151
|
Olaofe OA, Fenner CJ, Gudiminchi RK, Smit MS, Harrison STL. The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6. Microb Cell Fact 2013; 12:8. [PMID: 23351575 PMCID: PMC3598389 DOI: 10.1186/1475-2859-12-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n-octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). RESULTS Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 μmol gDCW-1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. CONCLUSION This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions.
Collapse
Affiliation(s)
- Oluwafemi A Olaofe
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
152
|
Matsuoka Y, Shimizu K. Importance of understanding the main metabolic regulation in response to the specific pathway mutation for metabolic engineering of Escherichia coli. Comput Struct Biotechnol J 2013; 3:e201210018. [PMID: 24688678 PMCID: PMC3962149 DOI: 10.5936/csbj.201210018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023] Open
Abstract
Recent metabolic engineering practice was briefly reviewed in particular for the useful metabolite production such as natural products and biofuel productions. With the emphasis on systems biology approach, the metabolic regulation of the main metabolic pathways in E. coli was discussed from the points of view of enzyme level (allosteric and phosphorylation/ dephosphorylation) regulation, and gene level (transcriptional) regulation. Then the effects of the specific pathway gene knockout such as pts, pgi, zwf, gnd, pyk, ppc, pckA, lpdA, pfl gene knockout on the metabolism in E. coli were overviewed from the systems biology point of view with possible application for strain improvement point.
Collapse
Affiliation(s)
- Yu Matsuoka
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuyuki Shimizu
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan ; Institute of Advanced Bioscience, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
153
|
Ichinose H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 2013; 60:71-81. [PMID: 23586994 DOI: 10.1002/bab.1061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/09/2012] [Indexed: 12/23/2022]
Abstract
Wood-rotting basidiomycetes possess superior metabolic functions to degrade woody biomass, and these activities are indispensable for the carbon cycle of the biosphere. As well as basic studies of the biochemistry of basidiomycetes, many researchers have been focusing on utilizing basidiomycetes and/or their enzymes in the biotechnology sector; therefore, the unique activities of their extracellular and intracellular enzymes have been widely demonstrated. A rich history of applied study has established that basidiomycetes are capable of metabolizing a series of endogeneous and exogeneous compounds using cytochrome P450s (P450s). Recently, whole genome sequence analyses have revealed large-scale divergences in basidiomycetous P450s. The tremendous variation in P450s implies that basidiomycetes have vigorously diversified monooxygenase functions to acquire metabolic adaptations such as lignin degradation, secondary metabolite production, and xenobiotics detoxification. However, fungal P450s discovered from genome projects are often categorized into novel families and subfamilies, making it difficult to predict catalytic functions by sequence comparison. Experimental screening therefore remains essential to elucidate the catalytic potential of individual P450s, even in this postgenomic era. This paper archives the known metabolic capabilities of basidiomycetes, focusing on their P450s, outlines the molecular diversity of basidiomycetous P450s, and introduces new functions revealed by functionomic studies using a recently developed, rapid, functional screening system.
Collapse
|
154
|
Bokinsky G, Groff D, Keasling J. Synthetic Biology of Microbial Biofuel Production. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
155
|
Kong J, Yang Y, Wang W, Cheng K, Zhu P. Artemisinic acid: A promising molecule potentially suitable for the semi-synthesis of artemisinin. RSC Adv 2013. [DOI: 10.1039/c3ra40525g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
156
|
|
157
|
Cobb RE, Luo Y, Freestone T, Zhao H. Drug Discovery and Development via Synthetic Biology. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
158
|
Zhou K, Zou R, Stephanopoulos G, Too HP. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb Cell Fact 2012; 11:148. [PMID: 23148661 PMCID: PMC3545872 DOI: 10.1186/1475-2859-11-148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/07/2012] [Indexed: 12/02/2022] Open
Abstract
Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.
Collapse
Affiliation(s)
- Kang Zhou
- Chemical and Pharmaceutical Engineering, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, Singapore
| | | | | | | |
Collapse
|
159
|
Zhang K, Shafer BM, Demars MD, Stern HA, Fasan R. Controlled oxidation of remote sp3 C-H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J Am Chem Soc 2012; 134:18695-704. [PMID: 23121379 PMCID: PMC3498520 DOI: 10.1021/ja3073462] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 01/20/2023]
Abstract
The selective oxyfunctionalization of isolated sp(3) C-H bonds in complex molecules represents a formidable challenge in organic chemistry. Here, we describe a rational, systematic strategy to expedite the development of P450 oxidation catalysts with refined regio- and stereoselectivity for the hydroxylation of remote, unactivated C-H sites in a complex scaffold. Using artemisinin as model substrate, we demonstrate how a three-tier strategy involving first-sphere active site mutagenesis, high-throughput P450 fingerprinting, and fingerprint-driven P450 reactivity predictions enabled the rapid evolution of three efficient biocatalysts for the selective hydroxylation of a primary and a secondary C-H site (with both S and R stereoselectivity) in a relevant yet previously inaccessible region of this complex natural product. The evolved P450 variants could be applied to provide direct access to the desired hydroxylated derivatives at preparative scales (0.4 g) and in high isolated yields (>90%), thereby enabling further elaboration of this molecule. As an example, enantiopure C7-fluorinated derivatives of the clinical antimalarial drugs artesunate and artemether, in which a major metabolically sensitive site is protected by means of a C-H to C-F substitution, were afforded via P450-mediated chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Kaidong Zhang
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Brian M. Shafer
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Matthew D. Demars
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Harry A. Stern
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| |
Collapse
|
160
|
|
161
|
Mizutani M. Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 2012; 35:824-32. [PMID: 22687470 DOI: 10.1248/bpb.35.824] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) catalyze a wide variety of monooxygenation reactions in primary and secondary metabolism in plants. The share of P450 genes in each plant genome is estimated to be up to 1%. This implies that the diversification of P450 has made a significant contribution to the ability to acquire the emergence of new metabolic pathways during land plant evolution. The P450 families conserved universally in land plants contribute to their chemical defense mechanisms. Several P450s are involved in the biosynthesis and catabolism of plant hormones. Species-specific P450 families are essential for the biosynthetic pathways of phytochemicals such as terpenoids and alkaloids. Genome wide analysis of the gene clusters including P450 genes will provide a clue to defining the metabolic roles of orphan P450s. Metabolic engineering with plant P450s is an important technology for large-scale production of valuable phytochemicals such as medicines.
Collapse
Affiliation(s)
- Masaharu Mizutani
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Nada, Japan.
| |
Collapse
|
162
|
Abstract
Malaria represents one of the most medically and economically debilitating diseases present in the world today. Fortunately, there exists a highly effective treatment based on the natural product artemisinin. Despite the development of several synthetic approaches to the natural product, a streamlined synthesis that utilizes low-cost chemical inputs has yet to materialize. Here we report an efficient, cost-effective approach to artemisinin. Key to the success of the strategy was the development of mild, complexity-building reaction cascades that allowed the use of readily available, affordable cyclohexenone as the key starting material.
Collapse
Affiliation(s)
- Chunyin Zhu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, USA
| | | |
Collapse
|
163
|
High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 2012; 14:306-16. [DOI: 10.1016/j.ymben.2012.04.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/09/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022]
|
164
|
Marienhagen J, Bott M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 2012; 163:166-78. [PMID: 22687248 DOI: 10.1016/j.jbiotec.2012.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022]
Abstract
Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms.
Collapse
Affiliation(s)
- Jan Marienhagen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|
165
|
Abstract
Natural products and their derivatives play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex yet valuable compounds have been elucidated. With an ever-expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains, systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities, advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering not only have yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis.
Collapse
Affiliation(s)
- Lauren B Pickens
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
166
|
Synthetic biology and the development of tools for metabolic engineering. Metab Eng 2012; 14:189-95. [DOI: 10.1016/j.ymben.2012.01.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
|
167
|
Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 2012; 94:841-9. [PMID: 22460591 PMCID: PMC9896016 DOI: 10.1007/s00253-012-4016-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 02/07/2023]
Abstract
Taxol (a trademarked product of Bristol-Myers Squibb) is a complex isoprenoid natural product which has displayed potent anticancer activity. Originally isolated from the Pacific yew tree (Taxus brevifolia), Taxol has been mass-produced through processes reliant on plant-derived biosynthesis. Recently, there have been alternative efforts to reconstitute the biosynthetic process through technically convenient microbial hosts, which offer unmatched growth kinetics and engineering potential. Such an approach is made challenging by the need to successfully introduce the significantly foreign enzymatic steps responsible for eventual biosynthesis. Doing so, however, offers the potential to engineer more efficient and economical production processes and the opportunity to design and produce tailored analog compounds with enhanced properties. This mini review will specifically focus on heterologous biosynthesis as it applies to Taxol with an emphasis on the challenges associated with introducing and reconstituting the downstream reaction steps needed for final bioactivity.
Collapse
|
168
|
Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:249-68. [PMID: 22059985 PMCID: PMC3288596 DOI: 10.1111/j.1467-7652.2011.00664.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.
Collapse
Affiliation(s)
- Sarah A Wilson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | |
Collapse
|
169
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
170
|
Wang Q, Hillwig ML, Wu Y, Peters RJ. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. PLANT PHYSIOLOGY 2012; 158:1418-25. [PMID: 22247270 PMCID: PMC3291257 DOI: 10.1104/pp.111.187518] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/10/2012] [Indexed: 05/20/2023]
Abstract
All higher plants contain an ent-kaurene oxidase (KO), as such a cytochrome P450 (CYP) 701 family member is required for gibberellin (GA) phytohormone biosynthesis. While gene expansion and functional diversification of GA-biosynthesis-derived diterpene synthases into more specialized metabolism has been demonstrated, no functionally divergent KO/CYP701 homologs have been previously identified. Rice (Oryza sativa) contains five CYP701A subfamily members in its genome, despite the fact that only one (OsKO2/CYP701A6) is required for GA biosynthesis. Here we demonstrate that one of the other rice CYP701A subfamily members, OsKOL4/CYP701A8, does not catalyze the prototypical conversion of the ent-kaurene C4α-methyl to a carboxylic acid, but instead carries out hydroxylation at the nearby C3α position in a number of related diterpenes. In particular, under conditions where OsKO2 catalyzes the expected conversion of ent-kaurene to ent-kaurenoic acid required for GA biosynthesis, OsKOL4 instead efficiently reacts with ent-sandaracopimaradiene and ent-cassadiene to produce the corresponding C3α-hydroxylated diterpenoids. These compounds are expected intermediates in biosynthesis of the oryzalexin and phytocassane families of rice antifungal phytoalexins, respectively, and can be detected in rice plants under the appropriate conditions. Thus, it appears that OsKOL4 plays a role in the more specialized diterpenoid metabolism of rice, and our results provide evidence for divergence of a KO/CYP701 family member from GA biosynthesis. This further expands the range of enzymes recruited from the ancestral GA primary pathway to the more complex and specialized labdane-related diterpenoid metabolic network found in rice.
Collapse
|
171
|
Boghigian BA, Salas D, Ajikumar PK, Stephanopoulos G, Pfeifer BA. Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 2012; 93:1651-61. [PMID: 21850432 PMCID: PMC9896015 DOI: 10.1007/s00253-011-3528-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 02/05/2023]
Abstract
Taxa-4(5),11(12)-diene is the first dedicated intermediate in the metabolic pathway responsible for synthesizing the anticancer compound Taxol. In this study, the heterologous production of taxadiene was established in and analyzed between K- and B-derived Escherichia coli strains. First, recombinant parameters associated with precursor metabolism (the upstream methylerythritol phosphate (MEP) pathway) and taxadiene biosynthesis (the downstream pathway) were varied to probe the effect different promoters and cellular backgrounds have on taxadiene production. Specifically, upstream MEP pathway genes responsible for the taxadiene precursors, dimethylallyl diphosphate and isopentenyl diphosphate, were tested with an inducible T7 promoter system within K and B E. coli strains. Whereas, inducible T7, Trc, and T5 promoters were tested with the plasmid-borne geranylgeranyl diphosphate synthase and taxadiene synthase genes responsible for the downstream pathway. The K-derivative produced taxadiene roughly 2.5-fold higher than the B-derivative. A transcriptomics study revealed significant differences in pyruvate metabolism between the K and B strains, providing insight into the differences observed in taxadiene biosynthesis and targets for future metabolic engineering efforts. Next, the effect of temperature on cell growth and taxadiene production was analyzed in these two strains, revealing similar phenotypes between the two with 22°C as the optimal production temperature. Lastly, the effect of indole on cell growth was investigated between the two strains, showing that the K-derivative demonstrated greater growth inhibition compared to the B-derivative.
Collapse
Affiliation(s)
- Brett A. Boghigian
- Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Daniel Salas
- Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Parayil Kumaran Ajikumar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
172
|
Toward biosynthetic design and implementation of Escherichia coli-derived paclitaxel and other heterologous polyisoprene compounds. Appl Environ Microbiol 2012; 78:2497-504. [PMID: 22287010 DOI: 10.1128/aem.07391-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli offers unparalleled engineering capacity in the context of heterologous natural product biosynthesis. However, as with other heterologous hosts, cellular metabolism must be designed or redesigned to support final compound formation. This task is at once complicated and aided by the fact that the cell does not natively produce an abundance of natural products. As a result, the metabolic engineer avoids complicated interactions with native pathways closely associated with the outcome of interest, but this convenience is tempered by the need to implement the required metabolism to allow functional biosynthesis. This review focuses on engineering E. coli for the purpose of polyisoprene formation, as it is related to isoprenoid compounds currently being pursued through a heterologous approach. In particular, the review features the compound paclitaxel and early efforts to design and overproduce intermediates through E. coli.
Collapse
|
173
|
Abstract
As the field of synthetic biology is developing, the prospects for de novo design of biosynthetic pathways are becoming more and more realistic. Hence, there is an increasing need for computational tools that can support these efforts. A range of algorithms has been developed that can be used to identify all possible metabolic pathways and their corresponding enzymatic parts. These can then be ranked according to various properties and modelled in an organism-specific context. Finally, design software can aid the biologist in the integration of a selected pathway into smartly regulated transcriptional units. Here, we review key existing tools and offer suggestions for how informatics can help to shape the future of synthetic microbiology.
Collapse
|
174
|
Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2012; 12:144-70. [PMID: 22136110 DOI: 10.1111/j.1567-1364.2011.00774.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 12/11/2022] Open
Abstract
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.
Collapse
Affiliation(s)
- Michael S Siddiqui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
175
|
Winter JM, Tang Y. Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol 2012; 23:736-43. [PMID: 22221832 DOI: 10.1016/j.copbio.2011.12.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Small molecules produced in Nature possess exquisite chemical diversity and continue to be an inspiration for the development of new therapeutic agents. In their host organisms, natural products are assembled and modified using dedicated biosynthetic pathways. By rationally reprogramming and manipulating these pathways, unnatural metabolites containing enhanced structural features that were otherwise inaccessible can be obtained. Additionally, new chemical entities can be synthesized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds.
Collapse
Affiliation(s)
- Jaclyn M Winter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | | |
Collapse
|
176
|
Ichinose H. Molecular and Functional Diversity of Fungal Cytochrome P450s. Biol Pharm Bull 2012; 35:833-7. [DOI: 10.1248/bpb.35.833] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
177
|
Wang J, Xiong Z, Meng H, Wang Y, Wang Y. Synthetic biology triggers new era of antibiotics development. Subcell Biochem 2012; 64:95-114. [PMID: 23080247 DOI: 10.1007/978-94-007-5055-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a discipline to design and construct organisms with desired properties, synthetic biology has generated rapid progresses in the last decade. Combined synthetic biology with the traditional process, a new universal workflow for drug development has been becoming more and more attractive. The new methodology exhibits more efficient and inexpensive comparing to traditional methods in every aspect, such as new compounds discovery & screening, process design & drug manufacturing. This article reviews the application of synthetic biology in antibiotics development, including new drug discovery and screening, combinatorial biosynthesis to generate more analogues and heterologous expression of biosynthetic gene clusters with systematic engineering the recombinant microbial systems for large scale production.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
178
|
Abstract
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Collapse
Affiliation(s)
- Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104 Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Hebelstrasse 25, Freiburg, D-79104 Germany
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058 Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058 Switzerland
| |
Collapse
|
179
|
Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2011; 2:483. [PMID: 21952217 PMCID: PMC3195254 DOI: 10.1038/ncomms1494] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/26/2011] [Indexed: 01/14/2023] Open
Abstract
Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l(-1). We produce bisabolene in Saccharomyces cerevisiae (>900 mg l(-1)), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels.
Collapse
|
180
|
Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta. Arch Microbiol 2011; 194:243-53. [DOI: 10.1007/s00203-011-0753-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/19/2011] [Accepted: 09/02/2011] [Indexed: 12/21/2022]
|
181
|
Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 2011; 13:455-63. [DOI: 10.1016/j.ymben.2011.04.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/22/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
|
182
|
Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H. A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2011; 2:326. [PMID: 21610729 DOI: 10.1038/ncomms1327] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/27/2011] [Indexed: 12/19/2022] Open
Abstract
The secondary metabolites of higher plants include diverse chemicals, such as alkaloids, isoprenoids and phenolic compounds (phenylpropanoids and flavonoids). Although these compounds are widely used in human health and nutrition, at present they are mainly obtained by extraction from plants and extraction yields are low because most of these metabolites accumulate at low levels in plant cells. Recent advances in synthetic biology and metabolic engineering have enabled tailored production of plant secondary metabolites in microorganisms, but these methods often require the addition of expensive substrates. Here we develop an Escherichia coli fermentation system that yields plant alkaloids from simple carbon sources, using selected enzymes to construct a tailor-made biosynthetic pathway. In this system, engineered cells cultured in growth medium without additional substrates produce the plant benzylisoquinoline alkaloid, (S)-reticuline (yield, 46.0 mg l(-1) culture medium). The fermentation platform described here offers opportunities for low-cost production of many diverse alkaloids.
Collapse
Affiliation(s)
- Akira Nakagawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-machi, Ishikawa 921-8836, Japan
| | | | | | | | | | | | | |
Collapse
|
183
|
Du J, Shao Z, Zhao H. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 2011; 38:873-90. [PMID: 21526386 PMCID: PMC3142293 DOI: 10.1007/s10295-011-0970-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 04/01/2011] [Indexed: 01/07/2023]
Abstract
Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed.
Collapse
Affiliation(s)
- Jing Du
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
184
|
Weeks AM, Chang MCY. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry 2011; 50:5404-18. [PMID: 21591680 PMCID: PMC3768262 DOI: 10.1021/bi200416g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and allows the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes. However, the development of commercially viable processes for these engineered pathways is currently limited by our ability to quickly identify or engineer enzymes with the correct reaction and substrate selectivity as well as the speed by which metabolic bottlenecks can be determined and corrected. Efforts to understand the relationship among sequence, structure, and function in the basic biochemical sciences can advance these goals for synthetic biology applications while also serving as an experimental platform for elucidating the in vivo specificity and function of enzymes and reconstituting complex biochemical traits for study in a living model organism. Furthermore, the continuing discovery of natural mechanisms for the regulation of metabolic pathways has revealed new principles for the design of high-flux pathways with minimized metabolic burden and has inspired the development of new tools and approaches to engineering synthetic pathways in microbial hosts for chemical production.
Collapse
Affiliation(s)
- Amy M. Weeks
- Department of Chemistry, University of California, Berkeley, Berkeley California 94720-1460
| | - Michelle C. Y. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley California 94720-1460
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley California 94720-1460
| |
Collapse
|
185
|
Harada H, Shindo K, Iki K, Teraoka A, Okamoto S, Yu F, Hattan JI, Utsumi R, Misawa N. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis. Appl Microbiol Biotechnol 2011; 90:467-76. [PMID: 21229242 DOI: 10.1007/s00253-010-3062-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/20/2010] [Accepted: 12/05/2010] [Indexed: 12/01/2022]
Abstract
Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses.
Collapse
Affiliation(s)
- Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co. Ltd., i-BIRD, Suematsu, Ishikawa 921-8836, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: Involvement of versatile monooxygenase. Biochem Biophys Res Commun 2011; 407:118-23. [DOI: 10.1016/j.bbrc.2011.02.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/25/2023]
|
187
|
Abstract
The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references).
Collapse
Affiliation(s)
| | - Pedro S. Coelho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC210-41, Pasadena, CA 91125-4100, USA
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC210-41, Pasadena, CA 91125-4100, USA
| |
Collapse
|
188
|
Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2011; 2:1277-90. [PMID: 21083240 DOI: 10.4155/bio.10.80] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs and poisons in humans, while UDP glycosyltransferases catalyze the majority of phase II reactions. In addition, a number of other enzymes or enzyme families contribute to the metabolism of xenobiotica, including alcohol dehydrogenase, aldehyde dehydrogenase, ester and amide hydrolases, epoxide hydrolase and flavine monooxygenases, as well as sulfotransferases, catechol-O-methyltransferase and N-acetyltransferase. A thorough understanding of their activity and of the properties of the metabolites they form is an essential prerequisite for the assessment of drug-caused side effects or toxicity. In this context of MIST, efficient production systems are needed to permit the large-scale production of human drug metabolites. As classical chemical synthesis cannot always provide these metabolites, biotechnological approaches have been developed that typically employ the recombinant expression of human drug-metabolizing enzymes. This review summarizes the current knowledge regarding whole-cell biotransformation processes that make use of such an approach.
Collapse
|
189
|
Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 2011; 77:3147-50. [PMID: 21378053 DOI: 10.1128/aem.02491-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A functional library of cytochrome P450 monooxygenases from Aspergillus oryzae (AoCYPs) was constructed in which 121 isoforms were coexpressed with yeast NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. Using this functional library, novel catalytic functions of AoCYPs, such as catalytic potentials of CYP57B3 against genistein, were elucidated for the first time. Comprehensive functional screening promises rapid characterization of catalytic potentials and utility of AoCYPs.
Collapse
|
190
|
Yu F, Okamoto S, Harada H, Yamasaki K, Misawa N, Utsumi R. Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cell Mol Life Sci 2011; 68:1033-40. [PMID: 20730551 PMCID: PMC11114803 DOI: 10.1007/s00018-010-0506-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/03/2010] [Accepted: 08/09/2010] [Indexed: 11/28/2022]
Abstract
Plant cytochrome P450s are involved in the biosynthesis of various classes of secondary metabolites. To elucidate the biosynthesis of zerumbone, a sesquiterpenoid with multiple potential anticancer properties, a family of P450 genes expressed in rhizomes of Zingiber zerumbet Smith, were cloned using a PCR-based cloning strategy. After functional expression in yeast, one of these P450s was found to convert α-humulene into 8-hydroxy-α-humulene, a proposed intermediate of zerumbone biosynthesis. This P450 has been designated CYP71BA1, a new member of the CYP71 family. CYP71BA1 transcripts were detected almost exclusively in rhizomes and showed a similar expression pattern to ZSS1 transcripts during rhizome development. Coexpression of a gene cluster encoding four enzymes of the mevalonate pathway with CYP71BA1 and ZSS1 in Escherichia coli leads to the production of 8-hydroxy-α-humulene in the presence of mevalonate, suggesting the possibility of microbial production of this zerumbone intermediate from a relatively simple carbon source by metabolic engineering.
Collapse
Affiliation(s)
- Fengnian Yu
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Sho Okamoto
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd, i-BIRD 3-570, Suematsu, Nonoichi, Ishikawa, 921-8836 Japan
| | - Kazuhisa Yamasaki
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Norihiko Misawa
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd, i-BIRD 3-570, Suematsu, Nonoichi, Ishikawa, 921-8836 Japan
| | - Ryutaro Utsumi
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| |
Collapse
|
191
|
Hillwig ML, Mann FM, Peters RJ. Diterpenoid biopolymers: new directions for renewable materials engineering. Biopolymers 2011; 95:71-6. [PMID: 20857504 PMCID: PMC2991538 DOI: 10.1002/bip.21538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 11/08/2022]
Abstract
Most types of ambers are naturally occurring, relatively hard, durable resinite polymers derived from the exudates of trees. This resource has been coveted for thousands of years due to its numerous useful properties in industrial processes, beauty, and purported medicinal properties. Labdane diterpenoid-based ambers represent the most abundant and important resinites on earth. These resinites are a dwindling nonrenewable natural resource, so a new source of such materials needs to be established. Recent advances in sequencing technologies and biochemical engineering are rapidly accelerating the rate of identifying and assigning function to genes involved in terpenoid biosynthesis, as well as producing industrial-scale quantities of desired small-molecules in bacteria and yeast. This has provided new tools for engineering metabolic pathways capable of producing diterpenoid monomers that will enable the production of custom-tailored resinite-like polymers. Furthermore, this biosynthetic toolbox is continuously expanding, providing new possibilities for renewing dwindling stocks of naturally occurring resinite materials and engineering new materials for future applications.
Collapse
Affiliation(s)
- Matthew L. Hillwig
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Francis M. Mann
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Reuben J. Peters
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
192
|
Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. THE NEW PHYTOLOGIST 2011; 189:176-89. [PMID: 20874804 DOI: 10.1111/j.1469-8137.2010.03466.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Biosynthesis of the sesquiterpene lactone and potent antimalarial drug artemisinin occurs in glandular trichomes of Artemisia annua plants and is subjected to a strict network of developmental and other regulatory cues. • The effects of three hormones, jasmonate, gibberellin and cytokinin, were studied at the structural and molecular levels in two different A. annua chemotypes by microscopic analysis of gland development, and by targeted metabolite and transcript profiling. Furthermore, a genome-wide cDNA-amplified fragment length polymorphism (AFLP)-based transcriptome profiling was carried out of jasmonate-elicited leaves at different developmental stages. • Although cytokinin and gibberellin positively affected at least one aspect of gland formation, these two hormones did not stimulate artemisinin biosynthesis. Only jasmonate simultaneously promoted gland formation and coordinated transcriptional activation of biosynthetic gene expression, which ultimately led to increased sesquiterpenoid accumulation with chemotype-dependent effects on the distinct pathway branches. Transcriptome profiling revealed a trichome-specific fatty acyl- coenzyme A reductase, trichome-specific fatty acyl-CoA reductase 1 (TFAR1), the expression of which correlates with trichome development and sesquiterpenoid biosynthesis. • TFAR1 is potentially involved in cuticular wax formation during glandular trichome expansion in leaves and flowers of A. annua plants. Analysis of phytohormone-modulated transcriptional regulons provides clues to dissect the concerted regulation of metabolism and development of plant trichomes.
Collapse
Affiliation(s)
- Lies Maes
- Department of Plant Systems Biology, VIB, Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Welch M, Villalobos A, Gustafsson C, Minshull J. Designing genes for successful protein expression. Methods Enzymol 2011; 498:43-66. [PMID: 21601673 DOI: 10.1016/b978-0-12-385120-8.00003-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA sequences are now far more readily available in silico than as physical DNA. De novo gene synthesis is an increasingly cost-effective method for building genetic constructs, and effectively removes the constraint of basing constructs on extant sequences. This allows scientists and engineers to experimentally test their hypotheses relating sequence to function. Molecular biologists, and now synthetic biologists, are characterizing and cataloging genetic elements with specific functions, aiming to combine them to perform complex functions. However, the most common purpose of synthetic genes is for the expression of an encoded protein. The huge number of different proteins makes it impossible to characterize and catalog each functional gene. Instead, it is necessary to abstract design principles from experimental data: data that can be generated by making predictions followed by synthesizing sequences to test those predictions. Because of the degeneracy of the genetic code, design of gene sequences to encode proteins is a high-dimensional problem, so there is no single simple formula to guarantee success. Nevertheless, there are several straightforward steps that can be taken to greatly increase the probability that a designed sequence will result in expression of the encoded protein. In this chapter, we discuss gene sequence parameters that are important for protein expression. We also describe algorithms for optimizing these parameters, and troubleshooting procedures that can be helpful when initial attempts fail. Finally, we show how many of these methods can be accomplished using the synthetic biology software tool Gene Designer.
Collapse
Affiliation(s)
- Mark Welch
- DNA2.0, Inc., Suite A, Menlo Park, California, USA
| | | | | | | |
Collapse
|
194
|
Zhang H, Boghigian BA, Armando J, Pfeifer BA. Methods and options for the heterologous production of complex natural products. Nat Prod Rep 2011; 28:125-51. [PMID: 21060956 PMCID: PMC9896020 DOI: 10.1039/c0np00037j] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review will detail the motivations, experimental approaches, and growing list of successful cases associated with the heterologous production of complex natural products.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Chemical & Biological Engineering, Science & Technology Center, Tufts University, Medford, MA 02155, USA.
| | | | | | | |
Collapse
|
195
|
Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G. Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:51-8. [PMID: 21143725 DOI: 10.1111/j.1438-8677.2009.00306.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Artemisia annua L. is a herb traditionally used for treatment of fevers. The glandular trichomes of this plant accumulate, although at low levels, artemisinin, which is highly effective against malaria. Due to the great importance of this compound, many efforts have been made to improve knowledge on artemisinin production both in plants and in cell cultures. In this study, A. annua suspension cultures were established in order to investigate the effects of methyl jasmonate (MeJA) and miconazole on artemisinin biosynthesis. Twenty-two micro molar MeJA induced a three-fold increase of artemisinin production in around 30 min; while 200 μm miconazole induced a 2.5-fold increase of artemisinin production after 24 h, but had severe effects on cell viability. The influence of these treatments on expression of biosynthetic genes was also investigated. MeJA induced up-regulation of CYP71AV1, while miconazole induced up-regulation of CPR and DBR2.
Collapse
Affiliation(s)
- S Caretto
- Istituto di Scienze delle Produzioni Alimentari, CNR, Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
196
|
Wang Q, Hillwig ML, Peters RJ. CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:87-95. [PMID: 21175892 PMCID: PMC3735987 DOI: 10.1111/j.1365-313x.2010.04408.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa) produces momilactone diterpenoids as both phytoalexins and allelochemicals. Strikingly, the rice genome contains a biosynthetic gene cluster for momilactone production, located on rice chromosome 4, which contains two cytochrome P450 (CYP) mono-oxygenases, CYP99A2 and CYP99A3, with undefined roles; although it has been previously shown that RNA interference double knock-down of this pair of closely related CYPs reduced momilactone accumulation. Here we attempted biochemical characterization of CYP99A2 and CYP99A3, which was ultimately achieved by complete gene recoding, enabling functional recombinant expression in bacteria. With these synthetic gene constructs it was possible to demonstrate that while CYP99A2 does not exhibit significant activity with diterpene substrates, CYP99A3 catalyzes consecutive oxidations of the C19 methyl group of the momilactone precursor syn-pimara-7,15-diene to form, sequentially, syn-pimaradien-19-ol, syn-pimaradien-19-al, and syn-pimaradien-19-oic acid. These are presumably intermediates in momilactone biosynthesis, as a C19 carboxylic acid moiety is required for formation of the core 19,6-γ-lactone ring structure. We further were able to detect syn-pimaradien-19-oic acid in rice plants, which indicates physiological relevance for the observed activity of CYP99A3. In addition, we found that CYP99A3 also oxidized syn-stemod-13(17)-ene at C19 to produce, sequentially, syn-stemoden-19-ol, syn-stemoden-19-al, and syn-stemoden-19-oic acid, albeit with lower catalytic efficiency than with syn-pimaradiene. Although the CYP99A3 syn-stemodene-derived products were not detected in planta, these results nevertheless provide a hint at the currently unknown metabolic fate of this diterpene in rice. Regardless of any wider role, our results strongly indicate that CYP99A3 acts as a multifunctional diterpene oxidase in momilactone biosynthesis.
Collapse
Affiliation(s)
| | | | - Reuben J. Peters
- Corresponding author: Molecular Biology Building, Rm. 4216, Ames, IA 50011, Phone: (515) 294-8580, FAX: (515) 294-0453,
| |
Collapse
|
197
|
Abstract
Metabolic engineering has the potential to produce from simple, readily available, inexpensive starting materials a large number of chemicals that are currently derived from nonrenewable resources or limited natural resources. Microbial production of natural products has been achieved by transferring product-specific enzymes or entire metabolic pathways from rare or genetically intractable organisms to those that can be readily engineered, and production of unnatural specialty chemicals, bulk chemicals, and fuels has been enabled by combining enzymes or pathways from different hosts into a single microorganism and by engineering enzymes to have new function. Whereas existing production routes use well-known, safe, industrial microorganisms, future production schemes may include designer cells that are tailor-made for the desired chemical and production process. In any future, metabolic engineering will soon rival and potentially eclipse synthetic organic chemistry.
Collapse
Affiliation(s)
- Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.
| |
Collapse
|
198
|
Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH. Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 2010; 108:500-10. [PMID: 21246504 DOI: 10.1002/bit.22984] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/10/2010] [Accepted: 10/18/2010] [Indexed: 11/09/2022]
Abstract
P450-dependent biotransformations in Escherichia coli are attractive for the selective oxidation of organic molecules using mild and sustainable procedures. The overall efficiency of these processes, however, relies on how effectively the NAD(P)H cofactors derived from oxidation of the carbon source are utilized inside the cell to support the heterologous P450-catalyzed reaction. In this work, we investigate the use of metabolic and protein engineering to enhance the product-per-glucose yield (Y(PPG)) in whole-cell reactions involving a proficient NADPH-dependent P450 propane monooxygenase prepared by directed evolution [P450(PMO)R2; Fasan et al. (2007); Angew Chem Int Ed 46:8414-8418]. Our studies revealed that the metabolism of E. coli (W3110) is able to support only a modest propanol: glucose molar ratio (YPPG ~ 0.5) under aerobic, nongrowing conditions. By altering key processes involved in NAD(P)H metabolism of the host, considerable improvements of this ratio could be achieved. A metabolically engineered E. coli strain featuring partial inactivation of the endogenous respiratory chain (Δndh) combined with removal of two fermentation pathways (ΔadhE, Δldh) provided the highest Y(PPG) (1.71) among the strains investigated, enabling a 230% more efficient utilization of the energy source (glucose) in the propane biotransformation compared to the native E. coli strain. Using an engineered P450(PMO)R2 variant which can utilize NADPH and NADH with equal efficiency, we also established that dual cofactor specificity of the P450 enzyme can provide an appreciable improvement in Y(PPG). Kinetic analyses suggest, however, that much more favorable parameters (K(M), k(cat)) for the NADH-driven reaction are required to effectively compete with the host's endogenous NADH-utilizing enzymes. Overall, the metabolic/protein engineering strategies described here can be of general value for improving the performance of NAD(P)H-dependent whole-cell biotransformations in E. coli.
Collapse
Affiliation(s)
- Rudi Fasan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Mannan A, Ahmed I, Arshad W, Asim MF, Qureshi RA, Hussain I, Mirza B. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malar J 2010; 9:310. [PMID: 21047440 PMCID: PMC2989329 DOI: 10.1186/1475-2875-9-310] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Artemisinin is the current drug of choice for treatment of malaria and a number of other diseases. It is obtained from the annual herb, Artemisia annua and some microbial sources by genetic engineering. There is a great concern that the artemisinin production at current rate will not meet the increasing demand by the pharmaceutical industry, so looking for additional sources is imperative. Methods In current study, artemisinin concentration was analysed and compared in the flowers, leaves, roots and stems of Artemisia annua and 14 other Artemisia species including two varieties each for Artemisia roxburghiana and Artemisia dracunculus using high performance liquid chromatography (HPLC). Results The highest artemisinin concentration was detected in the leaves (0.44 ± 0.03%) and flowers (0.42 ± 0.03%) of A. annua, followed by the flowers (0.34 ± .02%) of A. bushriences and leaves (0.27 ± 0%) of A. dracunculus var dracunculus. The average concentration of artemisinin varied in the order of flowers > leaves > stems > roots. Conclusion This study identifies twelve novel plant sources of artemisinin, which may be helpful for pharmaceutical production of artemisinin. This is the first report of quantitative comparison of artemisinin among a large number of Artemisia species.
Collapse
Affiliation(s)
- Abdul Mannan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
200
|
Brown GD. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010; 15:7603-98. [PMID: 21030913 PMCID: PMC6259225 DOI: 10.3390/molecules15117603] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/17/2010] [Indexed: 12/27/2022] Open
Abstract
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself - may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert this allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Collapse
Affiliation(s)
- Geoffrey D Brown
- Department of Chemistry, The University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| |
Collapse
|