151
|
Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27·effector complex. Biochem Soc Trans 2006; 34:691-5. [PMID: 17052176 DOI: 10.1042/bst0340691] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A small GTPase Rab27 is present on secretory granules in a wide variety of secretory cells and on melanosomes in melanocytes, and it is involved in controlling the trafficking of these organelles through interaction with a cell-type- or tissue-specific Rab27 effector(s). Slps (synaptotagmin-like proteins) and rabphilin contain an N-terminal Rab27-binding domain and C-terminal tandem C2 domains, and some of the Rab27-binding proteins have recently been shown to promote docking of Rab27-bound organelles to the plasma membrane. This mini-review presents a model for how the Rab27·effector complex controls the docking step in the trafficking of Rab27-bound organelles. Our results indicate that Slp2-a, Slp4-a/granuphilin-a and rabphilin are capable of interacting with the plasma membrane directly or indirectly, and thus that these Rab27 effectors form a bridge between Rab27-bound organelles and the plasma membrane.
Collapse
Affiliation(s)
- M Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
152
|
Abstract
Secretory lysosomes are lysosomes which are capable of undergoing regulated secretion in response to external stimuli. Many cells of the immune system use secretory lysosomes to release proteins involved in their specialised effector mechanisms. Precisely how lysosomal secretion is regulated in each of these cell types is now the study of much research as these mechanisms control the ability of each of these cells to function. Studies on a number of human genetic diseases have identified some key proteins in controlling secretory lysosome release, and now many interacting partners have been identified. The different regulatory components seem to vary from one cell type to another, providing a multitude of ways for fine tuning the release of secretory lysosomes.
Collapse
Affiliation(s)
- Oliver J Holt
- Sir William Dunn School of Pathology, South Parks Rd, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
153
|
Itoh T, Fukuda M. Identification of EPI64 as a GTPase-activating Protein Specific for Rab27A. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84097-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
154
|
Saegusa C, Tanaka T, Tani S, Itohara S, Mikoshiba K, Fukuda M. Decreased basal mucus secretion by Slp2-a-deficient gastric surface mucous cells. Genes Cells 2006; 11:623-31. [PMID: 16716193 DOI: 10.1111/j.1365-2443.2006.00964.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptotagmin-like protein (Slp) 2-a is a putative Rab27A/B-effector protein and is implicated in intracellular membrane transport. However, the precise tissue distribution of Slp2-a protein and its functions remain largely unknown. In this study we used a specific anti-Slp2-a antibody to investigate the tissue distribution of Slp2-a in mice and found that Slp2-a is most abundantly expressed in mouse stomach. Co-immunoprecipitation experiments indicated that Slp2-a interacts with Rab27A/B in vivo. We also discovered that Slp2-a and Rab27A/B are predominantly localized at the apical region of gastric-surface mucous cells, where mucus granules are accumulated. Analysis of Slp2-a mutant mice generated by homologous recombination showed a reduced number of mucus granules, a deficiency of granule docking with the apical plasma membrane in the gastric-surface mucous cells and reduction of mucus secretion by Slp2-a-deficient gastric primary cells. Based on these results, we propose that Slp2-a is part of the mucin secretory machinery in surface mucous cells of mouse stomach.
Collapse
Affiliation(s)
- Chika Saegusa
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
155
|
Tsumura N, Nakaguchi T, Ojima N, Takase K, Okaguchi S, Hori K, Miyake Y. Image-based control of skin melanin texture. APPLIED OPTICS 2006; 45:6626-33. [PMID: 16912806 DOI: 10.1364/ao.45.006626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We introduce a useful tool for controlling the skin melanin texture of facial photographs. Controlling the skin melanin texture is an important task in the reproduction of posters, TV commercials, movies, and so on. We used component maps of melanin, which were obtained by a previous method [J. Opt. Soc. Am. A 16, 2169 (1999)] as the first processing step. We propose to control the melanin texture continuously and physiologically, based on the analysis of 123 skin textures in our database. The physiological validity for the change of the melanin texture is confirmed by comparing the synthesized image with an ultraviolet image, which can be used to predict the change of melanin texture due to aging. The control processes are implemented on programmable graphics hardware, and real-time processing is achieved for a facial videostream.
Collapse
Affiliation(s)
- Norimichi Tsumura
- Department of Information and Image Science, Chiba University, Japan.
| | | | | | | | | | | | | |
Collapse
|
156
|
Itoh T, Fukuda M. Identification of EPI64 as a GTPase-activating protein specific for Rab27A. J Biol Chem 2006; 281:31823-31. [PMID: 16923811 DOI: 10.1074/jbc.m603808200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small GTPase Rab27A plays a pivotal role in melanosome transport in melanocytes and in secretion by various secreting cells. Because the GTP- or GDP-locked mutant of Rab27A causes perinuclear aggregation of melanosomes, appropriate GTP-GDP cycling of Rab27A is essential for melanosome transport, and certain guanine nucleotide exchange factors and GTPase-activating proteins (GAPs) of Rab27A must be present in melanocytes. However, no such regulators of Rab27A have ever been identified. In this study we developed novel methods of rapidly screening 40 different TBC (Tre2/Bub2/Cdc16) proteins, putative Rab-GAPs, for Rab27A-GAP by: (i) searching for TBC proteins that induce melanosome aggregation in melanocytes; (ii) trapping GTP-Rab27A with a Rab27A effector domain (i.e. the SHD of Slac2-a) in cultured cells that express both Rab27A and TBC proteins; and (iii) measuring in vitro Rab27A-GAP activity. These methods allowed us to identify EPI64, previously characterized as an EBP50-binding protein that contains an orphan TBC domain, as a specific Rab27A-GAP. We further showed that mutations in the catalytic domain of EPI64 caused complete loss of its ability to induce melanosome aggregation. This is the first report of screening for Rab27A-GAP based on functional interactions, and our screening methods can be applied for other uncharacterized TBC proteins.
Collapse
Affiliation(s)
- Takashi Itoh
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
157
|
Saxena SK, Kaur S. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism. Biochem Biophys Res Commun 2006; 346:259-67. [PMID: 16762324 DOI: 10.1016/j.bbrc.2006.05.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | |
Collapse
|
158
|
Futter CE. The molecular regulation of organelle transport in mammalian retinal pigment epithelial cells. ACTA ACUST UNITED AC 2006; 19:104-11. [PMID: 16524426 DOI: 10.1111/j.1600-0749.2006.00303.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal pigment epithelial cells contain large numbers of melanosomes that can enter the apical processes extending between the outer segments of the overlying photoreceptors. Every day the distal portion of the photoreceptor outer segment is shed and phagocytosed by the retinal pigment epithelial cell. The phagosome is then transported into the cell body and the contents degraded by lysosomal enzymes. This review focuses on recent progress made in the identification of molecules that regulate the transport of melanosomes into the apical processes and the transport of phagosomes into the cell body. Myosin VIIa is a key player in both processes and, at least in the case of melanosome movement, myosin VIIa is recruited to the melanosome via the GTPase, Rab27a. The possible role played by defects in the transport of melanosomes and phagosomes in the development of retinal degenerative diseases is discussed.
Collapse
Affiliation(s)
- Clare E Futter
- Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
159
|
Abstract
Skin pigmentation is accomplished by production of melanin in specialized membrane-bound organelles termed melanosomes and by transfer of these organelles from melanocytes to surrounding keratinocytes. The mechanism by which these cells transfer melanin is yet unknown. A central role has been established for the protease-activated receptor-2 of the keratinocyte which effectuates melanin transfer via phagocytosis. What exactly is being phagocytosed - naked melanin, melanosomes or melanocytic cell parts - remains to be defined. Analogy of melanocytes to neuronal cells and cells of the haemopoietic lineage suggests exocytosis of melanosomes and subsequent phagocytosis of naked melanin. Otherwise, microscopy studies demonstrate cytophagocytosis of melanocytic dendrites. Other plausible mechanisms are transfer via melanosome-containing vesicles shed by the melanocyte or transfer via fusion of keratinocyte and melanocyte plasma membranes with formation of tunnelling nanotubes. Molecules involved in transfer are being identified. Transfer is influenced by the interactions of lectins and glycoproteins and, probably, by the action of E-cadherin, SNAREs, Rab and Rho GTPases. Further clues as to what mechanism and molecular machinery will arise with the identification of the function of specific genes which are mutated in diseases that affect transfer.
Collapse
|
160
|
Tsuboi T, Fukuda M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci 2006; 119:2196-203. [PMID: 16684812 DOI: 10.1242/jcs.02962] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have suggested that two small GTPases, Rab3A and Rab27A, play a key role in the late steps of dense-core vesicle exocytosis in endocrine cells; however, neither the precise mechanisms by which these two GTPases regulate dense-core vesicle exocytosis nor the functional relationship between them is clear. In this study, we expressed a number of different Rab proteins, from Rab1 to Rab41 in PC12 cells and systematically screened them for those that are specifically localized on dense-core vesicles. We found that four Rabs (Rab3A, Rab27A, Rab33A, Rab37) are predominantly targeted to dense-core vesicles in PC12 cells, and that three of them (Rab3A, Rab27A, Rab33A) are endogenously expressed on dense-core vesicles. We further investigated the effect of silencing each Rab with specific small interfering RNA on vesicle dynamics by total internal reflection fluorescence microscopy in a single PC12 cell. Silencing either Rab3A or Rab27A in PC12 cells significantly decreased the number of dense-core vesicles docked to the plasma membrane without altering the kinetics of individual exocytotic events, whereas silencing of Rab33A had no effect at all. Simultaneous silencing of Rab3A and Rab27A caused a significantly greater decrease in number of vesicles docked to the plasma membrane. Our findings indicate that Rab3A and Rab27A cooperatively regulate docking step(s) of dense-core vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, Japan
| | | |
Collapse
|
161
|
Fukuda M. Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: Hierarchy of Rab27A effectors. Biochem Biophys Res Commun 2006; 343:666-74. [PMID: 16554019 DOI: 10.1016/j.bbrc.2006.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
The small GTPase Rab27A has recently been shown to regulate melanosome transport in mammalian skin melanocytes through sequentially interacting with two Rab27A effectors, Slac2-a/melanophilin and Slp2-a. Although Slac2-a and Slp2-a contain a similar N-terminal Rab27A-binding domain (named SHD, Slp homology domain), nothing is known about the functional differences between the Slac2-a SHD and Slp2-a SHD. In this study, the Rab27A-binding affinity of ten putative Rab27A effector proteins has been investigated. It has been found that they could be classified into a low-affinity group (e.g., Slac2-a) and a high-affinity group (e.g., Slp2-a and Slp4-a) based on their Rab27A-binding affinity. Kinetic analysis of the GTP-Rab27A-binding to the SHD of Slp2-a, Slp4-a, and Slac2-a by surface plasmon resonance further indicated that the kinetic parameters of Rab27A for the Slp2-a SHD, Slp4-a SHD, and Slac2-a SHD consisted of a fast association rate constant (3.35 x 10(4), 2.06 x 10(4), and 2.11 x 10(4) M(-1) s(-1), respectively) and a slow dissociation rate constant (4.48 x 10(-4), 3.96 x 10(-4), and 2.37 x 10(-3) s(-1) respectively), and their equilibrium dissociation constants were determined to be 13.4, 19.2, and 112 nM, respectively. Our data suggest that distinct Rab27A binding activities of Slac2-a and Slp2-a ensure the order (or hierarchy) of Rab27A effectors that sequentially function in melanosome transport in melanocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
162
|
Tsuboi T, Fukuda M. The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex. Mol Biol Cell 2006; 17:2101-12. [PMID: 16481396 PMCID: PMC1446092 DOI: 10.1091/mbc.e05-11-1047] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 11/11/2022] Open
Abstract
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a is specifically localized on dense-core vesicles in certain neuroendocrine cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A. However, the precise molecular mechanism of its inhibitory effect on exocytosis has never been elucidated and is still a matter of controversy. Here we show by deletion and chimeric analyses that the linker domain of Slp4-a interacts with the Munc18-1.syntaxin-1a complex by directly binding to Munc18-1 and that this interaction promotes docking of dense-core vesicles to the plasma membrane in PC12 cells. Despite increasing the number of plasma membrane docked vesicles, expression of Slp4-a strongly inhibited high-KCl-induced dense-core vesicle exocytosis. The inhibitory effect by Slp4-a is absolutely dependent on the linker domain of Slp4-a, because substitution of the linker domain of Slp4-a by that of Slp5 (the closest isoform of Slp4-a that cannot bind the Munc18-1.syntaxin-1a complex) completely abrogated the inhibitory effect. Our findings reveal a novel docking machinery for dense-core vesicle exocytosis: Slp4-a simultaneously interacts with Rab27A and Munc18-1 on the dense-core vesicle and with syntaxin-1a in the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, Riken (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
163
|
Kuroda TS, Itoh T, Fukuda M. Functional analysis of slac2-a/melanophilin as a linker protein between Rab27A and myosin Va in melanosome transport. Methods Enzymol 2006; 403:419-31. [PMID: 16473608 DOI: 10.1016/s0076-6879(05)03037-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Slac2-a/melanophilin regulates melanosome transport in mammalian skin melanocytes by linking melanosome-bound Rab27A and an actin-based motor protein, myosin Va. Slac2-a consists of an N-terminal Slp homology domain (SHD), which has been identified as a specific GTP-Rab27-binding domain, a myosin Va-binding domain (MBD) in the middle region, and an actin-binding domain (ABD) at the C-terminus. Mutations in the slac2-a/mlph gene cause the abnormal pigmentation (i.e., perinuclear melanosome aggregation in melanocytes) in human Griscelli syndrome type III and in leaden mice because of the inability to form the tripartite protein complex consisting of Rab27A, Slac2-a, and myosin Va. In this chapter we describe the methods, including in vivo melanosome distribution assay combined with dominant-negative approaches and RNA interference technology, that have been used to analyze the function of Slac2-a in melanosome transport in melanocytes.
Collapse
|
164
|
Saxena SK, Horiuchi H, Fukuda M. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism. Biochem Biophys Res Commun 2006; 344:651-7. [PMID: 16630545 DOI: 10.1016/j.bbrc.2006.03.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 03/27/2006] [Indexed: 02/08/2023]
Abstract
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | |
Collapse
|
165
|
Hong W. Cytotoxic T lymphocyte exocytosis: bring on the SNAREs! Trends Cell Biol 2005; 15:644-50. [PMID: 16260137 DOI: 10.1016/j.tcb.2005.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/05/2005] [Accepted: 10/04/2005] [Indexed: 02/03/2023]
Abstract
Despite our general understanding of membrane traffic, the molecular machinery at the immunological synapse (IS) that regulates exocytosis of lytic granules from cytotoxic T lymphocytes (CTLs) remains elusive. The identification of disease-causing mutations in the small GTPase Rab27a, priming factor Munc13-4 and fusion protein syntaxin11 has defined an important role for these proteins in CTL exocytosis. In addition, the demonstration of a direct interaction in vitro between Rab27a and Munc13-4 suggests the possibility that the Rab27a-Munc13-4 cascade might regulate CTL exocytosis by engaging SNAREs such as syntaxin11. We propose that these SNAREs are likely to mediate the fusion of lytic granules with the plasma membrane of the IS.
Collapse
Affiliation(s)
- Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
166
|
Tsuboi T, Fukuda M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 2005; 280:39253-9. [PMID: 16203731 DOI: 10.1074/jbc.m507173200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin is a membrane trafficking protein on secretory vesicles that consists of an N-terminal Rab-binding domain and C-terminal tandem C2 domains. The N-terminal part of rabphilin has recently been shown to function as an effector domain for both Rab27A and Rab3A in PC12 cells (Fukuda, M., Kanno, E., and Yamamoto, A. (2004) J. Biol. Chem. 279, 13065-13075), but the function of the C2 domains of rabphilin during secretory vesicle exocytosis is largely unknown. In this study we investigated the interaction between rabphilin and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, VAMP-2/synaptobrevin-2, syntaxin IA, and SNAP-25) and SNARE-associated proteins (Munc18-1 and Munc13-1) and found that the C2B domain of rabphilin, but not of other Rab27A-binding proteins with tandem C2 domains (i.e. Slp1-5), directly interacts with a plasma membrane protein, SNAP-25. The interaction between rabphilin and SNAP-25 occurs even in the absence of Ca(2+) (EC(50) = 0.817 microm SNAP-25), but 0.5 mm Ca(2+) increases the affinity for SNAP-25 2-fold (EC(50) = 0.405 microm SNAP-25) without changing the B(max) value (1.06 mol of SNAP-25/mol of rabphilin). Furthermore, vesicle dynamics were imaged by total internal reflection fluorescence microscopy in a single PC12 cell expressing a lumen-targeted pH-insensitive yellow fluorescent protein (Venus), neuropeptide Y-Venus. Expression of the wild-type rabphilin in PC12 cells significantly increased the number of docked vesicles to the plasma membrane without altering the kinetics of individual secretory events, whereas expression of the mutant rabphilin lacking the C2B domain, rabphilin-DeltaC2B, decreased the number of docked vesicle or fusing at the plasma membrane. These findings suggest that rabphilin is involved in the docking step of regulated exocytosis in PC12 cells, possibly through interaction between the C2B domain and SNAP-25.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
167
|
Fukuda M, Imai A, Nashida T, Shimomura H. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem 2005; 280:39175-84. [PMID: 16186111 DOI: 10.1074/jbc.m505759200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slp4-a/granuphilin-a was originally described as a protein specifically associated with insulin-containing granules in pancreatic beta-cells, but it was subsequently found to be present on amylase-containing granules in parotid acinar cells. Although Slp4-a has been suggested to control insulin secretion through interaction with syntaxin-1a and/or Munc18-1, nothing is known about the binding partner(s) of Slp4-a during amylase release from parotid acinar cells, which do not endogenously express either syntaxin-1a or Munc18-1. In this study we systematically investigated the interaction between syntaxin-1-5 and Munc18-1-3 by co-immunoprecipitation assay using COS-7 cells and discovered that Slp4-a interacts with a closed conformation of syntaxin-2/3 in a Munc18-2-dependent manner, whereas Munc18-2 itself hardly interacts with Slp4-a at all. By contrast, Slp4-a was found to strongly interact with Munc18-1 regardless of the presence of syntaxin-2/3, and syntaxin-2/3 co-immunoprecipitated with Slp4-a only in the presence of Munc18-1/2. Deletion analysis showed that the syntaxin-2/3 (or Munc18-1/2)-binding site is a linker domain of Slp4-a (amino acid residues 144-354), a previously uncharacterized region located between the N-terminal Rab27A binding domain and the C2A domain. We also found that the Slp4-a.syntaxin-2 complex is actually present in rat parotid glands and that introduction of the antibody against Slp4-a linker domain into streptolysin O-permeabilized parotid acinar cells severely attenuates isoproterenol-stimulated amylase release, possibly by disrupting the interaction between Slp4-a and syntaxin-2/3 (or Munc18-2). These results suggest that Slp4-a modulates amylase release from parotid acinar cells through interaction with syntaxin-2/3 on the apical plasma membrane.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
168
|
Kuroda TS, Fukuda M. Functional Analysis of Slac2-c/MyRIP as a Linker Protein between Melanosomes and Myosin VIIa*[boxs]. J Biol Chem 2005; 280:28015-22. [PMID: 15927964 DOI: 10.1074/jbc.m501465200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal melanosomes in pigment epithelium cells.
Collapse
Affiliation(s)
- Taruho S Kuroda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
169
|
Shirakawa R, Higashi T, Kondo H, Yoshioka A, Kita T, Horiuchi H. Purification and Functional Analysis of a Rab27 Effector Munc13‐4 Using a Semiintact Platelet Dense‐Granule Secretion Assay. Methods Enzymol 2005; 403:778-88. [PMID: 16473638 DOI: 10.1016/s0076-6879(05)03067-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have demonstrated that small GTPase Rab27 regulates dense-granule secretion in platelets. Using Rab27a affinity chromatography, we purified Munc 13-4 as a novel Rab27a interacting protein from platelet cytosol. This chapter describes the purification of Munc 13-4 and an in vitro assay system analyzing the mechanism of dense-granule secretion in platelets. The activity of Munc 13-4 is tested in this assay.
Collapse
|
170
|
Fukuda M, Kanno E. Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol 2005; 403:445-57. [PMID: 16473610 DOI: 10.1016/s0076-6879(05)03039-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Slp4-a/granuphilin-a is a member of the synaptotagmin-like protein (Slp) family and consists of an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains. Slp4-a is specifically localized on secretory granules in some endocrine and exocrine cells through its SHD, and it attenuates Ca(2+)-dependent dense-core vesicle (DCV) exocytosis when transiently expressed in endocrine cells. Although the SHD of Slp4-a interacts with three distinct Rab species (Rab3A, Rab8A, and Rab27A) in vitro, in contrast to other Slp members, which only recognize Rab27 isoforms, Slp4-a functions as a Rab27A effector during DCV exocytosis under physiological conditions. This chapter describes various approaches that have been used to characterize the function of Slp4-a as a Rab27A effector, rather than a Rab3A or Rab8A effector, both in in vitro and in neuroendocrine PC12 cells. Specifically, the methods that have been used to analyze (1) the physical interaction between Slp4-a and Rab27A, including pull-down assay and cotransfection assay in COS-7 cells; (2) the localization of Slp4-a-Rab27A complex on DCVs in PC12 cells; and (3) the involvement of Slp4-a and Rab27A in DCV exocytosis by neuropeptide Y (NPY) cotransfection assay combined with site-directed mutagenesis are described.
Collapse
|