151
|
Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. eLife 2018; 7:33569. [PMID: 29547124 PMCID: PMC5869017 DOI: 10.7554/elife.33569] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Codon usage biases are found in all genomes and influence protein expression levels. The codon usage effect on protein expression was thought to be mainly due to its impact on translation. Here, we show that transcription termination is an important driving force for codon usage bias in eukaryotes. Using Neurospora crassa as a model organism, we demonstrated that introduction of rare codons results in premature transcription termination (PTT) within open reading frames and abolishment of full-length mRNA. PTT is a wide-spread phenomenon in Neurospora, and there is a strong negative correlation between codon usage bias and PTT events. Rare codons lead to the formation of putative poly(A) signals and PTT. A similar role for codon usage bias was also observed in mouse cells. Together, these results suggest that codon usage biases co-evolve with the transcription termination machinery to suppress premature termination of transcription and thus allow for optimal gene expression.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haiyan Yuan
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
152
|
Wu C, Dasgupta A, Shen L, Bell-Pedersen D, Sachs MS. The cell free protein synthesis system from the model filamentous fungus Neurospora crassa. Methods 2018; 137:11-19. [PMID: 29294368 PMCID: PMC6047757 DOI: 10.1016/j.ymeth.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) can be used in many applications to produce polypeptides and to analyze mechanisms of mRNA translation. Here we describe how to make and use a CPFS system from the model filamentous fungus Neurospora crassa. The extensive genetic resources available in this system provide capacities to exploit robust CFPS for understanding translational control. Included are procedures for the growth and harvesting of cells, the preparation of cell-free extracts that serve as the source of the translational machinery in the CFPS and the preparation of synthetic mRNA to program the CFPS. Methods to accomplish cell-free translation and analyze protein synthesis, and to map positions of ribosomes on mRNAs by toeprinting, are described.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Lunda Shen
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
153
|
Ma XX, Cao X, Ma P, Chang QY, Li LJ, Zhou XK, Zhang DR, Li MS, Ma ZR. Comparative genomic analysis for nucleotide, codon, and amino acid usage patterns of mycoplasmas. J Basic Microbiol 2018. [PMID: 29537653 DOI: 10.1002/jobm.201700490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolutionary factors in influencing the genetic characteristics of nucleotide, synonymous codon, and amino acid usage of 18 mycoplasma species were analyzed. The nucleotide usage at the 1st and 2nd codon position which determines amino acid composition of proteins has a significant correlation with the total nucleotide composition of gene population of these mycoplasma species, however, the nucleotide usage at the 3rd codon position which affects synonymous codon usage patterns has a slight correlation with either the total nucleotide composition or the nucleotide usage at the 1st and 2nd codon position. Other evolutionary factors join in the evolutionary process of mycoplasma apart from mutation pressure caused by nucleotide usage constraint based on the relationships between effective number of codons/codon adaptation index and nucleotide usage at the 3rd codon position. Although nucleotide usage of gene population in mycoplasma dominates in forming the overall codon usage trends, the relative abundance of codon with nucleotide context and amino acid usage pattern show that translation selection involved in translation accuracy and efficiency play an important role in synonymous codon usage patterns. In addition, synonymous codon usage patterns of gene population have a bigger power to represent genetic diversity among different species than amino acid usage. These results suggest that although the mycoplasmas reduce its genome size during the evolutionary process and shape the form, which is opposite to their hosts, of AT usages at high levels, this kind organism still depends on nucleotide usage at the 1st and 2nd codon positions to control syntheses of the requested proteins for surviving in their hosts and nucleotide usage at the 3rd codon position to develop genetic diversity of different mycoplasma species. This systemic analysis with 18 mycoplasma species may provide useful clues for further in vivo genetic studies on the related species.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xin Cao
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Peng Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Qiu-Yan Chang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Lin-Jie Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xiao-Kai Zhou
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - De-Rong Zhang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Ming-Sheng Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Zhong-Ren Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
154
|
Lu YW, Chiu TS. Factors affecting synonymous codon usage of housekeeping genes in Drosophila melanogaster. ACTA BIOLOGICA HUNGARICA 2018; 69:58-71. [PMID: 29575916 DOI: 10.1556/018.68.2018.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Housekeeping genes (HK genes) are required for cell survival and the maintenance of basic cellular functions. The investigation of factors affecting codon usage patterns in HK genes of insects can help in understanding the molecular evolution of insects and aid the development of insect pest management strategies. In this study, we employed bioinformatics approaches to analyze the codon usage bias (CUB) of HK genes in the insect model organism, Drosophila melanogaster. A comparison of CUB between 1107 HK genes and 1084 high tissue specificity genes suggested that HK genes have higher CUB in D. melanogaster. In addition, we found that CUB inversely correlates with the non-synonymous substitution rate of HK genes. Therefore, we attempted to identify the factors that potentially influence the codon usage pattern of HK genes. Our results suggest that mutation pressure and natural selection highly correlate with CUB in the HK genes of D. melanogaster and that two topological properties of HK proteins (proportion of protein interacting length and protein connectivity) also correlate with CUB in the HK genes of D. melanogaster. This study provides insight into CUB in the HK genes of D. melanogaster, and the results can support future investigations of potential applications in agricultural and biomedical field.
Collapse
Affiliation(s)
- Yi Wen Lu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tai Sheng Chiu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
155
|
Goffena J, Lefcort F, Zhang Y, Lehrmann E, Chaverra M, Felig J, Walters J, Buksch R, Becker KG, George L. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 2018; 9:889. [PMID: 29497044 PMCID: PMC5832791 DOI: 10.1038/s41467-018-03221-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.
Collapse
Affiliation(s)
- Joy Goffena
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Jehremy Felig
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Joseph Walters
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Richard Buksch
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA.
| |
Collapse
|
156
|
Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr Opin Struct Biol 2018; 49:94-103. [PMID: 29414517 DOI: 10.1016/j.sbi.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences.
Collapse
|
157
|
Sharma AK, Ahmed N, O'Brien EP. Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times. Phys Rev E 2018; 97:022409. [PMID: 29548178 DOI: 10.1103/physreve.97.022409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 06/08/2023]
Abstract
Ribosome profiling experiments have found greater than 100-fold variation in ribosome density along mRNA transcripts, indicating that individual codon elongation rates can vary to a similar degree. This wide range of elongation times, coupled with differences in codon usage between transcripts, suggests that the average codon translation-rate per gene can vary widely. Yet, ribosome run-off experiments have found that the average codon translation rate for different groups of transcripts in mouse stem cells is constant at 5.6 AA/s. How these seemingly contradictory results can be reconciled is the focus of this study. Here, we combine knowledge of the molecular factors shown to influence translation speed with genomic information from Escherichia coli, Saccharomyces cerevisiae and Homo sapiens to simulate the synthesis of cytosolic proteins in these organisms. The model recapitulates a near constant average translation rate, which we demonstrate arises because the molecular determinants of translation speed are distributed nearly randomly amongst most of the transcripts. Consequently, codon translation rates are also randomly distributed and fast-translating segments of a transcript are likely to be offset by equally probable slow-translating segments, resulting in similar average elongation rates for most transcripts. We also show that the codon usage bias does not significantly affect the near random distribution of codon translation rates because only about 10% of the total transcripts in an organism have high codon usage bias while the rest have little to no bias. Analysis of Ribo-Seq data and an in vivo fluorescent assay supports these conclusions.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nabeel Ahmed
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
158
|
Despic V, Neugebauer KM. RNA tales – how embryos read and discard messages from mom. J Cell Sci 2018; 131:jcs.201996. [DOI: 10.1242/jcs.201996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following fertilization, embryos develop for a substantial amount of time with a transcriptionally silent genome. Thus, early development is maternally programmed, as it solely relies on RNAs and proteins that are provided by the female gamete. However, these maternal instructions are not sufficient to support later steps of embryogenesis and are therefore gradually replaced by novel products synthesized from the zygotic genome. This switch in the origin of molecular players that drive early development is known as the maternal-to-zygotic transition (MZT). MZT is a universal phenomenon among all metazoans and comprises two interconnected processes: maternal mRNA degradation and the transcriptional awakening of the zygotic genome. The recent adaptation of high-throughput methods for use in embryos has deepened our knowledge of the molecular principles underlying MZT. These mechanisms comprise conserved strategies for RNA regulation that operate in many well-studied cellular contexts but that have adapted differently to early development. In this Review, we will discuss advances in our understanding of post-transcriptional regulatory pathways that drive maternal mRNA clearance during MZT, with an emphasis on recent data in zebrafish embryos on codon-mediated mRNA decay, the contributions of microRNAs (miRNAs) and RNA-binding proteins to this process, and the roles of RNA modifications in the stability control of maternal mRNAs.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
159
|
Im EH, Choi SS. Synonymous Codon Usage Controls Various Molecular Aspects. Genomics Inform 2017; 15:123-127. [PMID: 29307137 PMCID: PMC5769864 DOI: 10.5808/gi.2017.15.4.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Synonymous sites are generally considered to be functionally neutral. However, there are recent contradictory findings suggesting that synonymous alleles might have functional roles in various molecular aspects. For instance, a recent study demonstrated that synonymous single nucleotide polymorphisms have a similar effect size as nonsynonymous single nucleotide polymorphisms in human disease association studies. Researchers have recognized synonymous codon usage bias (SCUB) in the genomes of almost all species and have investigated whether SCUB is due to random nucleotide compositional bias or to natural selection of any functional exposure generated by synonymous mutations. One of the most prominent observations on the non-neutrality of synonymous codons is the correlation between SCUB and levels of gene expression, such that highly expressed genes tend to have a higher preference toward so-called optimal codons than lowly expressed genes. In relation, it is known that amounts of cognate tRNAs that bind to optimal codons are significantly higher than the amounts of cognate tRNAs that bind to non-optimal codons in genomes. In the present paper, we review various functions that synonymous codons might have other than regulating expression levels.
Collapse
Affiliation(s)
- Eu-Hyun Im
- Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
160
|
Wang YN, Ji WH, Li XR, Liu YS, Zhou JH. Unique features of nucleotide and codon usage patterns in mycoplasmas revealed by information entropy. Biosystems 2017; 165:1-7. [PMID: 29274363 DOI: 10.1016/j.biosystems.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022]
Abstract
Currently, the comparison between GC usage pattern at the 3rd codon position and codon usage index is commonly used to estimate the roles of evolutionary forces in shaping synonymous codon usages, however, this kind of analysis often losses the information about the role of A/T usage bias in shaping synonymous codon usage bias. To overcome this limitation and better understand the interplay between nucleotide and codon usages for the evolution of bacteria at gene levels, in this study, we employed the information entropy method with some modification to estimate roles of nucleotide compositions in the overall codon usage bias for 18 mycoplasma species in combination with Davies-Bouldin index. At gene levels, the overall nucleotide usage bias represents A content as the highest, followed by T, G and C for mycoplasmas, resulting in a low GC content. This feature is universal across these species derived from different hosts, suggesting that the hosts have the limited impact on nucleotide usage bias of mycoplasmas. Information entropy and Davies-Bouldin index can better reveal that the nucleotide usage bias at the 3rd codon position is essential in shaping the overall nucleotide bias for all given mycoplasmas except M. pneumoniae M129. Davies-Bouldin index revealed that the 1st and 2nd codon position play more important role in synonymous codon usage bias than that of the 3rd position at gene levels. To our knowledge, this is the first comprehensive investigation into cooperation between nucleotide and codon usages for mycoplasma and extends our knowledge of the mechanisms that contribute to codon usage and evolution of this microorganism.
Collapse
Affiliation(s)
- Yi-Ning Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Wen-Heng Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xue-Rui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Yong-Sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.
| |
Collapse
|
161
|
Wu Q, Bazzini AA. Systems to study codon effect on post-transcriptional regulation of gene expression. Methods 2017; 137:82-89. [PMID: 29174654 DOI: 10.1016/j.ymeth.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
162
|
Rodriguez A, Wright G, Emrich S, Clark PL. %MinMax: A versatile tool for calculating and comparing synonymous codon usage and its impact on protein folding. Protein Sci 2017; 27:356-362. [PMID: 29090506 DOI: 10.1002/pro.3336] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Abstract
Most amino acids can be encoded by more than one synonymous codon, but these are rarely used with equal frequency. In many coding sequences the usage patterns of rare versus common synonymous codons is nonrandom and under selection. Moreover, synonymous substitutions that alter these patterns can have a substantial impact on the folding efficiency of the encoded protein. This has ignited broad interest in exploring synonymous codon usage patterns. For many protein chemists, biophysicists and structural biologists, the primary motivation for codon analysis is identifying and preserving usage patterns most likely to impact high-yield production of functional proteins. Here we describe the core functions and new features of %MinMax, a codon usage calculator freely available as a web-based portal and downloadable script (http://www.codons.org). %MinMax evaluates the relative usage frequencies of the synonymous codons used to encode a protein sequence of interest and compares these results to a rigorous null model. Crucially, for analyzing codon usage in common host organisms %MinMax requires only the coding sequence as input; with a user-input codon frequency table, %MinMax can be used to evaluate synonymous codon usage patterns for any coding sequence from any fully sequenced genome. %MinMax makes no assumptions regarding the impact of transfer ribonucleic acid concentrations or other molecular-level interactions on translation rates, yet its output is sufficient to predict the effects of synonymous codon substitutions on cotranslational folding mechanisms. A simple calculation included within %MinMax can be used to harmonize codon usage frequencies for heterologous gene expression.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Gabriel Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556.,Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| |
Collapse
|
163
|
Zhao F, Yu CH, Liu Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 2017; 45:8484-8492. [PMID: 28582582 PMCID: PMC5737824 DOI: 10.1093/nar/gkx501] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/26/2017] [Indexed: 11/14/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
164
|
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 2017; 19:20-30. [PMID: 29018283 DOI: 10.1038/nrm.2017.91] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of ribosome profiling and other tools to probe mRNA translation has revealed that codon bias - the uneven use of synonymous codons in the transcriptome - serves as a secondary genetic code: a code that guides the efficiency of protein production, the fidelity of translation and the metabolism of mRNAs. Recent advancements in our understanding of mRNA decay have revealed a tight coupling between ribosome dynamics and the stability of mRNA transcripts; this coupling integrates codon bias into the concept of codon optimality, or the effects that specific codons and tRNA concentrations have on the efficiency and fidelity of the translation machinery. In this Review, we first discuss the evidence for codon-dependent effects on translation, beginning with the basic mechanisms through which translation perturbation can affect translation efficiency, protein folding and transcript stability. We then discuss how codon effects are leveraged by the cell to tailor the proteome to maintain homeostasis, execute specific gene expression programmes of growth or differentiation and optimize the efficiency of protein production.
Collapse
Affiliation(s)
- Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
165
|
Abstract
Recent experiments and simulations have demonstrated that proteins can fold on the ribosome. However, the extent and generality of fitness effects resulting from cotranslational folding remain open questions. Here we report a genome-wide analysis that uncovers evidence of evolutionary selection for cotranslational folding. We describe a robust statistical approach to identify loci within genes that are both significantly enriched in slowly translated codons and evolutionarily conserved. Surprisingly, we find that domain boundaries can explain only a small fraction of these conserved loci. Instead, we propose that regions enriched in slowly translated codons are associated with cotranslational folding intermediates, which may be smaller than a single domain. We show that the intermediates predicted by a native-centric model of cotranslational folding account for the majority of these loci across more than 500 Escherichia coli proteins. By making a direct connection to protein folding, this analysis provides strong evidence that many synonymous substitutions have been selected to optimize translation rates at specific locations within genes. More generally, our results indicate that kinetics, and not just thermodynamics, can significantly alter the efficiency of self-assembly in a biological context.
Collapse
|
166
|
Abstract
A general means of viral attenuation involves the extensive recoding of synonymous codons in the viral genome. The mechanistic underpinnings of this approach remain unclear, however. Using quantitative proteomics and RNA sequencing, we explore the molecular basis of attenuation in a strain of bacteriophage T7 whose major capsid gene was engineered to carry 182 suboptimal codons. We do not detect transcriptional effects from recoding. Proteomic observations reveal that translation is halved for the recoded major capsid gene, and a more modest reduction applies to several coexpressed downstream genes. We observe no changes in protein abundances of other coexpressed genes that are encoded upstream. Viral burst size, like capsid protein abundance, is also decreased by half. Together, these observations suggest that, in this virus, reduced translation of an essential polycistronic transcript and diminished virion assembly form the molecular basis of attenuation.
Collapse
|
167
|
Predicting synonymous codon usage and optimizing the heterologous gene for expression in E. coli. Sci Rep 2017; 7:9926. [PMID: 28855614 PMCID: PMC5577221 DOI: 10.1038/s41598-017-10546-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/11/2017] [Indexed: 11/27/2022] Open
Abstract
Of the 20 common amino acids, 18 are encoded by multiple synonymous codons. These synonymous codons are not redundant; in fact, all of codons contribute substantially to protein expression, structure and function. In this study, the codon usage pattern of genes in the E. coli was learned from the sequenced genomes of E. coli. A machine learning based method, Presyncodon was proposed to predict synonymous codon selection in E. coli based on the learned codon usage patterns of the residue in the context of the specific fragment. The predicting results indicate that Presycoden could be used to predict synonymous codon selection of the gene in the E. coli with the high accuracy. Two reporter genes (egfp and mApple) were designed with a combination of low- and high-frequency-usage codons by the method. The fluorescence intensity of eGFP and mApple expressed by the (egfp and mApple) designed by this method was about 2.3- or 1.7- folds greater than that from the genes with only high-frequency-usage codons in E. coli. Therefore, both low- and high-frequency-usage codons make positive contributions to the functional expression of the heterologous proteins. This method could be used to design synthetic genes for heterologous gene expression in biotechnology.
Collapse
|
168
|
Livingstone M, Folkman L, Yang Y, Zhang P, Mort M, Cooper DN, Liu Y, Stantic B, Zhou Y. Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. Hum Mutat 2017. [DOI: 10.1002/humu.23283] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mark Livingstone
- School of Information and Communication Technology; Griffith University; Southport Queensland 4222 Australia
| | - Lukas Folkman
- School of Information and Communication Technology; Griffith University; Southport Queensland 4222 Australia
| | - Yuedong Yang
- School of Information and Communication Technology; Griffith University; Southport Queensland 4222 Australia
- Institute for Glycomics; Griffith University; Southport Queensland 4222 Australia
| | - Ping Zhang
- Menzies Health Institute; Griffith University; Southport Queensland 4222 Australia
| | - Matthew Mort
- Institute of Medical Genetics; Cardiff University; Cardiff CF144XN United Kingdom
| | - David N. Cooper
- Institute of Medical Genetics; Cardiff University; Cardiff CF144XN United Kingdom
| | - Yunlong Liu
- Department of Medical and Molecular Genetics; Indiana University; Indianapolis Indiana 46202
| | - Bela Stantic
- School of Information and Communication Technology; Griffith University; Southport Queensland 4222 Australia
| | - Yaoqi Zhou
- School of Information and Communication Technology; Griffith University; Southport Queensland 4222 Australia
- Institute for Glycomics; Griffith University; Southport Queensland 4222 Australia
| |
Collapse
|
169
|
Sharma AK, O'Brien EP. Increasing Protein Production Rates Can Decrease the Rate at Which Functional Protein Is Produced and Their Steady-State Levels. J Phys Chem B 2017. [PMID: 28650169 DOI: 10.1021/acs.jpcb.7b01700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. To understand this phenomenon, here, we combine a well-established ribosome-traffic model with a master-equation model of cotranslational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates of various translation processes are altered for five different E. coli proteins. We find that while J monotonically increases as the rates of translation-initiation, -elongation, and -termination increase, F can either increase or decrease. We show that F's nonmonotonic behavior arises within the model from two opposing trends: the tendency for increased translation rates to produce more total protein but less cotranslationally folded protein. We further demonstrate that under certain conditions these nonmonotonic changes in F can result in nonmonotonic variations in post-translational, steady-state levels of functional protein. These results provide a potential explanation for recent experimental observations in which the specific activity of enzymatic proteins decreased with increased synthesis rates. Additionally our model has the potential to be used to rationally design transcripts to maximize the production of functional nascent protein by simultaneously optimizing translation initiation, elongation, and termination rates.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
170
|
Liu X, Dang Y, Matsu-Ura T, He Y, He Q, Hong CI, Liu Y. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition. Mol Cell 2017. [PMID: 28648778 DOI: 10.1016/j.molcel.2017.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Yunkun Dang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Toru Matsu-Ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA; Department of Biochemistry and Cell Biology, McMurtry College, Rice University, Houston, TX 77005, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
171
|
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms. Genetics 2017; 206:1881-1893. [PMID: 28600326 DOI: 10.1534/genetics.117.202788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/31/2017] [Indexed: 01/24/2023] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a crucial post-transcriptional regulatory mechanism that recognizes and eliminates aberrantly processed transcripts, and mediates the expression of normal gene transcripts. In this study, we report that in the filamentous fungus Neurospora crassa, the NMD factors play a conserved role in regulating the surveillance of NMD targets including premature termination codon (PTC)-containing transcripts and normal transcripts. The circadian rhythms in all of the knockout strains of upf1-3 genes, which encode the Up-frameshift proteins, were aberrant. The upf1 knockout strain displays a shortened circadian period, which can be restored by constantly expressing exogenous Up-frameshift protein 1 (UPF1). UPF1 regulates the circadian clock by modulating the splicing of the core clock gene frequency (frq) through spliceosome and spliceosome-related arginine/serine-rich splicing factors, which partly account for the short periods in the upf1 knockout strain. We also demonstrated that the clock genes including White Collar (WC)-1, WC-2, and FRQ are involved in controlling the diurnal growth rhythm, and UPF1 may affect the growth rhythms by mediating the FRQ protein levels in the daytime. These findings suggest that the NMD factors play important roles in regulating the circadian clock and diurnal growth rhythms in Neurospora.
Collapse
|
172
|
Endoh T, Sugimoto N. Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. CHEM REC 2017; 17:817-832. [DOI: 10.1002/tcr.201700016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
173
|
Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, Czech A, Kleizen B, Ostedgaard LS, Braakman I, Sheppard DN, Ignatova Z. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol 2017; 15:e2000779. [PMID: 28510592 PMCID: PMC5433685 DOI: 10.1371/journal.pbio.2000779] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/13/2017] [Indexed: 01/22/2023] Open
Abstract
Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner. Synonymous single nucleotide polymorphisms (sSNPs) occur at high frequency in the human genome and are associated with ~50 diseases in humans; the responsible molecular mechanisms remain enigmatic. Here, we investigate the impact of the common sSNP, T2562G, on cystic fibrosis transmembrane conductance regulator (CFTR). Although this sSNP, by itself, does not cause cystic fibrosis (CF), it is prevalent in patients with CFTR-related disorders. T2562G sSNP modifies the local translation speed at the Thr854 codon, leading to changes in CFTR stability and channel function. This sSNP introduces a codon pairing to a low-abundance tRNA, which is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting a tissue-specific effect of this sSNP. Enhancement of the cellular concentration of the tRNA cognate to the mutant ACG codon rescues the stability and conduction defects of T2562G-CFTR. These findings reveal an unanticipated mechanism—inverting the programmed local speed of mRNA translation in a tRNA-dependent manner—for sSNP-associated diseases.
Collapse
Affiliation(s)
- Sebastian Kirchner
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Robert Rauscher
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Nicolai Kastelic
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Melanie Anding
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Andreas Czech
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Bertrand Kleizen
- Cellular Protein Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Lynda S. Ostedgaard
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ineke Braakman
- Cellular Protein Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - David N. Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail: (ZI); (DNS)
| | - Zoya Ignatova
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
- * E-mail: (ZI); (DNS)
| |
Collapse
|
174
|
Fu J, Murphy KA, Zhou M, Li YH, Lam VH, Tabuloc CA, Chiu JC, Liu Y. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes Dev 2017; 30:1761-75. [PMID: 27542830 PMCID: PMC5002980 DOI: 10.1101/gad.281030.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
Fu et al. show that Drosophila period (dper) codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage “code” within genetic codons to regulate cotranslational protein folding.
Collapse
Affiliation(s)
- Jingjing Fu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Mian Zhou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ying H Li
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Vu H Lam
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
175
|
Chaney JL, Steele A, Carmichael R, Rodriguez A, Specht AT, Ngo K, Li J, Emrich S, Clark PL. Widespread position-specific conservation of synonymous rare codons within coding sequences. PLoS Comput Biol 2017; 13:e1005531. [PMID: 28475588 PMCID: PMC5438181 DOI: 10.1371/journal.pcbi.1005531] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 05/19/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Synonymous rare codons are considered to be sub-optimal for gene expression because they are translated more slowly than common codons. Yet surprisingly, many protein coding sequences include large clusters of synonymous rare codons. Rare codons at the 5’ terminus of coding sequences have been shown to increase translational efficiency. Although a general functional role for synonymous rare codons farther within coding sequences has not yet been established, several recent reports have identified rare-to-common synonymous codon substitutions that impair folding of the encoded protein. Here we test the hypothesis that although the usage frequencies of synonymous codons change from organism to organism, codon rarity will be conserved at specific positions in a set of homologous coding sequences, for example to tune translation rate without altering a protein sequence. Such conservation of rarity–rather than specific codon identity–could coordinate co-translational folding of the encoded protein. We demonstrate that many rare codon cluster positions are indeed conserved within homologous coding sequences across diverse eukaryotic, bacterial, and archaeal species, suggesting they result from positive selection and have a functional role. Most conserved rare codon clusters occur within rather than between conserved protein domains, challenging the view that their primary function is to facilitate co-translational folding after synthesis of an autonomous structural unit. Instead, many conserved rare codon clusters separate smaller protein structural motifs within structural domains. These smaller motifs typically fold faster than an entire domain, on a time scale more consistent with translation rate modulation by synonymous codon usage. While proteins with conserved rare codon clusters are structurally and functionally diverse, they are enriched in functions associated with organism growth and development, suggesting an important role for synonymous codon usage in organism physiology. The identification of conserved rare codon clusters advances our understanding of distinct, functional roles for otherwise synonymous codons and enables experimental testing of the impact of synonymous codon usage on the production of functional proteins. Proteins are long linear polymers that must fold into complex three-dimensional shapes in order to carry out their cellular functions. Every protein is synthesized by the ribosome, which decodes each trinucleotide codon in an mRNA coding sequence in order to select the amino acid residue that will occupy each position in the protein sequence. Most amino acids can be encoded by more than one codon, but these synonymous codons are not used with equal frequency. Rare codons are associated with generally slower rates for protein synthesis, and for this reason have traditionally been considered mildly deleterious for efficient protein production. However, because synonymous codon substitutions do not change the sequence of the encoded protein, the majority view is that they merely reflect genomic ‘background noise’. To the contrary, here we show that the positions of many synonymous rare codons are conserved in mRNA sequences that encode structurally similar proteins from a diverse range of organisms. These results suggest that rare codons have a functional role related to the production of functional proteins, potentially to regulate the rate of protein synthesis and the earliest steps of protein folding, while synthesis is still underway.
Collapse
Affiliation(s)
- Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aaron Steele
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rory Carmichael
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alicia T. Specht
- Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kim Ngo
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jun Li
- Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (PLC); (SE)
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (PLC); (SE)
| |
Collapse
|
176
|
Po P, Delaney E, Gamper H, Szantai-Kis DM, Speight L, Tu L, Kosolapov A, Petersson EJ, Hou YM, Deutsch C. Effect of Nascent Peptide Steric Bulk on Elongation Kinetics in the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1873-1888. [PMID: 28483649 DOI: 10.1016/j.jmb.2017.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Abstract
All proteins are synthesized by the ribosome, a macromolecular complex that accomplishes the life-sustaining tasks of faithfully decoding mRNA and catalyzing peptide bond formation at the peptidyl transferase center (PTC). The ribosome has evolved an exit tunnel to host the elongating new peptide, protect it from proteolytic digestion, and guide its emergence. It is here that the nascent chain begins to fold. This folding process depends on the rate of translation at the PTC. We report here that besides PTC events, translation kinetics depend on steric constraints on nascent peptide side chains and that confined movements of cramped side chains within and through the tunnel fine-tune elongation rates.
Collapse
Affiliation(s)
- Pengse Po
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Delaney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lee Speight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LiWei Tu
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
177
|
Tu L, Deutsch C. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1722-1732. [PMID: 28478285 DOI: 10.1016/j.jmb.2017.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022]
Abstract
Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis.
Collapse
Affiliation(s)
- LiWei Tu
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA.
| |
Collapse
|
178
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
179
|
Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards "GC" Rich Codons. Mar Drugs 2017; 15:md15050125. [PMID: 28448468 PMCID: PMC5450531 DOI: 10.3390/md15050125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 11/24/2022] Open
Abstract
Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen “core” dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression.
Collapse
|
180
|
When mRNA translation meets decay. Biochem Soc Trans 2017; 45:339-351. [DOI: 10.1042/bst20160243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Messenger RNA (mRNA) translation and mRNA degradation are important determinants of protein output, and they are interconnected. Previously, it was thought that translation of an mRNA, as a rule, prevents its degradation. mRNA surveillance mechanisms, which degrade mRNAs as a consequence of their translation, were considered to be exceptions to this rule. Recently, however, it has become clear that many mRNAs are degraded co-translationally, and it has emerged that codon choice, by influencing the rate of ribosome elongation, affects the rate of mRNA decay. In this review, we discuss the links between translation and mRNA stability, with an emphasis on emerging data suggesting that codon optimality may regulate mRNA degradation.
Collapse
|
181
|
McCarthy C, Carrea A, Diambra L. Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics 2017; 18:227. [PMID: 28288557 PMCID: PMC5347174 DOI: 10.1186/s12864-017-3609-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background For a long time synonymous single nucleotide polymorphisms were considered as silent mutations. However, nowadays it is well known that they can affect protein conformation and function, leading to altered disease susceptibilities, differential prognosis and/or drug responses, among other clinically relevant genetic traits. This occurs through different mechanisms: by disrupting the splicing signals of precursor mRNAs, affecting regulatory binding-sites of transcription factors and miRNAs, or by modifying the secondary structure of mRNAs. Results In this paper we considered 22 human genetic diseases or traits, linked to 35 synonymous single nucleotide polymorphisms in 27 different genes. We performed a local sequence context analysis in terms of the ribosomal pause propensity affected by synonymous single nucleotide polymorphisms. We found that synonymous mutations related to the above mentioned mechanisms presented small pause propensity changes, whereas synonymous mutations that were not related to those mechanisms presented large pause propensity changes. On the other hand, we did not observe large variations in the codon usage of codons associated with these mutations. Furthermore, we showed that the changes in the pause propensity associated with benign sSNPs are significantly lower than the pause propensity changes related to sSNPs associated to diseases. Conclusions These results suggest that the genetic diseases or traits related to synonymous mutations with large pause propensity changes, could be the consequence of another mechanism underlying non-silent synonymous mutations. Namely, alternative protein configuration related, in turn, to alterations in the ribosome-mediated translational attenuation program encoded by pairs of consecutive codons, not codons. These findings shed light on the latter mechanism based on the perturbation of the co-translational folding process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3609-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina McCarthy
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina.,CONICET, Buenos Aires, Argentina.,Departamento de Informática y Tecnología, Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Alejandra Carrea
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina.,CONICET, Buenos Aires, Argentina
| | - Luis Diambra
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina. .,CONICET, Buenos Aires, Argentina.
| |
Collapse
|
182
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
183
|
Rojas-Benítez D, Eggers C, Glavic A. Modulation of the Proteostasis Machinery to Overcome Stress Caused by Diminished Levels of t6A-Modified tRNAs in Drosophila. Biomolecules 2017; 7:biom7010025. [PMID: 28272317 PMCID: PMC5372737 DOI: 10.3390/biom7010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022] Open
Abstract
Transfer RNAs (tRNAs) harbor a subset of post-transcriptional modifications required for structural stability or decoding function. N6-threonylcarbamoyladenosine (t6A) is a universally conserved modification found at position 37 in tRNA that pair A-starting codons (ANN) and is required for proper translation initiation and to prevent frame shift during elongation. In its absence, the synthesis of aberrant proteins is likely, evidenced by the formation of protein aggregates. In this work, our aim was to study the relationship between t6A-modified tRNAs and protein synthesis homeostasis machinery using Drosophila melanogaster. We used the Gal4/UAS system to knockdown genes required for t6A synthesis in a tissue and time specific manner and in vivo reporters of unfolded protein response (UPR) activation. Our results suggest that t6A-modified tRNAs, synthetized by the threonyl-carbamoyl transferase complex (TCTC), are required for organismal growth and imaginal cell survival, and is most likely to support proper protein synthesis.
Collapse
Affiliation(s)
- Diego Rojas-Benítez
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile..
| | - Cristián Eggers
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile..
| | - Alvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile..
| |
Collapse
|
184
|
Pan Y, Yan C, Hu Y, Fan Y, Pan Q, Wan Q, Torcivia-Rodriguez J, Mazumder R. Distribution bias analysis of germline and somatic single-nucleotide variations that impact protein functional site and neighboring amino acids. Sci Rep 2017; 7:42169. [PMID: 28176830 PMCID: PMC5296879 DOI: 10.1038/srep42169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/05/2017] [Indexed: 01/13/2023] Open
Abstract
Single nucleotide variations (SNVs) can result in loss or gain of protein functional sites. We analyzed the effects of SNVs on enzyme active sites, ligand binding sites, and various types of post translational modification (PTM) sites. We found that, for most types of protein functional sites, the SNV pattern differs between germline and somatic mutations as well as between synonymous and non-synonymous mutations. From a total of 51,138 protein functional site affecting SNVs (pfsSNVs), a pan-cancer analysis revealed 142 somatic pfsSNVs in five or more cancer types. By leveraging patient information for somatic pfsSNVs, we identified 17 loss of functional site SNVs and 60 gain of functional site SNVs which are significantly enriched in patients with specific cancer types. Of the key pfsSNVs identified in our analysis above, we highlight 132 key pfsSNVs within 17 genes that are found in well-established cancer associated gene lists. For illustrating how key pfsSNVs can be prioritized further, we provide a use case where we performed survival analysis showing that a loss of phosphorylation site pfsSNV at position 105 in MEF2A is significantly associated with decreased pancreatic cancer patient survival rate. These 132 pfsSNVs can be used in developing genetic testing pipelines.
Collapse
Affiliation(s)
- Yang Pan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Cheng Yan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Yu Hu
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Yu Fan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Qing Pan
- The Department of Statistics, The George Washington University, Washington, DC 20037, United States of America
| | - Quan Wan
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - John Torcivia-Rodriguez
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Raja Mazumder
- The Department of Biochemistry &Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| |
Collapse
|
185
|
Millius A, Ueda HR. Systems Biology-Derived Discoveries of Intrinsic Clocks. Front Neurol 2017; 8:25. [PMID: 28220104 PMCID: PMC5292584 DOI: 10.3389/fneur.2017.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
A systems approach to studying biology uses a variety of mathematical, computational, and engineering tools to holistically understand and model properties of cells, tissues, and organisms. Building from early biochemical, genetic, and physiological studies, systems biology became established through the development of genome-wide methods, high-throughput procedures, modern computational processing power, and bioinformatics. Here, we highlight a variety of systems approaches to the study of biological rhythms that occur with a 24-h period-circadian rhythms. We review how systems methods have helped to elucidate complex behaviors of the circadian clock including temperature compensation, rhythmicity, and robustness. Finally, we explain the contribution of systems biology to the transcription-translation feedback loop and posttranslational oscillator models of circadian rhythms and describe new technologies and "-omics" approaches to understand circadian timekeeping and neurophysiology.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
186
|
Joyce CE, Yanez AG, Mori A, Yoda A, Carroll JS, Novina CD. Differential Regulation of the Melanoma Proteome by eIF4A1 and eIF4E. Cancer Res 2017; 77:613-622. [PMID: 27879264 PMCID: PMC5362820 DOI: 10.1158/0008-5472.can-16-1298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
Small molecules and antisense oligonucleotides that inhibit the translation initiation factors eIF4A1 and eIF4E have been explored as broad-based therapeutic agents for cancer treatment, based on the frequent upregulation of these two subunits of the eIF4F cap-binding complex in many cancer cells. Here, we provide support for these therapeutic approaches with mechanistic studies of eIF4F-driven tumor progression in a preclinical model of melanoma. Silencing eIF4A1 or eIF4E decreases melanoma proliferation and invasion. There were common effects on the level of cell-cycle proteins that could explain the antiproliferative effects in vitro Using clinical specimens, we correlate the common cell-cycle targets of eIF4A1 and eIF4E with patient survival. Finally, comparative proteomic and transcriptomic analyses reveal extensive mechanistic divergence in response to eIF4A1 or eIF4E silencing. Current models indicate that eIF4A1 and eIF4E function together through the 5'UTR to increase translation of oncogenes. In contrast, our data demonstrate that the common effects of eIF4A1 and eIF4E on translation are mediated by the coding region and 3'UTR. Moreover, their divergent effects occur through the 5'UTR. Overall, our work shows that it will be important to evaluate subunit-specific inhibitors of eIF4F in different disease contexts to fully understand their anticancer actions. Cancer Res; 77(3); 613-22. ©2016 AACR.
Collapse
Affiliation(s)
- Cailin E Joyce
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Adrienne G Yanez
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Akihiro Mori
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts, Worcester, Massachusetts
- Onami team, The Systems Biology Institute, Tokyo, Japan
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Hyogo, Japan
| | - Akinori Yoda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Johanna S Carroll
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
187
|
Inada T. The Ribosome as a Platform for mRNA and Nascent Polypeptide Quality Control. Trends Biochem Sci 2017; 42:5-15. [DOI: 10.1016/j.tibs.2016.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
188
|
Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending. Sci Rep 2016; 6:35927. [PMID: 27808241 PMCID: PMC5093902 DOI: 10.1038/srep35927] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022] Open
Abstract
As one of the most ancient tree species, the codon usage pattern analysis of Ginkgo biloba is a useful way to understand its evolutionary and genetic mechanisms. Several studies have been conducted on angiosperms, but seldom on gymnosperms. Based on RNA-Seq data of the G. biloba transcriptome, amount to 17,579 unigenes longer than 300 bp were selected and analyzed from 68,547 candidates. The codon usage pattern tended towards more frequently use of A/U-ending codons, which showed an obvious gradient progressing from gymnosperms to dicots to monocots. Meanwhile, analysis of high/low-expression unigenes revealed that high-expression unigenes tended to use G/C-ending codons together with more codon usage bias. Variation of unigenes with different functions suggested that unigenes involving in environment adaptation use G/C-ending codons more frequently with more usage bias, and these results were consistent with the conclusion that the formation of G. biloba codon usage bias was dominated by natural selection.
Collapse
|
189
|
Improving virus production through quasispecies genomic selection and molecular breeding. Sci Rep 2016; 6:35962. [PMID: 27808108 PMCID: PMC5093897 DOI: 10.1038/srep35962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022] Open
Abstract
Virus production still is a challenging issue in antigen manufacture, particularly with slow-growing viruses. Deep-sequencing of genomic regions indicative of efficient replication may be used to identify high-fitness minority individuals suppressed by the ensemble of mutants in a virus quasispecies. Molecular breeding of quasispecies containing colonizer individuals, under regimes allowing more than one replicative cycle, is a strategy to select the fittest competitors among the colonizers. A slow-growing cell culture-adapted hepatitis A virus strain was employed as a model for this strategy. Using genomic selection in two regions predictive of efficient translation, the internal ribosome entry site and the VP1-coding region, high-fitness minority colonizer individuals were identified in a population adapted to conditions of artificially-induced cellular transcription shut-off. Molecular breeding of this population with a second one, also adapted to transcription shut-off and showing an overall colonizer phenotype, allowed the selection of a fast-growing population of great biotechnological potential.
Collapse
|
190
|
Lechner A, Brunk E, Keasling JD. The Need for Integrated Approaches in Metabolic Engineering. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023903. [PMID: 27527588 DOI: 10.1101/cshperspect.a023903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.
Collapse
Affiliation(s)
- Anna Lechner
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, California 92093
| | - Jay D Keasling
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
191
|
Saikia M, Wang X, Mao Y, Wan J, Pan T, Qian SB. Codon optimality controls differential mRNA translation during amino acid starvation. RNA (NEW YORK, N.Y.) 2016; 22:1719-1727. [PMID: 27613579 PMCID: PMC5066624 DOI: 10.1261/rna.058180.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
It is common wisdom that codon usage bias has evolved in the selection for efficient translation, in which highly expressed genes are encoded predominantly by optimal codons. However, a growing body of evidence suggests regulatory roles for non-optimal codons in translation dynamics. Here we report that in mammalian cells, non-optimal codons play a critical role in promoting selective mRNA translation during amino acid starvation. During starvation, in contrast to genes encoding ribosomal proteins whose translation is highly sensitive to amino acid deprivation, translation of genes involved in the cellular protein degradation pathways remains unaffected. We found that these two gene groups bear different codon composition, with non-optimal codons being highly enriched in genes encoding the ubiquitin-proteasome system. Supporting the selective tRNA charging model originally proposed in Escherichia coli, we demonstrated that tRNA isoacceptors decoding rare codons are maintained in translating ribosomes under amino acid starvation. Finally, using luciferase reporters fused with endogenous gene-derived sequences, we show that codon optimality contributes to differential mRNA translation in response to amino acid starvation. These results highlight the physiological significance of codon usage bias in cellular adaptation to stress.
Collapse
Affiliation(s)
- Mridusmita Saikia
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xiaoyun Wang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illnois 60637, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Ji Wan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illnois 60637, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
192
|
Waters AM, Bagni R, Portugal F, Hartley JL. Single Synonymous Mutations in KRAS Cause Transformed Phenotypes in NIH3T3 Cells. PLoS One 2016; 11:e0163272. [PMID: 27684555 PMCID: PMC5042562 DOI: 10.1371/journal.pone.0163272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/05/2016] [Indexed: 12/29/2022] Open
Abstract
Synonymous mutations in the KRAS gene are clustered at G12, G13, and G60 in human cancers. We constructed 9 stable NIH3T3 cell lines expressing KRAS, each with one of these synonymous mutations. Compared to the negative control cell line expressing the wild type human KRAS gene, all the synonymous mutant lines expressed more KRAS protein, grew more rapidly and to higher densities, and were more invasive in multiple assays. Three of the cell lines showed dramatic loss of contact inhibition, were more refractile under phase contrast, and their refractility was greatly reduced by treatment with trametinib. Codon usage at these glycines is highly conserved in KRAS compared to HRAS, indicating selective pressure. These transformed phenotypes suggest that synonymous mutations found in driver genes such as KRAS may play a role in human cancers.
Collapse
Affiliation(s)
- Andrew M. Waters
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
- Biology Department, Catholic University of America, Washington, District of Columbia, United States of America
| | - Rachel Bagni
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Franklin Portugal
- Biology Department, Catholic University of America, Washington, District of Columbia, United States of America
| | - James L. Hartley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| |
Collapse
|
193
|
Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 2016; 113:E6117-E6125. [PMID: 27671647 DOI: 10.1073/pnas.1606724113] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.
Collapse
|
194
|
Braselmann E, Chaney JL, Champion MM, Clark PL. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates. PLoS One 2016; 11:e0162922. [PMID: 27626276 PMCID: PMC5023192 DOI: 10.1371/journal.pone.0162922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
195
|
Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:E5588-97. [PMID: 27601680 DOI: 10.1073/pnas.1605856113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 "recalcitrant" AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional "safe replacement zone" (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes.
Collapse
|
196
|
Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M, Shrock E, Pruitt BW, Conway N, Goodman DB, Gardner CL, Tyree G, Gonzales A, Wanner BL, Norville JE, Lajoie MJ, Church GM. Design, synthesis, and testing toward a 57-codon genome. Science 2016; 353:819-22. [PMID: 27540174 DOI: 10.1126/science.aaf3639] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023]
Abstract
Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms.
Collapse
Affiliation(s)
- Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthieu Landon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Program in Systems Biology, Harvard University, Cambridge, MA 02138, USA. Ecole des Mines de Paris, Mines Paristech, Paris 75272, France
| | - Marc Guell
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Gleb Kuznetsov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Jun Teramoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Natalie Cervantes
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Minerva Zhou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kerry Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael G Napolitano
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mark Moosburner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin W Pruitt
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Nicholas Conway
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Daniel B Goodman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Cameron L Gardner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gary Tyree
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Barry L Wanner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Julie E Norville
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
197
|
Maikova O, Sherbakov D, Belikov S. The complete mitochondrial genome of Baikalospongia intermedia (Lubomirskiidae): description and phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:569-570. [PMID: 33490409 PMCID: PMC7801006 DOI: 10.1080/23802359.2016.1172273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete mitochondrial genome of the Lake Baikal sponge Baikalospongia intermedia was sequenced. The circular mitochondrial genome is 28,327 bp in length and includes 14 protein-coding genes, 2 ribosomal RNA genes and 25 transfer RNA genes. Bayesian comparative analysis of molecular evolution rates was found no acceleration of the mtDNA evolution of B. intermedia. This species clustered with other species of the genus Baikalospongia on the Bayesian tree.
Collapse
Affiliation(s)
- Olga Maikova
- Limnological Institute SB RAS, Irkutsk, 664033, Russian Federation
| | - Dmitry Sherbakov
- Limnological Institute SB RAS, Irkutsk, 664033, Russian Federation
| | - Sergei Belikov
- Limnological Institute SB RAS, Irkutsk, 664033, Russian Federation
| |
Collapse
|
198
|
Wu X, Li G. Prevalent Accumulation of Non-Optimal Codons through Somatic Mutations in Human Cancers. PLoS One 2016; 11:e0160463. [PMID: 27513638 PMCID: PMC4981346 DOI: 10.1371/journal.pone.0160463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/19/2016] [Indexed: 11/27/2022] Open
Abstract
Cancer is characterized by uncontrolled cell growth, and the cause of different cancers is generally attributed to checkpoint dysregulation of cell proliferation and apoptosis. Recent studies have shown that non-optimal codons were preferentially adopted by genes to generate cell cycle-dependent oscillations in protein levels. This raises the intriguing question of how dynamic changes of codon usage modulate the cancer genome to cope with a non-controlled proliferative cell cycle. In this study, we comprehensively analyzed the somatic mutations of codons in human cancers, and found that non-optimal codons tended to be accumulated through both synonymous and non-synonymous mutations compared with other types of genomic substitution. We further demonstrated that non-optimal codons were prevalently accumulated across different types of cancers, amino acids, and chromosomes, and genes with accumulation of non-optimal codons tended to be involved in protein interaction/signaling networks and encoded important enzymes in metabolic networks that played roles in cancer-related pathways. This study provides insights into the dynamics of codons in the cancer genome and demonstrates that accumulation of non-optimal codons may be an adaptive strategy for cancerous cells to win the competition with normal cells. This deeper interpretation of the patterns and the functional characterization of somatic mutations of codons will help to broaden the current understanding of the molecular basis of cancers.
Collapse
Affiliation(s)
- Xudong Wu
- Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, PR China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, PR China
- * E-mail:
| |
Collapse
|
199
|
Hurley JM, Loros JJ, Dunlap JC. Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Trends Biochem Sci 2016; 41:834-846. [PMID: 27498225 DOI: 10.1016/j.tibs.2016.07.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
From cyanobacteria to mammals, organisms have evolved timing mechanisms to adapt to environmental changes in order to optimize survival and improve fitness. To anticipate these regular daily cycles, many organisms manifest ∼24h cell-autonomous oscillations that are sustained by transcription-translation-based or post-transcriptional negative-feedback loops that control a wide range of biological processes. With an eye to identifying emerging common themes among cyanobacterial, fungal, and animal clocks, some major recent developments in the understanding of the mechanisms that regulate these oscillators and their output are discussed. These include roles for antisense transcription, intrinsically disordered proteins, codon bias in clock genes, and a more focused discussion of post-transcriptional and translational regulation as a part of both the oscillator and output.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
200
|
Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin. J Biotechnol 2016; 231:183-192. [DOI: 10.1016/j.jbiotec.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 12/17/2022]
|