151
|
Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L. The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res 2019; 73:100766. [DOI: 10.1016/j.preteyeres.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
|
152
|
Nathan V, Johansson PA, Palmer JM, Howlie M, Hamilton HR, Wadt K, Jönsson G, Brooks KM, Pritchard AL, Hayward NK. Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma. Pigment Cell Melanoma Res 2019; 32:854-863. [PMID: 31233279 DOI: 10.1111/pcmr.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022]
Abstract
Approximately 1%-2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next-generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four-case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.
Collapse
Affiliation(s)
- Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley R Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Highlands and Islands, Inverness, Scotland
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
153
|
Louphrasitthiphol P, Chauhan J, Goding CR. ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation. Pigment Cell Melanoma Res 2019; 33:112-118. [PMID: 31595650 DOI: 10.1111/pcmr.12830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
154
|
Carlo MI, Mukherjee S, Mandelker D, Vijai J, Kemel Y, Zhang L, Knezevic A, Patil S, Ceyhan-Birsoy O, Huang KC, Redzematovic A, Coskey DT, Stewart C, Pradhan N, Arnold AG, Hakimi AA, Chen YB, Coleman JA, Hyman DM, Ladanyi M, Cadoo KA, Walsh MF, Stadler ZK, Lee CH, Feldman DR, Voss MH, Robson M, Motzer RJ, Offit K. Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients With Advanced Renal Cell Carcinoma. JAMA Oncol 2019; 4:1228-1235. [PMID: 29978187 DOI: 10.1001/jamaoncol.2018.1986] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Identification of patients with hereditary renal cell carcinoma (RCC) is important for cancer screening and, in patients with advanced disease, for guiding treatment. The prevalence of cancer-related germline mutations in patients with advanced RCC and the phenotypes associated with some rare mutations are unknown. Objectives To examine the prevalence of germline mutations in both known RCC predisposition genes and other cancer-associated genes and to identify clinical and pathologic factors associated with germline mutations. Design, Setting, and Participants In this cohort study conducted from October 1, 2015, to July 31, 2017, 254 of 267 patients with advanced (American Joint Committee on Cancer stage III or IV) RCC who were seen in medical oncology or urology clinics agreed to germline sequencing and disclosure of results under an institutional protocol of matched tumor-germline DNA sequencing. Main Outcomes and Measures Mutation prevalence and spectrum in patients with advanced RCC were determined. Clinical characteristics were assessed by mutation status. Results Of the 254 patients (median age [range], 56 [13-79] years; 179 [70.5%] male; 211 [83.1%] non-Hispanic white), germline mutations were identified in 41 (16.1%); 14 (5.5%) had mutations in syndromic RCC-associated genes (7 in FH, 3 in BAP1, and 1 each in VHL, MET, SDHA, and SDHB). The most frequent mutations were CHEK2 (n = 9) and FH (n = 7). Of genes not previously associated with RCC risk, CHEK2 was overrepresented in patients compared with the general population, with an odds ratio of RCC of 3.0 (95% CI, 1.3-5.8; P = .003). Patients with non-clear cell RCC were significantly more likely to have an RCC-associated gene mutation (9 [11.7%] of 74 vs 3 [1.7%] of 177; P = .001), and 8 (10.0%) had a mutation in a gene that could guide therapy. Of patients with mutations in RCC-associated genes, 5 (35.7%) failed to meet current clinical guidelines for genetic testing. Conclusions and Relevance Of patients with non-clear cell RCC, more than 20% had a germline mutation, of which half had the potential to direct systemic therapy. Current referral criteria for genetic testing did not identify a substantial portion of patients with mutations, supporting the role of a more inclusive sequencing approach.
Collapse
Affiliation(s)
- Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Sloan Kettering Institute, New York, New York
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Sloan Kettering Institute, New York, New York
| | | | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sujata Patil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kuo-Cheng Huang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Devyn T Coskey
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carolyn Stewart
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nisha Pradhan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angela G Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan A Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen A Cadoo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Sloan Kettering Institute, New York, New York
| |
Collapse
|
155
|
Abstract
An incomplete view of the mechanisms that drive metastasis, the primary cause of cancer-related death, has been a major barrier to development of effective therapeutics and prognostic diagnostics. Increasing evidence indicates that the interplay between microenvironment, genetic lesions, and cellular plasticity drives the metastatic cascade and resistance to therapies. Here, using melanoma as a model, we outline the diversity and trajectories of cell states during metastatic dissemination and therapy exposure, and highlight how understanding the magnitude and dynamics of nongenetic reprogramming in space and time at single-cell resolution can be exploited to develop therapeutic strategies that capitalize on nongenetic tumor evolution.
Collapse
Affiliation(s)
- Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Herestraat 49, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Herestraat 49, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
156
|
Sannai M, Doneddu V, Giri V, Seeholzer S, Nicolas E, Yip SC, Bassi MR, Mancuso P, Cortellino S, Cigliano A, Lurie R, Ding H, Chernoff J, Sobol RW, Yen TJ, Bagella L, Bellacosa A. Modification of the base excision repair enzyme MBD4 by the small ubiquitin-like molecule SUMO1. DNA Repair (Amst) 2019; 82:102687. [PMID: 31476572 PMCID: PMC6785017 DOI: 10.1016/j.dnarep.2019.102687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/21/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The base excision repair DNA N-glycosylase MBD4 (also known as MED1), an interactor of the DNA mismatch repair protein MLH1, plays a central role in the maintenance of genomic stability of CpG sites by removing thymine and uracil from G:T and G:U mismatches, respectively. MBD4 is also involved in DNA damage response and transcriptional regulation. The interaction with other proteins is likely critical for understanding MBD4 functions. To identify novel proteins that interact with MBD4, we used tandem affinity purification (TAP) from HEK-293 cells. The MBD4-TAP fusion and its co-associated proteins were purified sequentially on IgG and calmodulin affinity columns; the final eluate was shown to contain MLH1 by western blotting, and MBD4-associated proteins were identified by mass spectrometry. Bands with molecular weight higher than that expected for MBD4 (˜66 kD) yielded peptides corresponding to MBD4 itself and the small ubiquitin-like molecule-1 (SUMO1), suggesting that MBD4 is sumoylated in vivo. MBD4 sumoylation was validated by co-immunoprecipitation in HEK-293 and MCF7 cells, and by an in vitrosumoylation assay. Sequence and mutation analysis identified three main sumoylation sites: MBD4 is sumoylated preferentially on K137, with additional sumoylation at K215 and K377. Patterns of MBD4 sumoylation were altered, in a DNA damage-specific way, by the anti-metabolite 5-fluorouracil, the alkylating agent N-Methyl-N-nitrosourea and the crosslinking agent cisplatin. MCF7 extract expressing sumoylated MBD4 displays higher thymine glycosylase activity than the unmodified species. Of the 67 MBD4 missense mutations reported in The Cancer Genome Atlas, 14 (20.9%) map near sumoylation sites. These results indicate that MBD4 is sumoylated in vivo in a DNA damage-specific manner, and suggest that sumoylation serves to regulate its repair activity and could be compromised in cancer. This study expands the role played by sumoylation in fine-tuning DNA damage response and repair.
Collapse
Affiliation(s)
- Mara Sannai
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Valentina Doneddu
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Veda Giri
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Steven Seeholzer
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia PA, 19104, USA
| | - Emmanuelle Nicolas
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Shu-Chin Yip
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Pietro Mancuso
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Antonio Cigliano
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Rebecca Lurie
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Hua Ding
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia PA, 19104, USA
| | - Jonathan Chernoff
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Robert W Sobol
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Timothy J Yen
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
157
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
158
|
The SUMO Pathway in Hematomalignancies and Their Response to Therapies. Int J Mol Sci 2019; 20:ijms20163895. [PMID: 31405039 PMCID: PMC6721055 DOI: 10.3390/ijms20163895] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
SUMO (Small Ubiquitin-related MOdifier) is a post-translational modifier of the ubiquitin family controlling the function and fate of thousands of proteins. SUMOylation is deregulated in various hematological malignancies, where it participates in both tumorigenesis and cancer cell response to therapies. This is the case for Acute Promyelocytic Leukemias (APL) where SUMOylation, and subsequent destruction, of the PML-RARα fusion oncoprotein are triggered by arsenic trioxide, which is used as front-line therapy in combination with retinoic acid to cure APL patients. A similar arsenic-induced SUMO-dependent degradation was also documented for Tax, a human T-cell lymphotropic virus type I (HTLV1) viral protein implicated in Adult T-cell Leukemogenesis. SUMOylation also participates in Acute Myeloid Leukemia (AML) response to both chemo- and differentiation therapies, in particular through its ability to regulate gene expression. In Multiple Myeloma, many enzymes of the SUMO pathway are overexpressed and their high expression correlates with lower response to melphalan-based chemotherapies. B-cell lymphomas overexpressing the c-Myc oncogene also overexpress most components of the SUMO pathway and are highly sensitive to SUMOylation inhibition. Targeting the SUMO pathway with recently discovered pharmacological inhibitors, alone or in combination with current therapies, might therefore constitute a powerful strategy to improve the treatment of these cancers.
Collapse
|
159
|
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 2019; 19:377-391. [PMID: 31209265 DOI: 10.1038/s41568-019-0154-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Malignant melanoma is notorious for its inter- and intratumour heterogeneity, based on transcriptionally distinct melanoma cell phenotypes. It is thought that these distinct phenotypes are plastic in nature and that their transcriptional reprogramming enables heterogeneous tumours both to undergo different stages of melanoma progression and to adjust to drug exposure during treatment. Recent advances in genomic technologies and the rapidly expanding availability of large gene expression datasets have allowed for a refined definition of the gene signatures that characterize these phenotypes and have revealed that phenotype plasticity plays a major role in the resistance to both targeted therapy and immunotherapy. In this Review we discuss the definition of melanoma phenotypes through particular transcriptional states and reveal the prognostic relevance of the related gene expression signatures. We review how the establishment of phenotypes is controlled and which roles phenotype plasticity plays in melanoma development and therapy. Because phenotype plasticity in melanoma bears a great resemblance to epithelial-mesenchymal transition, the lessons learned from melanoma will also benefit our understanding of other cancer types.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
160
|
Kassab C, Zamler D, Kamiya-Matsuoka C, Gatalica Z, Xiu J, Spetzler D, Heimberger AB. Genetic and immune profiling for potential therapeutic targets in adult human craniopharyngioma. CLINICAL ONCOLOGY AND RESEARCH 2019; 2:2-8. [PMID: 31712784 PMCID: PMC6844364 DOI: 10.31487/j.cor.2019.03.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Craniopharyngioma is a rare tumor in adults. Although histologically benign, it can be locally aggressive and may require additional therapeutic modalities to surgical resection. Analyses including next generation sequencing, chromogenic and in situ hybridization, immunohistochemistry, and gene amplification were used to profile craniopharyngiomas (n=6) for frequently altered therapeutic targets. Four of six patients had the BRAFV600E missense mutation, frequent in the papillary craniopharyngioma subtype. One patient had a missense mutation in the WNT pathway, specifically CTNNB1, often associated with the adamantinomatous subtype. Craniopharyngiomas lacked microsatellite instability, had low tumor mutational burden, but did express PD-L1 protein, indicating potential therapeutic value for immune checkpoint inhibition. We identified mutations not previously described, including an E318K missense mutation in the MITF gene, an R1407 frameshift in the SETD2 gene of the PIK3CA pathway, R462H in the NF2 gene, and a I463V mutation in TSC2. Two patients testing positive for EGFR expression were negative for the EGFRvIII variant. Herein, we identified several alterations such as those in BRAFV600E and PD-L1, which may be considered as targets for combination therapy of residual craniopharygiomas.
Collapse
Affiliation(s)
- Cynthia Kassab
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Zamler
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | - Amy B Heimberger
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
161
|
Kurahashi R, Kadomatsu T, Baba M, Hara C, Itoh H, Miyata K, Endo M, Morinaga J, Terada K, Araki K, Eto M, Schmidt LS, Kamba T, Linehan WM, Oike Y. MicroRNA-204-5p: A novel candidate urinary biomarker of Xp11.2 translocation renal cell carcinoma. Cancer Sci 2019; 110:1897-1908. [PMID: 31006167 PMCID: PMC6549932 DOI: 10.1111/cas.14026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Xp11.2 translocation renal cell carcinoma (Xp11 tRCC) is a rare sporadic pediatric kidney cancer caused by constitutively active TFE3 fusion proteins. Tumors in patients with Xp11 tRCC tend to recur and undergo frequent metastasis, in part due to lack of methods available to detect early‐stage disease. Here we generated transgenic (Tg) mice overexpressing the human PRCC‐TFE3 fusion gene in renal tubular epithelial cells, as an Xp11 tRCC mouse model. At 20 weeks of age, mice showed no histological abnormalities in kidney but by 40 weeks showed Xp11 tRCC development and related morphological and histological changes. MicroRNA (miR)‐204‐5p levels in urinary exosomes of 40‐week‐old Tg mice showing tRCC were significantly elevated compared with levels in control mice. MicroRNA‐204‐5p expression also significantly increased in primary renal cell carcinoma cell lines established both from Tg mouse tumors and from tumor tissue from 2 Xp11 tRCC patients. All of these lines secreted miR‐204‐5p‐containing exosomes. Notably, we also observed increased miR‐204‐5p levels in urinary exosomes in 20‐week‐old renal PRCC‐TFE3 Tg mice prior to tRCC development, and those levels were equivalent to those in 40‐week‐old Tg mice, suggesting that miR‐204‐5p increases follow expression of constitutively active TFE3 fusion proteins in renal tubular epithelial cells prior to overt tRCC development. Finally, we confirmed that miR‐204‐5p expression significantly increases in noncancerous human kidney cells after overexpression of a PRCC‐TFE3 fusion gene. These findings suggest that miR‐204‐5p in urinary exosomes could be a useful biomarker for early diagnosis of patients with Xp11 tRCC.
Collapse
Affiliation(s)
- Ryoma Kurahashi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Chiaki Hara
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Itoh
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Clinical Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Laura S Schmidt
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.,Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
162
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
163
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
164
|
Rosonina E. A conserved role for transcription factor sumoylation in binding-site selection. Curr Genet 2019; 65:1307-1312. [PMID: 31093693 DOI: 10.1007/s00294-019-00992-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
Large numbers of eukaryotic transcription factors (TFs) are modified by SUMO post-translational modifications. Whereas the effect of TF sumoylation on the expression of target genes is largely context-dependent, it is not known whether the modification has a common function in regulating TFs throughout eukaryotic species. Here, I highlight four studies that used genome-wide chromatin-immunoprecipitation analysis (ChIP-seq) to examine whether sumoylation affects the selection of sites on the genome that are bound by human and yeast TFs. The studies found that impairing sumoylation led to deregulated binding-site selection for all four of the examined TFs. Predominantly, compared to wild-type forms, the sumoylation-deficient forms of the TFs bound to numerous additional non-specific sites, pointing to a common role for the modification in restricting TF binding to appropriate sites. Evidence from these studies suggests that TF sumoylation influences binding-site selection by modulating protein-protein interactions with other DNA-binding TFs, or by promoting conformational changes in the TFs that alter their DNA-binding specificity or affinity. I propose a model in which, prior to their sumoylation, TFs initially bind to chromatin with reduced specificity, which leads to spurious binding but also ensures that all functional sites become bound. Once the TFs are bound to DNA, sumoylation then acts to increase specificity and promotes release of the TFs from non-specific sites. The similar observations from these four genome-wide studies across divergent species suggest that binding-site selection is a general and conserved function for TF sumoylation.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
165
|
Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, Ricketts CJ. The Metabolic Basis of Kidney Cancer. Cancer Discov 2019; 9:1006-1021. [PMID: 31088840 DOI: 10.1158/2159-8290.cd-18-1354] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
Kidney cancer is not a single disease but represents several distinct types of cancer that have defining histologies and genetic alterations and that follow different clinical courses and have different responses to therapy. Mutation of genes associated with kidney cancer, such as VHL, FLCN, TFE3, FH, or SDHB, dysregulates the tumor's responses to changes in oxygen, iron, nutrient, or energy levels. The identification of these varying genetic bases of kidney cancer has increased our understanding of the biology of this cancer, allowing the development of targeted therapies and the appreciation that it is a cancer driven by metabolic alterations. SIGNIFICANCE: Kidney cancer is a complex disease composed of different types of cancer that present with different histologies, clinical courses, genetic changes, and responses to therapy. This review describes the known genetic changes within kidney cancer, how they alter tumor metabolism, and how these metabolic changes can be therapeutically targeted.
Collapse
Affiliation(s)
- W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Basic Science Program, Frederick Laboratory for Cancer Research, Frederick, Maryland
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
166
|
Xie L, Zhang Y, Wu CL. Microphthalmia family of transcription factors associated renal cell carcinoma. Asian J Urol 2019; 6:312-320. [PMID: 31768316 PMCID: PMC6872788 DOI: 10.1016/j.ajur.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
The microphthalmia (MiT) subfamily of transcription factors includes TFE3, TFEB, TFEC, and MITF. In the 2016 World Health Organization classification, MiT family translocation renal cell carcinoma (tRCC) including Xp11 tRCC and t(6;11) RCC, was newly defined as an RCC subtype. Xp11 and t(6;11) RCC are characterized by the rearrangement of the MiT transcription factors TFE3 and TFEB, respectively. Recent studies identified the fusion partner-dependent clinicopathological and immunohistochemical features in TFE3-rearranged RCC. Furthermore, RCC with TFEB amplification, melanotic MiT family translocation neoplasms, was identified may as a unique subtype of MiT family associated renal neoplasms, along with MITF associated RCC. In this review, we will collect available literature of these newly-described RCCs, analyze their clinicopathological and immunohistochemical features, and summarize their molecular and genetic evidences. We expect this review would be beneficial for the understanding of these rare subtypes of RCCs, and eventually promote clinical management strategies.
Collapse
Affiliation(s)
- Ling Xie
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
167
|
Ma CP, Liu H, Yi-Feng Chang I, Wang WC, Chen YT, Wu SM, Chen HW, Kuo YP, Shih CT, Li CY, Tan BCM. ADAR1 promotes robust hypoxia signaling via distinct regulation of multiple HIF-1α-inhibiting factors. EMBO Rep 2019; 20:e47107. [PMID: 30948460 PMCID: PMC6500999 DOI: 10.15252/embr.201847107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Adenosine deaminase acting on RNA (ADAR)-catalyzed adenosine-to-inosine RNA editing is potentially dysregulated in neoplastic progression. However, how this transcriptome recoding process is functionally correlated with tumorigenesis remains largely elusive. Our analyses of RNA editome datasets identify hypoxia-related genes as A-to-I editing targets. In particular, two negative regulators of HIF-1A-the natural antisense transcript HIF1A-AS2 and the ubiquitin ligase scaffold LIMD1-are directly but differentially modulated by ADAR1. We show that HIF1A-AS2 antagonizes the expression of HIF-1A in the immediate-early phase of hypoxic challenge, likely through a convergent transcription competition in cis ADAR1 in turn suppresses transcriptional progression of the antisense gene. In contrast, ADAR1 affects LIMD1 expression post-transcriptionally, by interfering with the cytoplasmic translocation of LIMD1 mRNA and thus protein translation. This multi-tier regulation coordinated by ADAR1 promotes robust and timely accumulation of HIF-1α upon oxygen depletion and reinforces target gene induction and downstream angiogenesis. Our results pinpoint ADAR1-HIF-1α axis as a hitherto unrecognized key regulator in hypoxia.
Collapse
Affiliation(s)
- Chung-Pei Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Min Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Wen Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ping Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Tien Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
168
|
Christensen MB, Wadt K, Jensen UB, Lautrup CK, Bojesen A, Krogh LN, van Overeem Hansen T, Gerdes AM. Exploring the hereditary background of renal cancer in Denmark. PLoS One 2019; 14:e0215725. [PMID: 31034483 PMCID: PMC6488054 DOI: 10.1371/journal.pone.0215725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Every year more than 800 patients in Denmark are diagnosed with renal cell carcinoma (RCC) of which 3-5% are expected to be part of a hereditary renal cancer syndrome. We performed genetic screening of causative and putative RCC-genes (VHL, FH, FLCN, MET, SDHB, BAP1, MITF, CDKN2B) in RCC-patients suspected of a genetic predisposition. METHODS The cohort consisted of forty-eight Danish families or individuals with early onset RCC, a family history of RCC, a family history of RCC and melanoma or both RCC- and melanoma diagnosis in the same individual. DNA was extracted from peripheral blood samples or cancer-free formalin-fixed paraffin-embedded tissue. RESULTS One start codon variant of unknown clinical significance (VUS) (c.3G>A, p.Met1Ile) and one missense VUS (c.631A>C, p.Met211Leu) was found in VHL in a patient with RCC-onset at twenty-eight years of age but without other manifestations or family history of von Hippel-Lindau (VHL). Furthermore, in three families we found three different variants in BAP1, one of which was a novel non-segregating missense variant (c.1502G>A, p.Ser501Asn) in a family with two brothers affected with RCC. Finally, we found the known E318K-substitution in MITF in a RCC-affected member of a family with multiple melanomas. No variants were detected in CDKN2B. CONCLUSION Although we did find three VUS's in BAP1 in three families and a pathogenic variant in MITF in one family, pathogenic germline variants in BAP1, MITF or CDKN2B are not frequent causes of hereditary renal cancer in Denmark. It is possible that the high prevalence of risk factors such as male gender, smoking and obesity has influenced the development of cancer in the patients of the current study. Further investigations into putative predisposing genes and risk factors of RCC are necessary to enable better prediction of renal cancer risk or presymptomatic testing of relatives in hereditary renal cancer families.
Collapse
Affiliation(s)
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anders Bojesen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Sygehus Lillebaelt, Vejle, Denmark
| | | | | | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
169
|
Visser M, van der Stoep N, Gruis N. Progress report on the major clinical advances in patient-oriented research into familial melanoma (2013-2018). Fam Cancer 2019; 18:267-271. [PMID: 30659395 DOI: 10.1007/s10689-018-00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mijke Visser
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
170
|
Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:203-222. [PMID: 31650096 PMCID: PMC6812561 DOI: 10.1146/annurev-cancerbio-030518-055835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
171
|
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
Affiliation(s)
- Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Socratis N Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Margaritis Avgeris
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vicky Filippa
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Antonis D Lampidonis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vassiliki Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, 12462 Athens, Greece.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Andreas Scorilas
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
172
|
Sri Theivakadadcham VS, Bergey BG, Rosonina E. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. PLoS Genet 2019; 15:e1007991. [PMID: 30763307 PMCID: PMC6392331 DOI: 10.1371/journal.pgen.1007991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
Sequence-specific transcription factors (TFs) represent one of the largest groups of proteins that is targeted for SUMO post-translational modification, in both yeast and humans. SUMO modification can have diverse effects, but recent studies showed that sumoylation reduces the interaction of multiple TFs with DNA in living cells. Whether this relates to a general role for sumoylation in TF binding site selection, however, has not been fully explored because few genome-wide studies aimed at studying such a role have been reported. To address this, we used genome-wide analysis to examine how sumoylation regulates Sko1, a yeast bZIP TF with hundreds of known binding sites. We find that Sko1 is sumoylated at Lys 567 and, although many of its targets are osmoresponse genes, the level of Sko1 sumoylation is not stress-regulated and the modification does not depend or impinge on its phosphorylation by the osmostress kinase Hog1. We show that Sko1 mutants that cannot bind DNA are not sumoylated, but attaching a heterologous DNA binding domain restores the modification, implicating DNA binding as a major determinant for Sko1 sumoylation. Genome-wide chromatin immunoprecipitation (ChIP-seq) analysis shows that a sumoylation-deficient Sko1 mutant displays increased occupancy levels at its numerous binding sites, which inhibits the recruitment of the Hog1 kinase to some induced osmostress genes. This strongly supports a general role for sumoylation in reducing the association of TFs with chromatin. Extending this result, remarkably, sumoylation-deficient Sko1 binds numerous additional promoters that are not normally regulated by Sko1 but contain sequences that resemble the Sko1 binding motif. Our study points to an important role for sumoylation in modulating the interaction of a DNA-bound TF with chromatin to increase the specificity of TF-DNA interactions.
Collapse
Affiliation(s)
| | | | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
173
|
Clinical, dermoscopic, and confocal features of nevi and melanomas in a multiple primary melanoma patient with the MITF p.E318K homozygous mutation. Melanoma Res 2019; 28:166-169. [PMID: 29485552 DOI: 10.1097/cmr.0000000000000427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
174
|
Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC. Familial Melanoma: Diagnostic and Management Implications. Dermatol Pract Concept 2019; 9:10-16. [PMID: 30775140 PMCID: PMC6368081 DOI: 10.5826/dpc.0901a03] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background An estimated 5%-10% of all cutaneous melanoma cases occur in families. This review describes susceptibility genes currently known to be involved in melanoma predisposition, genetic testing of familial melanoma patients, and management implications. Results CDKN2A is the major high-penetrance susceptibility gene with germline mutations identified in 20%-40% of melanoma families. A positive CDKN2A mutation status has been associated with a high number of affected family members, multiple primary melanomas, pancreatic cancer, and early age at melanoma onset. Mutations in the other melanoma predisposition genes-CDK4, BAP1, TERT, POT1, ACD, TERF2IP, and MITF-are rare, overall contributing to explain a further 10% of familial clustering of melanoma. The underlying genetic susceptibility remains indeed unexplained for half of melanoma families. Genetic testing for melanoma is currently recommended only for CDKN2A and CDK4, and, at this time, the role of multigene panel testing remains under debate. Individuals from melanoma families must receive genetic counseling to be informed about the inclusion criteria for genetic testing, the probability of an inconclusive result, the genetic risk for melanoma and other cancers, and the debatable role of medical management. They should be counseled focusing primarily on recommendations on appropriate lifestyle, encouraging skin self-examination, and regular dermatological screening. Conclusions Genetic testing for high-penetrance melanoma susceptibility genes is recommended in melanoma families after selection of the appropriate candidates and adequate counseling of the patient. All patients and relatives from melanoma kindreds, irrespective of their mutation status, should be encouraged to adhere to a correct ultraviolet exposure, skin self-examination, and surveillance by physicians.
Collapse
Affiliation(s)
- Mariarita Rossi
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | | | - Ludovica Cardelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Valeria Ciciarelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Lucia Di Nardo
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy.,Institute of Dermatology, Catholic University, Rome, Italy
| | | |
Collapse
|
175
|
Potjer TP, Bollen S, Grimbergen AJEM, van Doorn R, Gruis NA, van Asperen CJ, Hes FJ, van der Stoep N. Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families. Int J Cancer 2019; 144:2453-2464. [PMID: 30414346 PMCID: PMC6590189 DOI: 10.1002/ijc.31984] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023]
Abstract
Germline mutations in the major melanoma susceptibility gene CDKN2A explain genetic predisposition in only 10–40% of melanoma‐prone families. In our study we comprehensively characterized 488 melanoma cases from 451 non‐CDKN2A/CDK4 families for mutations in 30 established and candidate melanoma susceptibility genes using a custom‐designed targeted gene panel approach. We identified (likely) pathogenic variants in established melanoma susceptibility genes in 18 families (n = 3 BAP1, n = 15 MITF p.E318K; diagnostic yield 4.0%). Among the three identified BAP1‐families, there were no reported diagnoses of uveal melanoma or malignant mesothelioma. We additionally identified two potentially deleterious missense variants in the telomere maintenance genes ACD and TERF2IP, but none in the POT1 gene. MC1R risk variants were strongly enriched in our familial melanoma cohort compared to healthy controls (R variants: OR 3.67, 95% CI 2.88–4.68, p <0.001). Several variants of interest were also identified in candidate melanoma susceptibility genes, in particular rare (pathogenic) variants in the albinism gene OCA2 were repeatedly found. We conclude that multigene panel testing for familial melanoma is appropriate considering the additional 4% diagnostic yield in non‐CDKN2A/CDK4 families. Our study shows that BAP1 and MITF are important genes to be included in such a diagnostic test. What's new? Germline mutations in CDKN2A are major contributors to familial melanoma. These mutations, however, are responsible for only 10 to 40 percent of genetic susceptibility in melanoma‐prone families. In this study, 30 established and candidate melanoma susceptibility genes were investigated for associations with the disease in patients from 451 non‐CDKN2A/CDK4 melanoma families. From the candidate gene panel, (likely) pathogenic variants in BAP1 and MITF were identified in several families, and potentially deleterious variants were identified in the shelterin complex genes ACD and TERF2IP. These genes appear to play a significant role in familial melanoma predisposition and are therefore promising candidates for incorporation into comprehensive genetic tests.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Sander Bollen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|
176
|
Seoane M, Buhs S, Iglesias P, Strauss J, Puller AC, Müller J, Gerull H, Feldhaus S, Alawi M, Brandner JM, Eggert D, Du J, Thomale J, Wild PJ, Zimmermann M, Sternsdorf T, Schumacher U, Nollau P, Fisher DE, Horstmann MA. Lineage-specific control of TFIIH by MITF determines transcriptional homeostasis and DNA repair. Oncogene 2019; 38:3616-3635. [PMID: 30651597 PMCID: PMC6756118 DOI: 10.1038/s41388-018-0661-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/05/2018] [Indexed: 11/15/2022]
Abstract
The melanocytic lineage, which is prominently exposed to ultraviolet radiation (UVR) and radiation-independent oxidative damage, requires specific DNA-damage response mechanisms to maintain genomic and transcriptional homeostasis. The coordinate lineage-specific regulation of intricately intertwined DNA repair and transcription is incompletely understood. Here we demonstrate that the Microphthalmia-associated transcription factor (MITF) directly controls general transcription and UVR-induced nucleotide excision repair by transactivation of GTF2H1 as a core element of TFIIH. Thus, MITF ensures the rapid resumption of transcription after completion of strand repair and maintains transcriptional output, which is indispensable for survival of the melanocytic lineage including melanoma in vitro and in vivo. Moreover, MITF controls c-MYC implicated in general transcription by transactivation of far upstream binding protein 2 (FUBP2/KSHRP), which induces c-MYC pulse regulation through TFIIH, and experimental depletion of MITF results in consecutive loss of CDK7 in the TFIIH-CAK subcomplex. Targeted for proteasomal degradation, CDK7 is dependent on transactivation by MITF or c-MYC to maintain a steady state. The dependence of TFIIH-CAK on sequence-specific MITF and c-MYC constitutes a previously unrecognized mechanism feeding into super-enhancer-driven or other oncogenic transcriptional circuitries, which supports the concept of a transcription-directed therapeutic intervention in melanoma.
Collapse
Affiliation(s)
- Marcos Seoane
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Sophia Buhs
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Pablo Iglesias
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Julia Strauss
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Jürgen Müller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg, Hamburg, 20246, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Johanna M Brandner
- Department of Dermatology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Dennis Eggert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany.,Max-Planck-Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Jinyan Du
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Merrimack Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Jürgen Thomale
- Institute of Cell Biology, University Duisburg-Essen, Essen, 45122, Germany
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, 8091, Switzerland
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, 30625, Germany
| | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany. .,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany.
| |
Collapse
|
177
|
Rachmin I, Fisher DE. Microphthalmia-associated transcription factor phosphorylation: Cross talk between GSK3 and MAPK signaling. Pigment Cell Melanoma Res 2019; 32:345-347. [PMID: 30633855 DOI: 10.1111/pcmr.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
|
178
|
Bertolotto C, Ohanna M, Ballotti R. [Key role of nicotinamide phosphoribosyltransferase (NAMPT) and NAD metabolism in the transition of melanoma cells to an invasive and drug-resistant phenotype]. Med Sci (Paris) 2019; 34:1025-1028. [PMID: 30623759 DOI: 10.1051/medsci/2018283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, 151, route Saint Antoine de Ginestière, 06204 Nice, France - Inserm, U1065, Biology and pathologies of melanocytes. Équipe labellisée ARC 2015, Nice, France
| | - Mickaël Ohanna
- Université Nice Côte d'Azur, Inserm, C3M, 151, route Saint Antoine de Ginestière, 06204 Nice, France - Inserm, U1065, Biology and pathologies of melanocytes. Équipe labellisée ARC 2015, Nice, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, 151, route Saint Antoine de Ginestière, 06204 Nice, France - Inserm, U1065, Biology and pathologies of melanocytes. Équipe labellisée ARC 2015, Nice, France
| |
Collapse
|
179
|
Graf SA, Heppt MV, Wessely A, Krebs S, Kammerbauer C, Hornig E, Strieder A, Blum H, Bosserhoff AK, Berking C. The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell Melanoma Res 2018; 32:424-434. [PMID: 30506895 DOI: 10.1111/pcmr.12760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Abstract
The transcription factor sex determining region Y-box 10 (SOX10) plays a key role in the development of melanocytes and glial cells from neural crest precursors. SOX10 is involved in melanoma initiation, proliferation, invasion, and survival. However, specific mediators which impart its oncogenic properties remain widely unknown. To identify target genes of SOX10, we performed RNA sequencing after ectopic expression of SOX10 in human melanoma cells. Among nine differentially regulated genes, peripheral myelin protein 2 (PMP2) was consistently upregulated in several cell lines. Direct regulation of PMP2 by SOX10 was shown by chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Moreover, a coregulation of PMP2 by SOX10 and early growth response 2 in melanoma cells was found. Phenotypical investigation demonstrated that PMP2 expression can increase melanoma cell invasion. As PMP2 protein was detected only in a subset of melanoma cell lines, it might contribute to melanoma heterogeneity.
Collapse
Affiliation(s)
- Saskia Anna Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Markus Vincent Heppt
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Anja Wessely
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Annamarie Strieder
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Anja-Katrin Bosserhoff
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
180
|
Lao M, Zhan Z, Li N, Xu S, Shi M, Zou Y, Huang M, Zeng S, Liang L, Xu H. Role of small ubiquitin-like modifier proteins-1 (SUMO-1) in regulating migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Exp Cell Res 2018; 375:52-61. [PMID: 30562482 DOI: 10.1016/j.yexcr.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis (RA) is featured by erosive cartilage and bone destruction. The enhancing aggressive property of fibroblast-like synoviocytes (FLSs) plays a critical role in this process. Small ubiquitin-like modifier (SUMO) proteins, including SUMO-1, SUMO-2, SUMO-3 and SUMO-4, participate in regulating many cellular events such as survival, migration and signal transduction in some cell lines. However, their roles in the pathogenesis of RA are not well established. Therefore, we evaluated the role of SUMO proteins in RA FLSs migration and invasion. We found that expression of both SUMO-1 and SUMO-2 was elevated in FLSs and synovial tissues (STs) from patients with RA. SUMO-1 suppression by small interference RNA (siRNA) reduced migration and invasion as well as MMP-1 and MMP-3 expression in RA FLSs. We also demonstrated that SUMO-1 regulated lamellipodium formation during cell migration. To explore further into molecular mechanisms, we evaluated the effect of SUMO-1 knockdown on the activation of Rac1/PAK1, a critical signaling pathway that controls cell motility. Our results indicated that SUMO-1-mediated SUMOylation controlled Rac1 activation and modulated downstream PAK1 activity. Inhibition of Rac1 or PAK1 also decreased migration and invasion of RA FLSs. Our findings suggest that SUMO-1 suppression could be protective against joint destruction in RA by inhibiting aggressive behavior of RA FLSs.
Collapse
Affiliation(s)
- Minxi Lao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yaoyao Zou
- Department of Rheumatology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingcheng Huang
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
181
|
Yang Z, Zhang Y, Sun S. Deciphering the SUMO code in the kidney. J Cell Mol Med 2018; 23:711-719. [PMID: 30506859 PMCID: PMC6349152 DOI: 10.1111/jcmm.14021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 01/18/2023] Open
Abstract
SUMOylation of proteins is an important regulatory element in modulating protein function and has been implicated in the pathogenesis of numerous human diseases such as cancers, neurodegenerative diseases, brain injuries, diabetes, and familial dilated cardiomyopathy. Growing evidence has pointed to a significant role of SUMO in kidney diseases such as DN, RCC, nephritis, AKI, hypertonic stress and nephrolithiasis. Recently, emerging studies in podocytes demonstrated that SUMO might have a protective role against podocyte apoptosis. However, the SUMO code responsible for beneficial outcome in the kidney remains to be decrypted. Our recent experiments have revealed that the expression of both SUMO and SUMOylated proteins is appreciably elevated in hypoxia‐induced tubular epithelial cells (TECs) as well as in the unilateral ureteric obstruction (UUO) mouse model, suggesting a role of SUMO in TECs injury and renal fibrosis. In this review, we attempt to decipher the SUMO code in the development of kidney diseases by summarizing the defined function of SUMO and looking forward to the potential role of SUMO in kidney diseases, especially in the pathology of renal fibrosis and CKD, with the goal of developing strategies that maximize correct interpretation in clinical therapy and prognosis.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yuming Zhang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
182
|
Ozola A, Ruklisa D, Pjanova D. Association of the 16q24.3 region gene variants rs1805007 and rs4785763 with heightened risk of melanoma in Latvian population. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
183
|
Association between melanoma and renal-cell carcinoma for sequential diagnoses: A single-center retrospective study. Cancer Epidemiol 2018; 57:80-84. [PMID: 30347335 DOI: 10.1016/j.canep.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma and renal-cell carcinoma (RCC) are known to be immunological neoplasms. Previous studies have shown increased risks in patients with melanoma of developing RCC and in those with RCC of developing melanoma. However, data regarding immunocompromised status in these patients are lacking. METHODS We conducted a retrospective review of patients who had a diagnosis of melanoma and/or RCC. Using summary statistics, we calculated total person-years at risk for developing melanoma among patients with RCC and for developing RCC among patients with melanoma, and compared the results with the SEER data. We also assessed medical history related to immune status and the use of immunosuppressive drugs. RESULTS Among 13,879 patients with melanoma and 7597 patients with RCC, 89 had diagnoses of both melanoma and RCC (0.6% and 1.2% of melanoma and RCC patients, respectively): eight were diagnosed with both cancers concurrently, 54 were diagnosed with melanoma first, and 27 were diagnosed with RCC first. Standardized incidence ratios (SIRs) were 2.87 (95%CI 2.16-3.74) for developing RCC among the melanoma patients and 2.31 (95%CI 1.52-3.37) for developing melanoma among the RCC patients, compared to age-, sex-, race-, and calendar-specific adjusted incidence rates of each cancer in the SEER registry. None of the 81 patients with sequential diagnoses had a history of immunocompromised disease, nor did they receive chronic immunosuppressive drugs. Only two received chemotherapy and/or radiotherapy. CONCLUSION We demonstrated a strong association between the diagnoses of melanoma and RCC. These increased risks could not be attributed to either immune status or previous antineoplastic treatment.
Collapse
|
184
|
Karagianni F, Njauw CN, Kypreou KP, Stergiopoulou A, Plaka M, Polydorou D, Chasapi V, Pappas L, Stratigos IA, Champsas G, Panagiotou P, Gogas H, Evangelou E, Tsao H, Stratigos AJ, Stefanaki I. CDKN2A/CDK4 Status in Greek Patients with Familial Melanoma and Association with Clinico-epidemiological Parameters. Acta Derm Venereol 2018; 98:862-866. [PMID: 29774366 PMCID: PMC6572781 DOI: 10.2340/00015555-2969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Approximately 5–10% of melanoma cases occur in a familial context. CDKN2A/CDK4 were the first high- penetrance melanoma genes identified. The aims of this study were to evaluate CDKN2A/CDK4 variants in Greek familial melanoma patients and to correlate the mutational status with specific clinico-epidemiological characteristics. A cross-sectional study was conducted by genotyping CDKN2A/CDK4 variants and selected MC1R polymorphisms in 52 melanoma-prone families. Descriptive statistics were calculated and comparisons were made using the X2 test, Fisher’s exact test and Student’s t-test for statistical analysis, as appropriate. CDKN2A variants were detected in 46.2% of melanoma-prone families, while a CDK4 variant was found in only one family. This study confirmed that, in the Greek population, the age at melanoma diagnosis was lower in patients carrying a variant in CDKN2A compared with wild-type patients. No statistically significant associations were found between CDKN2A mutational status and MC1R polymorphisms.
Collapse
Affiliation(s)
- Fani Karagianni
- 1st Department of Dermatology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Dębniak T, Scott RJ, Górski B, Masojć B, Kram A, Maleszka R, Cybulski C, Paszkowska-Szczur K, Kashyap A, Murawa D, Malińska K, Kiedrowicz M, Rogoża-Janiszewska E, Rudnicka H, Deptuła J, Domagała P, Kluźniak W, Lener MR, Lubiński J. BRCA1/2 mutations are not a common cause of malignant melanoma in the Polish population. PLoS One 2018; 13:e0204768. [PMID: 30286154 PMCID: PMC6171837 DOI: 10.1371/journal.pone.0204768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
The association of BRCA1/2 mutations with melanoma is not completely determined; the interpretation of variants of unknown significance is also problematic. To evaluate these issues we explored the molecular basis of melanoma risk by performing whole-exome sequencing on a cohort of 96 unrelated Polish early-onset melanoma patients and targeted sequencing of BRCA1/2 genes on additional 30 melanoma patients with familial aggregation of breast and other cancers. Sequencing was performed on peripheral blood. We evaluated MutationTaster, Polyphen2, SIFT, PROVEAN algorithms, analyzed segregation with cancer disease (in both families with identified BRCA2 variants) and in one family performed LOH (based on 2 primary tumors). We found neither pathogenic mutations nor variants of unknown significance within BRCA1. We identified two BRCA2 variants of unknown significance: c.9334G>A and c.4534 C>T. Disease allele frequency was evaluated by genotyping of 1230 consecutive melanoma cases, 5000 breast cancer patients, 3500 prostate cancers and 9900 controls. Both variants were found to be absent among unselected cancer patients and healthy controls. The MutationTaster, Polyphen2 and SIFT algorithms indicate that c.9334G>A is a damaging variant. Due to lack of tumour tissue LOH analysis could not be performed for this variant. The variant segregated with the disease. The c.4534 C>T variant did not segregate with disease, there was no LOH of the variant. The c.9334G>A variant, classified as a rare variant of unknown significance, on current evidence may predisposes to cancers of the breast, prostate and melanoma. Functional studies to describe how the DNA change affects the protein function and a large multi-center study to evaluate its penetrance are required.
Collapse
Affiliation(s)
- Tadeusz Dębniak
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
- * E-mail:
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bohdan Górski
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Andrzej Kram
- West Pomeranian Oncology Center, Szczecin, Poland
| | | | - Cezary Cybulski
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Aniruddh Kashyap
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Dawid Murawa
- I Department of Oncological and General Surgery, Greater Poland Cancer Center, Poznań, Poland
| | - Karolina Malińska
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Emilia Rogoża-Janiszewska
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Helena Rudnicka
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Deptuła
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Paweł Domagała
- Department of Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wojciech Kluźniak
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marcin R. Lener
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathomorphology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
186
|
François-Moutal L, Dustrude ET, Wang Y, Brustovetsky T, Dorame A, Ju W, Moutal A, Perez-Miller S, Brustovetsky N, Gokhale V, Khanna M, Khanna R. Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 2018; 159:2115-2127. [PMID: 29847471 PMCID: PMC6150792 DOI: 10.1097/j.pain.0000000000001294] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Erik T. Dustrude
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Yue Wang
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angie Dorame
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Weina Ju
- Department of Neurology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
- Department of Pharmacology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Aubin Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Samantha Perez-Miller
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vijay Gokhale
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - May Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Rajesh Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| |
Collapse
|
187
|
Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene 2018; 38:1282-1295. [PMID: 30254208 DOI: 10.1038/s41388-018-0500-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/25/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023]
Abstract
Phenotypic plasticity and subsequent generation of intratumoral heterogeneity underly key traits in malignant melanoma such as drug resistance and metastasis. Melanoma plasticity promotes a switch between proliferative and invasive phenotypes characterized by different transcriptional programs of which MITF is a critical regulator. Here, we show that the acid ceramidase ASAH1, which controls sphingolipid metabolism, acted as a rheostat of the phenotypic switch in melanoma cells. Low ASAH1 expression was associated with an invasive behavior mediated by activation of the integrin alphavbeta5-FAK signaling cascade. In line with that, human melanoma biopsies revealed heterogeneous staining of ASAH1 and low ASAH1 expression at the melanoma invasive front. We also identified ASAH1 as a new target of MITF, thereby involving MITF in the regulation of sphingolipid metabolism. Together, our findings provide new cues to the mechanisms underlying the phenotypic plasticity of melanoma cells and identify new anti-metastatic targets.
Collapse
|
188
|
Gironi LC, Colombo E, Pasini B, Giorgione R, Farinelli P, Zottarelli F, Esposto E, Zavattaro E, Allara E, Ogliara P, Betti M, Dianzani I, Savoia P. Melanoma-prone families: new evidence of distinctive clinical and histological features of melanomas in CDKN2A mutation carriers. Arch Dermatol Res 2018; 310:769-784. [PMID: 30218143 DOI: 10.1007/s00403-018-1866-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
Abstract
Germline mutations on the CDKN2A gene, the most important known genetic factors associated with cutaneous melanomas (CMs), predispose carriers to multiple primary CMs (MPMs) with higher frequency and younger onset compared to non-carriers. Most of the largest published studies concerning clinical and histological characteristics of CMs with CDKN2A mutation carriers did not specify if the described CMs are first or subsequent to the first, and they used sporadic CMs from non-genotyped patients as controls. We conducted a single-centre observational study to compare clinical and histological CM features of 32 unrelated carriers (MUT) of 5 germline CDKN2A mutations (one of which was never previously described) compared to 100 genotyped wild-type (WT) patients. We stratified the data based on time of diagnosis, anatomical site and histological subtype of CMs, demonstrating several significant unreported differences between the two groups. MUT developed a higher number of dysplastic nevi and MPMs. We proved for the first time that anatomical distribution of CMs in MUT was independent of gender, unlike WTs. MUTs developed in situ and superficial spreading melanomas (SSMs) more frequently, with significantly higher number of SSMs on the head/neck. In MUTs, Breslow thickness was significantly lower for all invasive CMs. When CMs were stratified on the basis of the time of occurrence, statistical significance was maintained only for SSMs subsequent to the first. In WTs, Clark level was significantly higher, and ulceration was more prevalent than in MUTs. Significant differences in ulceration were observed only in SSMs. In nodular CMs, we did not find differences in terms of Breslow thickness or ulceration between WTs and MUTs. In situ CMs developed 10 years earlier in MUTs with respect to WTs, whereas no significant differences were observed in invasive CMs. In contrast to those reported previously by other authors, we did not find a difference in skin phototype.
Collapse
Affiliation(s)
- Laura Cristina Gironi
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy.
| | - Enrico Colombo
- Department of Translational Medicine, A. Avogadro University of Eastern Piedmont, Novara, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Giorgione
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Pamela Farinelli
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Francesca Zottarelli
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elia Esposto
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elisa Zavattaro
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elias Allara
- NIHR Blood and Transplant Research Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paola Ogliara
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marta Betti
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Paola Savoia
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| |
Collapse
|
189
|
BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A 2018; 115:E8668-E8677. [PMID: 30150413 DOI: 10.1073/pnas.1810498115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.
Collapse
|
190
|
Fock V, Gudmundsson SR, Gunnlaugsson HO, Stefansson JA, Ionasz V, Schepsky A, Viarigi J, Reynisson IE, Pogenberg V, Wilmanns M, Ogmundsdottir MH, Steingrimsson E. Subcellular localization and stability of MITF are modulated by the bHLH-Zip domain. Pigment Cell Melanoma Res 2018; 32:41-54. [PMID: 29938923 DOI: 10.1111/pcmr.12721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is a member of the basic helix-loop-helix leucine zipper (bHLH-Zip) family and functions as the master regulator of the melanocytic lineage. MITF-M is the predominant isoform expressed in melanocytes and melanoma cells, and, unlike other MITF isoforms, it is constitutively nuclear. Mutational analysis revealed three karyophilic signals in the bHLH-Zip domain of MITF-M, spanning residues 197-206, 214-217, and 255-265. Structural characterization of the MITF protein showed that basic residues within these signals are exposed for interactions in the absence of DNA. Moreover, our data indicate that neither DNA binding nor dimerization of MITF-M are required for its nuclear localization. Finally, dimerization-deficient MITF-M mutants exhibited a significantly reduced stability in melanoma cells when compared to the wild-type protein. Taken together, we have shown that, in addition to its well-established role in DNA binding and dimer formation, the bHLH-Zip domain of MITF modulates the transcription factor's subcellular localization and stability.
Collapse
Affiliation(s)
- Valerie Fock
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Sigurdur Runar Gudmundsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Hilmar Orn Gunnlaugsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Jon August Stefansson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Vivien Ionasz
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Alexander Schepsky
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Jade Viarigi
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Indridi Einar Reynisson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | | | | | - Margret Helga Ogmundsdottir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Eirikur Steingrimsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
191
|
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, Hu B, Li X, Zheng Y, Xue Y, Zuo Z, Xie Y, Ren J. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Front Genet 2018; 9:254. [PMID: 30065750 PMCID: PMC6056651 DOI: 10.3389/fgene.2018.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale tumor genome sequencing projects have revealed a complex landscape of genomic mutations in multiple cancer types. A major goal of these projects is to characterize somatic mutations and discover cancer drivers, thereby providing important clues to uncover diagnostic or therapeutic targets for clinical treatment. However, distinguishing only a few somatic mutations from the majority of passenger mutations is still a major challenge facing the biological community. Fortunately, combining other functional features with mutations to predict cancer driver genes is an effective approach to solve the above problem. Protein lysine modifications are an important functional feature that regulates the development of cancer. Therefore, in this work, we have systematically analyzed somatic mutations on seven protein lysine modifications and identified several important drivers that are responsible for tumorigenesis. From published literature, we first collected more than 100,000 lysine modification sites for analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then downloaded from TCGA and mapped to our collected lysine modification sites. To identify driver proteins that significantly altered lysine modifications, we further developed a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC) method for testing. Strikingly, the coding sequences of 473 proteins were found to carry a higher mutation rate in lysine modification sites compared to other background regions. Hypergeometric tests also revealed that these gene products were enriched in known cancer drivers. Functional analysis suggested that mutations within the lysine modification regions possessed higher evolutionary conservation and deleteriousness. Furthermore, pathway enrichment showed that mutations on lysine modification sites mainly affected cancer related processes, such as cell cycle and RNA transport. Moreover, clinical studies also suggested that the driver proteins were significantly associated with patient survival, implying an opportunity to use lysine modifications as molecular markers in cancer diagnosis or treatment. By searching within protein-protein interaction networks using a random walk with restart (RWR) algorithm, we further identified a series of potential treatment agents and therapeutic targets for cancer related to lysine modifications. Collectively, this study reveals the functional importance of lysine modifications in cancer development and may benefit the discovery of novel mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Miao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengni Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanru Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Gao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Peng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Li
- Spine Center, Department of Orthopaedics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Yueyuan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
192
|
Wilson TLS, Hattangady N, Lerario AM, Williams C, Koeppe E, Quinonez S, Osborne J, Cha KB, Else T. A new POT1 germline mutation-expanding the spectrum of POT1-associated cancers. Fam Cancer 2018; 16:561-566. [PMID: 28389767 DOI: 10.1007/s10689-017-9984-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Melanomas are associated with several hereditary conditions. We present a large family with several family members affected with primary melanomas and dysplastic nevi as well as thyroid cancer and other malignant tumors. Clinical work-up did not reveal a mutation in any of the genes usually considered with evaluation for predisposition to melanoma (BRCA1/2, CDKN2A, CDK4, PTEN, TP53). Whole exome sequencing of five affected family members showed a new variant in POT1. POT1 is associated with the telomere shelterin complex that regulates telomere protection and telomerase access. Germline mutations in POT1 were recently shown to be associated with hereditary predisposition to melanoma. Our findings support a role of POT1 germline mutations in cancer predisposition beyond melanoma development, suggesting a broader phenotype of the POT1-associated tumor predisposition syndrome that might also include thyroid cancer as well as possibly other malignant tumors.
Collapse
Affiliation(s)
- Tremika Le-Shan Wilson
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Namita Hattangady
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carmen Williams
- Division of Cancer Genetics, Northwestern Medicine, Chicago, IL, 60611, USA
| | - Erika Koeppe
- Department of Internal Medicine, Division of Molecular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shane Quinonez
- Department of Internal Medicine, Division of Molecular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jenae Osborne
- Department of Internal Medicine, Division of Molecular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly B Cha
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
193
|
Bourneuf E, Estellé J, Blin A, Créchet F, Schneider MDP, Gilbert H, Brossard M, Vaysse A, Lathrop M, Vincent-Naulleau S, Demenais F. New susceptibility loci for cutaneous melanoma risk and progression revealed using a porcine model. Oncotarget 2018; 9:27682-27697. [PMID: 29963229 PMCID: PMC6021234 DOI: 10.18632/oncotarget.25455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/05/2018] [Indexed: 01/08/2023] Open
Abstract
Despite major advances, it is estimated that a large part of melanoma predisposing genes remains to be discovered. Animal models of spontaneous diseases are valuable tools and experimental crosses can be used to identify and fine-map new susceptibility loci associated with melanoma. We performed a Genome-Wide Association Study (GWAS) of melanoma occurrence and progression (clinical ulceration and presence of metastasis) in a porcine model of spontaneous melanoma, the MeLiM pig. Five loci on chromosomes 2, 5, 7, 8 and 16 showed genome-wide significant associations (p < 5 × 10–6) with either one of these phenotypes. Suggestive associations (p < 5 × 10–5) were also found at 16 additional loci. Moreover, comparison of the porcine results to those reported by human melanoma GWAS indicated shared association signals notably at CDKAL1 and TERT loci but also nearby CCND1, FTO, PLA2G6 and TMEM38B-RAD23B loci. Extensive search of the literature revealed a potential key role of genes at the identified porcine loci in tumor invasion (DST, PLEKHA5, CBY1, LIMK2 and ETV5) and immune response modulation (ETV5, HERC3 and DICER1) of the progression phenotypes. These biological processes are consistent with the clinico-pathological features of MeLiM tumors and can open new routes for future melanoma research in humans.
Collapse
Affiliation(s)
- Emmanuelle Bourneuf
- CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jordi Estellé
- CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Amandine Blin
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Outils et Méthodes de la Systématique Intégrative, OMSI-UMS 2700, CNRS MNHN, Muséum National d'Histoire Naturelle, Paris, France
| | - Françoise Créchet
- CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Maria Del Pilar Schneider
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Present address: Ipsen Innovation, Les Ulis, France
| | - Hélène Gilbert
- GenPhyse, INRA, Université de Toulouse, INPT, ENVT, Castanet Tolosan, France
| | - Myriam Brossard
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Amaury Vaysse
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mark Lathrop
- McGill University and Genome Québec Innovation Centre, Montréal, Québec, Canada
| | - Silvia Vincent-Naulleau
- CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florence Demenais
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
194
|
|
195
|
Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis 2018; 35:379-391. [PMID: 29722002 DOI: 10.1007/s10585-018-9893-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.
Collapse
|
196
|
Seberg HE, Van Otterloo E, Cornell RA. Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res 2018. [PMID: 28649789 DOI: 10.1111/pcmr.12611] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MITF governs multiple steps in the development of melanocytes, including specification from neural crest, growth, survival, and terminal differentiation. In addition, the level of MITF activity determines the phenotype adopted by melanoma cells, whether invasive, proliferative, or differentiated. However, MITF does not act alone. Here, we review literature on the transcription factors that co-regulate MITF-dependent genes. ChIP-seq studies have indicated that the transcription factors SOX10, YY1, and TFAP2A co-occupy subsets of regulatory elements bound by MITF in melanocytes. Analyses at single loci also support roles for LEF1, RB1, IRF4, and PAX3 acting in combination with MITF, while sequence motif analyses suggest that additional transcription factors colocalize with MITF at many melanocyte-specific regulatory elements. However, the precise biochemical functions of each of these MITF collaborators and their contributions to gene expression remain to be elucidated. Analogous to the transcriptional networks in morphogen-patterned tissues during embryogenesis, we anticipate that the level of MITF activity is controlled not only by the concentration of activated MITF, but also by additional transcription factors that either quantitatively or qualitatively influence the expression of MITF-target genes.
Collapse
Affiliation(s)
- Hannah E Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
197
|
Mujahid N, Liang Y, Murakami R, Choi HG, Dobry AS, Wang J, Suita Y, Weng QY, Allouche J, Kemeny LV, Hermann AL, Roider EM, Gray NS, Fisher DE. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin. Cell Rep 2018; 19:2177-2184. [PMID: 28614705 PMCID: PMC5549921 DOI: 10.1016/j.celrep.2017.05.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.
Collapse
Affiliation(s)
- Nisma Mujahid
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Murakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison S Dobry
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lajos V Kemeny
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrea L Hermann
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Elisabeth M Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
198
|
Potjer TP, Helgadottir H, Leenheer M, van der Stoep N, Gruis NA, Höiom V, Olsson H, van Doorn R, Vasen HFA, van Asperen CJ, Dekkers OM, Hes FJ. CM-Score: a validated scoring system to predict CDKN2A germline mutations in melanoma families from Northern Europe. J Med Genet 2018; 55:661-668. [PMID: 29661971 DOI: 10.1136/jmedgenet-2017-105205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several factors have been reported that influence the probability of a germline CDKN2A mutation in a melanoma family. Our goal was to create a scoring system to estimate this probability, based on a set of clinical features present in the patient and his or her family. METHODS Five clinical features and their association with CDKN2A mutations were investigated in a training cohort of 1227 Dutch melanoma families (13.7% with CDKN2A mutation) using multivariate logistic regression. Predefined features included number of family members with melanoma and with multiple primary melanomas, median age at diagnosis and presence of pancreatic cancer or upper airway cancer in a family member. Based on these five features, a scoring system (CDKN2A Mutation(CM)-Score) was developed and subsequently validated in a combined Swedish and Dutch familial melanoma cohort (n=421 families; 9.0% with CDKN2A mutation). RESULTS All five features were significantly associated (p<0.05) with a CDKN2A mutation. At a CM-Score of 16 out of 49 possible points, the threshold of 10% mutation probability is approximated (9.9%; 95% CI 9.8 to 10.1). This probability further increased to >90% for families with ≥36 points. A CM-Score under 16 points was associated with a low mutation probability (≤4%). CM-Score performed well in both the training cohort (area under the curve (AUC) 0.89; 95% CI 0.86 to 0.92) and the external validation cohort (AUC 0.94; 95% CI 0.90 to 0.98). CONCLUSION We developed a practical scoring system to predict CDKN2A mutation status among melanoma-prone families. We suggest that CDKN2A analysis should be recommended to families with a CM-Score of ≥16 points.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hildur Helgadottir
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mirjam Leenheer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans F A Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
199
|
Czarniecki M, Gautam R, Choyke PL, Turkbey B. Imaging findings of hereditary renal tumors, a review of what the radiologist should know. Eur J Radiol 2018; 101:8-16. [DOI: 10.1016/j.ejrad.2018.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
200
|
Ohanna M, Cerezo M, Nottet N, Bille K, Didier R, Beranger G, Mograbi B, Rocchi S, Yvan-Charvet L, Ballotti R, Bertolotto C. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev 2018; 32:448-461. [PMID: 29567766 PMCID: PMC5900716 DOI: 10.1101/gad.305854.117] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
In BRAFV600E melanoma cells, a global metabolomic analysis discloses a decrease in nicotinamide adenine dinucleotide (NAD+) levels upon PLX4032 treatment that is conveyed by a STAT5 inhibition and a transcriptional regulation of the nicotinamide phosphoribosyltransferase (NAMPT) gene. NAMPT inhibition decreases melanoma cell proliferation both in vitro and in vivo, while forced NAMPT expression renders melanoma cells resistant to PLX4032. NAMPT expression induces transcriptomic and epigenetic reshufflings that steer melanoma cells toward an invasive phenotype associated with resistance to targeted therapies and immunotherapies. Therefore, NAMPT, the key enzyme in the NAD+ salvage pathway, appears as a rational target in targeted therapy-resistant melanoma cells and a key player in phenotypic plasticity of melanoma cells.
Collapse
Affiliation(s)
- Mickaël Ohanna
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Mickaël Cerezo
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Nicolas Nottet
- Université Nice Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Karine Bille
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Robin Didier
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Guillaume Beranger
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Baharia Mograbi
- U1081, INSERM, Institute of Research on Cancer and Ageing of Nice (IRCAN), Equipe Labellisée ARC, Université Nice Côte d'Azur, UMR7284, Centre National de la Recherche Scientifique (CNRS), 06107 Nice, France
| | - Stéphane Rocchi
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Laurent Yvan-Charvet
- U1065, INSERM, Team ATIP-Avenir, Université Nice Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale (INSERM), Biology and Pathologies of Melanocytes, Equipe Labellisée L'Association pour la Recherche sur le Cancer (ARC) 2015, Université Nice Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France
| |
Collapse
|