
Collapse
|
187
|
Weiss D, Karpiak J, Huang XP, Sassano MF, Lyu J, Roth BL, Shoichet BK. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. J Med Chem 2018; 61:6830-6845. [PMID: 29990431 PMCID: PMC6105036 DOI: 10.1021/acs.jmedchem.8b00718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/14/2022]
Abstract
To investigate large library docking's ability to find molecules with joint activity against on-targets and selectivity versus antitargets, the dopamine D2 and serotonin 5-HT2A receptors were targeted, seeking selectivity against the histamine H1 receptor. In a second campaign, κ-opioid receptor ligands were sought with selectivity versus the μ-opioid receptor. While hit rates ranged from 40% to 63% against the on-targets, they were just as good against the antitargets, even though the molecules were selected for their putative lack of binding to the off-targets. Affinities, too, were often as good or better for the off-targets. Even though it was occasionally possible to find selective molecules, such as a mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem may demand new strategies in the field.
Collapse
Affiliation(s)
- Dahlia
R. Weiss
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Joel Karpiak
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Xi-Ping Huang
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Maria F. Sassano
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiankun Lyu
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Bryan L. Roth
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| |
Collapse
|
188
|
Clement N, Renault N, Guillaume J, Cecon E, Journé A, Laurent X, Tadagaki K, Cogé F, Gohier A, Delagrange P, Chavatte P, Jockers R. Importance of the second extracellular loop for melatonin MT 1 receptor function and absence of melatonin binding in GPR50. Br J Pharmacol 2018; 175:3281-3297. [PMID: 28898928 PMCID: PMC6057912 DOI: 10.1111/bph.14029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/09/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent crystal structures of GPCRs have emphasized the previously unappreciated role of the second extracellular (E2) loop in ligand binding and gating and receptor activation. Here, we have assessed the role of the E2 loop in the activation of the melatonin MT1 receptor and in the inactivation of the closely related orphan receptor GPR50. EXPERIMENTAL APPROACH Chimeric MT1 -GPR50 receptors were generated and functionally analysed in terms of 2-[125 I]iodomelatonin binding, Gi /cAMP signalling and β-arrestin2 recruitment. We also used computational molecular dynamics (MD) simulations. KEY RESULTS MD simulations of 300 ns revealed (i) the tight hairpin structure of the E2 loop of the MT1 receptor (ii) the most suitable features for melatonin binding in MT1 receptors and (iii) major predicted rearrangements upon MT1 receptor activation, stabilizing interaction networks between Phe179 or Gln181 in the E2 loop and transmembrane helixes 5 and 6. Functional assays confirmed these predictions, because reciprocal replacement of MT1 and GPR50 residues/domains led to the predicted loss- and gain-of-melatonin action of MT1 receptors and GPR50 respectively. CONCLUSIONS AND IMPLICATIONS Our work demonstrated the crucial role of the E2 loop for MT1 receptor and GPR50 function by proposing a model in which the E2 loop is important in stabilizing active MT1 receptor conformations and by showing how evolutionary processes appear to have selected for modifications in the E2 loop in order to make GPR50 unresponsive to melatonin. LINKED ARTICLES This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Nathalie Clement
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Nicolas Renault
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International CenterLilleFrance
| | - Jean‐Luc Guillaume
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Erika Cecon
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Anne‐Sophie Journé
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Xavier Laurent
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International CenterLilleFrance
| | - Kenjiro Tadagaki
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Francis Cogé
- Pôle d'Innovation Thérapeutique NeuropsychiatrieInstitut de Recherches SERVIERCroissy/SeineFrance
| | - Arnaud Gohier
- Pôle d'Innovation Thérapeutique NeuropsychiatrieInstitut de Recherches SERVIERCroissy/SeineFrance
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique NeuropsychiatrieInstitut de Recherches SERVIERCroissy/SeineFrance
| | - Philippe Chavatte
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International CenterLilleFrance
| | - Ralf Jockers
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
189
|
Clark L, Dikiy I, Rosenbaum DM, Gardner KH. On the use of Pichia pastoris for isotopic labeling of human GPCRs for NMR studies. JOURNAL OF BIOMOLECULAR NMR 2018; 71:203-211. [PMID: 30121871 PMCID: PMC7282444 DOI: 10.1007/s10858-018-0204-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 05/21/2023]
Abstract
NMR studies of human integral membrane proteins provide unique opportunities to probe structure and dynamics at specific locations and on multiple timescales, often with significant implications for disease mechanism and drug development. Since membrane proteins such as G protein-coupled receptors (GPCRs) are highly dynamic and regulated by ligands or other perturbations, NMR methods are potentially well suited to answer basic functional questions (such as addressing the biophysical basis of ligand efficacy) as well as guiding applications (such as novel ligand design). However, such studies on eukaryotic membrane proteins have often been limited by the inability to incorporate optimal isotopic labels for NMR methods developed for large protein/lipid complexes, including methyl TROSY. We review the different expression systems for production of isotopically labeled membrane proteins and highlight the use of the yeast Pichia pastoris to achieve perdeuteration and 13C methyl probe incorporation within isoleucine sidechains. We further illustrate the use of this method for labeling of several biomedically significant GPCRs.
Collapse
Affiliation(s)
- Lindsay Clark
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8816, USA
- Molecular Biophysics Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor Dikiy
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8816, USA.
- Molecular Biophysics Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, 10031, USA.
- Biochemistry, Chemistry and Biology Ph.D. Programs, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
190
|
General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci 2018; 19:ijms19082164. [PMID: 30042373 PMCID: PMC6121522 DOI: 10.3390/ijms19082164] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Pain has been considered as a concept of sensation that we feel as a reaction to the stimulus of our surrounding, putting us in harm's way and acting as a form of defense mechanism that our body has permanently installed into its system. However, pain leads to a huge chunk of finances within the healthcare system with continuous rehabilitation of patients with adverse pain sensations, which might reduce not only their quality of life but also their productivity at work setting back the pace of our economy. It may not look like a huge deal but factor in pain as an issue for majority of us, it becomes an economical burden. Although pain has been researched into and understood by numerous researches, from its definition, mechanism of action to its inhibition in hopes of finding an absolute solution for victims of pain, the pathways of pain sensation, neurotransmitters involved in producing such a sensation are not comprehensively reviewed. Therefore, this review article aims to put in place a thorough understanding of major pain conditions that we experience-nociceptive, inflammatory and physiologically dysfunction, such as neuropathic pain and its modulation and feedback systems. Moreover, the complete mechanism of conduction is compiled within this article, elucidating understandings from various researches and breakthroughs.
Collapse
|
191
|
Miszta P, Jakowiecki J, Rutkowska E, Turant M, Latek D, Filipek S. Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists. Methods Mol Biol 2018; 1705:265-296. [PMID: 29188567 DOI: 10.1007/978-1-4939-7465-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Predicting the functional preferences of the ligands was always a highly demanding task, much harder that predicting whether a ligand can bind to the receptor. This is because of significant similarities of agonists, antagonists and inverse agonists which are binding usually in the same binding site of the receptor and only small structural changes can push receptor toward a particular activation state. For G protein-coupled receptors, due to a large progress in crystallization techniques and also in receptor thermal stabilization, it was possible to obtain a large number of high-quality structures of complexes of these receptors with agonists and non-agonists. Additionally, the long-time-scale molecular dynamics simulations revealed how the activation processes of GPCRs can take place. Using both theoretical and experimental knowledge it was possible to employ many clever and sophisticated methods which can help to differentiate agonists and non-agonists, so one can interconvert them in search of the optimal drug.
Collapse
Affiliation(s)
- Przemysław Miszta
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Jakub Jakowiecki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Ewelina Rutkowska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Maria Turant
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Dorota Latek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
192
|
Eddy MT, Gao ZG, Mannes P, Patel N, Jacobson KA, Katritch V, Stevens RC, Wüthrich K. Extrinsic Tryptophans as NMR Probes of Allosteric Coupling in Membrane Proteins: Application to the A 2A Adenosine Receptor. J Am Chem Soc 2018; 140:8228-8235. [PMID: 29874058 PMCID: PMC6192543 DOI: 10.1021/jacs.8b03805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tryptophan indole 15N-1H signals are well separated in nuclear magnetic resonance (NMR) spectra of proteins. Assignment of the indole 15N-1H signals therefore enables one to obtain site-specific information on complex proteins in supramacromolecular systems, even when extensive assignment of backbone 15N-1H resonances is challenging. Here we exploit the unique indole 15N-1H chemical shift by introducing extrinsic tryptophan reporter residues at judiciously chosen locations in a membrane protein for increased coverage of structure and function by NMR. We demonstrate this approach with three variants of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor, each containing a single extrinsic tryptophan near the receptor intracellular surface, in helix V, VI, or VII, respectively. We show that the native A2AAR global protein fold and ligand binding activity are preserved in these A2AAR variants. The indole 15N-1H signals from the extrinsic tryptophan reporter residues show different responses to variable efficacy of drugs bound to the receptor orthosteric cavity, and the indole 15N-1H chemical shift of the tryptophan introduced at the intracellular end of helix VI is sensitive to conformational changes resulting from interactions with a polypeptide from the carboxy terminus of the GαS intracellular partner protein. Introducing extrinsic tryptophans into proteins in complex supramolecular systems thus opens new avenues for NMR investigations in solution.
Collapse
Affiliation(s)
- Matthew T. Eddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Bridge Institute, Departments of Biological Sciences and Chemistry, Michelson Center, University of Southern California, Los Angeles, California 90089, United States
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Philip Mannes
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nilkanth Patel
- Bridge Institute, Departments of Biological Sciences and Chemistry, Michelson Center, University of Southern California, Los Angeles, California 90089, United States
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Vsevolod Katritch
- Bridge Institute, Departments of Biological Sciences and Chemistry, Michelson Center, University of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Bridge Institute, Departments of Biological Sciences and Chemistry, Michelson Center, University of Southern California, Los Angeles, California 90089, United States
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
193
|
Molecular docking and in vitro studies of soap nut trypsin inhibitor (SNTI) against phospholipase A2 isoforms in therapeutic intervention of inflammatory diseases. Int J Biol Macromol 2018; 114:556-564. [DOI: 10.1016/j.ijbiomac.2018.03.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022]
|
194
|
Stenkamp RE. Identifying G protein-coupled receptor dimers from crystal packings. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:655-670. [PMID: 29968675 DOI: 10.1107/s2059798318008136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Dimers of G protein-coupled receptors (GPCRs) are believed to be important for signaling with their associated G proteins. Low-resolution electron microscopy has shown rhodopsin dimers in native retinal membranes, and CXCR4 dimers have been found in several different crystal structures. Evidence for dimers of other GPCRs is more indirect. An alternative to computational modeling studies is to search for parallel dimers in the packing environments of the reported crystal structures of GPCRs. Two major structural types of GPCR dimers exist (as predicted by others), but there is considerable structural variation within each cluster. The different structural variants described here might reflect different functional properties and should provide a range of model structures for computational and experimental examination.
Collapse
Affiliation(s)
- Ronald E Stenkamp
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center, University of Washington, Box 357420, Seattle, WA 98195, USA
| |
Collapse
|
195
|
Toti D, Macari G, Polticelli F. Protein-ligand binding site detection as an alternative route to molecular docking and drug repurposing. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2018-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
After the onset of the genomic era, the detection of ligand binding sites in proteins has emerged over the last few years as a powerful tool for protein function prediction. Several approaches, both sequence and structure based, have been developed, but the full potential of the corresponding tools has not been exploited yet. Here, we describe the development and classification of a large, almost exhaustive, collection of protein-ligand binding sites to be used, in conjunction with the Ligand Binding Site Recognition Application Web Application developed in our laboratory, as an alternative to virtual screening through molecular docking simulations to identify novel lead compounds for known targets. Ligand binding sites derived from the Protein Data Bank have been clustered according to ligand similarity, and given a known ligand, the binding mode of related ligands to the same target can be predicted. The collection of ligand binding sites contains more than 200,000 sites corresponding to more than 20,000 different ligands. Furthermore, the ligand binding sites of all Food and Drug Administration-approved drugs have been classified as well, allowing to investigate the possible binding of each of them (and related compounds) to a given target for drug repurposing and redesign initiatives. Sample usage cases are also described to demonstrate the effectiveness of this approach.
Collapse
|
196
|
Zobayer N, Hossain AA. In silico Characterization and Homology Modeling of Histamine Receptors. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jbs.2018.178.191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
197
|
Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nat Commun 2018; 9:1710. [PMID: 29703992 PMCID: PMC5923235 DOI: 10.1038/s41467-018-03727-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane receptors, playing a key role in the regulation of processes as varied as neurotransmission and immune response. Evidence for GPCR oligomerisation has been accumulating that challenges the idea that GPCRs function solely as monomeric receptors; however, GPCR oligomerisation remains controversial primarily due to the difficulties in comparing evidence from very different types of structural and dynamic data. Using a combination of single-molecule and ensemble FRET, double electron–electron resonance spectroscopy, and simulations, we show that dimerisation of the GPCR neurotensin receptor 1 is regulated by receptor density and is dynamically tuneable over the physiological range. We propose a “rolling dimer” interface model in which multiple dimer conformations co-exist and interconvert. These findings unite previous seemingly conflicting observations, provide a compelling mechanism for regulating receptor signalling, and act as a guide for future physiological studies. Evidence suggests oligomerisation of G protein-coupled receptors in membranes, but this is controversial. Here, authors use single-molecule and ensemble FRET, and spectroscopy to show that the neurotensin receptor 1 forms multiple dimer conformations that interconvert - “rolling” interfaces.
Collapse
|
198
|
Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H 3R ligands. Eur J Med Chem 2018; 152:223-234. [PMID: 29723785 DOI: 10.1016/j.ejmech.2018.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 11/21/2022]
Abstract
As a continuation of our search for novel histamine H3 receptor ligands, a series of twenty four new tert-butyl and tert-pentyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer were evaluated for their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for 4-pyridyl derivatives 4, 10, 16 and 22 (Ki = 16.0-120 nM). As it has been shown in docking studies, those specific heteroaromatic 4-N piperazine substituents might interact with one of the key receptor interacting amino acids. Moreover, the most promising compounds exhibited anticonvulsant activity in the maximal electroshock-induced seizure (MES) model in mice. Furthermore, the blood-brain barrier penetration, the functional H3R antagonist potency as well as the pro-cognitive properties in the passive avoidance test were demonstrated for compound 10. In order to estimate drug-likeness of compound 10,in silico and experimental evaluation of metabolic stability in human liver microsomes was performed. In addition, paying attention to the results obtained within this study, the 4-pyridyl-piperazino moiety has been established as a new bioisosteric piperidine replacement in H3R ligands.
Collapse
|
199
|
Singh PK, Silakari O. The Current Status of O-Heterocycles: A Synthetic and Medicinal Overview. ChemMedChem 2018; 13:1071-1087. [PMID: 29603634 DOI: 10.1002/cmdc.201800119] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Indexed: 12/20/2022]
Abstract
O-Heterocycles have been explored in the field of medicinal chemistry for a long time, but their significance has not been duly recognised and they are often shunned in favour of N-heterocycles. The design of bioactive molecules for nearly every pathophysiological condition is primarily focused on novel N-heterocycles. The main reasons for such bias include the ease of synthesis and possible mimicking of physiological molecules by N-heterocycles. But considering only this criterion rarely provides breakthrough molecules for a given disease condition, and instead the risks of toxicity or side effects are increased with such molecules. On the other hand, owing to improved synthetic feasibility, O-heterocycles have established themselves as equally potent lead molecules for a wide range of pathophysiological conditions. In the last decade there have been hundreds of reports validating the fact that equally potent molecules can be designed and developed by using O-heterocycles, and these are also expected to have comparably low toxicity. Even so, researchers tend to remain biased toward the use of N-heterocycles over O-heterocycles. Thus, this review provides a critical analysis of the synthesis and medicinal attributes of O-heterocycles, such as pyrones, oxazolones, furanones, oxetanes, oxazolidinones, and dioxolonones, and others, reported in the last five years, underlining the need for and the advantages guiding researchers toward them.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
200
|
Dilworth MV, Piel MS, Bettaney KE, Ma P, Luo J, Sharples D, Poyner DR, Gross SR, Moncoq K, Henderson PJF, Miroux B, Bill RM. Microbial expression systems for membrane proteins. Methods 2018; 147:3-39. [PMID: 29656078 DOI: 10.1016/j.ymeth.2018.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Despite many high-profile successes, recombinant membrane protein production remains a technical challenge; it is still the case that many fewer membrane protein structures have been published than those of soluble proteins. However, progress is being made because empirical methods have been developed to produce the required quantity and quality of these challenging targets. This review focuses on the microbial expression systems that are a key source of recombinant prokaryotic and eukaryotic membrane proteins for structural studies. We provide an overview of the host strains, tags and promoters that, in our experience, are most likely to yield protein suitable for structural and functional characterization. We also catalogue the detergents used for solubilization and crystallization studies of these proteins. Here, we emphasize a combination of practical methods, not necessarily high-throughput, which can be implemented in any laboratory equipped for recombinant DNA technology and microbial cell culture.
Collapse
Affiliation(s)
- Marvin V Dilworth
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mathilde S Piel
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Kim E Bettaney
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pikyee Ma
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ji Luo
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David Sharples
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David R Poyner
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephane R Gross
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Peter J F Henderson
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|