151
|
Hor CHH, Tang BL. Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Rev Neurosci 2019; 30:261-277. [DOI: 10.1515/revneuro-2018-0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
AbstractAutophagy is an essential and conserved cellular homeostatic process. Defects in the core and accessory components of the autophagic machinery would most severely impact terminally differentiated cells, such as neurons. The neurodevelopmental/neurodegenerative disorder β-propeller protein-associated neurodegeneration (BPAN) resulted from heterozygous or hemizygous germline mutations/pathogenic variant of the X chromosome geneWDR45, encoding WD40 repeat protein interacting with phosphoinositides 4 (WIPI4). This most recently identified subtype of the spectrum of neurodegeneration with brain iron accumulation diseases is characterized by a biphasic mode of disease manifestation and progression. The first phase involves early-onset of epileptic seizures, global developmental delay, intellectual disability and autistic syndrome. Subsequently, Parkinsonism and dystonia, as well as dementia, emerge in a subacute manner in adolescence or early adulthood. BPAN disease phenotypes are thus complex and linked to a wide range of other neuropathological disorders. WIPI4/WDR45 has an essential role in autophagy, acting as a phosphatidylinositol 3-phosphate binding effector that participates in autophagosome biogenesis and size control. Here, we discuss recent updates on WIPI4’s mechanistic role in autophagy and link the neuropathological manifestations of BPAN’s biphasic infantile onset (epilepsy, autism) and adolescent onset (dystonic, Parkinsonism, dementia) phenotypes to neurological consequences of autophagy impairment that are now known or emerging in many other neurodevelopmental and neurodegenerative disorders. As monogenicWDR45mutations in BPAN result in a large spectrum of disease phenotypes that stem from autophagic dysfunctions, it could potentially serve as a simple and unique genetic model to investigate disease pathology and therapeutics for a wider range of neuropathological conditions with autophagy defects.
Collapse
|
152
|
Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M. TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to preautophagosomal membranes. Traffic 2019; 20:325-345. [PMID: 30843302 DOI: 10.1111/tra.12640] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/01/2023]
Abstract
TRAPPC11 has been implicated in membrane traffic and lipid-linked oligosaccharide synthesis, and mutations in TRAPPC11 result in neuromuscular and developmental phenotypes. Here, we show that TRAPPC11 has a role upstream of autophagosome formation during macroautophagy. Upon TRAPPC11 depletion, LC3-positive membranes accumulate prior to, and fail to be cleared during, starvation. A proximity biotinylation assay identified ATG2B and its binding partner WIPI4/WDR45 as TRAPPC11 interactors. TRAPPC11 depletion phenocopies that of ATG2 and WIPI4 and recruitment of both proteins to membranes is defective upon reduction of TRAPPC11. We find that a portion of TRAPPC11 and other TRAPP III proteins localize to isolation membranes. Fibroblasts from a patient with TRAPPC11 mutations failed to recruit ATG2B-WIPI4, suggesting that this interaction is physiologically relevant. Since ATG2B-WIPI4 is required for isolation membrane expansion, our study suggests that TRAPPC11 plays a role in this process. We propose a model whereby the TRAPP III complex participates in the formation and expansion of the isolation membrane at several steps.
Collapse
Affiliation(s)
- Daniela Stanga
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Qingchuan Zhao
- University of Montreal, Department of Medicine and Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Djenann Saint-Dic
- Concordia University, Department of Biology, Montreal, Quebec, Canada
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Michael Sacher
- Concordia University, Department of Biology, Montreal, Quebec, Canada.,McGill University, Department of Anatomy and Cell Biology, Quebec, Canada
| |
Collapse
|
153
|
van Echten-Deckert G, Alam S. Sphingolipid metabolism - an ambiguous regulator of autophagy in the brain. Biol Chem 2019; 399:837-850. [PMID: 29908127 DOI: 10.1515/hsz-2018-0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023]
Abstract
In mammals, the brain exhibits the highest lipid content in the body next to adipose tissue. Complex sphingolipids are characteristic compounds of neuronal membranes. Vital neural functions including information flux and transduction occur along these membranes. It is therefore not surprising that neuronal function and survival is dependent on the metabolism of these lipids. Autophagy is a critical factor for the survival of post-mitotic neurons. On the one hand, it fulfils homeostatic and waste-recycling functions and on the other hand, it constitutes an effective strategy to eliminate harmful proteins that cause neuronal death. A growing number of experimental data indicate that several sphingolipids as well as enzymes catalyzing their metabolic transformations efficiently but very differently affect neuronal autophagy and hence survival. This review attempts to elucidate the roles and mechanisms of sphingolipid metabolism with regard to the regulation of autophagy and its consequences for brain physiology and pathology.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Shah Alam
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
154
|
Quiles Del Rey M, Mancias JD. NCOA4-Mediated Ferritinophagy: A Potential Link to Neurodegeneration. Front Neurosci 2019; 13:238. [PMID: 30930742 PMCID: PMC6427834 DOI: 10.3389/fnins.2019.00238] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 01/15/2023] Open
Abstract
NCOA4 (Nuclear receptor coactivator 4) mediates the selective autophagic degradation of ferritin, the cellular cytosolic iron storage complex, thereby playing a critical role in intracellular and systemic iron homeostasis. Disruptions in iron homeostasis and autophagy are observed in several neurodegenerative disorders raising the possibility that NCOA4-mediated ferritinophagy links these two observations and may underlie, in part, the pathophysiology of neurodegeneration. Here, we review the available evidence detailing the molecular mechanisms of NCOA4-mediated ferritinophagy and recent studies examining its role in systemic iron homeostasis and erythropoiesis. We propose additional studies to examine the potential role of NCOA4 in the brain in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria Quiles Del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
155
|
Iwama K, Mizuguchi T, Takeshita E, Nakagawa E, Okazaki T, Nomura Y, Iijima Y, Kajiura I, Sugai K, Saito T, Sasaki M, Yuge K, Saikusa T, Okamoto N, Takahashi S, Amamoto M, Tomita I, Kumada S, Anzai Y, Hoshino K, Fattal-Valevski A, Shiroma N, Ohfu M, Moroto M, Tanda K, Nakagawa T, Sakakibara T, Nabatame S, Matsuo M, Yamamoto A, Yukishita S, Inoue K, Waga C, Nakamura Y, Watanabe S, Ohba C, Sengoku T, Fujita A, Mitsuhashi S, Miyatake S, Takata A, Miyake N, Ogata K, Ito S, Saitsu H, Matsuishi T, Goto YI, Matsumoto N. Genetic landscape of Rett syndrome-like phenotypes revealed by whole exome sequencing. J Med Genet 2019; 56:396-407. [DOI: 10.1136/jmedgenet-2018-105775] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/03/2022]
Abstract
BackgroundRett syndrome (RTT) is a characteristic neurological disease presenting with regressive loss of neurodevelopmental milestones. Typical RTT is generally caused by abnormality of methyl-CpG binding protein 2 (MECP2). Our objective to investigate the genetic landscape of MECP2-negative typical/atypical RTT and RTT-like phenotypes using whole exome sequencing (WES).MethodsWe performed WES on 77 MECP2-negative patients either with typical RTT (n=11), atypical RTT (n=22) or RTT-like phenotypes (n=44) incompatible with the RTT criteria.ResultsPathogenic or likely pathogenic single-nucleotide variants in 28 known genes were found in 39 of 77 (50.6%) patients. WES-based CNV analysis revealed pathogenic deletions involving six known genes (including MECP2) in 8 of 77 (10.4%) patients. Overall, diagnostic yield was 47 of 77 (61.0 %). Furthermore, strong candidate variants were found in four novel genes: a de novo variant in each of ATPase H+ transporting V0 subunit A1 (ATP6V0A1), ubiquitin-specific peptidase 8 (USP8) and microtubule-associated serine/threonine kinase 3 (MAST3), as well as biallelic variants in nuclear receptor corepressor 2 (NCOR2).ConclusionsOur study provides a new landscape including additional genetic variants contributing to RTT-like phenotypes, highlighting the importance of comprehensive genetic analysis.
Collapse
|
156
|
Liang R, Ren J, Zhang Y, Feng W. Structural Conservation of the Two Phosphoinositide-Binding Sites in WIPI Proteins. J Mol Biol 2019; 431:1494-1505. [DOI: 10.1016/j.jmb.2019.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
|
157
|
Scrivo A, Codogno P, Bomont P. Gigaxonin E3 ligase governs ATG16L1 turnover to control autophagosome production. Nat Commun 2019; 10:780. [PMID: 30770803 PMCID: PMC6377711 DOI: 10.1038/s41467-019-08331-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an essential self-digestion machinery for cell survival and homoeostasis. Membrane elongation is fundamental, as it drives the formation of the double-membrane vesicles that engulf cytosolic material. LC3-lipidation, the signature of autophagosome formation, results from a complex ubiquitin-conjugating cascade orchestrated by the ATG16L1 protein, whose regulation is unknown. Here, we identify the Gigaxonin-E3 ligase as the first regulator of ATG16L1 turn-over and autophagosome production. Gigaxonin interacts with the WD40 domain of ATG16L1 to drive its ubiquitination and subsequent degradation. Gigaxonin depletion induces the formation of ATG16L1 aggregates and impairs LC3 lipidation, hence altering lysosomal fusion and degradation of the main autophagy receptor p62. Altogether, we demonstrate that the Gigaxonin-E3 ligase controls the production of autophagosomes by a reversible, ubiquitin-dependent process selective for ATG16L1. Our findings unveil the fundamental mechanisms of the control of autophagosome formation, and provide a molecular switch to fine-tune the activation of autophagy. Membrane elongation is fundamental to autophagy and is controlled by an ubiquitin-conjugating cascade orchestrated by ATG16L1. Here, the authors identify that the E3 ligase Gigaxonin regulates autophagosome formation by controlling ATG16L1 turnover.
Collapse
Affiliation(s)
- Aurora Scrivo
- Avenir-Atip team, INM, INSERM, Université Montpellier, 34091, Montpellier, France.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 10461, New York, NY, USA
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR8253, 75993, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, 75006, Paris, France
| | - Pascale Bomont
- Avenir-Atip team, INM, INSERM, Université Montpellier, 34091, Montpellier, France.
| |
Collapse
|
158
|
Mizuguchi T, Nakashima M, Kato M, Okamoto N, Kurahashi H, Ekhilevitch N, Shiina M, Nishimura G, Shibata T, Matsuo M, Ikeda T, Ogata K, Tsuchida N, Mitsuhashi S, Miyatake S, Takata A, Miyake N, Hata K, Kaname T, Matsubara Y, Saitsu H, Matsumoto N. Loss-of-function and gain-of-function mutations in PPP3CA cause two distinct disorders. Hum Mol Genet 2019; 27:1421-1433. [PMID: 29432562 DOI: 10.1093/hmg/ddy052] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
Calcineurin is a calcium (Ca2+)/calmodulin-regulated protein phosphatase that mediates Ca2+-dependent signal transduction. Here, we report six heterozygous mutations in a gene encoding the alpha isoform of the calcineurin catalytic subunit (PPP3CA). Notably, mutations were observed in different functional domains: in addition to three catalytic domain mutations, two missense mutations were found in the auto-inhibitory (AI) domain. One additional frameshift insertion that caused premature termination was also identified. Detailed clinical evaluation of the six individuals revealed clinically unexpected consequences of the PPP3CA mutations. First, the catalytic domain mutations and frameshift mutation were consistently found in patients with nonsyndromic early onset epileptic encephalopathy. In contrast, the AI domain mutations were associated with multiple congenital abnormalities including craniofacial dysmorphism, arthrogryposis and short stature. In addition, one individual showed severe skeletal developmental defects, namely, severe craniosynostosis and gracile bones (severe bone slenderness and perinatal fractures). Using a yeast model system, we showed that the catalytic and AI domain mutations visibly result in decreased and increased calcineurin signaling, respectively. These findings indicate that different functional effects of PPP3CA mutations are associated with two distinct disorders and suggest that functional approaches using a simple cellular system provide a tool for resolving complex genotype-phenotype correlations.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Hirokazu Kurahashi
- Department of Pediatrics, Aichi Medical University, Aichi 480-1195, Japan
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama 350-0495, Japan
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tae Ikeda
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai 980-8574, Japan.,National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
159
|
Fan P, Wang N, Wang L, Xie X-Q. Autophagy and Apoptosis Specific Knowledgebases-guided Systems Pharmacology Drug Research. Curr Cancer Drug Targets 2019; 19:716-728. [PMID: 30727895 DOI: 10.2174/1568009619666190206122149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Autophagy and apoptosis are the basic physiological processes in cells that clean up aged and mutant cellular components or even the entire cells. Both autophagy and apoptosis are disrupted in most major diseases such as cancer and neurological disorders. Recently, increasing attention has been paid to understand the crosstalk between autophagy and apoptosis due to their tightly synergetic or opposite functions in several pathological processes. OBJECTIVE This study aims to assist autophagy and apoptosis-related drug research, clarify the intense and complicated connections between two processes, and provide a guide for novel drug development. METHODS We established two chemical-genomic databases which are specifically designed for autophagy and apoptosis, including autophagy- and apoptosis-related proteins, pathways and compounds. We then performed network analysis on the apoptosis- and autophagy-related proteins and investigated the full protein-protein interaction (PPI) network of these two closely connected processes for the first time. RESULTS The overlapping targets we discovered show a more intense connection with each other than other targets in the full network, indicating a better efficacy potential for drug modulation. We also found that Death-associated protein kinase 1 (DAPK1) is a critical point linking autophagy- and apoptosis-related pathways beyond the overlapping part, and this finding may reveal some delicate signaling mechanism of the process. Finally, we demonstrated how to utilize our integrated computational chemogenomics tools on in silico target identification for small molecules capable of modulating autophagy- and apoptosis-related pathways. CONCLUSION The knowledge-bases for apoptosis and autophagy and the integrated tools will accelerate our work in autophagy and apoptosis-related research and can be useful sources for information searching, target prediction, and new chemical discovery.
Collapse
Affiliation(s)
- Peihao Fan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh, 3501 Terrace Street, PA, United States
| | - Nanyi Wang
- School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, PA, United States
| | - Lirong Wang
- School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, PA, United States
| | - Xie X-Q
- School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, PA, United States
| |
Collapse
|
160
|
Hirayama T, Inden M, Tsuboi H, Niwa M, Uchida Y, Naka Y, Hozumi I, Nagasawa H. A Golgi-targeting fluorescent probe for labile Fe(ii) to reveal an abnormal cellular iron distribution induced by dysfunction of VPS35. Chem Sci 2019; 10:1514-1521. [PMID: 30809369 PMCID: PMC6357701 DOI: 10.1039/c8sc04386h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Iron is involved in numerous physiologically essential processes in our body. However, excessive iron is a pathogenic factor in neurodegenerative diseases, causing aberrant oxidative stress. Divalent metal transporter 1 (DMT1) acts as a primary transporter of Fe(ii) ions. The intracellular delivery of DMT1 toward the cellular membrane via the trans-Golgi network during the endocytotic process is partially regulated by a retromer-mediated protein-sorting system comprising vacuolar protein-sorting proteins (VPSs). Thus, together with DMT1, the Golgi-apparatus acts as a hub organelle in the delivery system for intracellular Fe(ii) ions. Dysfunction of the VPS-relevant protein sorting system can induce the abnormal delivery of DMT1 toward lysosomes concomitantly with Fe(ii) ions. To explore this issue, we developed a fluorescent probe, Gol-SiRhoNox, for the Golgi-specific detection of Fe(ii) ions by integrating our original N-oxide-based Fe(ii)-specific chemical switch, a new Golgi-localizable chemical motif, and polarity-sensitive fluorogenic scaffold. Our synchronous imaging study using Gol-SiRhoNox and LysoRhoNox, a previously developed fluorescent probe for lysosomal Fe(ii), revealed that the intracellular distribution balance of Fe(ii) ions between the Golgi apparatus and lysosomes is normally Golgi-dominant, whereas the lysosome-specific elevation of Fe(ii) ions was observed in cells with induced dysfunction of VPS35, a member of the retromer complex. Treatment of cells with dysfunctional VPS35 with R55, a molecular chaperone, resulted in the restoration of the subcellular distribution of Fe(ii) ions to the Golgi-dominant state. These results indicate that the impairment of the DMT1 traffic machinery affects subcellular iron homeostasis, promoting Fe(ii) leakage at the Golgi and lysosomal accumulation of Fe(ii) through missorting of DMT1.
Collapse
Affiliation(s)
- Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Hitomi Tsuboi
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Yasuhiro Uchida
- Laboratory of Medical Therapeutics and Molecular Therapeutics , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Yuki Naka
- Laboratory of Medical Therapeutics and Molecular Therapeutics , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-Nishi , Gifu , 501-1196 , Japan .
| |
Collapse
|
161
|
Ali SO, Shahin NN, Safar MM, Rizk SM. Therapeutic potential of endothelial progenitor cells in a rat model of epilepsy: Role of autophagy. J Adv Res 2019; 18:101-112. [PMID: 30847250 PMCID: PMC6389652 DOI: 10.1016/j.jare.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
This is the first report showing EPCs therapeutic effects in PTZ-induced epilepsy. Intravenously administered EPCs homed into the epileptic rat hippocampus. EPCs amend the memory and locomotor activity deficits related to epilepsy. EPCs ameliorate epilepsy-associated alterations in neurotransmitters and autophagy. EPCs mitigate concomitant histological and vascular anomalies.
Epilepsy is one of the most well-known neurological conditions worldwide. One-third of adult epileptic patients do not respond to antiepileptic drugs or surgical treatment and therefore suffer from the resistant type of epilepsy. Stem cells have been given substantial consideration in the field of epilepsy therapeutics. The implication of pathologic vascular response in sustained seizures and the eminent role of endothelial progenitor cells (EPCs) in maintaining vascular integrity tempted us to investigate the potential therapeutic effects of EPCs in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. Modulation of autophagy, a process that enables neurons to maintain an equilibrium of synthesis, degradation and subsequent reprocessing of cellular components, has been targeted. Intravenously administered EPCs homed into the hippocampus and amended the deficits in memory and locomotor activity. The cells mitigated neurological damage and the associated histopathological alterations and boosted the expression of brain-derived neurotrophic factor. EPCs corrected the perturbations in neurotransmitter activity and enhanced the expression of the downregulated autophagy proteins light chain protein-3 (LC-3), beclin-1, and autophagy-related gene-7 (ATG-7). Generally, these effects were comparable to those achieved by the reference antiepileptic drug, valproic acid. In conclusion, EPCs may confer therapeutic effects against epilepsy and its associated behavioural and biochemical abnormalities at least in part via the upregulation of autophagy. The study warrants further research in experimental and clinical settings to verify the prospect of using EPCs as a valid therapeutic strategy in patients with epilepsy.
Collapse
Affiliation(s)
- Shimaa O Ali
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Marwa M Safar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.,Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Sherine M Rizk
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
162
|
Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, Yamoto K, Hiraide T, Fukuda T, Kaname T, Nakabayashi K, Hata K, Ogata T, Saitsu H, Matsumoto N. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet 2019; 64:313-322. [PMID: 30655572 DOI: 10.1038/s10038-018-0559-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Casein kinase 2 (CK2) is a serine threonine kinase ubiquitously expressed in eukaryotic cells and involved in various cellular processes. In recent studies, de novo variants in CSNK2A1 and CSNK2B, which encode the subunits of CK2, have been identified in individuals with intellectual disability syndrome. In this study, we describe four patients with neurodevelopmental disorders possessing de novo variants in CSNK2A1 or CSNK2B. Using whole-exome sequencing, we detected two de novo variants in CSNK2A1 in two unrelated Japanese patients, a novel variant c.571C>T, p.(Arg191*) and a recurrent variant c.593A>G, p.(Lys198Arg), and two novel de novo variants in CSNK2B in Japanese and Malaysian patients, c.494A>G, p.(His165Arg) and c.533_534insGT, p.(Pro179Tyrfs*49), respectively. All four patients showed mild to profound intellectual disabilities, developmental delays, and various types of seizures. This and previous studies have found a total of 20 CSNK2A1 variants in 28 individuals with syndromic intellectual disability. The hotspot variant c.593A>G, p.(Lys198Arg) was found in eight of 28 patients. Meanwhile, only five CSNK2B variants were identified in five individuals with neurodevelopmental disorders. We reviewed the previous literature to verify the phenotypic spectrum of CSNK2A1- and CSNK2B-related syndromes.
Collapse
Affiliation(s)
- Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshihiro Watanabe
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Ch'ng Gaik Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Chieng Siik Kwong
- Department of Pediatrics, Sarawak General Hospital, Sarawak, Malaysia
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
163
|
Liang Y. Emerging Concepts and Functions of Autophagy as a Regulator of Synaptic Components and Plasticity. Cells 2019; 8:cells8010034. [PMID: 30634508 PMCID: PMC6357011 DOI: 10.3390/cells8010034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis (proteostasis) is crucial to the maintenance of neuronal integrity and function. As the contact sites between neurons, synapses rely heavily on precisely regulated protein-protein interactions to support synaptic transmission and plasticity processes. Autophagy is an effective degradative pathway that can digest cellular components and maintain cellular proteostasis. Perturbations of autophagy have been implicated in aging and neurodegeneration due to a failure to remove damaged proteins and defective organelles. Recent evidence has demonstrated that autophagosome formation is prominent at synaptic terminals and neuronal autophagy is regulated in a compartment-specific fashion. Moreover, synaptic components including synaptic proteins and vesicles, postsynaptic receptors and synaptic mitochondria are known to be degraded by autophagy, thereby contributing to the remodeling of synapses. Indeed, emerging studies indicate that modulation of autophagy may be required for different forms of synaptic plasticity and memory formation. In this review, I will discuss our current understanding of the important role of neuronal/synaptic autophagy in maintaining neuronal function by degrading synaptic components and try to propose a conceptual framework of how the degradation of synaptic components via autophagy might impact synaptic function and contribute to synaptic plasticity.
Collapse
Affiliation(s)
- YongTian Liang
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany.
- NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
164
|
Hedin C, Rioux JD, D'Amato M. Inflammatory Bowel Disease at the Intersection of Autophagy and Immunity: Insights from Human Genetics. MOLECULAR GENETICS OF INFLAMMATORY BOWEL DISEASE 2019. [PMCID: PMC7120249 DOI: 10.1007/978-3-030-28703-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies using human genetics have identified more than 160 loci that affect the risk of developing inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). Several of these genes have been found to play key roles in the process of autophagy, a lysosome-based degradation pathway. Although historically considered to be a relatively nonselective process of degradation of cytosolic contents, autophagy has recently been revealed to have several selective and immune-specific functions that are relevant to the maintenance of intestinal homeostasis, including xenophagy, mitophagy, antigen presentation, secretion, and inflammasome regulation. In this chapter, we review the evidence that links autophagy-related genes, their immune-specific functions, and possible mechanisms of IBD pathogenesis. We summarize the basic molecular events underlying general and selective autophagy, and present evidence suggesting possible pathogenic mechanisms revealed by studies of IBD-associated risk alleles of ATG16L1 and IRGM. Finally, we review chemical biology-based experimental approaches for identifying autophagy regulatory pathways that may have implications for the development of therapeutics.
Collapse
Affiliation(s)
- Charlotte Hedin
- Gastroenterology unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - John D. Rioux
- Montreal Heart Institute and Université de Montréal, Montréal, QC Canada
| | - Mauro D'Amato
- School of Biological Sciences, Monash University, Clayton, VIC Australia
| |
Collapse
|
165
|
Springhorn A, Hoppe T. Western blot analysis of the autophagosomal membrane protein LGG-1/LC3 in Caenorhabditis elegans. Methods Enzymol 2019; 619:319-336. [DOI: 10.1016/bs.mie.2018.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
166
|
A new complex rearrangement in infant ALL: t(X;11;17)(p11.2;q23;q12). Cancer Genet 2018; 228-229:110-114. [DOI: 10.1016/j.cancergen.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022]
|
167
|
Osinalde N, Duarri A, Ramirez J, Barrio R, Perez de Nanclares G, Mayor U. Impaired proteostasis in rare neurological diseases. Semin Cell Dev Biol 2018; 93:164-177. [PMID: 30355526 DOI: 10.1016/j.semcdb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Rare diseases are classified as such when their prevalence is 1:2000 or lower, but even if each of them is so infrequent, altogether more than 300 million people in the world suffer one of the ∼7000 diseases considered as rare. Over 1200 of these disorders are known to affect the brain or other parts of our nervous system, and their symptoms can affect cognition, motor function and/or social interaction of the patients; we refer collectively to them as rare neurological disorders or RNDs. We have focused this review on RNDs known to have compromised protein homeostasis pathways. Proteostasis can be regulated and/or altered by a chain of cellular mechanisms, from protein synthesis and folding, to aggregation and degradation. Overall, we provide a list comprised of above 215 genes responsible for causing more than 170 distinct RNDs, deepening on some representative diseases, including as well a clinical view of how those diseases are diagnosed and dealt with. Additionally, we review existing methodologies for diagnosis and treatment, discussing the potential of specific deubiquitinating enzyme inhibition as a future therapeutic avenue for RNDs.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Anna Duarri
- Barcelona Stem Cell Bank, Center of Regenerative Medicine in Barcelona, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
168
|
Santana-Codina N, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel) 2018; 11:E114. [PMID: 30360520 PMCID: PMC6316710 DOI: 10.3390/ph11040114] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin ("ferritinophagy"), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| |
Collapse
|
169
|
Sakamoto A, Arai R, Okamoto T, Yamada Y, Yamakado H, Matsuda S. Ischemic Fasciitis of the Left Buttock in a 40-Year-Old Woman with Beta-Propeller Protein-Associated Neurodegeneration (BPAN). AMERICAN JOURNAL OF CASE REPORTS 2018; 19:1249-1252. [PMID: 30341275 PMCID: PMC6206622 DOI: 10.12659/ajcr.911300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Patient: Female, 40 Final Diagnosis: Ischemic fasciitis Symptoms: A mass physical deterioration Medication: — Clinical Procedure: Observation Specialty: Oncology
Collapse
Affiliation(s)
- Akio Sakamoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Ryuzo Arai
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Takeshi Okamoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Yosuke Yamada
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| |
Collapse
|
170
|
Seibler P, Burbulla LF, Dulovic M, Zittel S, Heine J, Schmidt T, Rudolph F, Westenberger A, Rakovic A, Münchau A, Krainc D, Klein C. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain 2018; 141:3052-3064. [PMID: 30169597 PMCID: PMC7190033 DOI: 10.1093/brain/awy230] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 01/10/2023] Open
Abstract
Beta-propeller protein-associated neurodegeneration is a subtype of monogenic neurodegeneration with brain iron accumulation caused by de novo mutations in WDR45. The WDR45 protein functions as a beta-propeller scaffold and plays a putative role in autophagy through its interaction with phospholipids and autophagy-related proteins. Loss of WDR45 function due to disease-causing mutations has been linked to defects in autophagic flux in patient and animal cells. However, the role of WDR45 in iron homeostasis remains elusive. Here we studied patient-specific WDR45 mutant fibroblasts and induced pluripotent stem cell-derived midbrain neurons. Our data demonstrated that loss of WDR45 increased cellular iron levels and oxidative stress, accompanied by mitochondrial abnormalities, autophagic defects, and diminished lysosomal function. Restoring WDR45 levels partially rescued oxidative stress and the susceptibility to iron treatment, and activation of autophagy reduced the observed iron overload in WDR45 mutant cells. Our data suggest that iron-containing macromolecules and organelles cannot effectively be degraded through the lysosomal pathway due to loss of WDR45 function.
Collapse
Affiliation(s)
- Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marija Dulovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Simone Zittel
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanne Heine
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Thomas Schmidt
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
171
|
Budak Diler S, Aybuğa F. Association of Autophagy Gene ATG16L1 Polymorphism with Human Prostate Cancer and Bladder Cancer in Turkish Population. Asian Pac J Cancer Prev 2018; 19:2625-2630. [PMID: 30256070 PMCID: PMC6249448 DOI: 10.22034/apjcp.2018.19.9.2625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Urological cancers (prostate cancer and bladder cancers) are the most common cancers in Western population and its rate is increasing in the Eastern World. Autophagy has appeared as a fundamental repair mechanism for degrading damaged organelles and proteins. It was clear that autophagy gene polymorphisms are correlated with development of inflammatory bowel disease and it can also be related with prostate cancer (PCa) or bladder cancer (BCa). In this study, we aimed to determine if ATG16L1 (Thr300Ala) polymorphism is associated with an increased risk of developing PCa and BCa and to establish correlations between ATG16L1 genotypes and morphological parameters. Methods: This study included 269 healthy controls and 131 patients (62 PCa and 69 BCa) with PCa and BCa. The ATG16L1 (rs2241880) gene regions were amplified using polymerase chain reaction (PCR), detected by restriction fragment length polymorphism (RFLP). Results: At the end of our research, we found out that the genotype AG was prevalent on patients and controls (34% vs 42%), followed by genotypes AA (35% vs 27%) and GG (31% vs 31%) in PCa. The prevalence of genotypes of AA (wild-type), AG (heterozygous mutant) and GG (homozygous mutant) profiles for the ATG16L1 Thr300Ala polymorphism were 35%, 40% and 25% respectively in BCa patients, and 32%, 40% and 28% respectively in healthy control groups. The G allele frequency was 0.53 for in BCa patients and the control groups. Conclusion: No association was found between ATG16L1 (Thr300Ala) polymorphism and patients with PCa and BCa in Turkish population we studied.
Collapse
Affiliation(s)
- Songül Budak Diler
- Department of Biotechnology,Faculty of Science and Letters, University of Niğde Ömer Halisdemir, Niğde, Turkey.
| | | |
Collapse
|
172
|
Oxidative stress and neurodegeneration: the involvement of iron. Biometals 2018; 31:715-735. [PMID: 30014355 DOI: 10.1007/s10534-018-0126-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, Huntington's chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.
Collapse
|
173
|
Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 2018; 19:579-593. [PMID: 30006559 DOI: 10.1038/s41580-018-0033-y] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is a conserved process that catabolizes intracellular components to maintain energy homeostasis and to protect cells against stress. Autophagy has crucial roles during development and disease, and evidence accumulated over the past decade indicates that autophagy also has a direct role in modulating ageing. In particular, elegant studies using yeasts, worms, flies and mice have demonstrated a broad requirement for autophagy-related genes in the lifespan extension observed in a number of conserved longevity paradigms. Moreover, several new and interesting concepts relevant to autophagy and its role in modulating longevity have emerged. First, select tissues may require or benefit from autophagy activation in longevity paradigms, as tissue-specific overexpression of single autophagy genes is sufficient to extend lifespan. Second, selective types of autophagy may be crucial for longevity by specifically targeting dysfunctional cellular components and preventing their accumulation. And third, autophagy can influence organismal health and ageing even non-cell autonomously, and thus, autophagy stimulation in select tissues can have beneficial, systemic effects on lifespan. Understanding these mechanisms will be important for the development of approaches to improve human healthspan that are based on the modulation of autophagy.
Collapse
Affiliation(s)
- Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration, La Jolla, CA, USA.
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, Cambridge, UK. .,UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
174
|
Chen H, Qian Y, Yu S, Xiao D, Guo X, Wang Q, Hao L, Yan K, Lu Y, Dong X, Zhou W, Wu B, Zhou S, Wang H. Early onset developmental delay and epilepsy in pediatric patients with WDR45 variants. Eur J Med Genet 2018; 62:149-160. [PMID: 29981852 DOI: 10.1016/j.ejmg.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/13/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Developmental delay (DD) is a neurological disorder that presents with defects in gross motor, fine motor, language and cognition functions. WD repeat domain 45 (WDR45) is one of the disease-causing genes of DD. Previously, WDR45 de novo mutations were reported in certain adult and pediatric patients due to iron accumulation. CLINICAL REPORT We report five pediatric female patients with DD and epilepsy. Their ages were below 3 years at the first consultation, and precise diagnoses were difficult based on the available clinical information and phenotype. METHODS Children with DD and/or epilepsy presenting to the molecular diagnostic center of Children's Hospital of Fudan University between May 2016 and May 2017 were enrolled. The patients and their parents were subjected to whole-exome sequencing (WES), and we characterized the phenotypes of the patients carrying WDR45 variants. Furthermore, we overexpressed the candidate variants in HeLa cells and evaluated their effect on autophagy through Western blot and immunofluorescence staining with confocal microscopy. RESULTS Five WDR45 de novo mutations, namely, c.19C > T (p.Arg7*), c.401G > C (p.Arg134Pro), c.503G > A (p.Gly168Glu), c.700C > T (p.Arg234*), and c.912delT (p.Ala305Leufs*25), were detected in 623 enrolled pediatric patients (274 females; 487 patients younger than 6 years). All five patients with WDR45 variants presented with DD and epilepsy. Compared with the control HeLa cells, the cells with the p. Arg134Pro and p. Gly168Glu missense mutations showed accumulation of LC3-containing autophagic structures and an abnormally enlarged cell volume, and Western blotting revealed a significant increase in LC3II/GAPDH. CONCLUSION The identification of WDR45 mutations provides further evidence that WES plays an important role in the diagnosis of neurological disorders with common phenotypes and that WDR45 mutations are associated with neurological disorders and are not very rare in Chinese female pediatric patients with DD and/or epilepsy. The diagnosis of patients with WDR45 mutations would enable more precise genetic counseling for the parents of these children.
Collapse
Affiliation(s)
- Hongbo Chen
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Yanyan Qian
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Sha Yu
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Deyong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Qing Wang
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Lili Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kai Yan
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Yulan Lu
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Xinran Dong
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Wenhao Zhou
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China
| | - Bingbing Wu
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China.
| | - Shuizhen Zhou
- Neurology Department, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Huijun Wang
- Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University Shanghai, 201102, China.
| |
Collapse
|
175
|
Wang Y, Song M, Song F. Neuronal autophagy and axon degeneration. Cell Mol Life Sci 2018; 75:2389-2406. [PMID: 29675785 PMCID: PMC11105516 DOI: 10.1007/s00018-018-2812-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023]
Abstract
Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingxue Song
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
176
|
Zitser J, Giladi N, Gurevich T. A Case with Beta-Propeller Protein Associated Neurodegeneration with Smooth Response to Levodopa Treatment. Mov Disord Clin Pract 2018; 5:327-329. [DOI: 10.1002/mdc3.12604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jennifer Zitser
- Movement Disorders Unit, Neurological Institute; Tel-Aviv Medical Center; Tel-Aviv Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute; Tel-Aviv Medical Center; Tel-Aviv Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
- Sagol School of Neurosciences; Tel-Aviv University; Tel-Aviv Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute; Tel-Aviv Medical Center; Tel-Aviv Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| |
Collapse
|
177
|
Saikusa T, Hara M, Iwama K, Yuge K, Ohba C, Okada JI, Hisano T, Yamashita Y, Okamoto N, Saitsu H, Matsumoto N, Matsuishi T. De novo HDAC8 mutation causes Rett-related disorder with distinctive facial features and multiple congenital anomalies. Brain Dev 2018. [PMID: 29519750 DOI: 10.1016/j.braindev.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present a unique 11-year-old girl showing clinical features of Rett-related disorder with distinctive facial features and multiple congenital anomalies including ocular hypertelorism, arched eyebrows, a broad nose, dental anomalies, congenital heart disease, truncal obesity, and epilepsy. A novel de novo mutation in histone deacetylase 8 (HDAC8) (c.652G > T, p.Gly218Cys) was confirmed by whole exome sequencing and Sanger sequencing. X-chromosome inactivation analysis on DNA isolated from peripheral blood lymphocytes revealed a completely skewed pattern associated with an inactive maternal allele. Late clinical loss of acquired purposeful hand movements and psychomotor deterioration may be a feature of Rett-related disorder, while distinctive facial features and multiple congenital anomalies are reminiscent of Cornelia de Lange syndrome.
Collapse
Affiliation(s)
- Tomoko Saikusa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Munetsugu Hara
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kotaro Yuge
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Chihiro Ohba
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Jun-Ichiro Okada
- Department of Neonatology, Medical Center for Maternal and Child Health, St. Mary's Hospital, Kurume, Fukuoka 830-8543, Japan
| | - Tadashi Hisano
- Department of Neonatology, Medical Center for Maternal and Child Health, St. Mary's Hospital, Kurume, Fukuoka 830-8543, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Shitudou-machi, Izumi, Osaka 594-0011, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toyojiro Matsuishi
- Department of Pediatrics, Research Center for Children, Research Center for Rett Syndrome, St. Mary's Hospital, Kurume, Fukuoka 830-8543, Japan.
| |
Collapse
|
178
|
Lieberman OJ, McGuirt AF, Tang G, Sulzer D. Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol Dis 2018; 122:49-63. [PMID: 29709573 DOI: 10.1016/j.nbd.2018.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
The dendritic protrusions known as spines represent the primary postsynaptic location for excitatory synapses. Dendritic spines are critical for many synaptic functions, and their formation, modification, and turnover are thought to be important for mechanisms of learning and memory. At many excitatory synapses, dendritic spines form during the early postnatal period, and while many spines are likely being formed and removed throughout life, the net number are often gradually "pruned" during adolescence to reach a stable level in the adult. In neurodevelopmental disorders, spine pruning is disrupted, emphasizing the importance of understanding its governing processes. Autophagy, a process through which cytosolic components and organelles are degraded, has recently been shown to control spine pruning in the mouse cortex, but the mechanisms through which autophagy acts remain obscure. Here, we draw on three widely studied prototypical synaptic pruning events to focus on two governing principles of spine pruning: 1) activity-dependent synaptic competition and 2) non-neuronal contributions. We briefly review what is known about autophagy in the central nervous system and its regulation by metabolic kinases. We propose a model in which autophagy in both neurons and non-neuronal cells contributes to spine pruning, and how other processes that regulate spine pruning could intersect with autophagy. We further outline future research directions to address outstanding questions on the role of autophagy in synaptic pruning.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Avery F McGuirt
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States; Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, United States; Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, United States.
| |
Collapse
|
179
|
Neri G, Schwartz CE, Lubs HA, Stevenson RE. X-linked intellectual disability update 2017. Am J Med Genet A 2018; 176:1375-1388. [PMID: 29696803 DOI: 10.1002/ajmg.a.38710] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
The X-chromosome comprises only about 5% of the human genome but accounts for about 15% of the genes currently known to be associated with intellectual disability. The early progress in identifying the X-linked intellectual disability (XLID)-associated genes through linkage analysis and candidate gene sequencing has been accelerated with the use of high-throughput technologies. In the 10 years since the last update, the number of genes associated with XLID has increased by 96% from 72 to 141 and duplications of all 141 XLID genes have been described, primarily through the application of high-resolution microarrays and next generation sequencing. The progress in identifying genetic and genomic alterations associated with XLID has not been matched with insights that improve the clinician's ability to form differential diagnoses, that bring into view the possibility of curative therapies for patients, or that inform scientists of the impact of the genetic alterations on cell organization and function.
Collapse
Affiliation(s)
- Giovanni Neri
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina.,Istituto di Medicina Genomica, Università Cattolica del S. Cuore, Rome, Italy
| | - Charles E Schwartz
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Herbert A Lubs
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Roger E Stevenson
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| |
Collapse
|
180
|
Ishiyama A, Kimura Y, Iida A, Saito Y, Miyamoto Y, Okada M, Sato N, Nishino I, Sasaki M. Transient swelling in the globus pallidus and substantia nigra in childhood suggests SENDA/BPAN. Neurology 2018; 90:974-976. [DOI: 10.1212/wnl.0000000000005564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/16/2018] [Indexed: 11/15/2022] Open
|
181
|
Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 2018; 20:521-527. [PMID: 29686264 DOI: 10.1038/s41556-018-0092-5] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The field of autophagy research has developed rapidly since the first description of the process in the 1960s and the identification of autophagy genes in the 1990s. Autophagy is now increasingly studied at the level of organismal pathophysiology and is being connected to the medical sciences. This Historical Perspective describes a brief history of autophagy and discusses unanswered cell biological questions in the field.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
182
|
Marsh D, Dragich JM. Autophagy in mammalian neurodevelopment and implications for childhood neurological disorders. Neurosci Lett 2018; 697:29-33. [PMID: 29665429 DOI: 10.1016/j.neulet.2018.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/05/2023]
Abstract
Here we explore the neurodevelopmental aspects of macroautophagy (henceforth known as autophagy), the process by which cells remove and remodel their structure in a regulated and spatially restricted manner. Autophagy is a catabolic pathway in which cytosolic substances, such as protein complexes, lipids, and organelles, are engulfed by an autophagic vesicle. Degradation occurs once an autophagosome fuses with a lysosome, allowing the macromolecular cargo sequestered within the autophagic vesicle to be recycled. It is firmly established that autophagy plays a pivotal role in maintaining cellular homeostasis. Nevertheless, new evidence has emerged that the molecular mechanisms which regulate brain growth and neuronal connectivity involve autophagic processes. Our aim, as we endeavor to review data from model systems, is to show that autophagy performs a fundamental role in the development of the central nervous system (CNS). Moreover, we discuss human genetic data to underscore that mutations in autophagy-related genes are a contributing factor in childhood neurological disorders. To emphasize the importance of regulated vesicle transport pathways during the formation of the CNS, we discuss autophagy in relation to endosomal sorting to the lysosome, and explore how these mechanisms might intersect to regulate developmental events. We maintain that a deeper understanding of the function of autophagy in the CNS can shed new light on the biological basis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Derek Marsh
- Biology Department, Manhattan College, Riverdale, NY, United States
| | - Joanna M Dragich
- Biology Department, Manhattan College, Riverdale, NY, United States; Department of Neurology, Columbia University Medical Center, New York, NY, United States.
| |
Collapse
|
183
|
Abstract
Autophagy is a highly conserved process and is essential for the maintenance of cellular homeostasis. Autophagy occurs at a basal level in all cells, but it can be up-regulated during stress, starvation, or infection. Misregulation of autophagy has been linked to various disorders, including cancer, neurodegeneration, and immune diseases. Here, we discuss the essential proteins acting in the formation of an autophagosome, with a focus on the ULK and VPS34 kinase complexes, phosphatidylinositol 3-phosphate effector proteins, and the transmembrane autophagy-related protein ATG9. The function and regulation of these and other autophagy-related proteins acting during formation will be addressed, in particular during amino acid starvation.
Collapse
Affiliation(s)
- Thomas J Mercer
- From the Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Andrea Gubas
- From the Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Sharon A Tooze
- From the Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|
184
|
Percy AK, Lane J, Annese F, Warren H, Skinner SA, Neul JL. When Rett syndrome is due to genes other than MECP2. ACTA ACUST UNITED AC 2018; 3:49-53. [PMID: 29682453 PMCID: PMC5900556 DOI: 10.3233/trd-180021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two individuals meeting diagnostic criteria for Rett syndrome (RTT) but lacking a mutation in MECP2, the gene predominantly associated with this disorder, were provided additional genetic testing. This testing revealed pathogenic mutations in a gene not previously associated with RTT, CTNNB1, mutations in which lead to an autosomal dominant neurodevelopmental disorder affecting cell signaling and transcription factors as well as a likely pathogenic mutation in the WDR45 gene, which is associated with developmental delay in early childhood and progressive neurodegeneration in adolescence or adulthood related to iron accumulation in the globus pallidus and substantia nigra. These two individuals are described in relation to previous reports linking multiple other genes with RTT failing to show an MECP2 mutation. These individuals underscore the need to pursue additional molecular testing in RTT when a mutation in MECP2 is not detected.
Collapse
Affiliation(s)
- Alan K Percy
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane Lane
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fran Annese
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Jeffrey L Neul
- Kennedy Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
185
|
Kulikovskaja L, Sarajlija A, Savic-Pavicevic D, Dobricic V, Klein C, Westenberger A. WDR45 mutations may cause a MECP2 mutation-negative Rett syndrome phenotype. NEUROLOGY-GENETICS 2018; 4:e227. [PMID: 29600274 PMCID: PMC5873728 DOI: 10.1212/nxg.0000000000000227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Leonora Kulikovskaja
- Institute of Neurogenetics (L.K., C.K., A.W.), University of Lübeck, Germany; Department of Metabolism and Clinical Genetics (A.S.), Mother and Child Health Care Institute of Serbia, Belgrade; Centre for Human Molecular Genetics (D.S.-P.), Faculty of Biology, University of Belgrade, Serbia; and Lübeck Interdisciplinary Platform for Genome Analytics (LIGA) (V.D.), University of Lübeck, Germany
| | - Adrijan Sarajlija
- Institute of Neurogenetics (L.K., C.K., A.W.), University of Lübeck, Germany; Department of Metabolism and Clinical Genetics (A.S.), Mother and Child Health Care Institute of Serbia, Belgrade; Centre for Human Molecular Genetics (D.S.-P.), Faculty of Biology, University of Belgrade, Serbia; and Lübeck Interdisciplinary Platform for Genome Analytics (LIGA) (V.D.), University of Lübeck, Germany
| | - Dusanka Savic-Pavicevic
- Institute of Neurogenetics (L.K., C.K., A.W.), University of Lübeck, Germany; Department of Metabolism and Clinical Genetics (A.S.), Mother and Child Health Care Institute of Serbia, Belgrade; Centre for Human Molecular Genetics (D.S.-P.), Faculty of Biology, University of Belgrade, Serbia; and Lübeck Interdisciplinary Platform for Genome Analytics (LIGA) (V.D.), University of Lübeck, Germany
| | - Valerija Dobricic
- Institute of Neurogenetics (L.K., C.K., A.W.), University of Lübeck, Germany; Department of Metabolism and Clinical Genetics (A.S.), Mother and Child Health Care Institute of Serbia, Belgrade; Centre for Human Molecular Genetics (D.S.-P.), Faculty of Biology, University of Belgrade, Serbia; and Lübeck Interdisciplinary Platform for Genome Analytics (LIGA) (V.D.), University of Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics (L.K., C.K., A.W.), University of Lübeck, Germany; Department of Metabolism and Clinical Genetics (A.S.), Mother and Child Health Care Institute of Serbia, Belgrade; Centre for Human Molecular Genetics (D.S.-P.), Faculty of Biology, University of Belgrade, Serbia; and Lübeck Interdisciplinary Platform for Genome Analytics (LIGA) (V.D.), University of Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics (L.K., C.K., A.W.), University of Lübeck, Germany; Department of Metabolism and Clinical Genetics (A.S.), Mother and Child Health Care Institute of Serbia, Belgrade; Centre for Human Molecular Genetics (D.S.-P.), Faculty of Biology, University of Belgrade, Serbia; and Lübeck Interdisciplinary Platform for Genome Analytics (LIGA) (V.D.), University of Lübeck, Germany
| |
Collapse
|
186
|
Genetic aberrations in macroautophagy genes leading to diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524522 DOI: 10.1016/j.bbamcr.2018.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The catabolic process of macroautophagy, through the rapid degradation of unwanted cellular components, is involved in a multitude of cellular and organismal functions that are essential to maintain homeostasis. Those functions include adaptation to starvation, cell development and differentiation, innate and adaptive immunity, tumor suppression, autophagic cell death, and maintenance of stem cell stemness. Not surprisingly, an impairment or block of macroautophagy can lead to severe pathologies. A still increasing number of reports, in particular, have revealed that mutations in the autophagy-related (ATG) genes, encoding the key players of macroautophagy, are either the cause or represent a risk factor for the development of several illnesses. The aim of this review is to provide a comprehensive overview of the diseases and disorders currently known that are or could be caused by mutations in core ATG proteins but also in the so-called autophagy receptors, which provide specificity to the process of macroautophagy. Our compendium underlines the medical relevance of this pathway and underscores the importance of the eventual development of therapeutic approaches aimed at modulating macroautophagy.
Collapse
|
187
|
Morales-Briceño H, Sanchez-Hernandez BE, Meyer E, Kurian MA, Fois AF, Rodriguez-Violante M, Leal-Ortega R, Perez-Lohman C, Mohammad S, Fung VSC. Beta-propeller-associated neurodegeneration can present with dominant or isolated parkinsonism. Mov Disord 2018; 33:654-656. [PMID: 29488265 DOI: 10.1002/mds.27294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Beatriz E Sanchez-Hernandez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México City, Mexico
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Alessandro F Fois
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia
| | | | | | - Christian Perez-Lohman
- Movement Disorders Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Shekeeb Mohammad
- Neurology Department, Children's Hospital, Westmead, NSW, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
188
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
189
|
Mutoh H, Kato M, Akita T, Shibata T, Wakamoto H, Ikeda H, Kitaura H, Aoto K, Nakashima M, Wang T, Ohba C, Miyatake S, Miyake N, Kakita A, Miyake K, Fukuda A, Matsumoto N, Saitsu H. Biallelic Variants in CNPY3, Encoding an Endoplasmic Reticulum Chaperone, Cause Early-Onset Epileptic Encephalopathy. Am J Hum Genet 2018; 102:321-329. [PMID: 29394991 DOI: 10.1016/j.ajhg.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Early-onset epileptic encephalopathies, including West syndrome (WS), are a group of neurological disorders characterized by developmental impairments and intractable seizures from early infancy. We have now identified biallelic CNPY3 variants in three individuals with WS; these include compound-heterozygous missense and frameshift variants in a family with two affected siblings (individuals 1 and 2) and a homozygous splicing variant in a consanguineous family (individual 3). All three individuals showed hippocampal malrotation. In individuals 1 and 2, electroencephalography (EEG) revealed characteristic fast waves and diffuse sharp- and slow-wave complexes. The fast waves were clinically associated with seizures. CNPY3 encodes a co-chaperone in the endoplasmic reticulum and regulates the subcellular distribution and responses of multiple Toll-like receptors. The amount of CNPY3 in lymphoblastoid cells derived from individuals 1 and 2 was severely lower than that in control cells. Cnpy3-knockout mice exhibited spastic or dystonic features under resting conditions and hyperactivity and anxiolytic behavior during the open field test. Also, their resting EEG showed enhanced activity in the fast beta frequency band (20-35 Hz), which could mimic the fast waves in individuals 1 and 2. These data suggest that CNPY3 and Cnpy3 perform essential roles in brain function in addition to known Toll-like receptor-dependent immune responses.
Collapse
Affiliation(s)
- Hiroki Mutoh
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takuma Shibata
- Division of Infectious Genetics, Department of Microbiology and Immunology, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroyuki Wakamoto
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime 791-0212, Japan
| | - Hiroko Ikeda
- Department of Pediatrics, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, National Hospital Organization, Shizuoka 420-8688, Japan
| | - Hiroki Kitaura
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tianying Wang
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Kensuke Miyake
- Division of Infectious Genetics, Department of Microbiology and Immunology, University of Tokyo, Tokyo 108-8639, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| |
Collapse
|
190
|
Akita T, Aoto K, Kato M, Shiina M, Mutoh H, Nakashima M, Kuki I, Okazaki S, Magara S, Shiihara T, Yokochi K, Aiba K, Tohyama J, Ohba C, Miyatake S, Miyake N, Ogata K, Fukuda A, Matsumoto N, Saitsu H. De novo variants in CAMK2A and CAMK2B cause neurodevelopmental disorders. Ann Clin Transl Neurol 2018; 5:280-296. [PMID: 29560374 PMCID: PMC5846454 DOI: 10.1002/acn3.528] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022] Open
Abstract
Objective α (CAMK2A) and β (CAMK2B) isoforms of Calcium/calmodulin‐dependent protein kinase II (CaMKII) play a pivotal role in neuronal plasticity and in learning and memory processes in the brain. Here, we explore the possible involvement of α‐ and β‐CaMKII variants in neurodevelopmental disorders. Methods Whole‐exome sequencing was performed for 976 individuals with intellectual disability, developmental delay, and epilepsy. The effect of CAMK2A and CAMK2B variants on CaMKII structure and firing of neurons was evaluated by computational structural analysis, immunoblotting, and electrophysiological analysis. Results We identified a total of five de novo CAMK2A and CAMK2B variants in three and two individuals, respectively. Seizures were common to three individuals with CAMK2A variants. Using a minigene splicing assay, we demonstrated that a splice site variant caused skipping of exon 11 leading to an in‐frame deletion of the regulatory segment of CaMKIIα. By structural analysis, four missense variants are predicted to impair the interaction between the kinase domain and the regulatory segment responsible for the autoinhibition of its kinase activity. The Thr286/Thr287 phosphorylation as a result of release from autoinhibition was increased in three mutants when the mutants were stably expressed in Neuro‐2a neuroblastoma cells. Expression of a CaMKIIα mutant in primary hippocampal neurons significantly increased A‐type K+ currents, which facilitated spike repolarization of single action potentials. Interpretation Our data highlight the importance of CaMKIIα and CaMKIIβ and their autoinhibitory regulation in human brain function, and suggest the enhancement of A‐type K+ currents as a possible pathophysiological basis.
Collapse
Affiliation(s)
- Tenpei Akita
- Department of Neurophysiology Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Kazushi Aoto
- Department of Biochemistry Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Mitsuhiro Kato
- Department of Pediatrics Showa University School of Medicine 1-5-8 Hatanodai, Shinagawa-ku Tokyo 142-8666 Japan
| | - Masaaki Shiina
- Department of Biochemistry Yokohama City University Graduate School of Medicine 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Hiroki Mutoh
- Department of Neurophysiology Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Mitsuko Nakashima
- Department of Biochemistry Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan.,Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Ichiro Kuki
- Department of Pediatric Neurology Pediatric Medical Care Center Osaka City General Hospital 2-13-22 Miyakojimahondori, Miyakojima-ku Osaka 534-0021 Japan
| | - Shin Okazaki
- Department of Pediatric Neurology Pediatric Medical Care Center Osaka City General Hospital 2-13-22 Miyakojimahondori, Miyakojima-ku Osaka 534-0021 Japan
| | - Shinichi Magara
- Department of Pediatrics Epilepsy Center Nishi-Niigata Chuo National Hospital 1-14-1 Masago, Nishi-ku Niigata 950-2085 Japan
| | - Takashi Shiihara
- Department of Neurology Gunma Children's Medical Center 779 Shimohakoda, Hokkitsu-machi Shibukawa Gunma 377-8577 Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology Seirei-Mikatahara General Hospital 3453 Mikatahara-cho, Kita-ku Hamamatsu 433-8558 Japan.,Department of Pediatrics Toyohashi Municipal Hospital, Toyohashi 50 Hachikennishi, Aotake-cho Toyohashi 441-8570 Japan
| | - Kaori Aiba
- Department of Pediatrics Toyohashi Municipal Hospital, Toyohashi 50 Hachikennishi, Aotake-cho Toyohashi 441-8570 Japan
| | - Jun Tohyama
- Department of Pediatrics Epilepsy Center Nishi-Niigata Chuo National Hospital 1-14-1 Masago, Nishi-ku Niigata 950-2085 Japan
| | - Chihiro Ohba
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Satoko Miyatake
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Noriko Miyake
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Kazuhiro Ogata
- Department of Biochemistry Yokohama City University Graduate School of Medicine 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Atsuo Fukuda
- Department of Neurophysiology Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| | - Naomichi Matsumoto
- Department of Human Genetics Graduate School of Medicine Yokohama City University 3-9 Fukuura, Kanazawa-ku Yokohama 236-0004 Japan
| | - Hirotomo Saitsu
- Department of Biochemistry Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku Hamamatsu 431-3192 Japan
| |
Collapse
|
191
|
Hiraide T, Nakashima M, Yamoto K, Fukuda T, Kato M, Ikeda H, Sugie Y, Aoto K, Kaname T, Nakabayashi K, Ogata T, Matsumoto N, Saitsu H. De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Hum Genet 2018; 137:95-104. [DOI: 10.1007/s00439-017-1863-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/26/2017] [Indexed: 01/10/2023]
|
192
|
Stige KE, Gjerde IO, Houge G, Knappskog PM, Tzoulis C. Beta-propeller protein-associated neurodegeneration: a case report and review of the literature. Clin Case Rep 2018; 6:353-362. [PMID: 29445477 PMCID: PMC5799652 DOI: 10.1002/ccr3.1358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023] Open
Abstract
Beta‐propeller protein‐associated neurodegeneration (BPAN) is a rare disorder, which is increasingly recognized thanks to next‐generation sequencing. Due to a highly variable phenotype, patients may present to pediatrics, neurology, psychiatry, or internal medicine. It is therefore essential that physicians of different specialties are familiar with this severe and debilitating condition.
Collapse
Affiliation(s)
| | - Ivar Otto Gjerde
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway
| | - Per Morten Knappskog
- Center for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway.,Department of Clinical Science K.G. Jebsen Centre for Neuropsychiatric Disorders University of Bergen Bergen Norway
| | - Charalampos Tzoulis
- Department of Neurology Haukeland University Hospital Bergen Norway.,Department of Clinical Medicine University of Bergen Bergen Norway
| |
Collapse
|
193
|
Abstract
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
194
|
Carvill GL, Liu A, Mandelstam S, Schneider A, Lacroix A, Zemel M, McMahon JM, Bello-Espinosa L, Mackay M, Wallace G, Waak M, Zhang J, Yang X, Malone S, Zhang YH, Mefford HC, Scheffer IE. Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene WDR45. Epilepsia 2017; 59:e5-e13. [PMID: 29171013 DOI: 10.1111/epi.13957] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Heterozygous de novo variants in the autophagy gene, WDR45, are found in beta-propeller protein-associated neurodegeneration (BPAN). BPAN is characterized by adolescent onset dementia and dystonia; 66% patients have seizures. We asked whether WDR45 was associated with developmental and epileptic encephalopathy (DEE). We performed next generation sequencing of WDR45 in 655 patients with developmental and epileptic encephalopathies. We identified 3/655 patients with DEE plus 4 additional patients with de novo WDR45 pathogenic variants (6 truncations, 1 missense); all were female. Six presented with DEE and 1 with early onset focal seizures and profound regression. Median seizure onset was 12 months, 6 had multiple seizure types, and 5/7 had focal seizures. Three patients had magnetic resonance susceptibility-weighted imaging; blooming was noted in the globus pallidi and substantia nigra in the 2 older children aged 4 and 9 years, consistent with iron accumulation. We show that de novo pathogenic variants are associated with a range of developmental and epileptic encephalopathies with profound developmental consequences.
Collapse
Affiliation(s)
- Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aijie Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Simone Mandelstam
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Departments of Paediatrics and Radiology, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Amy Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Amy Lacroix
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Matthew Zemel
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacinta M McMahon
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Luis Bello-Espinosa
- Department of Paediatrics, University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Mark Mackay
- Departments of Paediatrics and Radiology, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Geoffrey Wallace
- Department of Neurology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Michaela Waak
- Department of Neurology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Stephen Malone
- Department of Neurology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Yue-Hua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Departments of Paediatrics and Radiology, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
195
|
Reid ES, Papandreou A, Drury S, Boustred C, Yue WW, Wedatilake Y, Beesley C, Jacques TS, Anderson G, Abulhoul L, Broomfield A, Cleary M, Grunewald S, Varadkar SM, Lench N, Rahman S, Gissen P, Clayton PT, Mills PB. Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes. Brain 2017; 139:2844-2854. [PMID: 27604308 PMCID: PMC5091046 DOI: 10.1093/brain/aww221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts.
Collapse
Affiliation(s)
- Emma S Reid
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK
| | - Apostolos Papandreou
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK.,Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Suzanne Drury
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Christopher Boustred
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Yehani Wedatilake
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK
| | - Clare Beesley
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Thomas S Jacques
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lara Abulhoul
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alex Broomfield
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Maureen Cleary
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stephanie Grunewald
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sophia M Varadkar
- Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nick Lench
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Shamima Rahman
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Paul Gissen
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Peter T Clayton
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK
| | - Philippa B Mills
- Genetics and Genomics Medicine Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
196
|
Syrbe S, Harms FL, Parrini E, Montomoli M, Mütze U, Helbig KL, Polster T, Albrecht B, Bernbeck U, van Binsbergen E, Biskup S, Burglen L, Denecke J, Heron B, Heyne HO, Hoffmann GF, Hornemann F, Matsushige T, Matsuura R, Kato M, Korenke GC, Kuechler A, Lämmer C, Merkenschlager A, Mignot C, Ruf S, Nakashima M, Saitsu H, Stamberger H, Pisano T, Tohyama J, Weckhuysen S, Werckx W, Wickert J, Mari F, Verbeek NE, Møller RS, Koeleman B, Matsumoto N, Dobyns WB, Battaglia D, Lemke JR, Kutsche K, Guerrini R. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain 2017; 140:2322-2336. [PMID: 29050398 DOI: 10.1093/brain/awx195] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup), all falling in the nucleation site of the α/β spectrin heterodimer region. Molecular modelling of the seven SPTAN1 amino acid changes provided preliminary evidence for structural alterations of the A-, B- and/or C-helices within each of the mutated spectrin repeats. We conclude that SPTAN1-related disorders comprise a wide spectrum of neurodevelopmental phenotypes ranging from mild to severe and progressive. Spectrin aggregate formation in fibroblasts with mutations in the α/β heterodimerization domain seems to be associated with a severe neurodegenerative course and suggests that the amino acid stretch from Asp2303 to Met2309 in the α20 repeat is important for α/β spectrin heterodimer formation and/or αII spectrin function.
Collapse
Affiliation(s)
- Steffen Syrbe
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ulrike Mütze
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Katherine L Helbig
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Tilman Polster
- Bethel Epilepsy Center - Krankenhaus Mara GmbH Bielefeld, Germany
| | - Beate Albrecht
- Institut für Humangenetik, Universitaetsklinikum Essen, Universitaet Duisburg-Essen, Germany
| | - Ulrich Bernbeck
- Rems-Murr-Kliniken GmbH, Klinik für Kinder- und Jugendmedizin, Winnenden, Germany
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Saskia Biskup
- CeGaT-Center for Genomics and Transcriptomics GmbH, Tuebingen, Germany
| | - Lydie Burglen
- Centre de référence des Malformations et maladies congénitales du cervelet and Département de Génétique et embryologie médicales, AP-HP, GHUEP, Hôpital Trousseau 75012 Paris, France.,GRC ConCer-LD, Sorbonne Universités, UPMC Univ 06, Paris, France
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bénédicte Heron
- GRC ConCer-LD, Sorbonne Universités, UPMC Univ 06, Paris, France.,AP-HP, Hôpital Trousseau, Service de Neurologie Pédiatrique; Paris, France
| | - Henrike O Heyne
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Georg F Hoffmann
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frauke Hornemann
- Department of Women and Child Health, Hospital for Children and Adolescents, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Takeshi Matsushige
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - G Christoph Korenke
- Klinikum Oldenburg, Zentrum für Kinder- und Jugendmedizin, Klinik für Neuropaediatrie u. angeborene Stoffwechselerkrankungen, Oldenburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitaetsklinikum Essen, Universitaet Duisburg-Essen, Germany
| | | | - Andreas Merkenschlager
- Department of Women and Child Health, Hospital for Children and Adolescents, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Cyril Mignot
- AP-HP, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France.,GRC UPMC "Déficiences Intellectuelles et Autisme", Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Susanne Ruf
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hannah Stamberger
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium.,Division of Neurology; Antwerp University Hospital, Antwerp, Belgium
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Jun Tohyama
- Department of Pediatrics, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium.,Division of Neurology; Antwerp University Hospital, Antwerp, Belgium
| | | | - Julia Wickert
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Francesco Mari
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Rikke S Møller
- Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Bobby Koeleman
- Department of Genetics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, Washington, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Domenica Battaglia
- Child Neurology and Psychiatry Unit, Catholic University, Largo Gemelli 18, Rome, Italy
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
197
|
Clinical features of a female with WDR45 mutation complicated by infantile spasms: a case report and literature review. Brain Dev 2017; 39:804-807. [PMID: 28551038 DOI: 10.1016/j.braindev.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 11/21/2022]
Abstract
We present a 3-year-old girl with beta-propeller protein-associated neurodegeneration (BPAN) who had a de novo heterozygous splice-site mutation of c.831-1G>C in WDR45 and developed infantile spasms; her onset age of infantile spasms was relatively late. Her infantile spasms and hypsarrhythmia disappeared promptly by adrenocorticotropic hormone therapy (CORTROSYN®Z, 0.0125mg/kg/day daily for 2weeks intramuscularly), though the administration of pyridoxal phosphate and valproic acid had poor efficacy. BPAN is known to be associated with various types of seizures, but there are few reports on infantile spasms, especially in females. To date, only 5 patients with BPAN have been reported to develop infantile spasms, and our patient is the second case in females. In this report, we showed that female patients with BPAN had milder phenotypic features than males: males developed intractable infantile spasms in early infancy, while females had treatable infantile spasms in late infancy.
Collapse
|
198
|
Takano K, Goto K, Motobayashi M, Wakui K, Kawamura R, Yamaguchi T, Fukushima Y, Kosho T. Early manifestations of epileptic encephalopathy, brain atrophy, and elevation of serum neuron specific enolase in a boy with beta-propeller protein-associated neurodegeneration. Eur J Med Genet 2017; 60:521-526. [DOI: 10.1016/j.ejmg.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
199
|
Tello C, Darling A, Lupo V, Pérez-Dueñas B, Espinós C. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet 2017; 93:731-740. [PMID: 28542792 DOI: 10.1111/cge.13057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited heterogeneous neurodegenerative rare disorders. These patients present with dystonia, spasticity, parkinsonism and neuropsychiatric disturbances, along with brain magnetic resonance imaging (MRI) evidence of iron accumulation. In sum, they are devastating disorders and to date, there is no specific treatment. Ten NBIA genes are accepted: PANK2, PLA2G6, C19orf12, COASY, FA2H, ATP13A2, WDR45, FTL, CP, and DCAF17; and nonetheless, a relevant percentage of patients remain without genetic diagnosis, suggesting that other novel NBIA genes remain to be discovered. Overlapping complex clinical pictures render an accurate differential diagnosis difficult. Little is known about the pathophysiology of NBIAs. The reported NBIA genes take part in a variety of pathways: CoA synthesis, lipid and iron metabolism, autophagy, and membrane remodeling. The next-generation sequencing revolution has achieved relevant advances in genetics of Mendelian diseases and provide new genes for NBIAs, which are investigated according to 2 main strategies: genes involved in disorders with similar phenotype and genes that play a role in a pathway of interest. To achieve an effective therapy for NBIA patients, a better understanding of the biological process underlying disease is crucial, moving toward a new age of precision medicine.
Collapse
Affiliation(s)
- C Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - A Darling
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - V Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - B Pérez-Dueñas
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
200
|
Tsuchida N, Nakashima M, Miyauchi A, Yoshitomi S, Kimizu T, Ganesan V, Teik KW, Ch'ng GS, Kato M, Mizuguchi T, Takata A, Miyatake S, Miyake N, Osaka H, Yamagata T, Nakajima H, Saitsu H, Matsumoto N. Novel biallelic SZT2 mutations in 3 cases of early-onset epileptic encephalopathy. Clin Genet 2017; 93:266-274. [PMID: 28556953 DOI: 10.1111/cge.13061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
The seizure threshold 2 (SZT2) gene encodes a large, highly conserved protein that is associated with epileptogenesis. In mice, Szt2 is abundantly expressed in the central nervous system. Recently, biallelic SZT2 mutations were found in 7 patients (from 5 families) presenting with epileptic encephalopathy with dysmorphic features and/or non-syndromic intellectual disabilities. In this study, we identified by whole-exome sequencing compound heterozygous SZT2 mutations in 3 patients with early-onset epileptic encephalopathies. Six novel SZT2 mutations were found, including 3 truncating, 1 splice site and 2 missense mutations. The splice-site mutation resulted in skipping of exon 20 and was associated with a premature stop codon. All individuals presented with seizures, severe developmental delay and intellectual disabilities with high variability. Brain MRIs revealed a characteristic thick and short corpus callosum or a persistent cavum septum pellucidum in each of the 2 cases. Interestingly, in the third case, born to consanguineous parents, had unexpected compound heterozygous missense mutations. She showed microcephaly despite the other case and previous ones presenting with macrocephaly, suggesting that SZT2 mutations might affect head size.
Collapse
Affiliation(s)
- N Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - A Miyauchi
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - S Yoshitomi
- Department of Pediatrics, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - T Kimizu
- Department of Pediatrics, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - V Ganesan
- Department of Pediatrics, Penang Hospital, Pulau Pinang, Malaysia
| | - K W Teik
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - G-S Ch'ng
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - M Kato
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan.,Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - T Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - A Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - S Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - T Yamagata
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - H Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|