151
|
Li X, Gong L, Gu H. Regulation of immune system development and function by Cbl-mediated ubiquitination. Immunol Rev 2020; 291:123-133. [PMID: 31402498 DOI: 10.1111/imr.12789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Ubiquitination is a form of posttranslational protein modification that affects the activity of target proteins by regulating their intracellular degradation, trafficking, localization, and association with other regulators. Recent studies have placed protein ubiquitination as an important regulatory mode to control immune system development, function, and pathogenesis. In this review, we will mainly update the research progress from our laboratory on the roles of the Cbl family of E3 ubiquitin ligases in the development and function of lymphocytes and non-lymphoid cells. In addition, we will highlight our current understanding of the mechanisms used by this family of proteins, especially Cbl and Cbl-b, to co-ordinately regulate the function of various receptors and transcription factors in the context of immune regulation and diseases.
Collapse
Affiliation(s)
- Xin Li
- Kisoji Biotechnologies, Laval, Quebec, Canada
| | - Liying Gong
- Institut de Recherches Cliniques de Montreàl, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hua Gu
- Institut de Recherches Cliniques de Montreàl, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
152
|
Song X, Akasaka H, Wang H, Abbasgholizadeh R, Shin JH, Zang F, Chen J, Logsdon CD, Maitra A, Bean AJ, Wang H. Hematopoietic progenitor kinase 1 down-regulates the oncogenic receptor tyrosine kinase AXL in pancreatic cancer. J Biol Chem 2020; 295:2348-2358. [PMID: 31959629 PMCID: PMC7039544 DOI: 10.1074/jbc.ra119.012186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The oncogenic receptor tyrosine kinase AXL is overexpressed in cancer and plays an important role in carcinomas of multiple organs. However, the mechanisms of AXL overexpression in cancer remain unclear. In this study, using HEK293T, Panc-1, and Panc-28 cells and samples of human pancreatic intraepithelial neoplasia (PanIN), along with several biochemical approaches and immunofluorescence microscopy analyses, we sought to investigate the mechanisms that regulate AXL over-expression in pancreatic ductal adenocarcinoma (PDAC). We found that AXL interacts with hematopoietic progenitor kinase 1 (HPK1) and demonstrate that HPK1 down-regulates AXL and decreases its half-life. The HPK1-mediated AXL degradation was inhibited by the endocytic pathway inhibitors leupeptin, bafilomycin A1, and monensin. HPK1 accelerated the movement of AXL from the plasma membrane to endosomes in pancreatic cancer cells treated with the AXL ligand growth arrest-specific 6 (GAS6). Moreover, HPK1 increased the binding of AXL to the Cbl proto-oncogene (c-Cbl); promoted AXL ubiquitination; decreased AXL-mediated signaling, including phospho-AKT and phospho-ERK signaling; and decreased the invasion capability of PDAC cells. Importantly, we show that AXL expression inversely correlates with HPK1 expression in human PanINs and that patients whose tumors have low HPK1 and high AXL expression levels have shorter survival than those with low AXL or high HPK1 expression (p < 0.001). Our results suggest that HPK1 is a tumor suppressor that targets AXL for degradation via the endocytic pathway. HPK1 loss of function may contribute to AXL overexpression and thereby enhance AXL-dependent downstream signaling and tumor invasion in PDAC.
Collapse
Affiliation(s)
- Xianzhou Song
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Hironari Akasaka
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Reza Abbasgholizadeh
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Ji-Hyun Shin
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Fenglin Zang
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jiayi Chen
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Anirban Maitra
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
153
|
Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel) 2020; 12:cancers12020482. [PMID: 32092958 PMCID: PMC7072236 DOI: 10.3390/cancers12020482] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. Melanoma is usually curable with surgery if detected early, however, treatment options for patients with metastatic melanoma are limited and the five-year survival rate for metastatic melanoma had been 15-20% before the advent of immunotherapy. Treatment with immune checkpoint inhibitors has increased long-term survival outcomes in patients with advanced melanoma to as high as 50% although individual response can vary greatly. A mutation within the MAPK pathway leads to uncontrollable growth and ultimately develops into cancer. The most common driver mutation that leads to this characteristic overactivation in the MAPK pathway is the B-RAF mutation. Current combinations of BRAF and MEK inhibitors that have demonstrated improved patient outcomes include dabrafenib with trametinib, vemurafenib with cobimetinib or encorafenib with binimetinib. Treatment with BRAF and MEK inhibitors has met challenges as patient responses began to drop due to the development of resistance to these inhibitors which paved the way for development of immunotherapies and other small molecule inhibitor approaches to address this. Resistance to these inhibitors continues to push the need to expand our understanding of novel mechanisms of resistance associated with treatment therapies. This review focuses on the current landscape of how resistance occurs with the chronic use of BRAF and MEK inhibitors in BRAF-mutant melanoma and progress made in the fields of immunotherapies and other small molecules when used alone or in combination with BRAF and MEK inhibitors to delay or circumvent the onset of resistance for patients with stage III/IV BRAF mutant melanoma.
Collapse
|
154
|
Barsoum I, Tawedrous E, Faragalla H, Yousef GM. Histo-genomics: digital pathology at the forefront of precision medicine. ACTA ACUST UNITED AC 2020; 6:203-212. [PMID: 30827078 DOI: 10.1515/dx-2018-0064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022]
Abstract
The toughest challenge OMICs face is that they provide extremely high molecular resolution but poor spatial information. Understanding the cellular/histological context of the overwhelming genetic data is critical for a full understanding of the clinical behavior of a malignant tumor. Digital pathology can add an extra layer of information to help visualize in a spatial and microenvironmental context the molecular information of cancer. Thus, histo-genomics provide a unique chance for data integration. In the era of a precision medicine, a four-dimensional (4D) (temporal/spatial) analysis of cancer aided by digital pathology can be a critical step to understand the evolution/progression of different cancers and consequently tailor individual treatment plans. For instance, the integration of molecular biomarkers expression into a three-dimensional (3D) image of a digitally scanned tumor can offer a better understanding of its subtype, behavior, host immune response and prognosis. Using advanced digital image analysis, a larger spectrum of parameters can be analyzed as potential predictors of clinical behavior. Correlation between morphological features and host immune response can be also performed with therapeutic implications. Radio-histomics, or the interface of radiological images and histology is another emerging exciting field which encompasses the integration of radiological imaging with digital pathological images, genomics, and clinical data to portray a more holistic approach to understating and treating disease. These advances in digital slide scanning are not without technical challenges, which will be addressed carefully in this review with quick peek at its future.
Collapse
Affiliation(s)
- Ivraym Barsoum
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Eriny Tawedrous
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Hala Faragalla
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
155
|
Chirino LM, Kumar S, Okumura M, Sterner DE, Mattern M, Butt TR, Kambayashi T. TAM receptors attenuate murine NK-cell responses via E3 ubiquitin ligase Cbl-b. Eur J Immunol 2020; 50:48-55. [PMID: 31531847 PMCID: PMC7769591 DOI: 10.1002/eji.201948204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 01/22/2023]
Abstract
TAM receptors (Tyro3, Axl, and Mer) are receptor tyrosine kinases (RTKs) that are expressed by multiple immune cells including NK cells. Although RTKs typically enhance cellular functions, TAM receptor ligation blocks NK-cell activation. The mechanisms by which RTKs block NK-cell signaling downstream of activating receptors are unknown. In this report, we demonstrate that TAM receptors attenuate NK cell responses via the activity of E3 ubiquitin ligase Casitas B lineage lymphoma b (Cbl-b). Specifically, we show that Tyro3, Axl, and Mer phosphorylate Cbl-b, and Tyro3 ligation activates Cbl-b by phosphorylating tyrosine residues 133 and 363. Ligation of TAM receptors by their ligand Gas6 suppresses activating receptor-stimulated NK-cell functions such as IFN-γ production and degranulation, in a TAM receptor kinase- and Cbl-b-dependent manner. Moreover, Gas6 ligation induces the degradation of LAT1, a transmembrane adaptor protein required for NK cell activating receptor signaling, in WT but not in Cbl-b knock-out NK cells. Together, these results suggest that TAM receptors may attenuate NK-cell function by phosphorylating Cbl-b, which in turn dampens NK-cell activation signaling by promoting the degradation of LAT1. Our data therefore support a mechanism by which RTKs attenuate, rather than stimulate, signaling pathways via the activation of ubiquitin ligases.
Collapse
Affiliation(s)
- Leilani M. Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
156
|
Bald T, Pedde AM, Corvino D, Böttcher JP. The role of NK cell as central communicators in cancer immunity. Adv Immunol 2020; 147:61-88. [DOI: 10.1016/bs.ai.2020.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
157
|
Peeters MJW, Rahbech A, Thor Straten P. TAM-ing T cells in the tumor microenvironment: implications for TAM receptor targeting. Cancer Immunol Immunother 2020; 69:237-244. [PMID: 31664482 PMCID: PMC7000491 DOI: 10.1007/s00262-019-02421-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022]
Abstract
The TAM receptors-TYRO3, AXL, MERTK-are pleiotropically expressed receptors in both healthy and diseased tissue. A complex of the ligands Protein S (PROS1) or Growth Arrest-Specific 6 (GAS6) with apoptotic phosphatidylserine activates the TAM receptors. Hence, this receptor family is essential for the efferocytosis of apoptotic material by antigen-presenting cells. In addition, TAM receptors are expressed by virtually all cells of the tumor microenvironment. They are also potent oncogenes, frequently overexpressed in cancer and involved in survival and therapy resistance. Due to their pro-oncogenic and immune-inhibitory traits, TAM receptors have emerged as promising targets for cancer therapy. Recently, TAM receptors have been described to function as costimulatory molecules on human T cells. TAM receptors' ambivalent functions on many different cell types therefore make therapeutic targeting not straight-forward. In this review we summarize our current knowledge of the function of TAM receptors in the tumor microenvironment. We place particular focus on TAM receptors and the recently unraveled role of MERTK in activated T cells and potential consequences for anti-tumor immunity.
Collapse
Affiliation(s)
- Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 25C, Copenhagen, Denmark.
| | - Anne Rahbech
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 25C, Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 25C, Copenhagen, Denmark
- Inflammation and Cancer Group, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
158
|
Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:81-122. [DOI: 10.1016/bs.ircmb.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
159
|
Tsai CL, Chang JS, Yu MC, Lee CH, Chen TC, Chuang WY, Kuo WL, Lin CC, Lin SM, Hsieh SY. Functional Genomics Identifies Hepatitis-Induced STAT3-TYRO3-STAT3 Signaling as a Potential Therapeutic Target of Hepatoma. Clin Cancer Res 2019; 26:1185-1197. [PMID: 31831556 DOI: 10.1158/1078-0432.ccr-18-3531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/27/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Hepatitis promotes the development and recurrence of hepatocellular carcinoma (HCC). Receptor tyrosine kinases (RTK) play critical roles in the development of many cancers. We explored the potential roles of RTKs in hepatitis-related liver cancers. EXPERIMENTAL DESIGN We conducted loss-of-function screening to elucidate the roles of RTKs in the development of HCC in vitro and in vivo. RESULTS Many RTKs were coexpressed in HCC and were involved in tumor development and growth. Of these, TYRO3 promoted tumor growth and was clinically associated with hepatitis activity and poor prognosis. In mice, chemical-induced hepatitis transcriptionally activated Tyro3 expression via IL-6/IL6R-STAT3 signaling. Moreover, hepatitis-associated apoptotic cells facilitated the presentation of GAS6, a TYRO3 ligand, to further activate TYRO3-mediated signaling. Furthermore, TYRO3 activation elicited intracellular SRC- and STAT3 signaling. In mice, hepatitis and Tyro3 synergistically promoted HCC development. Silencing TYRO3 expression or inhibiting its kinase activity suppressed xenograft HCC growth in nude mice. CONCLUSIONS Many RTKs are simultaneously involved in HCC development. Hepatitis exerts dual effects on the activation of TYRO3-mediated signaling in HCC cells, which further elicits the "TYRO3-STAT3-TYRO3" signaling loop to facilitate tumor growth. Our findings unveil a previously unrecognized link between RTKs and hepatitis-associated HCC and suggest TYRO3 as a marker and therapeutic target for the HCCs with higher hepatitis activity.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-Shou Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chern-Horng Lee
- Department of General Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Liang Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Chun Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
160
|
Zhang P, Zhai Y, Cai Y, Zhao Y, Li Y. Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904156. [PMID: 31566275 DOI: 10.1002/adma.201904156] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Indexed: 05/18/2023]
Abstract
Metastasis is the leading cause of cancer-associated death, with poor prognosis even after extensive treatment. The dormancy of metastatic cancer cells during dissemination or after colony formation is one major reason for treatment failure, as most drugs target cells of active proliferation. Immunotherapy has shown great potential in cancer therapy because the activity of effector cells is less affected by the metabolic status of cancer cells. In addition, metastatic cells out of immunosuppressive tumor microenvironment (TME) are more susceptible to immune clearance, although these cells can achieve immune surveillance evasion via strategies such as platelet and macrophage recruitment. Since nanomaterials themselves or their carried drugs have the capability to modulate the immune system, a great amount of focus has been placed on nanomedicine strategies that leverage immune cells participating the metastatic cascade. These nanomedicines successfully inhibit the tumor metastasis and prolong the survival of model animals. Immune cells that are involved in the metastasis cascade are first summarized and then recent and inspiring strategies and nanomaterials in this growing field are highlighted.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
161
|
Burstyn-Cohen T, Maimon A. TAM receptors, Phosphatidylserine, inflammation, and Cancer. Cell Commun Signal 2019; 17:156. [PMID: 31775787 PMCID: PMC6881992 DOI: 10.1186/s12964-019-0461-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 01/26/2023] Open
Abstract
Abstract The numerous and diverse biological roles of Phosphatidylserine (PtdSer) are featured in this special issue. This review will focus on PtdSer as a cofactor required for stimulating TYRO3, AXL and MERTK – comprising the TAM family of receptor tyrosine kinases by their ligands Protein S (PROS1) and growth-arrest-specific 6 (GAS6) in inflammation and cancer. As PtdSer binding to TAMs is a requirement for their activation, the biological repertoire of PtdSer is now recognized to be broadened to include functions performed by TAMs. These include key homeostatic roles necessary for preserving a healthy steady state in different tissues, controlling inflammation and further additional roles in diseased states and cancer. The impact of PtdSer on inflammation and cancer through TAM signaling is a highly dynamic field of research. This review will focus on PtdSer as a necessary component of the TAM receptor-ligand complex, and for maximal TAM signaling. In particular, interactions between tumor cells and their immediate environment - the tumor microenvironment (TME) are highlighted, as both cancer cells and TME express TAMs and secrete their ligands, providing a nexus for a multifold of cross-signaling pathways which affects both immune cells and inflammation as well as tumor cell biology and growth. Here, we will highlight the current and emerging knowledge on the implications of PtdSer on TAM signaling, inflammation and cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel.
| | - Avi Maimon
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
162
|
Montes-Moreno S, King RL, Oschlies I, Ponzoni M, Goodlad JR, Dotlic S, Traverse-Glehen A, Ott G, Ferry JA, Calaminici M. Update on lymphoproliferative disorders of the gastrointestinal tract: disease spectrum from indolent lymphoproliferations to aggressive lymphomas. Virchows Arch 2019; 476:667-681. [PMID: 31773249 DOI: 10.1007/s00428-019-02704-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
This paper summarizes two sessions of the workshop during the XIX meeting of the European Association for Haematopathology (EAHP) held in Edinburgh in September 2018 dedicated to lymphomas of the gastrointestinal tract. The first session focused on the clinical and pathological features of primary gastrointestinal T cell and NK-cell lymphoproliferative disorders. The distinction between precursor lesions (RCD type 2) and enteropathy-associated T cell lymphoma were stressed, including the discussion of new diagnostic markers for the identification of aberrant phenotypes. Indolent T cell lymphoproliferative disorders of the gastrointestinal tract cases showed phenotypic heterogeneity with novel molecular alterations in few cases, such as STAT3-JAK2 fusion. In addition, novel clonal markers of disease, such as AXL and JAK3 somatic variants support the neoplastic nature of NK-cell enteropathy. The session on gastrointestinal tract B cell lymphoproliferations was dedicated to B cell lymphoproliferative disorders that arise primarily in the gastrointestinal tract (i.e., duodenal-type follicular lymphoma) or preferentially involve the digestive tract, such as large B cell lymphoma with IRF4 translocation and mantle cell lymphoma (MCL), including diverse molecular subtypes (i.e., CCND3-positive MCL mimicking MALT lymphoma). Challenging cases of high-grade B cell lymphomas with complex genetic profiles demonstrated the usefulness of novel molecular diagnostic methods such as targeted NGS to identify high-risk genetic features with potential clinical impact.
Collapse
Affiliation(s)
- Santiago Montes-Moreno
- Anatomic Pathology Service and Translational Hematopathology Lab, Hospital Universitario Marques de Valdecilla/IDIVAL, Santander, Spain
| | - Rebecca L King
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section and Lymph node Registry, University Hospitals Schleswig-Holstein, Christian-Albrecht-University, Kiel, Germany
| | - Maurilio Ponzoni
- Ateneo Vita-Salute San Raffaele and Pathology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - John R Goodlad
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Snjezana Dotlic
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Calaminici
- Department of Cellular Pathology, SIHMDS, Barts Health NHS Trust and Centre for Haemato-Oncology, Barts Cancer Institute, London, UK.
| |
Collapse
|
163
|
Sarmah BK, Konwar M, Bhattacharyya D, Adhikari P, Das A. Regioselective Cyanation of Six‐MemberedN‐Heteroaromatic Compounds Under Metal‐, Activator‐, Base‐ and Solvent‐Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bikash Kumar Sarmah
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Monuranjan Konwar
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | | | - Priyanka Adhikari
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Animesh Das
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| |
Collapse
|
164
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
165
|
Li B, Chan HL, Chen P. Immune Checkpoint Inhibitors: Basics and Challenges. Curr Med Chem 2019; 26:3009-3025. [PMID: 28782469 DOI: 10.2174/0929867324666170804143706] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
Cancer is one of the most deadly diseases in the modern world. The last decade has witnessed dramatic advances in cancer treatment through immunotherapy. One extremely promising means to achieve anti-cancer immunity is to block the immune checkpoint pathways - mechanisms adopted by cancer cells to disguise themselves as regular components of the human body. Many review articles have described a variety of agents that are currently under extensive clinical evaluation. However, while checkpoint blockade is universally effective against a broad spectrum of cancer types and is mostly unrestricted by the mutation status of certain genes, only a minority of patients achieve a complete response. In this review, we summarize the basic principles of immune checkpoint inhibitors in both antibody and smallmolecule forms and also discuss potential mechanisms of resistance, which may shed light on further investigation to achieve higher clinical efficacy for these inhibitors.
Collapse
Affiliation(s)
- Bin Li
- University of Miami, Miller School of Medicine, Miami, Florida 33156, United States
| | - Ho Lam Chan
- University of Miami, Miller School of Medicine, Miami, Florida 33156, United States
| | - Pingping Chen
- University of Miami, Miller School of Medicine, Miami, Florida 33156, United States
| |
Collapse
|
166
|
Saeed M, Gao J, Shi Y, Lammers T, Yu H. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Am J Cancer Res 2019; 9:7981-8000. [PMID: 31754376 PMCID: PMC6857062 DOI: 10.7150/thno.37568] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is rapidly maturing towards extensive clinical use. However, it does not work well in large patient populations because of an immunosuppressed microenvironment and limited reinvigoration of antitumor immunity. The tumor microenvironment is a complex milieu in which the principles of physiology and anatomy are defied and which is considered an immune-privileged site promoting T cell exhaustion. Tremendous research interest exists in developing nanoparticle-based approaches to modulate antitumor immune responses. The increasing use of immunotherapies in the clinic requires robust programming of immune cells to boost antitumor immunity. This review summarizes recent advances in the engineering of nanoparticles for improved anticancer immunotherapy. It discusses emerging nanoparticle-based approaches for the modulation of tumor cells and immune cells, such as dendritic cells, T cells and tumor-associated macrophages, with the intention to overcome challenges currently faced in the clinic. Furthermore, this review describes potentially curative combination therapeutic approaches to provoke effective tumor antigen-specific immune responses. We foresee a future in which improvement in patient's surveillance will become a mainstream practice.
Collapse
|
167
|
Abstract
BACKGROUND Venous thromboembolism can be a presenting symptom of cancer, but the association between lower limb arterial thrombosis and cancer is unknown. We therefore examined cancer risk and prognosis of cancer in patients with lower limb arterial thrombosis. METHODS Using nationwide population-based Danish medical registries, we identified all patients diagnosed with first-time lower limb arterial thrombosis (1994-2013) and followed them until the occurrence of any subsequent cancer diagnosis, emigration, death, or November 30, 2013, whichever came first. We computed standardized incidence ratios with 95% confidence intervals as the observed number of cancers relative to the expected number based on national incidence rates by sex, age, and calendar year. To examine the prognostic impact of lower limb arterial thrombosis on all-cause mortality after cancer, we constructed a matched comparison cohort of patients who had cancer without lower limb arterial thrombosis. RESULTS Among 6600 patients with lower limb arterial thrombosis, we observed 772 subsequent cancers. The risk of any cancer was 2.5% after 6 months of follow-up, increasing to 17.9% after 20 years. During the first 6 months of follow-up, the standardized incidence ratio of any cancer was 3.28 (95% confidence interval, 2.79-3.82). The standardized incidence ratio remained elevated during 7 to 12 months (1.42; 95% confidence interval, 1.09-1.83) and beyond 12 months (1.14; 95% confidence interval, 1.05-1.24). The strongest associations were found for lung cancer and other smoking-related cancers. Lower limb arterial thrombosis also was associated with increased all-cause mortality after colon, lung, urinary bladder, and breast cancer, but not after prostate cancer. CONCLUSIONS Lower limb arterial thrombosis was a marker of occult cancer, especially lung cancer, and was an adverse prognostic factor for mortality in common cancers.
Collapse
Affiliation(s)
- Jens Sundbøll
- Department of Clinical Epidemiology, Aarhus University Hospital, Denmark
| | - Katalin Veres
- Department of Clinical Epidemiology, Aarhus University Hospital, Denmark
| | | | - Kasper Adelborg
- Department of Clinical Epidemiology, Aarhus University Hospital, Denmark
| | | |
Collapse
|
168
|
|
169
|
Choucair K, Duff JR, Cassidy CS, Albrethsen MT, Kelso JD, Lenhard A, Staats H, Patel R, Brunicardi FC, Dworkin L, Nemunaitis J. Natural killer cells: a review of biology, therapeutic potential and challenges in treatment of solid tumors. Future Oncol 2019; 15:3053-3069. [DOI: 10.2217/fon-2019-0116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells lead immune surveillance against cancer and early elimination of small tumors. Owing to their ability to engage tumor targets without the need of specific antigen, the therapeutic potential of NK cells has been extensively explored in hematological malignancies. In solid tumors, however, their role in the clinical arena remains poorly exploited despite a broad accumulation of preclinical data. In this article, we review our current knowledge of NK cells’ biology, and highlight the challenges facing NK cell antitumor strategies in solid tumors. We further summarize the abundant preclinical attempts at overcoming these challenges, present past and ongoing clinical trial data and finally discuss the potential impact of novel insights on the development of NK cell-based therapies.
Collapse
Affiliation(s)
- Khalil Choucair
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Joseph R Duff
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Christine S Cassidy
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Mary T Albrethsen
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Jesse D Kelso
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Amanda Lenhard
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Hannah Staats
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Rayna Patel
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - F Charles Brunicardi
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
- ProMedica Health System, Toledo, OH 43604, USA
| |
Collapse
|
170
|
Fresques T, Zirbes A, Shalabi S, Samson S, Preto S, Stampfer MR, LaBarge MA. Breast Tissue Biology Expands the Possibilities for Prevention of Age-Related Breast Cancers. Front Cell Dev Biol 2019; 7:174. [PMID: 31555644 PMCID: PMC6722426 DOI: 10.3389/fcell.2019.00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
Preventing breast cancer before it is able to form is an ideal way to stop breast cancer. However, there are limited existing options for prevention of breast cancer. Changes in the breast tissue resulting from the aging process contribute to breast cancer susceptibility and progression and may therefore provide promising targets for prevention. Here, we describe new potential targets, immortalization and inflammaging, that may be useful for prevention of age-related breast cancers. We also summarize existing studies of warfarin and metformin, current drugs used for non-cancerous diseases, that also may be repurposed for breast cancer prevention.
Collapse
Affiliation(s)
- Tara Fresques
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Arrianna Zirbes
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Sundus Shalabi
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Susan Samson
- Breast Science Advocacy Core, Breast Oncology Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Martha R Stampfer
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mark A LaBarge
- Department of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States.,Center for Cancer and Aging Research, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
171
|
Abstract
Immuno-oncology is an emerging field that has revolutionized cancer treatment. Most immunomodulatory strategies focus on enhancing T cell responses, but there has been a recent surge of interest in harnessing the relatively underexplored natural killer (NK) cell compartment for therapeutic interventions. NK cells show cytotoxic activity against diverse tumour cell types, and some of the clinical approaches originally developed to increase T cell cytotoxicity may also activate NK cells. Moreover, increasing numbers of studies have identified novel methods for increasing NK cell antitumour immunity and expanding NK cell populations ex vivo, thereby paving the way for a new generation of anticancer immunotherapies. The role of other innate lymphoid cells (group 1 innate lymphoid cell (ILC1), ILC2 and ILC3 subsets) in tumours is also being actively explored. This Review provides an overview of the field and summarizes current immunotherapeutic approaches for solid tumours and haematological malignancies.
Collapse
|
172
|
Bi J, Tian Z. NK Cell Dysfunction and Checkpoint Immunotherapy. Front Immunol 2019; 10:1999. [PMID: 31552017 PMCID: PMC6736636 DOI: 10.3389/fimmu.2019.01999] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
NK cells play important roles in the innate immune responses against tumors. The effector function of NK cells relies on the integration of activating and inhibitory signals. Emerging checkpoint receptors and molecules are being revealed to mediate NK cell dysfunction in the tumor microenvironment. Inhibition of some NK cell surface checkpoint receptors has displayed the potential to reverse NK cell dysfunction in tumors, and to boost anti-tumor immunity, both in clinical trials (anti-KIR and anti-NKG2A), and in preclinical studies (e.g., anti-TIGIT, and anti-CD96). To fully exploit the potential of NK-based checkpoint immunotherapy, more understanding of the regional features of NK cells in the tumor microenvironment is required. This will provide valuable information regarding the dynamic nature of NK cell immune response against tumors, as well as novel checkpoints or pathways to be targeted. In this Review, we discuss recent advances in the understanding of NK cell dysfunction in tumors, as well as emerging strategies of NK-based checkpoint immunotherapy for tumors.
Collapse
Affiliation(s)
- Jiacheng Bi
- Shenzhen Laboratory of Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
173
|
Gas6/TAM Axis in Sepsis: Time to Consider Its Potential Role as a Therapeutic Target. DISEASE MARKERS 2019; 2019:6156493. [PMID: 31485279 PMCID: PMC6710761 DOI: 10.1155/2019/6156493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase receptors are transmembrane proteins involved in cell signaling and interaction. Among them, the TAM family (composed by Tyro 3, Axl, and Mer) represents a peculiar subgroup with an important role in many physiological and pathological conditions. Despite different mechanisms of activation (e.g., protein S and Galactin-3), TAM action is tightly related to their common ligand, a protein named growth arrest-specific 6 (Gas6). Since the expression of both TAM and Gas6 is widely distributed among tissues, any alteration of one of these components can lead to different pathological conditions. Moreover, as they are indispensable for homeostasis maintenance, in recent years a growing interest has emerged regarding their role in the regulation of the inflammatory process. Due to this involvement, many authors have demonstrated the pivotal role of the Gas6/TAM axis in both sepsis and the sepsis-related inflammatory responses. In this narrative review, we highlight the current knowledge as well as the last discoveries on TAM and Gas6 implication in different clinical conditions, notably in sepsis and septic shock. Lastly, we underline not only the feasible use of Gas6 as a diagnostic and prognostic biomarker in certain systemic acute conditions but also its potential therapeutic role in these life-threatening diseases.
Collapse
|
174
|
Naik A, Monjazeb AM, Decock J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front Immunol 2019; 10:1940. [PMID: 31475003 PMCID: PMC6703078 DOI: 10.3389/fimmu.2019.01940] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has been heralded as a breakthrough cancer treatment demonstrating tremendous success in improving tumor responses and survival of patients with hematological cancers and solid tumors. This novel promising treatment approach has in particular triggered optimism for triple negative breast cancer (TNBC) treatment, a subtype of breast cancer with distinct clinical features and poor clinical outcome. In early 2019, the FDA granted the first approval of immune checkpoint therapy, targeting PD-L1 (Atezolizumab) in combination with chemotherapy for the treatment of patients with locally advanced or metastatic PD-L1 positive TNBC. The efficacy of immuno-based interventions varies across cancer types and patient cohorts, which is attributed to a variety of lifestyle, clinical, and pathological factors. For instance, obesity has emerged as a risk factor for a dampened anti-tumor immune response and increased risk of immunotherapy-induced immune-related adverse events (irAEs) but has also been linked to improved outcomes with checkpoint blockade. Given the breadth of the rising global obesity epidemic, it is imperative to gain insight into the immunomodulatory effects of obesity in the peripheral circulation and within the tumor microenvironment. In this review, we resolve the impact of obesity on breast tumorigenesis and progression on the one hand, and on the immune contexture on the other hand. Finally, we speculate on the potential implications of obesity on immunotherapy response in breast cancer. This review clearly highlights the need for in vivo obese cancer models and representative clinical cohorts for evaluation of immunotherapy efficacy.
Collapse
Affiliation(s)
- Adviti Naik
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Arta Monir Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, University of California, Sacramento, Sacramento, CA, United States
| | - Julie Decock
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
175
|
Enhanced efficacy of sitravatinib in metastatic models of antiangiogenic therapy resistance. PLoS One 2019; 14:e0220101. [PMID: 31369645 PMCID: PMC6675057 DOI: 10.1371/journal.pone.0220101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) that primarily target angiogenesis are approved to treat several cancers in the metastatic setting; however, resistance is common. Sequential treatment or 'switching' from one TKI to another following failure can be effective, but predicting which drugs will have cross-over sensitivity remains a challenge. Here we examined sitravatinib (MGCD516), a spectrum-selective TKI able to block MET, TAM (TYRO3, AXL, MerTK) and multiple receptor families (including PDGFRs, VEGFRs, and Ephs). Transcriptomic analysis of several mouse and human cell lines revealed diverse molecular changes after resistance to two TKIs (sunitinib and axitinib) with multiple sitravatinib targets found to be upregulated. Sitravatinib treatment in vitro resulted in enhanced anti-proliferative effects in resistant cells and was improved compared to TKIs with similar target profiles. In vivo, primary tumor growth inhibition after sitravatinib treatment in mice was enhanced in resistant tumors and metastasis suppression improved when tumors were surgically removed. Together, these results suggest that the diverse and often inconsistent compensatory signaling mechanisms found to contribute to TKI resistance may paradoxically improve the tumor-inhibiting effects of broad-spectrum TKIs such as sitravatinib that are able to block multiple signaling pathways. Sitravatinib in the second-line setting following antiangiogenic TKI treatment may have enhanced inhibitory effects in local and disseminated disease, and improve outcomes in patients with refractory disease.
Collapse
|
176
|
Najafov A, Mookhtiar AK, Luu HS, Ordureau A, Pan H, Amin PP, Li Y, Lu Q, Yuan J. TAM Kinases Promote Necroptosis by Regulating Oligomerization of MLKL. Mol Cell 2019; 75:457-468.e4. [DOI: 10.1016/j.molcel.2019.05.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|
177
|
Freund-Brown J, Chirino L, Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 2019; 38:105-130. [PMID: 29953390 DOI: 10.1615/critrevimmunol.2018025248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells are innate immune cells equipped with the ability to rapidly kill stressed cells that are neoplastic or virally infected. These cells are especially important in settings where these stressed cells downregulate MHC class I molecules and evade recognition by cytotoxic T cells. However, the activity of NK cells alone is often suboptimal to fully control tumor growth or to clear viral infections. Thus, the enhancement of NK cell function is necessary to fully harness their antitumor or antiviral potential. In this review, we discuss how NK cell function can be augmented by the modulation of signal transduction pathways, by the manipulation of inhibitory/activating receptors on NK cells, and by cytokine-induced activation. We also discuss how some of these strategies are currently impacting NK cells in the treatment of cancer and infections.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leilani Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
178
|
Dou Y, Xing J, Kong G, Wang G, Lou X, Xiao X, Vivier E, Li XC, Zhang Z. Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions. THE JOURNAL OF IMMUNOLOGY 2019; 203:873-880. [PMID: 31270148 DOI: 10.4049/jimmunol.1900171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
NK cells play an important role in immune surveillance and protective immunity, mainly through rapid cytokine release and cytolytic activities. But how such responses are negatively regulated remains poorly defined. In this study, we demonstrated that the E3 ubiquitin ligase TRIM29 is a crucial regulator of NK cell functions. We found that TRIM29 was not expressed in resting NK cells, but was readily upregulated following activation, especially after IL-12 plus IL-18 stimulation. The levels of TRIM29 expression were inversely correlated with IFN-γ production by NK cells, suggesting that TRIM29 inhibits NK cell functions. Indeed, deficiency of TRIM29, specifically in NK cells, resulted in an enhanced IFN-γ production and consequently protected mice from murine CMV infection. Mechanistically, we showed that once induced in NK cells, TRIM29 ubiquitinates and degrades the TGF-β-activated kinase 1 binding protein 2 (TAB2), a key adaptor protein in IFN-γ production by NK cells. These results identify TRIM29 as a negative regulator of NK cell functions and may have important clinical implications.
Collapse
Affiliation(s)
- Yaling Dou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Junji Xing
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Gangcheng Kong
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Xiaohua Lou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Xiang Xiao
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, 13276 Marseille, France; and
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030; .,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030; .,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| |
Collapse
|
179
|
McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in cardiovascular disease. Cardiovasc Res 2019; 115:1286-1295. [PMID: 30980657 PMCID: PMC6587925 DOI: 10.1093/cvr/cvz100] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The TAM receptors are a distinct family of three receptor tyrosine kinases, namely Tyro3, Axl, and MerTK. Since their discovery in the early 1990s, they have been studied for their ability to influence numerous diseases, including cancer, chronic inflammatory and autoimmune disorders, and cardiovascular diseases. The TAM receptors demonstrate an ability to influence multiple aspects of cardiovascular pathology via their diverse effects on cells of both the vasculature and the immune system. In this review, we will explore the various functions of the TAM receptors and how they influence cardiovascular disease through regulation of vascular remodelling, efferocytosis and inflammation. Based on this information, we will suggest areas in which further research is required and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ira Tabas
- Departments of Medicine, Physiology, and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA,Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mariola Kurowska-Stolarska
- Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Department of Pharmacy, University of Naples Federico II, Naples, Italy,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| |
Collapse
|
180
|
Salvador F, Llorente A, Gomis RR. From latency to overt bone metastasis in breast cancer: potential for treatment and prevention. J Pathol 2019; 249:6-18. [PMID: 31095738 PMCID: PMC6771808 DOI: 10.1002/path.5292] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Bone metastasis is present in a high percentage of breast cancer (BCa) patients with distant disease, especially in those with the estrogen receptor‐positive (ER+) subtype. Most cells that escape primary tumors are unable to establish metastatic lesions, which suggests that target organ microenvironments are hostile for tumor cells. This implies that BCa cells must achieve a process of speciation to adapt to the new conditions imposed in the new organ. Bone has unique characteristics that can be exploited by cancer cells: it undergoes constant remodeling and comprises diverse environments (including osteogenic, perivascular, and hematopoietic stem cell niches). This allows colonizing cells to take advantage of numerous adhesion molecules, matrix proteins, and soluble factors that facilitate homing, survival, and, eventually, metastatic outgrowth. However, in most cases, metastatic lesions enter into a latency state that can last months, years, or even decades, before forming a clinically detectable macrometastasis. This dormant state challenges the effectiveness of adjuvant chemotherapy. Detecting which tumors are more prone to metastasize to bone and developing new specific therapies that target bone metastasis represent urgent clinical needs. Here, we review the biological mechanisms of BCa bone metastasis and provide the latest options of treatments and predictive markers that are currently in clinical use or are being tested in clinical assays. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fernando Salvador
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alicia Llorente
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Roger R Gomis
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
181
|
Shin SA, Moon SY, Park D, Park JB, Lee CS. Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target. Arch Pharm Res 2019; 42:658-671. [PMID: 31243646 DOI: 10.1007/s12272-019-01169-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Millions of cells in the human body undergo apoptosis not only under normal physiological conditions but also under pathological conditions such as infection or other diseases related to acute tissue injury. Swift apoptotic cell clearance is essential for tissue homeostasis. Defective clearance of dead cells is linked to pathogenesis of diseases such as inflammatory diseases, atherosclerosis, neurological disease, and cancer. Significance of apoptotic cell clearance has been emerging as an interesting field for disease treatment. Efficient apoptotic cell clearance plays an important role in reducing inflammation through the suppression of inappropriate inflammatory responses under healthy and diseased conditions. However, apoptotic cell clearance related to cancer pathogenesis is more complex in tumor microenvironments. Chronic inflammation resulting from the failure of apoptotic cell clearance can contribute to tumor progression. Conversely, tumor cells can exploit the anti-inflammatory effect of apoptotic cell clearance to generate an immunosuppressive tumor microenvironment. In this review, focus is on the current understanding of apoptotic cell clearance in the tumor microenvironment. Furthermore, we discuss how signaling molecules (PtdSer and PtdSer recognition receptor) mediating apoptotic cell clearance are aberrantly expressed in the tumor microenvironment and their current development state as potential therapeutic targets for clinical cancer therapy.
Collapse
Affiliation(s)
- Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Daeho Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jong Bae Park
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
182
|
Park M, Kang KW. Phosphatidylserine receptor-targeting therapies for the treatment of cancer. Arch Pharm Res 2019; 42:617-628. [PMID: 31172440 DOI: 10.1007/s12272-019-01167-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023]
Abstract
Asymmetric distribution of phospholipids across the plasma membrane is a unique characteristic of eukaryotic cells. Phosphatidylcholine and sphingomyelin are exposed in the outer leaflet, and phosphatidylserine (PS) is predominantly located in the inner leaflet. Redistribution of PS to the cell surface can be observed in several physiological conditions, such as apoptosis and platelet activation, or in pathological conditions, such as the release of microvesicles/exosomes from tumor tissues. PS binding to the phosphatidylserine receptor (PSR) on immune cells initiates immunosuppressive pathways that can lead to immune evasion by cancer cells. Conversely, PSR activation of cancer cells plays an important role in their survival, proliferation and metastasis. Herein, we briefly summarize both recent advances in our understanding of the pathological roles of PS and its receptor in cancer biology, as well as relevant pharmacological approaches.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
183
|
Lauter M, Weber A, Torka R. Targeting of the AXL receptor tyrosine kinase by small molecule inhibitor leads to AXL cell surface accumulation by impairing the ubiquitin-dependent receptor degradation. Cell Commun Signal 2019; 17:59. [PMID: 31171001 PMCID: PMC6555758 DOI: 10.1186/s12964-019-0377-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Overexpression of AXL receptor tyrosine kinase (AXL) in various human cancers correlates with reduced patients overall survival and resistance to first line therapies. Therefore, several AXL tyrosine kinase inhibitors (TKIs) are currently under clinical evaluation. Results AXL TKI BMS777607 treatment increased AXL protein levels after 24 h as observed by Western blot and flow cytometry analysis. Mechanistically, this inhibition-induced AXL cell surface accumulation was neither associated with epigenetic modifications, nor altered transcriptional and translational regulation. Further, we saw no impact on glycosylation and receptor shedding by α-secretases. However, we observed that BMS777607 increased the glycosylated 140 kDa AXL protein abundance, which was impaired in the kinase dead mutant AXL (K567R). We demonstrated that AXL kinase activity and subsequent kinase phosphorylation is necessary for GAS6-dependent receptor internalization and degradation. Blocking of kinase function by BMS777607 resulted in ubiquitination prohibition, impaired internalization and subsequent cell surface accumulation. Subsequently, AXL cell surface accumulation was accompanied by increased proliferation of 3D-Speroids induced by low μM levels of BMS777607 treatment. Conclusion Our data suggest a re-evaluation of anti-AXL clinical protocols due to possible feedback loops and resistance formation to targeted AXL therapy. An alternative strategy to circumvent feedback loops for AXL targeting therapies may exist in linkage of AXL TKIs to a degradation machinery recruiting unit, as already demonstrated with PROTACs for EGFR, HER2, and c-Met. This might result in a sustained inhibition and depletion of the AXL from tumor cell surface and enhance the efficacy of targeted anti-AXL therapies in the clinic.
Collapse
Affiliation(s)
- Markus Lauter
- Institute of Physiological Chemistry, University Halle-Wittenberg, Medical Faculty, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anja Weber
- Institute of Physiological Chemistry, University Halle-Wittenberg, Medical Faculty, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Robert Torka
- Institute of Physiological Chemistry, University Halle-Wittenberg, Medical Faculty, Hollystrasse 1, 06114, Halle (Saale), Germany.
| |
Collapse
|
184
|
Lee AJ, Mian F, Poznanski SM, Stackaruk M, Chan T, Chew MV, Ashkar AA. Type I Interferon Receptor on NK Cells Negatively Regulates Interferon-γ Production. Front Immunol 2019; 10:1261. [PMID: 31214198 PMCID: PMC6558015 DOI: 10.3389/fimmu.2019.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
NK cells are a key antiviral component of the innate immune response to HSV-2, particularly through their production of IFN-γ. It is still commonly thought that type I IFN activates NK cell function; however, rather than requiring the type I IFN receptor themselves, we have previously found that type I IFN activates NK cells through an indirect mechanism involving inflammatory monocytes and IL-18. Here, we further show that direct action of type I IFN on NK cells, rather than inducing IFN-γ, negatively regulates its production during HSV-2 infection and cytokine stimulation. During infection, IFN-γ is rapidly induced from NK cells at day 2 post-infection and then immediately downregulated at day 3 post-infection. We found that this downregulation of IFN-γ release was not due to a loss of NK cells at day 3 post-infection, but negatively regulated through IFN signaling on NK cells. Absence of IFNAR on NK cells led to a significantly increased level of IFN-γ compared to WT NK cells after HSV-2 infection in vitro. Further, priming of NK cells with type I IFN was able to suppress cytokine-induced IFN-γ production from both human and mouse NK cells. We found that this immunosuppression was not mediated by IL-10. Rather, we found that type I IFN induced a significant increase in Axl expression on human NK cells. Overall, our data suggests that type I IFN negatively regulates NK cell IFN-γ production through a direct mechanism in vitro and during HSV-2 infection.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Firoz Mian
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sophie M Poznanski
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Michele Stackaruk
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Tiffany Chan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
185
|
Tijhuis AE, Johnson SC, McClelland SE. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol Cytogenet 2019; 12:17. [PMID: 31114634 PMCID: PMC6518824 DOI: 10.1186/s13039-019-0429-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Many cancers possess an incorrect number of chromosomes, a state described as aneuploidy. Aneuploidy is often caused by Chromosomal Instability (CIN), a process of continuous chromosome mis-segregation. CIN is believed to endow tumours with enhanced evolutionary capabilities due to increased intratumour heterogeneity, and facilitating adaptive resistance to therapies. Recently, however, additional consequences and associations with CIN have been revealed, prompting the need to understand this universal hallmark of cancer in a multifaceted context. This review is focused on the investigation of possible links between CIN, metastasis and the host immune system in cancer development and treatment. We specifically focus on these links since most cancer deaths are due to the consequences of metastasis, and immunotherapy is a rapidly expanding novel avenue of cancer therapy.
Collapse
Affiliation(s)
- Andréa E. Tijhuis
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Sarah C. Johnson
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Sarah E. McClelland
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| |
Collapse
|
186
|
Duan Y, Hu B, Qiao C, Luo L, Li X, Wang J, Liu H, Zhou T, Shen B, Lv M, Feng J. Engineered AXL -ECD-Fc variants that abolish the AXL/Gas6 interaction suppress tumor cell migration. Oncol Lett 2019; 17:5784-5792. [PMID: 31186805 DOI: 10.3892/ol.2019.10255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/29/2019] [Indexed: 01/12/2023] Open
Abstract
AXL receptor tyrosine kinase ligand (AXL), a tyrosine kinase receptor that is commonly overexpressed in numerous types of cancer, significantly promotes drug resistance and metastasis in tumor cells. Inhibition of the AXL/growth arrest-specific 6 (Gas6) signaling pathway is emerging as a potential anticancer therapeutic strategy. In the present study, on the basis of the three-dimensional complex structure of AXL/Gas6, the critical residues (E56, E59 and T77) in AXL binding to Gas6 were determined using computer graphics analysis and the distance geometry method. Subsequently, four-variant AXL-ECD-Fc-M1 (G32S, D87G, V92A and G127R) and AXL-ECD-Fc-M2 (G32A, D87A, V92A and G127A) were predicted as high-affinity mutants; AXL-ECD-Fc-M3 (E56R and T77R) and AXL-ECD-Fc-M4 (E59R and T77R) were predicted as low-affinity mutants. The results of the present study revealed that the half-maximal effect concentrations of AXL-ECD-Fc-M1 and AXL-ECD-Fc-M2 were ~0.141 and 0.375 µg/ml, respectively, whereas that of the wild-type protein (AXL-ECD-Fc-WT) was 0.514 µg/ml. Furthermore, adding the high-affinity mutants into culture medium to capture free Gas6 significantly inhibited AXL/Gas6 binding and thus blocked the downstream signaling pathway. In addition, the high-affinity mutants effectively suppressed the migration and metastasis of SKOV3 and A549 cells. Conversely, compared with AXL-ECD-Fc-WT, the low-affinity AXL mutants AXL-ECD-Fc-M3 and AXL-ECD-Fc-M4 lost all inhibitory activities. These findings highlight AXL as a potential therapeutic target and demonstrated that the key residues E56, E59 and T77 may be crucial sites for abolishing the activity of the AXL/Gas6 pathway in cancer therapy.
Collapse
Affiliation(s)
- Yanting Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Bo Hu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Xinying Li
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Hao Liu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Zhengzhou, Henan 475004, P.R. China
| | - Tingting Zhou
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Beifen Shen
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Ming Lv
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| |
Collapse
|
187
|
Kim N, Lee HH, Lee HJ, Choi WS, Lee J, Kim HS. Natural killer cells as a promising therapeutic target for cancer immunotherapy. Arch Pharm Res 2019; 42:591-606. [DOI: 10.1007/s12272-019-01143-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
188
|
Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med 2019; 25:428-443. [PMID: 30898473 DOI: 10.1016/j.molmed.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert exquisite spatial and temporal control over protein stability and function, and are thus crucial for the regulation of both innate and adaptive immunity. Given that immune responses can be both detrimental (autoimmunity) and beneficial (antitumor immunity), it is vital to understand how ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel mechanisms underlying immune regulation and identify new therapeutic approaches to enhance antitumor immunity and safeguard against autoimmunity.
Collapse
Affiliation(s)
- Yu Fujita
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Present address: Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yan Li
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ze'ev A Ronai
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
189
|
Hastings AK, Hastings K, Uraki R, Hwang J, Gaitsch H, Dhaliwal K, Williamson E, Fikrig E. Loss of the TAM Receptor Axl Ameliorates Severe Zika Virus Pathogenesis and Reduces Apoptosis in Microglia. iScience 2019; 13:339-350. [PMID: 30884311 PMCID: PMC6424058 DOI: 10.1016/j.isci.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/10/2018] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
The TAM receptor, Axl, has been implicated as a candidate entry receptor for Zika virus (ZIKV) infection but has been shown as inessential for virus infection in mice. To probe the role of Axl in murine ZIKV infection, we developed a mouse model lacking the Axl receptor and the interferon alpha/beta receptor (Ifnar−/−Axl−/−), conferring susceptibility to ZIKV. This model validated that Axl is not required for murine ZIKV infection and that mice lacking Axl are resistant to ZIKV pathogenesis. This resistance correlates to lower pro-interleukin-1β production and less apoptosis in microglia of ZIKV-infected mice. This apoptosis occurs through both intrinsic (caspase 9) and extrinsic (caspase 8) manners, and is age dependent, as younger Axl-deficient mice are susceptible to ZIKV pathogenesis. These findings suggest that Axl plays an important role in pathogenesis in the brain during ZIKV infection and indicates a potential role for Axl inhibitors as therapeutics during viral infection. IFNAR−/−Axl−/− mice show Axl unnecessary for Zika virus replication in mice Mice lacking Axl receptor are significantly resistant to Zika virus neuropathogenesis IFNAR−/−Axl−/− mice have less ZIKV-driven caspase-dependent apoptosis in brain Axl deficient mice have fewer apoptotic microglia after ZIKV infection
Collapse
Affiliation(s)
- Andrew K Hastings
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Katherine Hastings
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryuta Uraki
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hallie Gaitsch
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Khushwant Dhaliwal
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Williamson
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase MD 20815, USA.
| |
Collapse
|
190
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
191
|
Yokoyama Y, Lew ED, Seelige R, Tindall EA, Walsh C, Fagan PC, Lee JY, Nevarez R, Oh J, Tucker KD, Chen M, Diliberto A, Vaaler H, Smith KM, Albert A, Li G, Bui JD. Immuno-oncological Efficacy of RXDX-106, a Novel TAM (TYRO3, AXL, MER) Family Small-Molecule Kinase Inhibitor. Cancer Res 2019; 79:1996-2008. [PMID: 30723115 DOI: 10.1158/0008-5472.can-18-2022] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022]
Abstract
Expression of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases (RTK) has been associated with cancer progression, metastasis, and drug resistance. In immune cells, TAM RTKs can dampen inflammation in favor of homeostatic wound-healing responses, thus potentially contributing to the evasion of cancer cells from immune surveillance. Here we characterize the small-molecule RXDX-106 as a selective and potent pan-TAM RTK inhibitor with slow dissociation kinetics and significant antitumor activity in multiple syngeneic tumor models. Expression of AXL and MER on both immune and tumor cells increased during tumor progression. Tumor growth inhibition (TGI) following treatment with RXDX-106 was observed in wild-type mice and was abrogated in immunodeficient mice, suggesting that the antitumor activity of RXDX-106 is, in part, due to the presence of immune cells. RXDX-106-mediated TGI was associated with increased tumor-infiltrating leukocytes, M1-polarized intratumoral macrophages, and activation of natural killer cells. RXDX-106 proportionally increased intratumoral CD8+ T cells and T-cell function as indicated by both IFNγ production and LCK phosphorylation (pY393). RXDX-106 exhibited its effects via direct actions on TAM RTKs expressed on intratumoral macrophages and dendritic cells, leading to indirect activation of other immune cells in the tumor. RXDX-106 also potentiated the effects of an immune checkpoint inhibitor, α-PD-1 Ab, resulting in enhanced antitumor efficacy and survival. Collectively, these results demonstrate the capacity of RXDX-106 to inhibit tumor growth and progression and suggest it may serve as an effective therapy against multiple tumor types. SIGNIFICANCE: The pan-TAM small-molecule kinase inhibitor RXDX-106 activates both innate and adaptive immunity to inhibit tumor growth and progression, indicating its clinical potential to treat a wide variety of cancers.
Collapse
Affiliation(s)
- Yumi Yokoyama
- Translational Research, Ignyta, Inc., San Diego, California
| | - Erin D Lew
- Translational Research, Ignyta, Inc., San Diego, California.
| | - Ruth Seelige
- Department of Pathology, University of California, San Diego, La Jolla, California
| | | | - Colin Walsh
- Translational Research, Ignyta, Inc., San Diego, California
| | | | - Jack Y Lee
- Translational Research, Ignyta, Inc., San Diego, California
| | - Robin Nevarez
- Translational Research, Ignyta, Inc., San Diego, California
| | - Joanne Oh
- Translational Research, Ignyta, Inc., San Diego, California
| | | | - Marissa Chen
- Diagnostics, Ignyta, Inc., San Diego, California
| | | | | | | | - Amanda Albert
- Translational Research, Ignyta, Inc., San Diego, California
| | - Gary Li
- Translational Research, Ignyta, Inc., San Diego, California
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
192
|
Abstract
IMPACT STATEMENT Cancer is among the leading causes of death worldwide. In 2016, 8.9 million people are estimated to have died from various forms of cancer. The current treatments, including surgery with chemotherapy and/or radiation therapy, are not effective enough to provide full protection from cancer, which highlights the need for developing novel therapy strategies. In this review, we summarize the molecular biology of a unique member of a subfamily of receptor tyrosine kinase, TYRO3 and discuss the new insights in TYRO3-targeted treatment for cancer therapy.
Collapse
Affiliation(s)
- Pei-Ling Hsu
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jonathan Jou
- 2 College of Medicine, University of Illinois, IL 60612, USA
| | - Shaw-Jenq Tsai
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
193
|
Aldeghaither DS, Zahavi DJ, Murray JC, Fertig EJ, Graham GT, Zhang YW, O'Connell A, Ma J, Jablonski SA, Weiner LM. A Mechanism of Resistance to Antibody-Targeted Immune Attack. Cancer Immunol Res 2019; 7:230-243. [PMID: 30563830 PMCID: PMC6359950 DOI: 10.1158/2326-6066.cir-18-0266] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/24/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Targeted monoclonal antibody therapy is a promising therapeutic strategy for cancer, and antibody-dependent cell-mediated cytotoxicity (ADCC) represents a crucial mechanism underlying these approaches. The majority of patients have limited responses to monoclonal antibody therapy due to the development of resistance. Models of ADCC provide a system for uncovering immune-resistance mechanisms. We continuously exposed epidermal growth factor receptor (EGFR+) A431 cells to KIR-deficient NK92-CD16V effector cells and the anti-EGFR cetuximab. Persistent ADCC exposure yielded ADCC-resistant cells (ADCCR1) that, compared with control ADCC-sensitive cells (ADCCS1), exhibited reduced EGFR expression, overexpression of histone- and interferon-related genes, and a failure to activate NK cells, without evidence of epithelial-to-mesenchymal transition. These properties gradually reversed following withdrawal of ADCC selection pressure. The development of resistance was associated with lower expression of multiple cell-surface molecules that contribute to cell-cell interactions and immune synapse formation. Classic immune checkpoints did not modulate ADCC in this unique model system of immune resistance. We showed that the induction of ADCC resistance involves genetic and epigenetic changes that lead to a general loss of target cell adhesion properties that are required for the establishment of an immune synapse, killer cell activation, and target cell cytotoxicity.
Collapse
Affiliation(s)
- Dalal S Aldeghaither
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - David J Zahavi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Joseph C Murray
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana J Fertig
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Garrett T Graham
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Yong-Wei Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Allison O'Connell
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Junfeng Ma
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Sandra A Jablonski
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Louis M Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
194
|
Lee CH, Chun T. Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function. Mol Cells 2019; 42:1-7. [PMID: 30699285 PMCID: PMC6354059 DOI: 10.14348/molcells.2018.0419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
| |
Collapse
|
195
|
Dynamics of Axl Receptor Shedding in Hepatocellular Carcinoma and Its Implication for Theranostics. Int J Mol Sci 2018; 19:ijms19124111. [PMID: 30567378 PMCID: PMC6321118 DOI: 10.3390/ijms19124111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Signaling of the receptor tyrosine kinase Axl and its ligand Gas6 is crucially involved in the development of liver fibrosis and hepatocellular carcinoma (HCC) by activation of hepatic stellate cells and modulation of hepatocyte differentiation. Shedding of Axl’s ectodomain leads to the release of soluble Axl (sAxl), which is increased in advanced fibrosis and in early-to-late stage HCC in the presence and absence of cirrhosis. Here, we focus on the dynamics of Axl receptor shedding and delineate possible scenarios how Axl signaling might act as driver of fibrosis progression and HCC development. Based on experimental and clinical data, we discuss the consequences of modifying Axl signaling by sAxl cleavage, as well as cellular strategies to escape from antagonizing effects of Axl shedding by the involvement of the hepatic microenvironment. We emphasize a correlation between free Gas6 and free sAxl levels favoring abundant Gas6/Axl signaling in advanced fibrosis and HCC. The raised scenario provides a solid basis for theranostics allowing the use of sAxl as an accurate diagnostic biomarker of liver cirrhosis and HCC, as well as Axl receptor signaling for therapeutic intervention in stratified HCC patients.
Collapse
|
196
|
Xu F, Li Y, Huang X, Fang X, Li Z, Jiang H, Qiao J, Chu W, Sun Z. Hypervalent Iodine(III)‐Mediated Regioselective Cyanation of Quinoline
N
‐Oxides with Trimethylsilyl Cyanide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Xu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Yuqin Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xin Huang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xinjie Fang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhuofei Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Hongshuo Jiang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Jingyi Qiao
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| |
Collapse
|
197
|
Choi J, Beaino W, Fecek RJ, Fabian KPL, Laymon CM, Kurland BF, Storkus WJ, Anderson CJ. Combined VLA-4-Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma. J Nucl Med 2018; 59:1843-1849. [PMID: 29959213 PMCID: PMC6278902 DOI: 10.2967/jnumed.118.209510] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Very late antigen-4 (VLA-4; also known as integrin α4β1) is expressed at high levels in aggressive and metastatic melanoma tumors and may provide an ideal target for imaging and targeted radionuclide therapy (TRT). 177Lu-DOTA-PEG4-LLP2A (177Lu-LLP2A) is a TRT that shows high affinity for VLA-4 and high uptake in B16F10 mouse melanoma tumors in vivo. Here, we report efficacy studies of 177Lu-LLP2A, alone and combined with immune checkpoint inhibitors (ICIs) (anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies), in B16F10 tumor-bearing mice. Methods: Tumor cells (1 × 106) were implanted subcutaneously in C57BL/6 mice. After 8-10 d, the mice were randomized into 8 groups. 177Lu-LLP2A was injected intravenously on day 8 or 9 (single dose), and ICI antibodies were administered intraperitoneally in 3 doses. Tumor growth was monitored over time via calipers. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining for apoptosis was performed on fixed tumors. In a separate study, Cy3-LLP2A or Cy3-scrambled LLP2A was injected in tumor-bearing mice, and tumors were collected 4 h after injection and then analyzed by flow cytometry and immunofluorescence microscopy using different immune cell markers. Results: TRT alone showed efficacy comparable to the dual-ICI anti-PD-1 + anti-CTLA-4 or anti-PD-L1 + anti-CTLA-4, whereas TRT + ICIs significantly enhanced survival. TUNEL staining showed that the highest levels of apoptosis were in the TRT + ICI groups. In addition to targeting tumor cells, TRT also bound immune cells in the tumor microenvironment. Flow cytometry data showed that the tumors consisted of about 77% tumor cells and fibroblasts (CD45-negative/CD49d-positive) and about 23% immune cells (CD45-positive/CD49d-positive) and that immune cells expressed higher levels of VLA-4. Cy3-LLP2A and CD49d colocalized with macrophages (CD68), T cells (CD8, CD4), and B cells (CD19). Immunohistochemical analysis identified a significant colocalization of Cy3-LLP2A and CD68. Conclusion: Combination treatment with TRT + ICIs targets both tumor cells and immune cells and has potential as a therapeutic agent in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Jaeyeon Choi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wissam Beaino
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Ronald J Fecek
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kellsye P L Fabian
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brenda F Kurland
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Walter J Storkus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolyn J Anderson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
198
|
Smart SK, Vasileiadi E, Wang X, DeRyckere D, Graham DK. The Emerging Role of TYRO3 as a Therapeutic Target in Cancer. Cancers (Basel) 2018; 10:cancers10120474. [PMID: 30501104 PMCID: PMC6316664 DOI: 10.3390/cancers10120474] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022] Open
Abstract
The TAM family (TYRO3, AXL, MERTK) tyrosine kinases play roles in diverse biological processes including immune regulation, clearance of apoptotic cells, platelet aggregation, and cell proliferation, survival, and migration. While AXL and MERTK have been extensively studied, less is known about TYRO3. Recent studies revealed roles for TYRO3 in cancer and suggest TYRO3 as a therapeutic target in this context. TYRO3 is overexpressed in many types of cancer and functions to promote tumor cell survival and/or proliferation, metastasis, and resistance to chemotherapy. In addition, higher levels of TYRO3 expression have been associated with decreased overall survival in patients with colorectal, hepatocellular, and breast cancers. Here we review the physiological roles for TYRO3 and its expression and functions in cancer cells and the tumor microenvironment, with emphasis on the signaling pathways that are regulated downstream of TYRO3 and emerging roles for TYRO3 in the immune system. Translational agents that target TYRO3 are also described.
Collapse
Affiliation(s)
- Sherri K Smart
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Eleana Vasileiadi
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Douglas K Graham
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
199
|
Zhang P, Zhang M, Yu D, Liu W, Hu L, Zhang B, Zhou Q, Cao Z. Lycorine inhibits melanoma cell migration and metastasis mainly through reducing intracellular levels of β-catenin and matrix metallopeptidase 9. J Cell Physiol 2018; 234:10566-10575. [PMID: 30565685 DOI: 10.1002/jcp.27732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Metastatic melanoma accounts for 60% of death for skin cancer. Although great efforts have been made to treat the disease, effective drugs against metastatic melanoma still lack at the clinical setting. In the current study, we found that lycorine, a small molecule of isoquinoline alkaloid, significantly suppressed melanoma cell migration and invasion in vitro, and decreased the metastasis of melanoma cells to lung tissues in tumor-bearing mice, resulting in significant prolongation of the survival of the mice without obvious toxicity. Molecular mechanistic studies revealed that lycorine significantly reduced intracellular levels of β-catenin protein through degradation of the protein via the ubiquitin-proteasome pathway, and decreased the expression of β-catenin downstream prometastatic matrix metallopeptidase 9 and Axin2 genes. Collectively, our findings support the notion that targeting the oncogenic β-catenin by lycorine is a new option to inhibit melanoma cell metastasis, providing a good drug candidate potential for development novel therapeutics against metastatic melanoma.
Collapse
Affiliation(s)
- Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Di Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenming Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
200
|
Tulchinsky E, Demidov O, Kriajevska M, Barlev NA, Imyanitov E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:29-39. [PMID: 30419315 DOI: 10.1016/j.bbcan.2018.10.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/07/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a reversible developmental genetic programme of transdifferentiation of polarised epithelial cells to mesenchymal cells. In cancer, EMT is an important factor of tumour cell plasticity and has received increasing attention for its role in the resistance to conventional and targeted therapies. In this paper we provide an overview of EMT in human malignancies, and discuss contribution of EMT to the development of the resistance to Epidermal Growth Factor Receptor (EGFR)-targeted therapies in non-small cell lung cancer (NSCLC). Patients with the tumours bearing specific mutations in EGFR have a good clinical response to selective EGFR inhibitors, but the resistance inevitably develops. Several mechanisms responsible for the resistance include secondary mutations in the EGFR gene, genetic or non-mutational activation of alternative survival pathways, transdifferentiation of NSCLC to the small cell lung cancer histotype, or formation of resistant tumours with mesenchymal characteristics. Mechanistically, application of an EGFR inhibitor does not kill all cancer cells; some cells survive the exposure to a drug, and undergo genetic evolution towards resistance. Here, we present a theory that these quiescent or slow-proliferating drug-tolerant cell populations, or so-called "persisters", are generated via EMT pathways. We review the EMT-activated mechanisms of cell survival in NSCLC, which include activation of ABC transporters and EMT-associated receptor tyrosine kinase AXL, immune evasion, and epigenetic reprogramming. We propose that therapeutic inhibition of these pathways would eliminate pools of persister cells and prevent or delay cancer recurrence when applied in combination with the agents targeting EGFR.
Collapse
Affiliation(s)
- Eugene Tulchinsky
- Leicester Cancer Research Centre, Leicester University, UK; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia.
| | - Oleg Demidov
- Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia; Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | |
Collapse
|