151
|
Wang J, Duan Z, Chen X, Li M. The immune function of dermal fibroblasts in skin defence against pathogens. Exp Dermatol 2023; 32:1326-1333. [PMID: 37387265 DOI: 10.1111/exd.14858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Dermal fibroblasts are the main resident cells of the dermis. They have several significant functions related to wound healing, extracellular matrix production and hair cycling. Dermal fibroblasts can also act as sentinels in defence against infection. They express pattern recognition receptors such as toll-like receptors to sense pathogen components, followed by the synthesis of pro-inflammatory cytokines (including IL-6, IFN-β and TNF-α), chemokines (such as IL-8 and CXCL1) and antimicrobial peptides. Dermal fibroblasts also secrete other molecules-like growth factors and matrix metalloproteinases to benefit tissue repair from infection. Crosstalk between dermal fibroblasts and immune cells may amplify the immune response against infection. Moreover, the transition of a certain adipogenic fibroblasts to adipocytes protects skin from bacterial infection. Together, we discuss the role of dermal fibroblasts in the war against pathogens in this review. Dermal fibroblasts have important immune functions in anti-infection immunity, which should not be overlooked.
Collapse
Affiliation(s)
- Jianing Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
152
|
Chitturi P, Xu S, Ahmed Abdi B, Nguyen J, Carter DE, Sinha S, Arora R, Biernaskie J, Stratton RJ, Leask A. Tripterygium wilfordii derivative celastrol, a YAP inhibitor, has antifibrotic effects in systemic sclerosis. Ann Rheum Dis 2023; 82:1191-1204. [PMID: 37328193 DOI: 10.1136/ard-2023-223859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is characterised by extensive tissue fibrosis maintained by mechanotranductive/proadhesive signalling. Drugs targeting this pathway are therefore of likely therapeutic benefit. The mechanosensitive transcriptional co-activator, yes activated protein-1 (YAP1), is activated in SSc fibroblasts. The terpenoid celastrol is a YAP1 inhibitor; however, if celastrol can alleviate SSc fibrosis is unknown. Moreover, the cell niches required for skin fibrosis are unknown. METHODS Human dermal fibroblasts from healthy individuals and patients with diffuse cutaneous SSc were treated with or without transforming growth factor β1 (TGFβ1), with or without celastrol. Mice were subjected to the bleomycin-induced model of skin SSc, in the presence or absence of celastrol. Fibrosis was assessed using RNA Sequencing, real-time PCR, spatial transcriptomic analyses, Western blot, ELISA and histological analyses. RESULTS In dermal fibroblasts, celastrol impaired the ability of TGFβ1 to induce an SSc-like pattern of gene expression, including that of cellular communication network factor 2, collagen I and TGFβ1. Celastrol alleviated the persistent fibrotic phenotype of dermal fibroblasts cultured from lesions of SSc patients. In the bleomycin-induced model of skin SSc, increased expression of genes associated with reticular fibroblast and hippo/YAP clusters was observed; conversely, celastrol inhibited these bleomycin-induced changes and blocked nuclear localisation of YAP. CONCLUSIONS Our data clarify niches within the skin activated in fibrosis and suggest that compounds, such as celastrol, that antagonise the YAP pathway may be potential treatments for SSc skin fibrosis.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shiwen Xu
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, UK
| | - Bahja Ahmed Abdi
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, UK
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Sartak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rohit Arora
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
153
|
Nishikiori N, Takada K, Sato T, Miyamoto S, Watanabe M, Hirakawa Y, Sekiguchi S, Furuhashi M, Yorozu A, Takano K, Miyazaki A, Suzuki H, Ohguro H. Physical Properties and Cellular Metabolic Characteristics of 3D Spheroids Are Possible Definitive Indices for the Biological Nature of Cancer-Associated Fibroblasts. Cells 2023; 12:2160. [PMID: 37681892 PMCID: PMC10486986 DOI: 10.3390/cells12172160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
The current study's objective was to elucidate some currently unknown biological indicators to evaluate the biological nature of cancer-associated fibroblasts (CAFs). For this purpose, four different CAFs, CAFS1, CAFS2, SCC17F and MO-1000, were established using surgical specimens from oral squamous cell carcinomas (OSCC) with different clinical malignant stages (CAFS1 and CAFS2, T2N0M0, stage II; SCC17F and MO-1000, T4aN2bM0, stage IVA). Fibroblasts unrelated to cancer (non-CAFs) were also prepared and used as controls. Initially, confirmation that these four fibroblasts were indeed CAFs was obtained by their mRNA expression using positive and negative markers for the CAF or fibroblasts. To elucidate possible unknown biological indicators, these fibroblasts were subjected to a cellular metabolic analysis by a Seahorse bioanalyzer, in conjugation with 3D spheroid cultures of the cells and co-cultures with a pancreas ductal carcinoma cell line, MIA PaCa-2. The mitochondrial and glycolytic functions of human orbital fibroblasts (HOF) were nearly identical to those of Graves'-disease-related HOF (GOF). In contrast, the characteristics of the metabolic functions of these four CAFs were different from those of human conjunctival fibroblasts (HconF), a representative non-CAF. It is particularly noteworthy that CAFS1 and CAFS2 showed markedly reduced ratios for the rate of oxygen consumption to the extracellular acidification rate, suggesting that glycolysis was enhanced compared to mitochondrial respiration. Similarly, the physical aspects, their appearance and stiffness, of their 3D spheroids and fibroblasts that were induced effects based on the cellular metabolic functions of MIA PaCa-2 were also different between CAFs and non-CAFs, and their levels for CAFS1 or SCC17F were similar to those for CAFS2 or MO-1000 cells, respectively. The findings reported herein indicate that cellular metabolic functions and the physical characteristics of these types of 3D spheroids may be valuable and useful indicators for estimating potential biological diversity among various CAFs.
Collapse
Affiliation(s)
- Nami Nishikiori
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan;
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan
| | - Sho Miyamoto
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| | - Yui Hirakawa
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
| | - Shohei Sekiguchi
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
- Department of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (A.Y.); (H.S.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (T.S.); (M.F.)
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (A.Y.); (H.S.)
- Department of Otolaryngology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan;
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (S.M.); (S.S.); (A.M.)
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (A.Y.); (H.S.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| |
Collapse
|
154
|
Zhang Y, Xu X, Ji W, Qi S, Bao Q, Zhang Y, Zhang Y, Xu Q, Chen G. Morphological, anatomical and histological studies on knob and beak characters of six goose breeds from China. Front Physiol 2023; 14:1241216. [PMID: 37700764 PMCID: PMC10493296 DOI: 10.3389/fphys.2023.1241216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
The knob serves as both a sexual indicator of a goose's maturity and a significant packaging attribute that garners consumer attention. However, studies regarding the morphological, anatomical and histological traits of different breeds and ages on the on knob in goose are lacking. In this study, six breeds with typical goose knob types were selected, and their knob size, morphological, anatomical and histological traits were characterized. The results showed that: Knob was more prominent in gander than in female goose, and the difference was the most obvious in Magang goose. Wanxi white goose and Shitou goose had the largest knob bulge, while Magang goose and Sichuan white goose were smaller. The total knob volume of Wanxi White goose and Shitou goose was significantly higher than that of other breeds, regardless of male or female (p < 0.05). The beak volume of Wanxi White goose and gander was significantly higher than that of other goose breeds (p < 0.05). Furthermore, the observation revealed that the "knob" primarily consisted of skin-derived tissue and bony protrusions. As age advances, the knob of both male and female geese undergoes synchronous development, with the knob of male geese typically surpassing that of their female counterparts during the same period. The growth rate of knob in male goose was the fastest from 70 to 120 days of age, and slowed down from 300 to 500 days of age. The growth rate of knob in female goose was slower than that in male goose. There were essential differences in the composition of Yangzhou goose knob and Magang goose knob. The subcutaneous tissue of Magang goose was rich, and the thickness of epidermis, dermis and various layers was significantly smaller than that of Yangzhou goose (p < 0.05). With the growth of goose knob, the cells of the epidermal spinous layer became denser and gradually condensed into an overall structure, and there was a clear boundary between the dermis and epidermis after adult. In adulthood, the fiber fascicle network was staggered and dense, with greater toughness and elasticity, and the stratum corneum, epidermis, reticular layer, dermis and other skin structural layers became thicker.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Yong Zhang
- Yangzhou Tiangge Goose Industry Development Company Limited, Yangzhou, China
| | - Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
155
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
156
|
Hong ZX, Zhu ST, Li H, Luo JZ, Yang Y, An Y, Wang X, Wang K. Bioengineered skin organoids: from development to applications. Mil Med Res 2023; 10:40. [PMID: 37605220 PMCID: PMC10463602 DOI: 10.1186/s40779-023-00475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Significant advancements have been made in recent years in the development of highly sophisticated skin organoids. Serving as three-dimensional models that mimic human skin, these organoids have evolved into complex structures and are increasingly recognized as effective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional systems and ethical concerns. The inherent plasticity of skin organoids allows for their construction into physiological and pathological models, enabling the study of skin development and dynamic changes. This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages. Furthermore, it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques, such as 3D printing and microfluidic devices. The review also summarizes and discusses the diverse applications of skin organoids in developmental biology, disease modelling, regenerative medicine, and personalized medicine, while considering their prospects and limitations.
Collapse
Affiliation(s)
- Zi-Xuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Shun-Tian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jing-Zhi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
157
|
Knoedler S, Broichhausen S, Guo R, Dai R, Knoedler L, Kauke-Navarro M, Diatta F, Pomahac B, Machens HG, Jiang D, Rinkevich Y. Fibroblasts - the cellular choreographers of wound healing. Front Immunol 2023; 14:1233800. [PMID: 37646029 PMCID: PMC10461395 DOI: 10.3389/fimmu.2023.1233800] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Injuries to our skin trigger a cascade of spatially- and temporally-synchronized healing processes. During such endogenous wound repair, the role of fibroblasts is multifaceted, ranging from the activation and recruitment of innate immune cells through the synthesis and deposition of scar tissue to the conveyor belt-like transport of fascial connective tissue into wounds. A comprehensive understanding of fibroblast diversity and versatility in the healing machinery may help to decipher wound pathologies whilst laying the foundation for novel treatment modalities. In this review, we portray the diversity of fibroblasts and delineate their unique wound healing functions. In addition, we discuss future directions through a clinical-translational lens.
Collapse
Affiliation(s)
- Samuel Knoedler
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Broichhausen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ruiji Guo
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Hans-Guenther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
158
|
Parker JB, Valencia C, Akras D, DiIorio SE, Griffin MF, Longaker MT, Wan DC. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023; 11:2264. [PMID: 37626760 PMCID: PMC10452440 DOI: 10.3390/biomedicines11082264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Sarah E. DiIorio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| |
Collapse
|
159
|
Cherkashina OL, Morgun EI, Rippa AL, Kosykh AV, Alekhnovich AV, Stoliarzh AB, Terskikh VV, Vorotelyak EA, Kalabusheva EP. Blank Spots in the Map of Human Skin: The Challenge for Xenotransplantation. Int J Mol Sci 2023; 24:12769. [PMID: 37628950 PMCID: PMC10454653 DOI: 10.3390/ijms241612769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Most of the knowledge about human skin homeostasis, development, wound healing, and diseases has been accumulated from human skin biopsy analysis by transferring from animal models and using different culture systems. Human-to-mouse xenografting is one of the fundamental approaches that allows the skin to be studied in vivo and evaluate the ongoing physiological processes in real time. Humanized animals permit the actual techniques for tracing cell fate, clonal analysis, genetic modifications, and drug discovery that could never be employed in humans. This review recapitulates the novel facts about mouse skin self-renewing, regeneration, and pathology, raises issues regarding the gaps in our understanding of the same options in human skin, and postulates the challenges for human skin xenografting.
Collapse
Affiliation(s)
- Olga L. Cherkashina
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra L. Rippa
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander V. Alekhnovich
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Aleksey B. Stoliarzh
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Vasiliy V. Terskikh
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P. Kalabusheva
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
160
|
Bensa T, Tekkela S, Rognoni E. Skin fibroblast functional heterogeneity in health and disease. J Pathol 2023; 260:609-620. [PMID: 37553730 DOI: 10.1002/path.6159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023]
Abstract
Fibroblasts are the major cell population of connective tissue, including the skin dermis, and are best known for their function in depositing and remodelling the extracellular matrix. Besides their role in extracellular matrix homeostasis, fibroblasts have emerged as key players in many biological processes ranging from tissue immunity and wound healing to hair follicle development. Recent advances in single-cell RNA-sequencing technologies have revealed an astonishing transcriptional fibroblast heterogeneity in the skin and other organs. A key challenge in the field is to understand the functional relevance and significance of the identified new cell clusters in health and disease. Here, we discuss the functionally distinct fibroblast subtypes identified in skin homeostasis and repair and how they evolve in fibrotic disease conditions, in particular keloid scars and cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tjaša Bensa
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Tekkela
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
161
|
Bai L, Zhang X, Li X, Wang S, Zhang Y, Xu G. Impact of a Novel Hydrogel with Injectable Platelet-Rich Fibrin in Diabetic Wound Healing. J Diabetes Res 2023; 2023:7532637. [PMID: 37546354 PMCID: PMC10403326 DOI: 10.1155/2023/7532637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 06/18/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic wounds are serious complications caused by diabetes mellitus (DM), which are further exacerbated by angiogenesis disorders and prolonged inflammation. Injectable platelet-rich fibrin (i-PRF) is rich in growth factors (GFs) and has been used for the repair and regeneration of diabetic wounds; however, direct application of i-PRF has certain disadvantages, including the instability of the bioactive molecules. Sericin hydrogel, fabricated by silkworm-derived sericin, is a biocompatible material that has anti-inflammatory and healing-promoting properties. Therefore, in this study, we developed a novel hydrogel (named sericin/i-PRF hydrogel) using a simple one-step activation method. The in vitro studies showed that the rapid injectability of the sericin/i-PRF hydrogel allows it to adapt to the irregular shape of the wounds. Additionally, sericin hydrogel could prolong the release of i-PRF-derived bioactive GFs in the sericin/i-PRF hydrogel. Furthermore, sericin/i-PRF hydrogel effectively repaired diabetic wounds, promoted angiogenesis, and reduced inflammation levels in the diabetic wounds of nude mice. These results demonstrate that the sericin/i-PRF hydrogel is a promising agent for diabetic wound healing.
Collapse
Affiliation(s)
- Limin Bai
- Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xiaowei Zhang
- Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Xiaomei Li
- Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Susu Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu 212100, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou 225001, China
- Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
162
|
Liu WX, Li CX, Xie XX, Ge W, Qiao T, Sun XF, Shen W, Cheng SF. Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci 2023; 80:224. [PMID: 37480481 PMCID: PMC11072884 DOI: 10.1007/s00018-023-04869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chun-Xiao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- Anqiu Women and Children's Hospital, Weifang, 262100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
163
|
Redmond LC, Limbu S, Farjo B, Messenger AG, Higgins CA. Male pattern hair loss: Can developmental origins explain the pattern? Exp Dermatol 2023; 32:1174-1181. [PMID: 37237288 PMCID: PMC10946844 DOI: 10.1111/exd.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) is the most common type of non-scarring progressive hair loss, with 80% of men suffering from this condition in their lifetime. In MPHL, the hair line recedes to a specific part of the scalp which cannot be accurately predicted. Hair is lost from the front, vertex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair loss is due to hair follicle miniaturisation, where terminal hair follicles become dimensionally smaller. Miniaturisation is also characterised by a shortening of the growth phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). Together, these changes result in the production of thinner and shorter hair fibres, referred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs in this specific pattern, with frontal follicles being susceptible while occipital follicles remain in a terminal state. One main factor we believe to be at play, which will be discussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis on different regions of the scalp.
Collapse
Affiliation(s)
| | - Summik Limbu
- Department of BioengineeringImperial College LondonLondonUK
| | | | | | | |
Collapse
|
164
|
Sun L, Zhang X, Wu S, Liu Y, Guerrero-Juarez CF, Liu W, Huang J, Yao Q, Yin M, Li J, Ramos R, Liao Y, Wu R, Xia T, Zhang X, Yang Y, Li F, Heng S, Zhang W, Yang M, Tzeng CM, Ji C, Plikus MV, Gallo RL, Zhang LJ. Dynamic interplay between IL-1 and WNT pathways in regulating dermal adipocyte lineage cells during skin development and wound regeneration. Cell Rep 2023; 42:112647. [PMID: 37330908 PMCID: PMC10765379 DOI: 10.1016/j.celrep.2023.112647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Dermal adipocyte lineage cells are highly plastic and can undergo reversible differentiation and dedifferentiation in response to various stimuli. Using single-cell RNA sequencing of developing or wounded mouse skin, we classify dermal fibroblasts (dFBs) into distinct non-adipogenic and adipogenic cell states. Cell differentiation trajectory analyses identify IL-1-NF-κB and WNT-β-catenin as top signaling pathways that positively and negatively associate with adipogenesis, respectively. Upon wounding, activation of adipocyte progenitors and wound-induced adipogenesis are mediated in part by neutrophils through the IL-1R-NF-κB-CREB signaling axis. In contrast, WNT activation, by WNT ligand and/or ablation of Gsk3, inhibits the adipogenic potential of dFBs but promotes lipolysis and dedifferentiation of mature adipocytes, contributing to myofibroblast formation. Finally, sustained WNT activation and inhibition of adipogenesis is seen in human keloids. These data reveal molecular mechanisms underlying the plasticity of dermal adipocyte lineage cells, defining potential therapeutic targets for defective wound healing and scar formation.
Collapse
Affiliation(s)
- Lixiang Sun
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Wu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Youxi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | | | - Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinwen Huang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qian Yao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meimei Yin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiacheng Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Yanhang Liao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rundong Wu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tian Xia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinyuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yichun Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shujun Heng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenlu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Minggang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 350005, China
| | - Chi-Meng Tzeng
- Translation Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ling-Juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
165
|
Bakhshandeh B, Jahanafrooz Z, Allahdadi S, Daryani S, Dehghani Z, Sadeghi M, Pedram MS, Dehghan MM. Transcriptomic and in vivo approaches introduced human iPSC-derived microvesicles for skin rejuvenation. Sci Rep 2023; 13:9963. [PMID: 37339980 DOI: 10.1038/s41598-023-36162-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
The skin undergoes the formation of fine lines and wrinkles through the aging process; also, burns, trauma, and other similar circumstances give rise to various forms of skin ulcers. Induced pluripotent stem cells (iPSCs) have become promising candidates for skin healing and rejuvenation due to not stimulating inflammatory responses, low probability of immune rejection, high metabolic activity, good large-scale production capacity and potentials for personalized medicine. iPSCs can secrete microvesicles (MVs) containing RNA and proteins responsible for the normal repairing process of the skin. This study aimed to evaluate the possibility, safety and effectiveness of applying iPSCs-derived MVs for skin tissue engineering and rejuvenation applications. The possibility was assessed using the evaluation of the mRNA content of iPSC-derived MVs and the behavior of fibroblasts after MV treatment. Investigating the effect of microvesicle on stemness potential of mesenchymal stem cells was performed for safety concerns. In vivo evaluation of MVs was done in order to investigate related immune response, re-epithelialization and blood vessel formation to measure effectiveness. Shedding MVs were round in shape distributed in the range from 100 to 1000 nm in diameter and positive for AQP3, COL2A, FGF2, ITGB, and SEPTIN4 mRNAs. After treating dermal fibroblasts with iPSC-derived MVs, the expressions of collagens Iα1 and III transcripts (as the main fibrous extracellular matrix (ECM) proteins) were upregulated. Meanwhile, the survival and proliferation of MV treated fibroblasts did not change significantly. Evaluation of stemness markers in MV treated MSCs showed negligible alteration. In line with in vitro results, histomorphometry and histopathology findings also confirmed the helpful effect of MVs in skin regeneration in the rat burn wound models. Conducting more investigations on hiPSCs-derived MVs may lead to produce more efficient and safer biopharmaceutics for skin regeneration in the pharmaceutical market.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Shiva Allahdadi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shiva Daryani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Biotechnology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mahya Sadeghi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mir Sepehr Pedram
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| |
Collapse
|
166
|
Baptista LS, Silva KR, Jobeili L, Guillot L, Sigaudo-Roussel D. Unraveling White Adipose Tissue Heterogeneity and Obesity by Adipose Stem/Stromal Cell Biology and 3D Culture Models. Cells 2023; 12:1583. [PMID: 37371053 PMCID: PMC10296800 DOI: 10.3390/cells12121583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account for distinct contributions to obesity and its metabolic comorbidities. Recently, distinct ASCs subpopulations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as having inflammatory properties similar to visceral. The aim of this focus review is to bring the light of recent discoveries into white adipose tissue heterogeneity together with the biology of distinct ASCs subpopulations and to explore adipose tissue 3D models revealing their advantages, disadvantages, and contributions to elucidate the role of ASCs in obesity development. Recent advances in adipose tissue organoids opened an avenue of possibilities to recreate the main cellular and molecular events of obesity leading to a deep understanding of this inflammatory disease besides contributing to drug discovery. Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models contributing to their translation to the pharmaceutical industry.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Numpex-bio, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240005, Brazil
| | - Karina R. Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550900, Brazil;
- Teaching and Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940070, Brazil
| | - Lara Jobeili
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| | - Lucile Guillot
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
- Urgo Research Innovation and Development, 21300 Chenôve, France
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| |
Collapse
|
167
|
Zou Q, Yuan R, Zhang Y, Wang Y, Zheng T, Shi R, Zhang M, Li Y, Fei K, Feng R, Pan B, Zhang X, Gong Z, Zhu L, Tang G, Li M, Li X, Jiang Y. A single-cell transcriptome atlas of pig skin characterizes anatomical positional heterogeneity. eLife 2023; 12:86504. [PMID: 37276016 DOI: 10.7554/elife.86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Different anatomical locations of the body skin show differences in their gene expression patterns depending on different origins, and the inherent heterogeneous information can be maintained in adults. However, highly resolvable cellular specialization is less well characterized in different anatomical regions of the skin. Pig is regarded as an excellent model animal for human skin research in view of its similar physiology to human. In this study, single-cell RNA sequencing was performed on pig skin tissues from six different anatomical regions of Chenghua (CH) pigs, with a superior skin thickness trait, and the back site of large white (LW) pigs. We obtained 233,715 cells, representing seven cell types, among which we primarily characterized the heterogeneity of the top three cell types, including smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts (FBs). Then, we further identified several subtypes of SMCs, ECs, and FBs, and discovered the expression patterns of site-specific genes involved in some important pathways such as the immune response and extracellular matrix (ECM) synthesis in different anatomical regions. By comparing differentially expressed genes of skin FBs among different anatomical regions, we considered TNN, COL11A1, and INHBA as candidate genes for facilitating ECM accumulation. These findings of heterogeneity in the main skin cell types from different anatomical sites will contribute to a better understanding of inherent skin information and place the potential focus on skin generation, transmission, and transplantation, paving the foundation for human skin priming.
Collapse
Affiliation(s)
- Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, China
| | - Yu Zhang
- BGI Beijing Genome Institute, Beijing, China
| | - Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ran Feng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Binyun Pan
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xinyue Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
168
|
Dong J, Wu B, Tian W. Preparation of Apoptotic Extracellular Vesicles from Adipose Tissue and Their Efficacy in Promoting High-Quality Skin Wound Healing. Int J Nanomedicine 2023; 18:2923-2938. [PMID: 37288352 PMCID: PMC10243491 DOI: 10.2147/ijn.s411819] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose A lot of strategies have been attempted to achieve high-quality skin wound healing, among them, fat transplantation has been used for skin wound repair and scar management and has shown beneficial effects. However, the underlying mechanism is still unclear. Recently, studies found that transplanted cells underwent apoptosis within a short period and apoptotic extracellular vesicles (ApoEVs) might play the therapeutic role. Methods In this study, we directly isolated apoptotic extracellular vesicles from adipose tissue (ApoEVs-AT) and evaluated their characteristics. In vivo, we investigated the therapeutic role of ApoEVs-AT in full-thickness skin wounds. The rate of wound healing, the quality of granulation tissue, and the area of scars were evaluated here. In vitro, we investigated the cellular behaviors of fibroblasts and endothelial cells induced by ApoEVs-AT, including cellular uptake, proliferation, migration, and differentiation. Results ApoEVs-AT could be successfully isolated from adipose tissue and possessed the basic characteristics of ApoEVs. In vivo, ApoEVs-AT could accelerate skin wound healing, improve the quality of granulation tissue, and reduce the area of scars. In vitro, ApoEVs-AT could be engulfed by fibroblasts and endothelial cells, significantly enhancing their proliferation and migration. Moreover, ApoEVs-AT could promote adipogenic differentiation and inhibit the fibrogenic differentiation of fibroblasts. Conclusion These findings indicated that ApoEVs could be successfully prepared from adipose tissue and showed the ability to promote high-quality skin wound healing by modulating fibroblasts and endothelial cells.
Collapse
Affiliation(s)
- Jia Dong
- Department of Stomatology, People’s Hospital of Longhua Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Bin Wu
- Department of Stomatology, People’s Hospital of Longhua Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
169
|
Chen M, Xu Z, Chen Y, Yang Q, Lu R, Dong Y, Li X, Xie J, Xu R, Jia H, Kang Y, Wu Y. EGFR marks a subpopulation of dermal mesenchymal cells highly expressing IGF1 which enhances hair follicle regeneration. J Cell Mol Med 2023; 27:1697-1707. [PMID: 37165726 PMCID: PMC10273066 DOI: 10.1111/jcmm.17766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The skin harbours transcriptionally and functionally heterogeneous mesenchymal cells that participate in various physiological activities by secreting biochemical cues. In this study, we aimed to identify a new subpopulation of dermal mesenchymal cells that enhance hair follicle regeneration through a paracrine mechanism. Integrated single-cell RNA sequencing (scRNA-seq) data analysis revealed epidermal growth factor receptor (EGFR) as a marker of distinct fibroblast subpopulation in the neonatal murine dermis. Immunofluorescence staining and fluorescence-activated cell sorting (FACS) were used to validate the existence of the cell population in Krt14-rtTA-H2BGFP mouse. The difference of gene expression between separated cell subpopulation was examined by real-time PCR. Potential effect of the designated factor on hair follicle regeneration was observed after the application on excisional wounds in Krt14-rtTA-H2BGFP mouse. Immunofluorescence staining demonstrated the existence of dermal EGFR+ cells in neonatal and adult mouse dermis. The EGFR+ mesenchymal population, sorted by FACS, displayed a higher expression level of Igf1 (insulin-like growth factor 1). Co-localisation of IGF1 with EGFR in the mouse dermis and upregulated numbers of hair follicles in healed wounds following the application of exogenous IGF1 illustrated the contribution of EGFR+ cells in promoting wound-induced hair follicle neogenesis. Our results indicate that EGFR identifies a subpopulation of dermal fibroblasts that contribute to IGF1 promotion of hair follicle neogenesis. It broadens the understanding of heterogeneity and the mesenchymal cell function in skin and may facilitate the potential translational application of these cells.
Collapse
Affiliation(s)
- Min Chen
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Zaoxu Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Qingyang Yang
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Ruiqing Lu
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Ren‐He Xu
- Faculty of Health SciencesUniversity of MacauTaipaChina
| | | | - Yan Kang
- Shanghai Jahwa United Co., LtdShanghaiChina
| | - Yaojiong Wu
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
170
|
Solá P, Mereu E, Bonjoch J, Casado-Peláez M, Prats N, Aguilera M, Reina O, Blanco E, Esteller M, Di Croce L, Heyn H, Solanas G, Benitah SA. Targeting lymphoid-derived IL-17 signaling to delay skin aging. NATURE AGING 2023; 3:688-704. [PMID: 37291218 PMCID: PMC10275755 DOI: 10.1038/s43587-023-00431-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin. Importantly, in vivo blockade of IL-17 signaling during aging reduces the proinflammatory state of the skin, delaying the appearance of age-related traits. Mechanistically, aberrant IL-17 signals through NF-κB in epidermal cells to impair homeostatic functions while promoting an inflammatory state. Our results indicate that aged skin shows signs of chronic inflammation and that increased IL-17 signaling could be targeted to prevent age-associated skin ailments.
Collapse
Affiliation(s)
- Paloma Solá
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Júlia Bonjoch
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Neus Prats
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Badalona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Holger Heyn
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Guiomar Solanas
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
171
|
Hu KH, Kuhn NF, Courau T, Tsui J, Samad B, Ha P, Kratz JR, Combes AJ, Krummel MF. Transcriptional space-time mapping identifies concerted immune and stromal cell patterns and gene programs in wound healing and cancer. Cell Stem Cell 2023; 30:885-903.e10. [PMID: 37267918 PMCID: PMC10843988 DOI: 10.1016/j.stem.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Tissue repair responses in metazoans are highly coordinated by different cell types over space and time. However, comprehensive single-cell-based characterization covering this coordination is lacking. Here, we captured transcriptional states of single cells over space and time during skin wound closure, revealing choreographed gene-expression profiles. We identified shared space-time patterns of cellular and gene program enrichment, which we call multicellular "movements" spanning multiple cell types. We validated some of the discovered space-time movements using large-volume imaging of cleared wounds and demonstrated the value of this analysis to predict "sender" and "receiver" gene programs in macrophages and fibroblasts. Finally, we tested the hypothesis that tumors are like "wounds that never heal" and found conserved wound healing movements in mouse melanoma and colorectal tumor models, as well as human tumor samples, revealing fundamental multicellular units of tissue biology for integrative studies.
Collapse
Affiliation(s)
- Kenneth H Hu
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Nicholas F Kuhn
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Tsui
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
172
|
Okamura DM, Nguyen ED, Collins SJ, Yoon K, Gere JB, Weiser-Evans MCM, Beier DR, Majesky MW. Mammalian organ regeneration in spiny mice. J Muscle Res Cell Motil 2023; 44:39-52. [PMID: 36131170 DOI: 10.1007/s10974-022-09631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis-driven solid organ failure is a major world-wide health burden with few therapeutic options. Spiny mice (genus: Acomys) are terrestrial mammals that regenerate severe skin wounds without fibrotic scars to evade predators. Recent studies have shown that spiny mice also regenerate acute ischemic and traumatic injuries to kidney, heart, spinal cord, and skeletal muscle. A common feature of this evolved wound healing response is a lack of formation of fibrotic scar tissue that degrades organ function, inhibits regeneration, and leads to organ failure. Complex tissue regeneration is an extremely rare property among mammalian species. In this article, we discuss the evidence that Acomys represents an emerging model organism that offers a unique opportunity for the biomedical community to investigate and clinically translate molecular mechanisms of scarless wound healing and regeneration of organ function in a mammalian species.
Collapse
Affiliation(s)
- Daryl M Okamura
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth D Nguyen
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Kevin Yoon
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Joshua B Gere
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases & Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David R Beier
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
173
|
Kleissl L, Weinmüllner R, Lämmermann I, Dingelmaier-Hovorka R, Jafarmadar M, El Ghalbzouri A, Stary G, Grillari J, Dellago H. PRPF19 modulates morphology and growth behavior in a cell culture model of human skin. FRONTIERS IN AGING 2023; 4:1154005. [PMID: 37214773 PMCID: PMC10196211 DOI: 10.3389/fragi.2023.1154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
The skin provides one of the most visual aging transformations in humans, and premature aging as a consequence of oxidative stress and DNA damage is a frequently seen effect. Cells of the human skin are continuously exposed to endogenous and exogenous DNA damaging factors, which can cause DNA damage in all phases of the cell cycle. Increased levels of DNA damage and/or defective DNA repair can, therefore, accelerate the aging process and/or lead to age-related diseases like cancer. It is not yet clear if enhanced activity of DNA repair factors could increase the life or health span of human skin cells. In previous studies, we identified and characterized the human senescence evasion factor (SNEV)/pre-mRNA-processing factor (PRPF) 19 as a multitalented protein involved in mRNA splicing, DNA repair pathways and lifespan regulation. Here, we show that overexpression of PRPF19 in human dermal fibroblasts leads to a morphological change, reminiscent of juvenile, papillary fibroblasts, despite simultaneous expression of senescence markers. Moreover, conditioned media of this subpopulation showed a positive effect on keratinocyte repopulation of wounded areas. Taken together, these findings indicate that PRPF19 promotes cell viability and slows down the aging process in human skin.
Collapse
Affiliation(s)
- Lisa Kleissl
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Regina Weinmüllner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ingo Lämmermann
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | | | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Georg Stary
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | - Hanna Dellago
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
174
|
Zorina A, Zorin V, Isaev A, Kudlay D, Vasileva M, Kopnin P. Dermal Fibroblasts as the Main Target for Skin Anti-Age Correction Using a Combination of Regenerative Medicine Methods. Curr Issues Mol Biol 2023; 45:3829-3847. [PMID: 37232716 DOI: 10.3390/cimb45050247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
This article includes the data from current studies regarding the pathophysiological mechanisms of skin aging and the regenerative processes occurring in the epidermis and dermis at the molecular and cellular level, mainly, the key role of dermal fibroblasts in skin regeneration. Analyzing these data, the authors proposed the concept of skin anti-age therapy that is based on the correction of age-related skin changes by stimulating regenerative processes at the molecular and cellular level. The main target of the skin anti-age therapy is dermal fibroblasts (DFs). A variant of the cosmetological anti-age program using the combination of laser and cellular methods of regenerative medicine is presented in the paper. The program includes three stages of implementation and defines the tasks and methods of each stage. Thus, laser technologies allow one to remodel the collagen matrix and create favorable conditions for DFs functions, whereas the cultivated autologous dermal fibroblasts replenish the pool of mature DFs decreasing with age and are responsible for the synthesis of components of the dermal extracellular matrix. Finally, the use of autological platelet-rich plasma (PRP) enables to maintenance of the achieved results by stimulating DF function. It has been shown that growth factors/cytokines contained in α-granules of platelets injected into the skin bind to the corresponding transmembrane receptors on the surface of DFs and stimulate their synthetic activity. Thus, the consecutive, step-by-step application of the described methods of regenerative medicine amplifies the effect on the molecular and cellular aging processes and thereby allows one to optimize and prolong the clinical results of skin rejuvenation.
Collapse
Affiliation(s)
- Alla Zorina
- The Human Stem Cells Institute, Moscow 119333, Russia
- SKINCELL LLC, Moscow 119333, Russia
| | - Vadim Zorin
- The Human Stem Cells Institute, Moscow 119333, Russia
- SKINCELL LLC, Moscow 119333, Russia
| | - Artur Isaev
- The Human Stem Cells Institute, Moscow 119333, Russia
| | - Dmitry Kudlay
- Department of Pharmacology, The I.M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
| | - Maria Vasileva
- The N.N. Blokhin National Medical Research Oncology Center, The Ministry of Health of Russia, Moscow 115478, Russia
| | - Pavel Kopnin
- The N.N. Blokhin National Medical Research Oncology Center, The Ministry of Health of Russia, Moscow 115478, Russia
| |
Collapse
|
175
|
Tomasso A, Koopmans T, Lijnzaad P, Bartscherer K, Seifert AW. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys). SCIENCE ADVANCES 2023; 9:eadf2331. [PMID: 37126559 PMCID: PMC10132760 DOI: 10.1126/sciadv.adf2331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although most mammals heal injured tissues and organs with scarring, spiny mice (Acomys) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring (Mus) and regenerating (Acomys) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
Collapse
Affiliation(s)
- Antonio Tomasso
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| | - Tim Koopmans
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
176
|
Wang L, Liu F, Zhai X, Dong W, Wei W, Hu Z. An adhesive gelatin-coated small intestinal submucosa composite hydrogel dressing aids wound healing. Int J Biol Macromol 2023; 241:124622. [PMID: 37119906 DOI: 10.1016/j.ijbiomac.2023.124622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
It is a challenging clinical task to determine how to repair large-area skin defects better. Traditional wound dressings (e.g., cotton and gauze) can only be used as a dressing; consequently, there is an increasing demand for wound dressings with additional properties (i.e., antibacterial and pro-repair) in clinical practice. In this study, a composite hydrogel with o-nitrobenzene-modified gelatin-coated decellularized small intestinal submucosa (GelNB@SIS) was designed for the repair of skin injuries. SIS is a natural extracellular matrix with a 3D microporous structure and also contains high levels of growth factors and collagen. GelNB provides this material photo-triggering tissue adhesive property. The structure, tissue adhesion, cytotoxicity, and bioactivity to cells were investigated. Based on in vivo study and histological analysis, we found the combination of GelNB and SIS improved the healing process by promoting vascular renewal, dermal remodeling, and epidermal regeneration. Based on our findings, GelNB@SIS is a promising candidate for tissue repair applications.
Collapse
Affiliation(s)
- Lu Wang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Fengling Liu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xinrang Zhai
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Wei
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Zhenhua Hu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
177
|
Koçak P, Unsal N, Canikyan S, Kul Y, Cohen SR, Tiryaki T, Duncan D, Schlaudraff KU, Ascher B, Tiryaki TE. The Effect of Hybrosome (Umbilical Cord Blood Exosome-Liposome Hybrid Vesicles) on Human Dermal Cells In Vitro. Aesthet Surg J Open Forum 2023; 5:ojad039. [PMID: 37214180 PMCID: PMC10195566 DOI: 10.1093/asjof/ojad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Wound healing is a process that involves multiple physiological steps, and despite the availability of various wound treatment methods, their effectiveness is still limited due to several factors, including cost, efficiency, patient-specific requirements, and side effects. In recent years, nanovesicles called exosomes have gained increasing attention as a potential wound care solution due to their unique cargo components which enable cell-to-cell communication and regulate various biological processes. Umbilical cord blood plasma (UCBP) exosomes have shown promise in triggering beneficial signaling pathways that aid in cell proliferation and wound healing. However, there is still very limited information about the wound-healing effect of UCBP exosomes in the literature. Objectives The primary objective of this study was to investigate the "hybrosome" technology generated with calf UCBP-derived exosome-liposome combination. Methods The authors developed hybrosome technology by fusing cord blood exosome membranes with liposomes. Nanovesicle characterization, cell proliferation assay, wound-healing scratch assay, immunohistochemistry analysis, anti-inflammation assay, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay, and cellular uptake studies were performed using the novel hybrid exosomes. Results Experimental results showed that hybrosome increases cell proliferation and migration by 40% to 50%, depending on the dose, and induces an anti-inflammatory effect on different cell lines as well as increased wound healing-related gene expression levels in dermal cells in vitro. All in all, this research widens the scope of wound-healing therapeutics to the novel hybrosome technology. Conclusions UCBP-based applications have the potential for wound treatments and are promising in the development of novel therapies. This study shows that hybrosomes have outstanding abilities in wound healing using in vitro approaches. Level of Evidence 3
Collapse
Affiliation(s)
| | | | | | | | | | - Tunç Tiryaki
- Corresponding Author: Dr Tunc Tiryaki, 120 Sloane Street, London, UK. E-mail: ; Instagram: drtunctiryaki
| | | | | | | | | |
Collapse
|
178
|
Castillo V, Díaz-Astudillo P, Corrales-Orovio R, San Martín S, Egaña JT. Comprehensive Characterization of Tissues Derived from Animals at Different Regenerative Stages: A Comparative Analysis between Fetal and Adult Mouse Skin. Cells 2023; 12:cells12091215. [PMID: 37174615 PMCID: PMC10177150 DOI: 10.3390/cells12091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Tissue regeneration capabilities vary significantly throughout an organism's lifespan. For example, mammals can fully regenerate until they reach specific developmental stages, after which they can only repair the tissue without restoring its original architecture and function. The high regenerative potential of fetal stages has been attributed to various factors, such as stem cells, the immune system, specific growth factors, and the presence of extracellular matrix molecules upon damage. To better understand the local differences between regenerative and reparative tissues, we conducted a comparative analysis of skin derived from mice at regenerative and reparative stages. Our findings show that both types of skin differ in their molecular composition, structure, and functionality. We observed a significant increase in cellular density, nucleic acid content, neutral lipid density, Collagen III, and glycosaminoglycans in regenerative skin compared with reparative skin. Additionally, regenerative skin had significantly higher porosity, metabolic activity, water absorption capacity, and elasticity than reparative skin. Finally, our results also revealed significant differences in lipid distribution, extracellular matrix pore size, and proteoglycans between the two groups. This study provides comprehensive data on the molecular and structural clues that enable full tissue regeneration in fetal stages, which could aid in developing new biomaterials and strategies for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Valentina Castillo
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
179
|
Pærregaard SI, Wulff L, Schussek S, Niss K, Mörbe U, Jendholm J, Wendland K, Andrusaite AT, Brulois KF, Nibbs RJB, Sitnik K, Mowat AM, Butcher EC, Brunak S, Agace WW. The small and large intestine contain related mesenchymal subsets that derive from embryonic Gli1 + precursors. Nat Commun 2023; 14:2307. [PMID: 37085516 PMCID: PMC10121680 DOI: 10.1038/s41467-023-37952-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
The intestinal lamina propria contains a diverse network of fibroblasts that provide key support functions to cells within their local environment. Despite this, our understanding of the diversity, location and ontogeny of fibroblasts within and along the length of the intestine remains incomplete. Here we show that the small and large intestinal lamina propria contain similar fibroblast subsets that locate in specific anatomical niches. Nevertheless, we find that the transcriptional profile of similar fibroblast subsets differs markedly between the small intestine and colon suggesting region specific functions. We perform in vivo transplantation and lineage-tracing experiments to demonstrate that adult intestinal fibroblast subsets, smooth muscle cells and pericytes derive from Gli1-expressing precursors present in embryonic day 12.5 intestine. Trajectory analysis of single cell RNA-seq datasets of E12.5 and adult mesenchymal cells suggest that adult smooth muscle cells and fibroblasts derive from distinct embryonic intermediates and that adult fibroblast subsets develop in a linear trajectory from CD81+ fibroblasts. Finally, we provide evidence that colonic subepithelial PDGFRαhi fibroblasts comprise several functionally distinct populations that originate from an Fgfr2-expressing fibroblast intermediate. Our results provide insights into intestinal stromal cell diversity, location, function, and ontogeny, with implications for intestinal development and homeostasis.
Collapse
Affiliation(s)
- Simone Isling Pærregaard
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Line Wulff
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Sophie Schussek
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Urs Mörbe
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Johan Jendholm
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | | | - Anna T Andrusaite
- Institute of Infection, immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Kevin F Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Robert J B Nibbs
- Institute of Infection, immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Katarzyna Sitnik
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Allan McI Mowat
- Institute of Infection, immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and the Palo Alto Veterans Institute for Research (PAVIR), Palo Alto, CA, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - William W Agace
- Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark.
- Immunology Section, Lund University, Lund, 221 84, Sweden.
| |
Collapse
|
180
|
Cai X, Han M, Lou F, Sun Y, Yin Q, Sun L, Wang Z, Li X, Zhou H, Xu Z, Wang H, Deng S, Zheng X, Zhang T, Li Q, Zhou B, Wang H. Tenascin C + papillary fibroblasts facilitate neuro-immune interaction in a mouse model of psoriasis. Nat Commun 2023; 14:2004. [PMID: 37037861 PMCID: PMC10086024 DOI: 10.1038/s41467-023-37798-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Dermal fibroblasts and cutaneous nerves are important players in skin diseases, while their reciprocal roles during skin inflammation have not been characterized. Here we identify an inflammation-induced subset of papillary fibroblasts that promotes aberrant neurite outgrowth and psoriasiform skin inflammation by secreting the extracellular matrix protein tenascin-C (TNC). Single-cell analysis of fibroblast lineages reveals a Tnc+ papillary fibroblast subset with pro-axonogenesis and neuro-regulation transcriptomic hallmarks. TNC overexpression in fibroblasts boosts neurite outgrowth in co-cultured neurons, while fibroblast-specific TNC ablation suppresses hyperinnervation and alleviates skin inflammation in male mice modeling psoriasis. Dermal γδT cells, the main producers of type 17 pathogenic cytokines, frequently contact nerve fibers in mouse psoriasiform lesions and are likely modulated by postsynaptic signals. Overall, our results highlight the role of an inflammation-responsive fibroblast subset in facilitating neuro-immune synapse formation and suggest potential avenues for future therapeutic research.
Collapse
Affiliation(s)
- Xiaojie Cai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Maoying Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiangxiao Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Hong Zhou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Hong Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xichen Zheng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Taiyu Zhang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
181
|
Griffin MF, Talbott HE, Guardino NJ, Guo JL, Spielman AF, Chen K, Parker JBL, Mascharak S, Henn D, Liang N, King M, Cotterell AC, Bauer-Rowe KE, Abbas DB, Diaz Deleon NM, Sivaraj D, Fahy EJ, Downer M, Akras D, Berry C, Cook J, Quarto N, Klein OD, Lorenz HP, Gurtner GC, Januszyk M, Wan DC, Longaker MT. Piezo inhibition prevents and rescues scarring by targeting the adipocyte to fibroblast transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535302. [PMID: 37066136 PMCID: PMC10103999 DOI: 10.1101/2023.04.03.535302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to Piezo -mediated mechanosensing to drive wound fibrosis. We establish that mechanics alone are sufficient to drive adipocyte-to- fibroblast conversion. By leveraging clonal-lineage-tracing in combination with scRNA-seq, Visium, and CODEX, we define a "mechanically naïve" fibroblast-subpopulation that represents a transcriptionally intermediate state between adipocytes and scar-fibroblasts. Finally, we show that Piezo1 or Piezo2 -inhibition yields regenerative healing by preventing adipocytes' activation to fibroblasts, in both mouse-wounds and a novel human-xenograft-wound model. Importantly, Piezo1 -inhibition induced wound regeneration even in pre-existing established scars, a finding that suggests a role for adipocyte-to-fibroblast transition in wound remodeling, the least-understood phase of wound healing. Adipocyte-to-fibroblast transition may thus represent a therapeutic target for minimizing fibrosis via Piezo -inhibition in organs where fat contributes to fibrosis.
Collapse
|
182
|
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41:374-403. [PMID: 36917948 DOI: 10.1016/j.ccell.2023.02.016] [Citation(s) in RCA: 970] [Impact Index Per Article: 485.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Cancers represent complex ecosystems comprising tumor cells and a multitude of non-cancerous cells, embedded in an altered extracellular matrix. The tumor microenvironment (TME) includes diverse immune cell types, cancer-associated fibroblasts, endothelial cells, pericytes, and various additional tissue-resident cell types. These host cells were once considered bystanders of tumorigenesis but are now known to play critical roles in the pathogenesis of cancer. The cellular composition and functional state of the TME can differ extensively depending on the organ in which the tumor arises, the intrinsic features of cancer cells, the tumor stage, and patient characteristics. Here, we review the importance of the TME in each stage of cancer progression, from tumor initiation, progression, invasion, and intravasation to metastatic dissemination and outgrowth. Understanding the complex interplay between tumor cell-intrinsic, cell-extrinsic, and systemic mediators of disease progression is critical for the rational development of effective anti-cancer treatments.
Collapse
Affiliation(s)
- Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland; Agora Cancer Center Lausanne, and Swiss Cancer Center Léman, 1011 Lausanne, Switzerland.
| |
Collapse
|
183
|
Zhu Z, Sun S, Jiang T, Zhang L, Chen M, Chen S. A double-edged sword of platelet-derived extracellular vesicles in tissues, injury or repair: The current research overview. Tissue Cell 2023; 82:102066. [PMID: 36924675 DOI: 10.1016/j.tice.2023.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Extracellular vesicles (EVs) are vesicular bodies with a double-layered membrane structure that are detached from the cell membrane or secreted by the cells. EVs secreted by platelets account for the main part in the blood circulation, which account for about 30% or even more. Many types of cells are regulated by PEVs, including endothelial cells, leukocytes, smooth muscle cells, etc. Nevertheless, despite the growing interest in the study of extracellular vesicles, there are still only a few studies on the role of PEVs. Therefore, this overview mainly focuses on one method of isolation and the functions of PEVs in tissues found so far, including promoting tissue repair and mediating tissue damage, which can be used for researchers to continue to explore the role of PEVs in other fields.
Collapse
Affiliation(s)
- Zepeng Zhu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Tiancheng Jiang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Medical School, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
184
|
Napolitano F, Postiglione L, Mormile I, Barrella V, de Paulis A, Montuori N, Rossi FW. Water from Nitrodi’s Spring Induces Dermal Fibroblast and Keratinocyte Activation, Thus Promoting Wound Repair in the Skin: An In Vitro Study. Int J Mol Sci 2023; 24:ijms24065357. [PMID: 36982430 PMCID: PMC10049109 DOI: 10.3390/ijms24065357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The Romans knew of Nitrodi’s spring on the island of Ischia more than 2000 years ago. Although the health benefits attributed to Nitrodi’s water are numerous, the underlying mechanisms are still not understood. In this study, we aim to analyze the physicochemical properties and biological effects of Nitrodi’s water on human dermal fibroblasts to determine whether the water exerts in vitro effects that could be relevant to skin wound healing. The results obtained from the study indicate that Nitrodi’s water exerts strong promotional effects on dermal fibroblast viability and a significant stimulatory activity on cell migration. Nitrodi’s water induces alpha-SMA expression in dermal fibroblasts, thus promoting their transition to myofibroblast-protein ECM deposition. Furthermore, Nitrodi’s water reduces intracellular reactive oxygen species (ROS), which play an important role in human skin aging and dermal damage. Unsurprisingly, Nitrodi’s water has significant stimulatory effects on the cell proliferation of epidermal keratinocytes and inhibits the basal ROS production but enhances their response to the oxidative stress caused by external stimuli. Our results will contribute to the development of human clinical trials and further in vitro studies to identify inorganic and/or organic compounds responsible for pharmacological effects.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Translational Medical Sciences, University Federico II, 80131 Naples, Italy; (F.N.); (L.P.); (I.M.); (A.d.P.); (N.M.)
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University Federico II, 80131 Naples, Italy; (F.N.); (L.P.); (I.M.); (A.d.P.); (N.M.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University Federico II, 80131 Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University Federico II, 80131 Naples, Italy; (F.N.); (L.P.); (I.M.); (A.d.P.); (N.M.)
| | | | - Amato de Paulis
- Department of Translational Medical Sciences, University Federico II, 80131 Naples, Italy; (F.N.); (L.P.); (I.M.); (A.d.P.); (N.M.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University Federico II, 80131 Naples, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University Federico II, 80131 Naples, Italy; (F.N.); (L.P.); (I.M.); (A.d.P.); (N.M.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University Federico II, 80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University Federico II, 80131 Naples, Italy; (F.N.); (L.P.); (I.M.); (A.d.P.); (N.M.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746-3175
| |
Collapse
|
185
|
Lim SBH, Wei S, Tan AHM, van Steensel MAM, Lim X. Lrig1-expressing epidermal progenitors require SCD1 to maintain the dermal papilla niche. Sci Rep 2023; 13:4027. [PMID: 36899019 PMCID: PMC10006094 DOI: 10.1038/s41598-023-30411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Niche cells are widely known to regulate stem/progenitor cells in many mammalian tissues. In the hair, dermal papilla niche cells are well accepted to regulate hair stem/progenitor cells. However, how niche cells themselves are maintained is largely unknown. We present evidence implicating hair matrix progenitors and the lipid modifying enzyme, Stearoyl CoA Desaturase 1, in the regulation of the dermal papilla niche during the anagen-catagen transition of the mouse hair cycle. Our data suggest that this takes place via autocrine Wnt signalling and paracrine Hedgehog signalling. To our knowledge, this is the first report demonstrating a potential role for matrix progenitor cells in maintaining the dermal papilla niche.
Collapse
Affiliation(s)
- Sophia Beng Hui Lim
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore
- NUS Graduate School, National University of Singapore, Singapore, 119077, Republic of Singapore
| | - Shang Wei
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - Maurice A M van Steensel
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Xinhong Lim
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore.
| |
Collapse
|
186
|
Phan QM, Salz L, Kindl SS, Lopez JS, Thompson SM, Makkar J, Driskell IM, Driskell RR. Lineage Commitment of Dermal Fibroblast Progenitors is Mediated by Chromatin De-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531478. [PMID: 36945417 PMCID: PMC10028926 DOI: 10.1101/2023.03.07.531478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.
Collapse
Affiliation(s)
- Quan M. Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Lucia Salz
- North Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Sam S. Kindl
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jayden S. Lopez
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sean M. Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jasson Makkar
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Iwona M. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R. Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
- Center for Reproductive Biology, Washington State University, Pullman, WA
| |
Collapse
|
187
|
Arpinati L, Scherz-Shouval R. From gatekeepers to providers: regulation of immune functions by cancer-associated fibroblasts. Trends Cancer 2023; 9:421-443. [PMID: 36870916 DOI: 10.1016/j.trecan.2023.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are major protumorigenic components of the tumor microenvironment in solid cancers. CAFs are heterogeneous, consisting of multiple subsets that display diverse functions. Recently, CAFs have emerged as major promoters of immune evasion. CAFs favor T cell exclusion and exhaustion, promote recruitment of myeloid-derived suppressor cells, and induce protumoral phenotypic shifts in macrophages and neutrophils. With the growing appreciation of CAF heterogeneity came the understanding that different CAF subpopulations may be driving distinct immune-regulatory effects, interacting with different cell types, and perhaps even driving opposing effects on malignancy. In this review we discuss the current understanding of CAF-immune interactions, their effect on tumor progression and therapeutic response, and the possibility of exploiting CAF-immune interactions as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
188
|
Mateus AP, Costa RA, Sadoul B, Bégout ML, Cousin X, Canario AV, Power DM. Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108647. [PMID: 36842641 DOI: 10.1016/j.fsi.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita A Costa
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bastien Sadoul
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France; DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| | - Marie-Laure Bégout
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Adelino Vm Canario
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
189
|
Collins FL, Roelofs AJ, Symons RA, Kania K, Campbell E, Collie-Duguid ESR, Riemen AHK, Clark SM, De Bari C. Taxonomy of fibroblasts and progenitors in the synovial joint at single-cell resolution. Ann Rheum Dis 2023; 82:428-437. [PMID: 36414376 PMCID: PMC9933170 DOI: 10.1136/ard-2021-221682] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Fibroblasts in synovium include fibroblast-like synoviocytes (FLS) in the lining and Thy1+ connective-tissue fibroblasts in the sublining. We aimed to investigate their developmental origin and relationship with adult progenitors. METHODS To discriminate between Gdf5-lineage cells deriving from the embryonic joint interzone and other Pdgfrα-expressing fibroblasts and progenitors, adult Gdf5-Cre;Tom;Pdgfrα-H2BGFP mice were used and cartilage injury was induced to activate progenitors. Cells were isolated from knees, fibroblasts and progenitors were sorted by fluorescence-activated cell-sorting based on developmental origin, and analysed by single-cell RNA-sequencing. Flow cytometry and immunohistochemistry were used for validation. Clonal-lineage mapping was performed using Gdf5-Cre;Confetti mice. RESULTS In steady state, Thy1+ sublining fibroblasts were of mixed ontogeny. In contrast, Thy1-Prg4+ lining fibroblasts predominantly derived from the embryonic joint interzone and included Prg4-expressing progenitors distinct from molecularly defined FLS. Clonal-lineage tracing revealed compartmentalisation of Gdf5-lineage fibroblasts between lining and sublining. Following injury, lining hyperplasia resulted from proliferation and differentiation of Prg4-expressing progenitors, with additional recruitment of non-Gdf5-lineage cells, into FLS. Consistent with this, a second population of proliferating cells, enriched near blood vessels in the sublining, supplied activated multipotent cells predicted to give rise to Thy1+ fibroblasts, and to feed into the FLS differentiation trajectory. Transcriptional programmes regulating fibroblast differentiation trajectories were uncovered, identifying Sox5 and Foxo1 as key FLS transcription factors in mice and humans. CONCLUSIONS Our findings blueprint a cell atlas of mouse synovial fibroblasts and progenitors in healthy and injured knees, and provide novel insights into the cellular and molecular principles governing the organisation and maintenance of adult synovial joints.
Collapse
Affiliation(s)
- Fraser L Collins
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Rebecca A Symons
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Karolina Kania
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Ewan Campbell
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - Anna H K Riemen
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Susan M Clark
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
190
|
Huang R, Jin M, Liu Y, Lu Y, Zhang M, Yan P, Xian S, Wang S, Zhang H, Zhang X, Chen S, Lu B, Yang Y, Huang Z, Liu X, Ji S. Global trends in research of fibroblasts associated with rheumatoid diseases in the 21st century: A bibliometric analysis. Front Immunol 2023; 14:1098977. [PMID: 36845163 PMCID: PMC9950622 DOI: 10.3389/fimmu.2023.1098977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Background Rheumatoid Diseases (RDs) are a group of systemic auto-immune diseases that are characterized by chronic synovitis, and fibroblast-like synoviocytes (FLSs) play an important role in the occurrence and progression of synovitis. Our study is the first to adopt bibliometric analysis to identify the global scientific production and visualize its current distribution in the 21st century, providing insights for future research through the analysis of themes and keywords. Methods We obtained scientific publications from the core collection of the Web of Science (WoS) database, and the bibliometric analysis and visualization were conducted by Biblioshiny software based on R-bibliometrix. Results From 2000 to 2022, a total of 3,391 publications were reviewed. China is the most prolific country (n = 2601), and the USA is the most cited country (cited 7225 times). The Center of Experimental Rheumatology at University Hospital Zürich supported the maximum number of articles (n = 40). Steffen Gay published 85 records with 6263 total citations, perhaps making him the most impactful researcher. Arthritis and Rheumatism, Annals of Rheumatic Diseases, and Rheumatology are the top three journals. Conclusion The current study revealed that rheumatoid disease (RD)-related fibroblast studies are growing. Based on the bibliometric analysis, we summarized three important topics: activation of different subsets of fibroblasts; regulation of fibroblast function; and in vitro validation of existing discoveries. They are all valuable directions, which provide reference and guidance for researchers and clinicians engaged in the research of RDs and fibroblasts.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of People's Liberation Army (PLA), Second Military Medical University, Shanghai, China
| | - Xinkun Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Shaofeng Chen
- Department of Orthopedics, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Shizhao Ji, ; Zongqiang Huang, ; Xin Liu,
| | - Xin Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Shizhao Ji, ; Zongqiang Huang, ; Xin Liu,
| | - Shizhao Ji
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shizhao Ji, ; Zongqiang Huang, ; Xin Liu,
| |
Collapse
|
191
|
Zeng F, Gao M, Liao S, Zhou Z, Luo G, Zhou Y. Role and mechanism of CD90 + fibroblasts in inflammatory diseases and malignant tumors. Mol Med 2023; 29:20. [PMID: 36747131 PMCID: PMC9900913 DOI: 10.1186/s10020-023-00616-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Fibroblasts are highly heterogeneous mesenchymal stromal cells, and different fibroblast subpopulations play different roles. A subpopulation of fibroblasts expressing CD90, a 25-37 kDa glycosylphosphatidylinositol anchored protein, plays a dominant role in the fibrotic and pro-inflammatory state. In this review, we focused on CD90+ fibroblasts, and their roles and possible mechanisms in disease processes. First, the main biological functions of CD90+ fibroblasts in inducing angiogenesis and maintaining tissue homeostasis are described. Second, the role and possible mechanism of CD90+ fibroblasts in inducing pulmonary fibrosis, inflammatory arthritis, inflammatory skin diseases, and scar formation are introduced, and we discuss how CD90+ cancer-associated fibroblasts might serve as promising cancer biomarkers. Finally, we propose future research directions related to CD90+ fibroblasts. This review will provide a theoretical basis for the diagnosis and treatment CD90+ fibroblast-related disease.
Collapse
Affiliation(s)
- Feng Zeng
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078 Hunan China
| | - Mengxiang Gao
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078 Hunan China
| | - Shan Liao
- grid.216417.70000 0001 0379 7164Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Zihua Zhou
- grid.508130.fDepartment of Oncology, Loudi Central Hospital, Loudi, 417000 China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, No. 88 of Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
192
|
Ge W, Sun YC, Qiao T, Liu HX, He TR, Wang JJ, Chen CL, Cheng SF, Dyce PW, De Felici M, Shen W. Murine skin-derived multipotent papillary dermal fibroblast progenitors show germline potential in vitro. Stem Cell Res Ther 2023; 14:17. [PMID: 36737797 PMCID: PMC9898921 DOI: 10.1186/s13287-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuan-Chao Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Xia Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Lei Chen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
193
|
Fascia Layer-A Novel Target for the Application of Biomaterials in Skin Wound Healing. Int J Mol Sci 2023; 24:ijms24032936. [PMID: 36769257 PMCID: PMC9917695 DOI: 10.3390/ijms24032936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As the first barrier of the human body, the skin has been of great concern for its wound healing and regeneration. The healing of large, refractory wounds is difficult to be repaired by cell proliferation at the wound edges and usually requires manual intervention for treatment. Therefore, therapeutic tools such as stem cells, biomaterials, and cytokines have been applied to the treatment of skin wounds. Skin microenvironment modulation is a key technology to promote wound repair and skin regeneration. In recent years, a series of novel bioactive materials that modulate the microenvironment and cell behavior have been developed, showing the ability to efficiently facilitate wound repair and skin attachment regeneration. Meanwhile, our lab found that the fascial layer has an indispensable role in wound healing and repair, and this review summarizes the research progress of related bioactive materials and their role in wound healing.
Collapse
|
194
|
Spielman AF, Griffin MF, Parker J, Cotterell AC, Wan DC, Longaker MT. Beyond the Scar: A Basic Science Review of Wound Remodeling. Adv Wound Care (New Rochelle) 2023; 12:57-67. [PMID: 35658581 DOI: 10.1089/wound.2022.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significance: Increasing development of experimental animal models has allowed for the study of scar formation. However, many pathophysiological unknowns remain in the longest stage of healing, the remodeling stage, which may continue for a year or more. The wound healing process results in different types of scarring classified as normal or pathological depending on failures at each stage. Failures can also occur during wound remodeling, but the molecular mechanisms driving the wound remodeling process have yet to be investigated. Recent Advances: While the current understanding of wound repair is based on investigations of acute healing, these experimental models have informed knowledge of key components of remodeling. This review examines the components that contribute to collagen organization and the final scar, including cell types, their regulation, and signaling pathways. Dysregulation in any one of these components causes pathologic healing. Critical Issues and Future Directions: As wounds continue to remodel months to years after reepithelialization, new models to better understand long-term remodeling will be critical for improving healing outcomes. Further investigation of the contributions of fibroblasts and cell signaling pathways involved during remodeling as well as their potential failures may inform new approaches in promoting regenerative healing beyond reepithelialization.
Collapse
Affiliation(s)
- Amanda F Spielman
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Michelle F Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Jennifer Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
195
|
Zhang KW, Jia Y, Li YY, Guo DY, Li XX, Hu K, Qian XX, Chen ZH, Wu JJ, Yuan ZD, Yuan FL. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol 2023; 238:355-365. [PMID: 36571294 DOI: 10.1002/jcp.30936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dan-Yang Guo
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Xiao Li
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Kai Hu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Xiao-Xi Qian
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Affiliated Hospital of Jiangnan University, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
196
|
Oak ASW, Cotsarelis G. Wound-Induced Hair Neogenesis: A Portal to the Development of New Therapies for Hair Loss and Wound Regeneration. Cold Spring Harb Perspect Biol 2023; 15:a041239. [PMID: 36123030 PMCID: PMC9899649 DOI: 10.1101/cshperspect.a041239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult mammals retain the remarkable ability to regenerate hair follicles after wounding. Wound-induced hair neogenesis (WIHN) in many ways recapitulates embryogenesis. The origin of the stem cells that give rise to a nascent hair follicle after wounding and the role of mesenchymal cells and signaling pathways responsible for this regenerative phenomenon are slowly being elucidated. WIHN provides a potential therapeutic window for manipulating cell fate by the introduction of factors during the wound healing process to enhance hair follicle formation.
Collapse
Affiliation(s)
- Allen S W Oak
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
197
|
Parker JB, Griffin MF, Spielman AF, Wan DC, Longaker MT. Exploring the Overlooked Roles and Mechanisms of Fibroblasts in the Foreign Body Response. Adv Wound Care (New Rochelle) 2023; 12:85-96. [PMID: 35819293 PMCID: PMC10081717 DOI: 10.1089/wound.2022.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
Significance: Foreign body response (FBR), wherein a fibrotic capsule forms around an implanted structure, is a common surgical complication that often leads to pain, discomfort, and eventual revision surgeries. Although believed to have some mechanistic overlap with normal wound healing, much remains to be discovered about the specific mechanism by which this occurs. Recent Advances: Current understanding of FBR has focused on the roles of the immune system and the biomaterial, both major contributors to FBR. However, another key player, the fibroblast, is often overlooked. This review summarizes key contributors of FBR, focusing on the roles of fibroblasts. As much remains to be discovered about fibroblasts' specific roles in FBR, we draw on current knowledge of fibroblast subpopulations and functions during wound healing. We also provide an overview on candidate biomaterials and signaling pathways involved in FBR. Critical Issues and Future Directions: While the global implantable medical devices market is considerable and continues to appreciate in value, FBR remains one of the most common surgical implant complications. In parallel with the continued development of candidate biomaterials, further exploration of potential fibroblast subpopulations at a transcriptional level would provide key insights into further understanding the underlying mechanisms by which fibrous encapsulation occurs, and unveil novel directions for antifibrotic and regenerative therapies in the future.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Amanda F. Spielman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
198
|
Xue Y, Lin L, Li Q, Liu K, Hu M, Ye J, Cao J, Zhai J, Zheng F, Wang Y, Zhang T, Du L, Gao C, Wang G, Wang X, Qin J, Liao X, Kong X, Sorokin L, Shi Y, Wang Y. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201949. [PMID: 36507562 PMCID: PMC9896058 DOI: 10.1002/advs.202201949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue-specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl-coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6β4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1-/- mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1-/- mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity.
Collapse
Affiliation(s)
- Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tao Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xinhua Liao
- School of Life SciencesShanghai UniversityShanghai200444China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and PathobiochemistryCells in Motion Interfaculty Centre (CIMIC)University of MünsterD‐48149MünsterGermany
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- The Third Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouJiangsu215123China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
199
|
Rai V, Moellmer R, Agrawal DK. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer. Mol Biol Rep 2023; 50:1913-1929. [PMID: 36528662 DOI: 10.1007/s11033-022-08107-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Chronic diabetic foot ulcers (DFUs) are an important clinical issue faced by clinicians despite the advanced treatment strategies consisting of wound debridement, off-loading, medication, wound dressings, and keeping the ulcer clean. Non-healing DFUs are associated with the risk of amputation, increased morbidity and mortality, and economic stress. Neo-angiogenesis and granulation tissue formation are necessary for physiological DFU healing and acute inflammation play a key role in healing. However, chronic inflammation in association with diabetic complications holds the ulcer in the inflammatory phase without progressing to the resolution phase contributing to non-healing. Fibroblasts acquiring myofibroblasts phenotype contribute to granulation tissue formation and angiogenesis. However, recent studies suggest the presence of five subtypes of fibroblast population and of changing density in non-healing DFUs. Further, the association of fibroblast plasticity and heterogeneity with wound healing suggests that the switch in fibroblast phenotype may affect wound healing. The fibroblast phenotype shift and altered function may be due to the presence of chronic inflammation or a diabetic wound microenvironment. This review focuses on the role of fibroblast plasticity and heterogeneity, the effect of hyperglycemia and inflammatory cytokines on fibroblasts, and the interaction of fibroblasts with other cells in diabetic wound microenvironment in the perspective of DFU healing. Next, we summarize secretory, angiogenic, and angiostatic phenotypes of fibroblast which have been discussed in other organ systems but not in relation to DFUs followed by the perspective on the role of their phenotypes in promoting angiogenesis in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA.
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, 91766, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA
| |
Collapse
|
200
|
Pappalardo A, Alvarez Cespedes D, Fang S, Herschman AR, Jeon EY, Myers KM, Kysar JW, Abaci HE. Engineering edgeless human skin with enhanced biomechanical properties. SCIENCE ADVANCES 2023; 9:eade2514. [PMID: 36706190 PMCID: PMC9882972 DOI: 10.1126/sciadv.ade2514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
Despite the advancements in skin bioengineering, 3D skin constructs are still produced as flat tissues with open edges, disregarding the fully enclosed geometry of human skin. Therefore, they do not effectively cover anatomically complex body sites, e.g., hands. Here, we challenge the prevailing paradigm by engineering the skin as a fully enclosed 3D tissue that can be shaped after a body part and seamlessly transplanted as a biological clothing. Our wearable edgeless skin constructs (WESCs) show enhanced dermal extracellular matrix (ECM) deposition and mechanical properties compared to conventional constructs. WESCs display region-specific cell/ECM alignment, as well as physiologic anisotropic mechanical properties. WESCs replace the skin in full-thickness wounds of challenging body sites (e.g., mouse hindlimbs) with minimal suturing and shorter surgery time. This study provides a compelling technology that may substantially improve wound care and suggests that the recapitulation of the tissue macroanatomy can lead to enhanced biological function.
Collapse
Affiliation(s)
- Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Alvarez Cespedes
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Abigail R. Herschman
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Eun Young Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristin M. Myers
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|