151
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 2016; 103:18-31. [PMID: 25592387 PMCID: PMC4497946 DOI: 10.1159/000371819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022]
Abstract
Pituitary adenomas are a common feature of a subset of endocrine neoplasia syndromes, which have otherwise highly variable disease manifestations. We provide here a review of the clinical features and human molecular genetics of multiple endocrine neoplasia (MEN) type 1 and 4 (MEN1 and MEN4, respectively) and Carney complex (CNC). MEN1, MEN4, and CNC are hereditary autosomal dominant syndromes that can present with pituitary adenomas. MEN1 is caused by inactivating mutations in the MEN1 gene, whose product menin is involved in multiple intracellular pathways contributing to transcriptional control and cell proliferation. MEN1 clinical features include primary hyperparathyroidism, pancreatic neuroendocrine tumours and prolactinomas as well as other pituitary adenomas. A subset of patients with pituitary adenomas and other MEN1 features have mutations in the CDKN1B gene; their disease has been called MEN4. Inactivating mutations in the type 1α regulatory subunit of protein kinase A (PKA; the PRKAR1A gene), that lead to dysregulation and activation of the PKA pathway, are the main genetic cause of CNC, which is clinically characterised by primary pigmented nodular adrenocortical disease, spotty skin pigmentation (lentigines), cardiac and other myxomas and acromegaly due to somatotropinomas or somatotrope hyperplasia.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
152
|
Yue L, Du J, Ye F, Chen Z, Li L, Lian F, Zhang B, Zhang Y, Jiang H, Chen K, Li Y, Zhou B, Zhang N, Yang Y, Luo C. Identification of novel small-molecule inhibitors targeting menin–MLL interaction, repurposing the antidiarrheal loperamide. Org Biomol Chem 2016; 14:8503-19. [DOI: 10.1039/c6ob01248e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scaffold hopping combines with biochemical studies and medicinal chemistry optimizations, leading to potent inhibitors of the menin–MLL interaction.
Collapse
|
153
|
Abstract
Five syndromes share predominantly hyperplastic glands with a primary excess of hormones: neonatal severe primary hyperparathyroidism, from homozygous mutated CASR, begins severely in utero; congenital non-autoimmune thyrotoxicosis, from mutated TSHR, varies from severe with fetal onset to mild with adult onset; familial male-limited precocious puberty, from mutated LHR, expresses testosterone oversecretion in young boys; hereditary ovarian hyperstimulation syndrome, from mutated FSHR, expresses symptomatic systemic vascular permeabilities during pregnancy; and familial hyperaldosteronism type IIIA, from mutated KCNJ5, presents in young children with hypertension and hypokalemia. The grouping of these five syndromes highlights predominant hyperplasia as a stable tissue endpoint and as their tissue stage for all of the hormone excess. Comparisons were made among this and two other groups of syndromes, forming a continuum of gland staging: predominant oversecretions express little or no hyperplasia; predominant hyperplasias express little or no neoplasia; and predominant neoplasias express nodules, adenomas, or cancers. Hyperplasias may progress (5 of 5) to neoplastic stages while predominant oversecretions rarely do (1 of 6; frequencies differ P<0.02). Hyperplasias do not show tumor multiplicity (0 of 5) unlike neoplasias that do (13 of 19; P<0.02). Hyperplasias express mutation of a plasma membrane-bound sensor (5 of 5), while neoplasias rarely do (3 of 14; P<0.002). In conclusion, the multiple distinguishing themes within the hyperplasias establish a robust pathophysiology. It has the shared and novel feature of mutant sensors in the plasma membrane, suggesting that these are major contributors to hyperplasia.
Collapse
Affiliation(s)
- Stephen J Marx
- Genetics and Endocrinology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9C-103, Bethesda, Maryland 20892, USA
| |
Collapse
|
154
|
Gurung B, Hua X, Runske M, Bennett B, LiVolsi V, Roses R, Fraker DA, Metz DC. PTCH 1 staining of pancreatic neuroendocrine tumor (PNET) samples from patients with and without multiple endocrine neoplasia (MEN-1) syndrome reveals a potential therapeutic target. Cancer Biol Ther 2015; 16:219-24. [PMID: 25482929 DOI: 10.4161/15384047.2014.987574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are rare, indolent tumors that may occur sporadically or develop in association with well-recognized hereditary syndromes, particularly multiple endocrine neoplasia type 1 (MEN-1). We previously demonstrated that the hedgehog (HH) signaling pathway was aberrantly up-regulated in a mouse model that phenocopies the human MEN-1 syndrome, Men1l/l;RipCre, and that inhibition of this pathway suppresses MEN-1 tumor cell proliferation. We hypothesized that the HH signaling pathway is similarly upregulated in human PNETs. We performed immunohistochemical (IHC) staining for PTCH1 in human fresh and archival PNET specimens to examine whether human sporadic and MEN-1-associated PNETs revealed similar abnormalities as in our mouse model and correlated the results with clinical and demographic factors of the study cohort. PTCH1 staining was positive in 12 of 22 PNET patients (55%). Four of 5 MEN-1 patients stained for PTCH1 (p = 0.32 as compared with sporadic disease patients). Nine of 16 patients with metastatic disease stained for PTCH1 as compared with zero of 3 with localized disease only (p = 0.21). No demographic or clinical features appeared to be predictive of PTCH 1 positivity and PTCH 1 positivity per se was not predictive of clinical outcome. PTCH1, a marker of HH pathway up regulation, is detectable in both primary and metastatic tumors in more than 50% of PNET patients. Although no clinical or demographic factors predict PTCH1 positivity and PTCH1 positivity does not predict clinical outcome, the frequency of expression alone indicates that perturbation of this pathway with agents such as Vismodegib, an inhibitor of Smoothened (SMO), should be examined in future clinical trials.
Collapse
Key Words
- ACTH, Adrenocorticotrophic hormone
- BCNS, basal cell nevus syndrome
- CgA, chromogranin A
- HH, hedgehog
- IHC, immunohistochemical
- MEN-1
- MEN-1, multiple neuroendocrine tumor syndrome type 1
- NF-1, neurofibromatosis type 1
- PNET, pancreatic neuroendocrine tumor
- PRRT, peptide radioreceptor therapy
- PTCH 1, protein patched homolog 1
- SMO, smoothened
- VHL, von Hippel Lan- dau
- WHO, World Health Organization
- hedgehog
- neuroendocrine
- pancreas
Collapse
Affiliation(s)
- Buddha Gurung
- a Abramson Family Cancer Research Center; Department of Cancer Biology ; University of Pennsylvania School of Medicine ; Philadelphia , PA USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, Barsyte-Lovejoy D, Al-Awar R, Katona BW, Shilatifard A, Huang J, Hua X, Arrowsmith CH, Berger SL. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 2015; 525:206-11. [PMID: 26331536 PMCID: PMC4568559 DOI: 10.1038/nature15251] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/29/2015] [Indexed: 02/08/2023]
Abstract
TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.
Collapse
Affiliation(s)
- Jiajun Zhu
- Cell and Developmental Biology, University of Pennsylvania
- Epigenetics Program, University of Pennsylvania
- Biomedical Graduate Studies, University of Pennsylvania
| | - Morgan A. Sammons
- Cell and Developmental Biology, University of Pennsylvania
- Epigenetics Program, University of Pennsylvania
| | - Greg Donahue
- Cell and Developmental Biology, University of Pennsylvania
- Epigenetics Program, University of Pennsylvania
| | - Zhixun Dou
- Cell and Developmental Biology, University of Pennsylvania
- Epigenetics Program, University of Pennsylvania
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthaeus Getlik
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | | | - Rima Al-Awar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Bryson W. Katona
- Abramson Family Cancer Institute, Department of Cancer Biology, University of Pennsylvania
| | | | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xianxin Hua
- Abramson Family Cancer Institute, Department of Cancer Biology, University of Pennsylvania
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, and Department of Medical Biophysics University of Toronto
| | - Shelley L. Berger
- Cell and Developmental Biology, University of Pennsylvania
- Epigenetics Program, University of Pennsylvania
| |
Collapse
|
156
|
Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev 2015; 263:279-301. [PMID: 25510283 DOI: 10.1111/imr.12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address 'druggability' of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
157
|
Tesina P, Čermáková K, Hořejší M, Procházková K, Fábry M, Sharma S, Christ F, Demeulemeester J, Debyser Z, Rijck JD, Veverka V, Řezáčová P. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat Commun 2015; 6:7968. [PMID: 26245978 DOI: 10.1038/ncomms8968] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.
Collapse
Affiliation(s)
- Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Čermáková
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Magdalena Hořejší
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Procházková
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Subhalakshmi Sharma
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Frauke Christ
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jonas Demeulemeester
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
158
|
Menin immunoreactivity in secretory granules of human pancreatic islet cells. Appl Immunohistochem Mol Morphol 2015; 22:748-55. [PMID: 25153502 DOI: 10.1097/pai.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protein product of the Multiple Endocrine Neoplasia Type I (MEN1) gene is thought to be involved in predominantly nuclear functions; however, immunohistochemical (IHC) analysis data on cellular localization are conflicting. To further investigate menin expression, we analyzed human pancreas (an MEN1 target organ) using IHC analyses and 6 antibodies raised against full-length menin or its peptides. In 10 normal pancreas specimens, 2 independently raised antibodies showed unexpected cytoplasmic immunoreactivity in peripheral cells in each islet examined (over 100 total across all 10 patients). The staining exhibited a distinct punctate pattern and subsequent immunoelectron microscopy indicated the target antigen was in secretory granules. Exocrine pancreas and pancreatic stroma were not immunoreactive. In MEN1 patients, unaffected islets stained similar to those in normal samples but with a more peripheral location of positive cells, whereas hyperplastic islets and tumorlets showed increased and diffuse cytoplasmic staining, respectively. Endocrine tumors from MEN1 patients were negative for menin, consistent with a 2-hit loss of a tumor suppressor gene. Secretory granule localization of menin in a subset of islet cells suggests a function of the protein unique to a target organ of familial endocrine neoplasia, although the IHC data must be interpreted with some caution because of the possibility of antibody cross-reaction. The identity, cellular trafficking, and role of this putative secretory granule-form of menin warrant additional investigation.
Collapse
|
159
|
Norton JA, Krampitz G, Jensen RT. Multiple Endocrine Neoplasia: Genetics and Clinical Management. Surg Oncol Clin N Am 2015; 24:795-832. [PMID: 26363542 DOI: 10.1016/j.soc.2015.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early diagnosis of multiple endocrine neoplasia (MEN) syndromes is critical for optimal clinical outcomes; before the MEN syndromes can be diagnosed, they must be suspected. Genetic testing for germline alterations in both the MEN type 1 (MEN1) gene and RET proto-oncogene is crucial to identifying those at risk in affected kindreds and directing timely surveillance and surgical therapy to those at greatest risk of potentially life-threatening neoplasia. Pancreatic, thymic, and bronchial neuroendocrine tumors are the leading cause of death in patients with MEN1 and should be aggressively considered by at least biannual computed tomography imaging.
Collapse
Affiliation(s)
- Jeffrey A Norton
- Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Geoffrey Krampitz
- Department of Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Robert T Jensen
- Cell Biology Section, Digestive Diseases Branch, National Institute of Arthritis, Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892-2560, USA
| |
Collapse
|
160
|
Shen E, Shulha H, Weng Z, Akbarian S. Regulation of histone H3K4 methylation in brain development and disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0514. [PMID: 25135975 DOI: 10.1098/rstb.2013.0514] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.
Collapse
Affiliation(s)
- Erica Shen
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hennady Shulha
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
161
|
Chen X, Sun S, Wang C, Chen D, Chen H, Ran X. Novel mutation 928G>C of MEN1 gene in a familial multiple endocrine neoplasia type 1 case (MEN1) with co-existence of insulinoma and glucagonoma. J Diabetes 2015; 7:426-9. [PMID: 25047095 DOI: 10.1111/1753-0407.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/29/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
162
|
Xu Y, Zhou X, Huang M. StaRProtein, a web server for prediction of the stability of repeat proteins. PLoS One 2015; 10:e0119417. [PMID: 25807112 PMCID: PMC4373711 DOI: 10.1371/journal.pone.0119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
| | - Xu Zhou
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
163
|
Zou T, Rao JN, Liu L, Xiao L, Chung HK, Li Y, Chen G, Gorospe M, Wang JY. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 308:C813-24. [PMID: 25788572 DOI: 10.1152/ajpcell.00027.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/14/2015] [Indexed: 12/28/2022]
Abstract
Through its actions as component of the activating protein-1 (AP-1) transcription factor, JunD potently represses cell proliferation. Here we report a novel function of JunD in the regulation of microRNA expression in intestinal epithelial cells (IECs). Ectopically expressed JunD specifically increased the expression of primary and mature forms of miR-29b, whereas JunD silencing inhibited miR-29b expression. JunD directly interacted with the miR-29b1 promoter via AP-1-binding sites, whereas mutation of AP-1 sites from the miR-29b1 promoter prevented JunD-mediated transcriptional activation of the miR-29b1 gene. JunD also enhanced formation of the Drosha microprocessor complex, thus further promoting miR-29b biogenesis. Cellular polyamines were found to regulate miR-29b expression by altering JunD abundance, since the increase in miR-29b expression levels in polyamine-deficient cells was abolished by JunD silencing. In addition, miR-29b silencing prevented JunD-induced repression of IEC proliferation. Our findings indicate that JunD activates miR-29b by enhancing its transcription and processing, which contribute to the inhibitory effect of JunD on IEC growth and maintenance of gut epithelium homeostasis.
Collapse
Affiliation(s)
- Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Yanwu Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Gang Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland; and
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
164
|
Modulation by miR-29b of intestinal epithelium homoeostasis through the repression of menin translation. Biochem J 2015; 465:315-23. [PMID: 25317587 DOI: 10.1042/bj20141028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Menin regulates distinct cellular functions by regulating gene transcription through its interaction with partner transcription factors, but the exact mechanisms that control menin levels remain largely unknown. In the present study we report that Men1 mRNA, encoding menin, is a novel target of miR-29b and that miR-29b/Men1 mRNA association regulates menin expression post-transcriptionally in rat intestinal epithelial cells (IECs). Overexpression of a miR-29b precursor lowered the levels of Men1 mRNA modestly, but reduced new synthesis of menin robustly; conversely, antagonism of miR-29b enhanced menin protein synthesis and steady-state levels. The repressive effect of miR-29b on menin expression was mediated through a single binding site in the coding region of Men1 mRNA, because point mutation of this site prevented miR-29b-induced repression of menin translation. Increasing cellular polyamines due to overexpression of ornithine decarboxylase (ODC) enhanced menin translation by reducing miR-29b, whereas polyamine depletion by inhibiting ODC increased it, thus suppressing menin expression. Moreover, an increase in menin abundance in an miR-29b-silenced population of IECs led to increased sensitivity to apoptosis, which was prevented by silencing menin. These findings indicate that miR-29b represses translation of Men1 mRNA, in turn affecting intestinal epithelial homoeostasis by altering IEC apoptosis.
Collapse
|
165
|
Abstract
Pituitary adenomas are a heterogeneous group of tumors that may occur as part of a complex syndrome or as an isolated endocrinopathy and both forms can be familial or non-familial. Studies of syndromic and non-syndromic pituitary adenomas have yielded important insights about the molecular mechanisms underlying tumorigenesis. Thus, syndromic forms, including multiple endocrine neoplasia type 1 (MEN1), MEN4, Carney Complex and McCune Albright syndrome, have been shown to be due to mutations of the tumor-suppressor protein menin, a cyclin-dependent kinase inhibitor (p27Kip1), the protein kinase A regulatory subunit 1-α, and the G-protein α-stimulatory subunit (Gsα), respectively. Non-syndromic forms, which include familial isolated pituitary adenoma (FIPA) and sporadic tumors, have been shown to be due to abnormalities of: the aryl hydrocarbon receptor-interacting protein; Gsα; signal transducers; cell cycle regulators; transcriptional modulators and miRNAs. The roles of these molecular abnormalities and epigenetic mechanisms in pituitary tumorigenesis, and their therapeutic implications are reviewed.
Collapse
Affiliation(s)
- Christopher J Yates
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
- b 2 Department of Diabetes and Endocrinology, Melbourne Health, The Royal Melbourne Hospital, Grattan Street, Parkville, Vic 3050, Australia
| | - Kate E Lines
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| | - Rajesh V Thakker
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| |
Collapse
|
166
|
Targeting β-catenin signaling for therapeutic intervention in MEN1-deficient pancreatic neuroendocrine tumours. Nat Commun 2014; 5:5809. [PMID: 25517963 PMCID: PMC4284642 DOI: 10.1038/ncomms6809] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023] Open
Abstract
Inactivating MEN1 mutations are the most common genetic defects present in sporadic and inherited pancreatic neuroendocrine tumours (PNETs). The lack of interventional therapies prompts us to explore the therapeutic approach of targeting β-catenin signalling in MEN1-mutant PNETs. Here we show the MEN1-encoded scaffold protein menin regulates phosphorylation of β-catenin. β-catenin signalling is activated in MEN1-mutant human and mouse PNETs. Conditional knockout of β-catenin suppresses the tumorigenesis and growth of Men1-deficient PNETs, and significantly prolongs the survival time in mice. Suppression of β-catenin signalling by genetic ablation or a molecular antagonist inhibits the expression of proproliferative genes in menin-null PNETs and potently improves hyperinsulinemia and hypoglycemia in mice. Blockade of β-catenin has no adverse effect on physiological function of pancreatic β-cells. Our data demonstrate that β-catenin signalling is an effective therapeutic target for MEN1-mutant PNETs. Our findings may contribute to individualized and combined medication treatment for PNETs. MEN1 gene encodes menin, a nuclear scaffold protein that regulates transcription and is often inactivated in pancreatic neuroendocrine tumours (PNETs). Here Jiang et al. show that MEN1-driven PNET development involves activation of β-catenin, and that β-catenin deletion ameliorates the disease.
Collapse
|
167
|
Li BE, Ernst P. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia. Exp Hematol 2014; 42:995-1012. [PMID: 25264566 PMCID: PMC4307938 DOI: 10.1016/j.exphem.2014.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers.
Collapse
Affiliation(s)
- Bin E Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Patricia Ernst
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics Hematology/Oncology/BMT, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
168
|
Ballabio E, Milne TA. Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins. Mol Cell Oncol 2014; 1:e955330. [PMID: 27308325 PMCID: PMC4905190 DOI: 10.1080/23723548.2014.955330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers.
Collapse
Affiliation(s)
- Erica Ballabio
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| | - Thomas A Milne
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| |
Collapse
|
169
|
The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 2014; 124:3730-7. [PMID: 25305204 DOI: 10.1182/blood-2014-01-550079] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV.
Collapse
|
170
|
Menin-mediated regulation of miRNA biogenesis uncovers the IRS2 pathway as a target for regulating pancreatic beta cells. Oncoscience 2014; 1:562-6. [PMID: 25594065 PMCID: PMC4278340 DOI: 10.18632/oncoscience.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 01/20/2023] Open
Abstract
Menin, a protein encoded by the MEN1 gene, is mutated in patients with multiple endocrine neoplasia type 1 (MEN1). Menin acts as a tumor suppressor in endocrine organs while it is also required for transformation of a subgroup of leukemia. The recently solved crystal structure of menin with different binding partners reveals that menin is a key scaffold protein that cross-talks with various partners, including transcription factors, to regulate gene transcription. Our recent findings unravel a previously undiscovered mechanism for menin-mediated control of gene expression via processing of certain microRNA's, thus adding to the plethora of ways in which menin regulates gene expression. By interacting with ARS2, an RNA binding protein, menin facilitates the processing of pri-let 7a and pri-miR155 to pre-let 7a and pre-miR155 respectively. Consistently, excision of the Men1 gene results in upregulation of IRS2, a let-7a target. As IRS2 is known to mediate both insulin signaling and insulin-induced cell proliferation, and let-7a targets include oncogenes like RAS and HMGA2, a deeper understanding of the menin-ARS2 complex in regulating miRNA biogenesis will yield further insights into the pathogenesis of the MEN1 syndrome and other menin-associated malignancies.
Collapse
|
171
|
The role of tumor suppressor menin in IL-6 regulation in mouse islet tumor cells. Biochem Biophys Res Commun 2014; 451:308-13. [PMID: 25088994 DOI: 10.1016/j.bbrc.2014.07.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022]
Abstract
Menin is a gene product of multiple endocrine neoplasia type1 (Men1), an inherited familial cancer syndrome characterized by tumors of endocrine tissues. To gain insight about how menin performs an endocrine cell-specific tumor suppressor function, we investigated the possibility that menin was integrated in a cancer-associated inflammatory pathway in a cell type-specific manner. Here, we showed that the expression of IL-6, a proinflammatory cytokine, was specifically elevated in mouse islet tumor cells upon depletion of menin and Men(-/-) MEF cells, but not in hepatocellular carcinoma cells. Histone H3 lysine (K) 9 methylation, but not H3 K27 or K4 methylation, was involved in menin-dependent IL-6 regulation. Menin occupied the IL-6 promoter and recruited SUV39H1 to induce H3 K9 methylation. Our findings provide a molecular insight that menin-dependent induction of H3 K9 methylation in the cancer-associated interleukin gene might be linked to preventing endocrine-specific tumorigenesis.
Collapse
|
172
|
Cermáková K, Tesina P, Demeulemeester J, El Ashkar S, Méreau H, Schwaller J, Rezáčová P, Veverka V, De Rijck J. Validation and structural characterization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Res 2014; 74:5139-51. [PMID: 25082813 DOI: 10.1158/0008-5472.can-13-3602] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed lineage leukemia (MLL) fusion-driven acute leukemias represent a genetically distinct subset of leukemias with poor prognosis. MLL forms a ternary complex with the lens epithelium-derived growth factor (LEDGF/p75) and MENIN. LEDGF/p75, a chromatin reader recognizing H3K36me3 marks, contributes to the association of the MLL multiprotein complex to chromatin. Formation of this complex is critical for the development of MLL leukemia. Available X-ray data represent only a partial structure of the LEDGF/p75-MLL-MENIN complex. Using nuclear magnetic resonance spectroscopy, we identified an additional LEDGF/p75-MLL interface, which overlaps with the binding site of known LEDGF/p75 interactors-HIV-1 integrase, PogZ, and JPO2. Binding of these proteins or MLL to LEDGF/p75 is mutually exclusive. The resolved structure, as well as mutational analysis, shows that the interaction is primarily sustained via two aromatic residues of MLL (F148 and F151). Colony-forming assays in MLL-AF9(+) leukemic cells expressing MLL interaction-defective LEDGF/p75 mutants revealed that this interaction is essential for transformation. Finally, we show that the clonogenic growth of primary murine MLL-AF9-expressing leukemic blasts is selectively impaired upon overexpression of a LEDGF/p75-binding cyclic peptide CP65, originally developed to inhibit the LEDGF/p75-HIV-1 integrase interaction. The newly defined protein-protein interface therefore represents a new target for the development of therapeutics against LEDGF/p75-dependent MLL fusion-driven leukemic disorders. Cancer Res; 74(18); 5139-51. ©2014 AACR.
Collapse
Affiliation(s)
- Kateřina Cermáková
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic. Charles University in Prague, Department of Genetics and Microbiology, Faculty of Science, Prague, Czech Republic
| | - Jonas Demeulemeester
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Sara El Ashkar
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Hélène Méreau
- Department of Biomedicine, University Hospital and Children's Hospital Basel (UKBB) ZLF, Basel, Switzerland
| | - Juerg Schwaller
- Department of Biomedicine, University Hospital and Children's Hospital Basel (UKBB) ZLF, Basel, Switzerland
| | - Pavlína Rezáčová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic. Institute of Molecular Genetics of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic.
| | - Jan De Rijck
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| |
Collapse
|
173
|
Pradeepa MM, Grimes GR, Taylor GCA, Sutherland HG, Bickmore WA. Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins. Nucleic Acids Res 2014; 42:9021-32. [PMID: 25056311 PMCID: PMC4132756 DOI: 10.1093/nar/gku647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax family member MLL (myeloid/lymphoid or mixed-lineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins to HOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1−/− cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors.
Collapse
Affiliation(s)
- Madapura M Pradeepa
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Gillian C A Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Heidi G Sutherland
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
174
|
Pieterman CRC, Conemans EB, Dreijerink KMA, de Laat JM, Timmers HTM, Vriens MR, Valk GD. Thoracic and duodenopancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1: natural history and function of menin in tumorigenesis. Endocr Relat Cancer 2014; 21:R121-42. [PMID: 24389729 DOI: 10.1530/erc-13-0482] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene lead to loss of function of its protein product menin. In keeping with its tumor suppressor function in endocrine tissues, the majority of the MEN1-related neuroendocrine tumors (NETs) show loss of heterozygosity (LOH) on chromosome 11q13. In sporadic NETs, MEN1 mutations and LOH are also reported, indicating common pathways in tumor development. Prevalence of thymic NETs (thNETs) and pulmonary carcinoids in MEN1 patients is 2-8%. Pulmonary carcinoids may be underreported and research on natural history is limited, but disease-related mortality is low. thNETs have a high mortality rate. Duodenopancreatic NETs (dpNETs) are multiple, almost universally found at pathology, and associated with precursor lesions. Gastrinomas are usually located in the duodenal submucosa while other dpNETs are predominantly pancreatic. dpNETs are an important determinant of MEN1-related survival, with an estimated 10-year survival of 75%. Survival differs between subtypes and apart from tumor size there are no known prognostic factors. Natural history of nonfunctioning pancreatic NETs needs to be redefined because of increased detection of small tumors. MEN1-related gastrinomas seem to behave similar to their sporadic counterparts, while insulinomas seem to be more aggressive. Investigations into the molecular functions of menin have led to new insights into MEN1-related tumorigenesis. Menin is involved in gene transcription, both as an activator and repressor. It is part of chromatin-modifying protein complexes, indicating involvement of epigenetic pathways in MEN1-related NET development. Future basic and translational research aimed at NETs in large unbiased cohorts will clarify the role of menin in NET tumorigenesis and might lead to new therapeutic options.
Collapse
Affiliation(s)
- C R C Pieterman
- Division of Internal Medicine and Dermatology, Department of Internal Medicine, University Medical Center Utrecht, Internal post number L.00.408, PO Box 85500, 3508 GA Utrecht, The Netherlands Division of Biomedical Genetics, Department of Molecular Cancer Research Division of Surgical Specialties, Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
175
|
Vanderlinden W, Lipfert J, Demeulemeester J, Debyser Z, De Feyter S. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy. NANOSCALE 2014; 6:4611-4619. [PMID: 24632996 DOI: 10.1039/c4nr00022f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study--based on scanning force microscopy (SFM) imaging--is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.
Collapse
Affiliation(s)
- Willem Vanderlinden
- Department of Chemistry, Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
176
|
Li L, Zhou R, Geng H, Yue L, Ye F, Xie Y, Liu J, Kong X, Jiang H, Huang J, Luo C. Discovery of two aminoglycoside antibiotics as inhibitors targeting the menin–mixed lineage leukaemia interface. Bioorg Med Chem Lett 2014; 24:2090-3. [DOI: 10.1016/j.bmcl.2014.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
177
|
Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386:2-15. [PMID: 23933118 PMCID: PMC4082531 DOI: 10.1016/j.mce.2013.08.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/03/2023]
Abstract
Multiple endocrine neoplasia (MEN) is characterized by the occurrence of tumors involving two or more endocrine glands within a single patient. Four major forms of MEN, which are autosomal dominant disorders, are recognized and referred to as: MEN type 1 (MEN1), due to menin mutations; MEN2 (previously MEN2A) due to mutations of a tyrosine kinase receptor encoded by the rearranged during transfection (RET) protoncogene; MEN3 (previously MEN2B) due to RET mutations; and MEN4 due to cyclin-dependent kinase inhibitor (CDNK1B) mutations. Each MEN type is associated with the occurrence of specific tumors. Thus, MEN1 is characterized by the occurrence of parathyroid, pancreatic islet and anterior pituitary tumors; MEN2 is characterized by the occurrence of medullary thyroid carcinoma (MTC) in association with phaeochromocytoma and parathyroid tumors; MEN3 is characterized by the occurrence of MTC and phaeochromocytoma in association with a marfanoid habitus, mucosal neuromas, medullated corneal fibers and intestinal autonomic ganglion dysfunction, leading to megacolon; and MEN4, which is also referred to as MENX, is characterized by the occurrence of parathyroid and anterior pituitary tumors in possible association with tumors of the adrenals, kidneys, and reproductive organs. This review will focus on the clinical and molecular details of the MEN1 and MEN4 syndromes. The gene causing MEN1 is located on chromosome 11q13, and encodes a 610 amino-acid protein, menin, which has functions in cell division, genome stability, and transcription regulation. Menin, which acts as scaffold protein, may increase or decrease gene expression by epigenetic regulation of gene expression via histone methylation. Thus, menin by forming a subunit of the mixed lineage leukemia (MLL) complexes that trimethylate histone H3 at lysine 4 (H3K4), facilitates activation of transcriptional activity in target genes such as cyclin-dependent kinase (CDK) inhibitors; and by interacting with the suppressor of variegation 3-9 homolog family protein (SUV39H1) to mediate H3K methylation, thereby silencing transcriptional activity of target genes. MEN1-associated tumors harbor germline and somatic mutations, consistent with Knudson's two-hit hypothesis. Genetic diagnosis to identify individuals with germline MEN1 mutations has facilitated appropriate targeting of clinical, biochemical and radiological screening for this high risk group of patients for whom earlier implementation of treatments can then be considered. MEN4 is caused by heterozygous mutations of CDNK1B which encodes the 196 amino-acid CDK1 p27Kip1, which is activated by H3K4 methylation.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| |
Collapse
|
178
|
Cierpicki T, Grembecka J. Challenges and opportunities in targeting the menin-MLL interaction. Future Med Chem 2014; 6:447-62. [PMID: 24635524 PMCID: PMC4138051 DOI: 10.4155/fmc.13.214] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Menin is an essential co-factor of oncogenic MLL fusion proteins and the menin-MLL interaction is critical for development of acute leukemia in vivo. Targeting the menin-MLL interaction with small molecules represents an attractive strategy to develop new anticancer agents. Recent developments, including determination of menin crystal structure and development of potent small molecule and peptidomimetic inhibitors, demonstrate the feasibility of targeting the menin-MLL interaction. On the other hand, biochemical and structural studies revealed that MLL binds to menin in a complex bivalent mode engaging two MLL motifs, and therefore inhibition of this protein-protein interaction represents a challenge. This review summarizes the most recent achievements in targeting the menin-MLL interaction as well as discusses potential benefits of blocking menin in cancer.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Author for correspondence: Tel.: +1 734 615 9324, Fax: +1 734 615 0688,
| | | |
Collapse
|
179
|
Gurung B, Muhammad AB, Hua X. Menin is required for optimal processing of the microRNA let-7a. J Biol Chem 2014; 289:9902-8. [PMID: 24563463 DOI: 10.1074/jbc.m113.520692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple endocrine neoplasia type I (MEN1) is an inherited syndrome that includes susceptibility to pancreatic islet hyperplasia. This syndrome results from mutations in the MEN1 gene, which encodes menin protein. Menin interacts with several transcription factors, including JunD, and inhibits their activities. However, the precise mechanism by which menin suppresses gene expression is not well understood. Here, we show that menin interacts with arsenite-resistant protein 2 (ARS2), a component of the nuclear RNA CAP-binding complex that is crucial for biogenesis of certain miRNAs including let-7a. The levels of primary-let-7a (pri-let-7a) are not affected by menin; however, the levels of mature let-7a are substantially decreased upon Men1 excision. Let-7a targets, including Insr and Irs2, pro-proliferative genes that are crucial for insulin-mediated signaling, are up-regulated in Men1-excised cells. Inhibition of let-7a using anti-miRNA in wild type cells is sufficient to enhance the expression of insulin receptor substrate 2 (IRS2) to levels observed in Men1-excised cells. Depletion of menin does not affect the expression of Drosha and CBP80, but substantially impairs the processing of pri-miRNA to pre-miRNA. Ars2 knockdown decreased let-7a processing in menin-expressing cells but had little impact on let-7a levels in menin-excised cells. As IRS2 is known to mediate insulin signaling and insulin/mitogen-induced cell proliferation, these findings collectively unravel a novel mechanism whereby menin suppresses cell proliferation, at least partly by promoting the processing of certain miRNAs, including let-7a, leading to suppression of Irs2 expression and insulin signaling.
Collapse
Affiliation(s)
- Buddha Gurung
- From the Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
180
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
181
|
Zaman S, Sukhodolets K, Wang P, Qin J, Levens D, Agarwal SK, Marx SJ. FBP1 Is an Interacting Partner of Menin. Int J Endocrinol 2014; 2014:535401. [PMID: 25132853 PMCID: PMC4123598 DOI: 10.1155/2014/535401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/16/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by tumors in multiple endocrine tissues such as the parathyroid glands, the pituitary gland, and the enteropancreatic neuroendocrine tissues. MEN1 is usually caused by mutations in the MEN1 gene that codes for the protein menin. Menin interacts with proteins that regulate transcription, DNA repair and processing, and maintenance of cytoskeletal structure. We describe the identification of FBP1 as an interacting partner of menin in a large-scale pull-down assay that also immunoprecipitated RBBP5, ASH2, and LEDGF, which are members of complex proteins associated with SET1 (COMPASS), a protein complex that methylates histone H3. This interaction was confirmed by coimmunoprecipitation and Flag-pull-down assays. Furthermore, menin localized to the FUSE site on the MYC promoter, a site that is transactivated by FBP1. This investigation therefore places menin in a pathway that regulates MYC gene expression and has important implications for the biological function of menin.
Collapse
Affiliation(s)
- Shadia Zaman
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Building 10, Room 9C-103, 9000 Rockville, Bethesda, MD 20892, USA
| | - Karen Sukhodolets
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Building 10, Room 9C-103, 9000 Rockville, Bethesda, MD 20892, USA
| | - Patricia Wang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Building 10, Room 9C-103, 9000 Rockville, Bethesda, MD 20892, USA
| | - Jun Qin
- Departments of Biochemistry & Molecular Biology and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sunita K. Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Building 10, Room 9C-103, 9000 Rockville, Bethesda, MD 20892, USA
| | - Stephen J. Marx
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Building 10, Room 9C-103, 9000 Rockville, Bethesda, MD 20892, USA
- *Stephen J. Marx:
| |
Collapse
|
182
|
Abstract
Protein-protein interactions (PPIs) are critical regulatory events in physiology and pathology, and they represent an important target space for pharmacological intervention. However, targeting PPIs with small molecules is challenging owing to the large surface area involved in protein-protein binding and the lack of obvious small-molecule-binding pockets at many protein-protein interfaces. Nonetheless, successful examples of small-molecule modulators of PPIs have been growing in recent years. This article reviews some of the recent advances in the discovery of small-molecule regulators of PPIs that involve key oncogenic proteins. Our discussion focuses on the three key modes of action for these small-molecule modulators: orthosteric inhibition, allosteric regulation, and interfacial binding/stabilization. Understanding the opportunities and challenges of these diverse mechanisms will help guide future efforts in developing small-molecule modulators against PPIs.
Collapse
|
183
|
Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc Natl Acad Sci U S A 2013; 110:17480-5. [PMID: 24101467 DOI: 10.1073/pnas.1312022110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menin is a scaffold protein encoded by the multiple endocrine neoplasia type 1 (MEN1) gene in humans, and it interacts with a variety of transcriptional proteins to control active or repressive cellular processes. Here, we show that heterozygous ablation of Men1 in female mice reduces chemical carcinogen-induced liver carcinogenesis and represses the activation of the inflammation pathway. Using ChIP-on-chip screens and ChIP assays, we find that menin occupancy frequently coincides with H3K4me3 at the promoter of many liver cancer-related genes, such as Yes-associated protein (Yap1). Increased menin and Yap1 expression in human hepatocellular carcinoma specimens was associated with poor prognosis. Our findings reveal that menin plays an important epigenetic role in promoting liver tumorigenesis, and support the notion that H3K4me3, which is regulated by the menin-mixed-lineage leukemia complex, is a potential therapeutic target in hepatocellular carcinoma.
Collapse
|
184
|
Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases. Q Rev Biophys 2013; 46:349-73. [PMID: 23991894 DOI: 10.1017/s0033583513000085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered chromatin structures and dynamics are responsible for a range of human malignancies, among which the status of histone lysine methylation remains of paramount importance. Histone lysine methylation is maintained by the relative activities of sequence-specific methyltransferase (KMT) writers and demethylase (KDM) erasers, with aberrant enzymatic activities or expression profiles closely correlated with multiple human diseases. Hence, targeting these epigenetic enzymes should provide a promising avenue for pharmacological intervention of aberrantly marked sites within the epigenome. Here we present an up-to-date critical evaluation on the development and optimization of potent small molecule inhibitors targeted to histone KMTs and KDMs, with the emphasis on contributions of structural biology to development of epigenetic drugs for therapeutic intervention. We anticipate that ongoing advances in the development of epigenetic inhibitors should lead to novel drugs that site-specifically target KMTs and KDMs, key enzymes responsible for maintenance of the lysine methylation landscape in the epigenome.
Collapse
|
185
|
Cavalluzzo C, Christ F, Voet A, Sharma A, Singh BK, Zhang KY, Lescrinier E, De Maeyer M, Debyser Z, Van der Eycken E. Identification of small peptides inhibiting the integrase-LEDGF/p75 interaction through targeting the cellular co-factor. J Pept Sci 2013; 19:651-8. [DOI: 10.1002/psc.2543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Cavalluzzo
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry; Katholieke Universiteit Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
- DestiNA Genomics Ltd; West Mains Road Edinburgh EH9 3JJ UK
| | - Frauke Christ
- Molecular Medicine; Katholieke Universiteit Leuven; Kapucijnenvoer 33 B-3000 Leuven Belgium
| | - Arnout Voet
- Laboratory for Biomolecular modeling; Katholieke Universiteit Leuven; Celestijnenlaan 200G B-3001 Leuven Belgium
- Zhang Initiative Research Unit; Advanced Science Institute; RIKEN 2-1 Hirosawa Wako 351-0198 Japan
| | - Ajendra Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry; Katholieke Universiteit Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Brajendra Kumar Singh
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry; Katholieke Universiteit Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
- Bioorganic Laboratory, Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Kam Y.J. Zhang
- Zhang Initiative Research Unit; Advanced Science Institute; RIKEN 2-1 Hirosawa Wako 351-0198 Japan
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry; University of Leuven (KU Leuven); Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Marc De Maeyer
- Laboratory for Biomolecular modeling; Katholieke Universiteit Leuven; Celestijnenlaan 200G B-3001 Leuven Belgium
| | - Zeger Debyser
- Molecular Medicine; Katholieke Universiteit Leuven; Kapucijnenvoer 33 B-3000 Leuven Belgium
| | - Erik Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry; Katholieke Universiteit Leuven; Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
186
|
Gurung B, Feng Z, Hua X. Menin directly represses Gli1 expression independent of canonical Hedgehog signaling. Mol Cancer Res 2013; 11:1215-22. [PMID: 23928057 DOI: 10.1158/1541-7786.mcr-13-0170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Multiple endocrine neoplasia type 1 (MEN-1), is a familial tumor syndrome resulting from mutations in the tumor suppressor gene menin (MEN1). Menin plays an essential role in both repressing and activating gene expression. However, it is not well understood how menin represses expression of multiple genes. Upon MEN1 excision, the transcription factor Gli1 and its target genes, including Ptch1 and c-Myc, were shown to be elevated in the absence of an apparent Hedgehog) pathway-activating ligand or when Smoothened (SMO), a key component of the pathway, is inhibited. Menin binds to the GLI1 promoter and recruits PRMT5, a histone arginine methyltransferase associated with transcriptional repression. Both PRMT5 binding and histone H4 arginine 3 methylation (H4R3m2s) are decreased at the GLI1 promoter in MEN1-excised cells. Moreover, MEN1 ablation resulted in increased binding of transcriptionally active Gli1 at the GLI1 promoter in a manner not influenced by the canonical Hedgehog signaling pathway. Inhibition of Gli1 by the small-molecule inhibitor GANT-61 led to decreased expression of Gli1 and its target genes in MEN1-depeleted cells. Furthermore, GANT-61 potently suppressed proliferation of MEN1-excised cells as compared with control cells. These findings uncover a novel epigenetic link whereby menin directly represses Gli1 expression, independent of the canonical Hedgehog signaling pathway, via PRMT5 and its repressive H4R3m2s mark. IMPLICATIONS Inhibition of GLI1 suppresses neuroendocrine tumors harboring mutations in the MEN1 gene.
Collapse
Affiliation(s)
- Buddha Gurung
- Department of Cancer Biology, Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104.
| | | | | |
Collapse
|
187
|
Distinct pathways regulated by menin and by MLL1 in hematopoietic stem cells and developing B cells. Blood 2013; 122:2039-46. [PMID: 23908472 DOI: 10.1182/blood-2013-03-486647] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mixed Lineage Leukemia (MLL1) translocations encode fusion proteins retaining the N terminus of MLL1, which interacts with the tumor suppressor, menin. This interaction is essential for leukemogenesis and thus is a promising drug target. However, wild-type MLL1 plays a critical role in sustaining hematopoietic stem cells (HSCs); therefore, disruption of an essential MLL1 cofactor would be expected to obliterate normal hematopoiesis. Here we show that rather than working together as a complex, menin and MLL1 regulate distinct pathways during normal hematopoiesis, particularly in HSCs and B cells. We demonstrate the lack of genetic interaction between menin and MLL1 in steady-state or regenerative hematopoiesis and in B-cell differentiation despite the fact that MLL1 is critical for these processes. In B cells, menin- or MLL1-regulated genes can be classified into 3 categories: (1) a relatively small group of coregulated genes including previously described targets Hoxa9 and Meis1 but also Mecom and Eya1, and much larger groups of (2) exclusively menin-regulated and (3) exclusively MLL1-regulated genes. Our results highlight the large degree of independence of these 2 proteins and demonstrate that menin is not a requisite cofactor for MLL1 during normal hematopoiesis. Furthermore, our data support the development of menin-MLL1-disrupting drugs as safe and selective leukemia targeting agents.
Collapse
|
188
|
Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci 2013; 38:394-402. [PMID: 23850066 DOI: 10.1016/j.tibs.2013.05.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
Abstract
The protein menin is encoded by the MEN1 gene, which is mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin acts as a tumor suppressor in endocrine organs, it is required for leukemic transformation in mouse models. Menin possesses these dichotomous functions probably because it can both positively and negatively regulate gene expression, as well as interact with a multitude of proteins with diverse functions. Here, we review the recent progress in understanding the molecular mechanisms by which menin functions. The crystal structures of menin with different binding partners reveal that menin is a key scaffold protein that functionally crosstalks with various partners to regulate gene transcription and interplay with multiple signaling pathways.
Collapse
|
189
|
Oberg K, Casanovas O, Castaño JP, Chung D, Delle Fave G, Denèfle P, Harris P, Khan MS, Kulke MH, Scarpa A, Tang LH, Wiedenmann B. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res 2013; 19:2842-9. [PMID: 23459719 DOI: 10.1158/1078-0432.ccr-12-3458] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment landscape and biologic understanding of neuroendocrine tumors (NET) has shifted dramatically in recent years. Recent studies have shown that somatostatin analogues have the potential not only to control symptoms of hormone hypersecretion but also have the ability to slow tumor growth in patients with advanced carcinoid. The results of clinical trials have further shown that the VEGF pathway inhibitor sunitinib and the mTOR inhibitor everolimus have efficacy in patients with advanced pancreatic NETs. The efficacy of these targeted therapies in NET suggests that the molecular characterization of NETs may provide an avenue to predict both which patients may benefit most from the treatment and to overcome potential drug resistance. Recent genomic studies of NETs have further suggested that pathways regulating chromatin remodeling and epigenetic modification may play a key role in regulating NET growth. These observations offer the potential for new therapeutic and diagnostic advances for patients with NET.
Collapse
Affiliation(s)
- Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Gray FLV, Murai MJ, Grembecka J, Cierpicki T. Detection of disordered regions in globular proteins using ¹³C-detected NMR. Protein Sci 2013; 21:1954-60. [PMID: 23047544 DOI: 10.1002/pro.2174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 12/29/2022]
Abstract
Characterization of disordered regions in globular proteins constitutes a significant challenge. Here, we report an approach based on ¹³C-detected nuclear magnetic resonance experiments for the identification and assignment of disordered regions in large proteins. Using this method, we demonstrate that disordered fragments can be accurately identified in two homologs of menin, a globular protein with a molecular weight over 50 kDa. Our work provides an efficient way to characterize disordered fragments in globular proteins for structural biology applications.
Collapse
Affiliation(s)
- Felicia L V Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
191
|
Abstract
Menin, encoded by the multiple endocrine neoplasia type 1 (MEN1) gene, is a tumor suppressor that leads to multiple endocrine tumors upon loss of its function. Menin functions as a transcriptional activator by tethering MLL complex to mediate histone H3 K4 methylation. It also functions as a repressor. However, the molecular mechanism of how menin contributes to the opposite outcome in gene expression is largely unknown. Here, we investigated the role of menin in the epigenetic regulation of transcription mediated by histone covalent modification. We show that the global methylation level of histone H3 K9, as well as H3 K4, was decreased in Men1(-/-) MEF cells. Consistently, menin was able to interact with the suppressor of variegation 3-9 homolog family protein, SUV39H1, to mediate H3 K9 methylation. This interaction decreased when patient-derived MEN1 mutation was introduced into the SUV39H1-interaction domain. We show that menin mediated different chromatin changes depending on target genes. Chromatin immunoprecipitation studies showed that menin directly associated with the GBX2 promoter and menin-dependent recruitment of SUV39H1 was essential for chromatin remodeling and transcriptional regulation. These results provide a molecular basis of how menin functions as a transcriptional repressor and suggest that menin-dependent integration of H3 K9 methylation might play an important role in preventing tumors.
Collapse
|
192
|
Abstract
The molecular mechanisms underlying oncogenesis in leukemias associated with rearrangement of the Mixed Lineage Leukemia (MLL) gene have received a considerable amount of attention over the last two decades. In this review we will focus on recent studies, published over the past year, that reveal new insights into the multi-protein complexes formed by MLL and MLL fusion proteins, the role of epigenetic deregulation in MLL fusion function, downstream transcriptional target genes, the importance of the leukemia cell of origin, the role played by microRNAs, cooperating mutations and the implications that recent research has for the therapy of MLL-rearranged leukemia.
Collapse
|
193
|
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal-dominant tumor syndrome characterized by the occurrence of tumors in multiple endocrine tissues and nonendocrine tissues. The three main endocrine tissues most frequently affected by tumors are parathyroid (95%), enteropancreatic neuroendocrine (50%) and anterior pituitary (40%). Tumors are caused by a heterozygous germline-inactivating mutation in the MEN1 gene (1st hit) followed by somatic inactivating mutation or loss of the normal copy of the gene (2nd hit), leading to complete loss of function of the encoded protein menin. Most of the disease features and tumors are recapitulated in mouse models with heterozygous germline loss of the Men1 gene. Also, tissue-specific tumors are observed in mouse models with homozygous somatic loss of the Men1 gene specifically in MEN1-associated endocrine tissues. Hence, mouse models could serve as possible surrogates for studying MEN1 and related states. To gain insights into MEN1 pathophysiology, menin-interacting partners and pathways have been identified to investigate its tumor suppressor and other functions. Also, the 3D crystal structure of menin has been deciphered which could be useful to reveal the relevance of MEN1 gene mutations and menin's interactions. This chapter covers clinical, genetic and basic findings about the MEN1 syndrome, MEN1 gene and its product protein menin.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA. SunitaA @ mail.nih.gov
| |
Collapse
|
194
|
Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, Perna E, Mocharla P, Akhmedov A, Kubant R, Rohrer L, Malinski T, Camici GG, Matter CM, Mechta-Grigoriou F, Volpe M, Lüscher TF, Cosentino F. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation 2013; 127:1229-40, e1-21. [DOI: 10.1161/circulationaha.112.000826] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francesco Paneni
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Elena Osto
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Sarah Costantino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Bogdan Mateescu
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Sylvie Briand
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Giuseppe Coppolino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Enrico Perna
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Pavani Mocharla
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Alexander Akhmedov
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Ruslan Kubant
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Lucia Rohrer
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Tadeusz Malinski
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Giovanni G. Camici
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Christian M. Matter
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Fatima Mechta-Grigoriou
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Massimo Volpe
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Thomas F. Lüscher
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Francesco Cosentino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| |
Collapse
|
195
|
Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol Cell Biol 2013; 33:2067-77. [PMID: 23508102 DOI: 10.1128/mcb.01742-12] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methylation of lysine 4 on histone H3 (H3K4) at promoters is tightly linked to transcriptional regulation in human cells. At least six different COMPASS-like multisubunit (SET1/MLL) complexes that contain methyltransferase activity for H3K4 have been described, but a comprehensive and quantitative analysis of these SET1/MLL complexes is lacking. We applied label-free quantitative mass spectrometry to determine the subunit composition and stoichiometry of the human SET1/MLL complexes. We identified both known and novel, unique and shared interactors and determined their distribution and stoichiometry over the different SET1/MLL complexes. In addition to being a core COMPASS subunit, the Dpy30 protein is a genuine subunit of the NURF chromatin remodeling complex. Furthermore, we identified the Bod1 protein as a discriminator between the SET1B and SET1A complexes, and we show that the H3K36me-interactor Psip1 preferentially binds to the MLL2 complex. Finally, absolute protein quantification in crude lysates mirrors many of the observed SET1/MLL complex stoichiometries. Our findings provide a molecular framework for understanding the diversity and abundance of the different SET1/MLL complexes, which together establish the H3K4 methylation landscape in human cells.
Collapse
|
196
|
Sakurai A, Imai T, Kikumori T, Horiuchi K, Okamoto T, Uchino S, Kosugi S, Suzuki S, Suyama K, Yamazaki M, Sato A. Thymic neuroendocrine tumour in multiple endocrine neoplasia type 1: female patients are not rare exceptions. Clin Endocrinol (Oxf) 2013; 78:248-54. [PMID: 22690831 DOI: 10.1111/j.1365-2265.2012.04467.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/31/2012] [Accepted: 06/06/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Thymic neuroendocrine tumour (Th-NET) occurs in 2-5% of patients with MEN1 and has high malignant potency accompanying recurrence and distant metastasis. While Th-NET is recognized to develop predominantly in men and heavy smokers, a number of female patients have been reported in the literature. The objective of this study is to clarify the clinical features of MEN1 patients with Th-NET using database analysis. DESIGN/PATIENTS Clinical data of patients with Th-NET were extracted and analysed from a recently constructed database of Japanese MEN1 patients. RESULTS Among 560 registered cases, Th-NET was seen in 28 (5·0%) patients. Of note, 36% of patients (10/28) were women; only one patient among those was a smoker and another six patients were non-smokers. Age at diagnosis of Th-NET and MEN1, tumour size, prevalence of other MEN1-related tumours did not differ between male and female patients, and 10-year survival probability was 0·271 ± 0·106. CONCLUSIONS Although the prevalence of Th-NET in women (3·2%) is significantly lower than that in men (7·6%), a considerable proportion of female patients develop Th-NET. Given that Th-NET is a major determinant of life expectancy of patients, our results alert clinicians who treat patients with MEN1 that surveillance of Th-NET is essential even for female patients without a smoking habit.
Collapse
Affiliation(s)
- Akihiro Sakurai
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Shi K, Parekh VI, Roy S, Desai SS, Agarwal SK. The embryonic transcription factor Hlxb9 is a menin interacting partner that controls pancreatic β-cell proliferation and the expression of insulin regulators. Endocr Relat Cancer 2013; 20:111-22. [PMID: 23419452 PMCID: PMC6250975 DOI: 10.1530/erc-12-0077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The multiple endocrine neoplasia type 1 (MEN1) syndrome is caused by germline mutations in the MEN1 gene encoding menin, with tissue-specific tumors of the parathyroids, anterior pituitary, and enteropancreatic endocrine tissues. Also, 30-40% of sporadic pancreatic endocrine tumors show somatic MEN1 gene inactivation. Although menin is expressed in all cell types of the pancreas, mouse models with loss of menin in either pancreatic α-cells, or β-cells, or total pancreas develop β-cell-specific endocrine tumors (insulinomas). Loss of widely expressed tumor suppressor genes may produce tissue-specific tumors by reactivating one or more embryonic-specific differentiation factors. Therefore, we determined the effect of menin overexpression or knockdown on the expression of β-cell differentiation factors in a mouse β-cell line (MIN6). We show that the β-cell differentiation factor Hlxb9 is posttranscriptionally upregulated upon menin knockdown, and it interacts with menin. Hlxb9 reduces cell proliferation and causes apoptosis in the presence of menin, and it regulates genes that modulate insulin level. Thus, upon menin loss or from other causes, dysregulation of Hlxb9 predicts a possible combined mechanism for β-cell proliferation and insulin production in insulinomas. These observations help to understand how a ubiquitously expressed protein such as menin might control tissue-specific tumorigenesis. Also, our findings identify Hlxb9 as an important factor for β-cell proliferation and insulin regulation.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Chromatin Immunoprecipitation
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Insulin/genetics
- Insulin/metabolism
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulinoma/genetics
- Insulinoma/metabolism
- Insulinoma/pathology
- Kidney/cytology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Kerong Shi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
198
|
Thevenon J, Bourredjem A, Faivre L, Cardot-Bauters C, Calender A, Murat A, Giraud S, Niccoli P, Odou MF, Borson-Chazot F, Barlier A, Lombard-Bohas C, Clauser E, Tabarin A, Parfait B, Chabre O, Castermans E, Beckers A, Ruszniewski P, Le Bras M, Delemer B, Bouchard P, Guilhem I, Rohmer V, Goichot B, Caron P, Baudin E, Chanson P, Groussin L, Du Boullay H, Weryha G, Lecomte P, Penfornis A, Bihan H, Archambeaud F, Kerlan V, Duron F, Kuhn JM, Vergès B, Rodier M, Renard M, Sadoul JL, Binquet C, Goudet P. Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: a Groupe d’étude des Tumeurs Endocrines (GTE) cohort study. Hum Mol Genet 2013; 22:1940-8. [DOI: 10.1093/hmg/ddt039] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
199
|
Thiel AT, Feng Z, Pant DK, Chodosh LA, Hua X. The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPα and differentiation in MLL-AF9 leukemia. Haematologica 2013; 98:918-27. [PMID: 23349306 DOI: 10.3324/haematol.2012.074195] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Trithorax and polycomb group proteins antagonistically regulate the transcription of many genes, and cancer can result from the disruption of this regulation. Deregulation of trithorax function occurs through chromosomal translocations involving the trithorax gene MLL, leading to the expression of MLL fusion proteins and acute leukemia. It is poorly understood how MLL fusion proteins block differentiation, a hallmark of leukemogenesis. We analyzed the effect of acute depletion of menin, a close partner of MLL that is critical for MLL and MLL-AF9 recruitment to target genes, on MLL-AF9 leukemia cell differentiation using an in vivo model. We performed cDNA microarray analysis of menin-regulated genes from primary leukemia cells to determine menin-regulated pathways involved in suppressing MLL-AF9 leukemia cell differentiation. We found that menin binds the promoter of the polycomb gene Ezh2, and promotes its expression. EZH2 interacts with the differentiation-promoting transcription factor C/EBPα and represses C/EBPα target genes. Menin depletion reduces MLL binding to the Ezh2 locus, EZH2 expression, and EZH2 binding and repressive H3K27 methylation at C/EBPα target genes, thereby inducing the expression of pro-differentiation C/EBPα targets. In conclusion, our results show that in contrast to its classical role antagonizing trithorax function, the polycomb group protein EZH2 collaborates with trithorax-associated menin to block MLL-AF9 leukemia cell differentiation, uncovering a novel mechanism for suppression of C/EBPα and leukemia cell differentiation, through menin-mediated upregulation of EZH2.
Collapse
Affiliation(s)
- Austin T Thiel
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
200
|
Feng ZJ, Gurung B, Jin GH, Yang XL, Hua XX. SUMO modification of menin. Am J Cancer Res 2013; 3:96-106. [PMID: 23359867 PMCID: PMC3555195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023] Open
Abstract
Menin acts as contextual a tumor suppressor and a tumor promoter, partly via epigenetic regulation of gene transcription. While menin is phosphorylated, it remains unclear whether wild type menin has other post-translational modifications. Here, we report that menin is SUMOylated by SUMO1 in vivo and in vitro, and the SUMOylation is reduced by a SUMO protease. Lysine 591 of menin was covalently modified by SUMO1 and K591R mutation in menin blocked SUMOylation of the C-terminal part of menin in transfected cells. Full-length menin with K591 mutation was still SUMOylated in vivo, suggesting the existence of multiple SUMOylation sites. Menin K591R mutant or menin-SUMO fusion protein still retains the ability to regulate cell proliferation and the expression of the examined menin target genes.
Collapse
Affiliation(s)
- Zi-Jie Feng
- Department of Basic Medical Sciences, Medical College, Xiamen University Xiamen, Fujian, China 361005 ; Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|