151
|
Erturk-Hasdemir D, Kasper DL. Resident commensals shaping immunity. Curr Opin Immunol 2013; 25:450-5. [PMID: 23830047 DOI: 10.1016/j.coi.2013.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 02/07/2023]
Abstract
All animals coexist with myriad commensal microorganisms in a symbiotic relationship that plays a key role in health and disease. Continuous commensal-host interactions profoundly affect the development and regulation of the host's immune system. The complex interaction of the commensal microbiota with the immune system is a topic of substantial interest. An understanding of these interactions and the mechanisms through which commensal microbes actively shape host immunity may yield new insights into the pathogenesis of many immune-mediated diseases and lead to new prophylactic and therapeutic interventions. This review examines recent advances in this field and their potential implications not just for the colonized tissues but also for the entire immune system.
Collapse
Affiliation(s)
- Deniz Erturk-Hasdemir
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Room 1056C, Boston, MA 02115, United States
| | | |
Collapse
|
152
|
Kodgire P, Mukkawar P, Ratnam S, Martin TE, Storb U. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. ACTA ACUST UNITED AC 2013; 210:1481-92. [PMID: 23752228 PMCID: PMC3698518 DOI: 10.1084/jem.20121523] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ongoing transcription of the Ig gene coupled with temporary pausing within the targeted region facilitates somatic hypermutation. Somatic hypermutation (SHM) of Ig genes is initiated by the activation-induced cytidine deaminase (AID), and requires target gene transcription. We previously proposed that AID may associate with the RNA polymerase II (Pol). Here, to determine aspects of the transcription process required for SHM, we knocked-in a transcription terminator into an Ig gene variable region in DT40 chicken B cell line. We found that the human β-globin terminator was an efficient inhibitor of downstream transcription in these cells. The terminator reduced mutations downstream of the poly(A) signal, suggesting that the process of transcription is essential for efficient SHM and that AID has better access to its target when Pol is in the elongating rather than terminating mode. Mutations upstream of the poly(A) site were almost doubled in the active terminator clones compared with an inactivated terminator, and this region showed more single-stranded DNA, indicating that Pol pausing assists SHM. Moreover, the nontranscribed DNA strand was the preferred SHM target upstream of the active terminator. Pol pausing during poly(A) site recognition may facilitate persistence of negative supercoils, exposing the coding single strand and possibly allowing the nascent RNA intermittent reannealing with the template strand, for prolonged access of AID.
Collapse
Affiliation(s)
- Prashant Kodgire
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
153
|
Mavrommatis B, Young GR, Kassiotis G. Counterpoise between the microbiome, host immune activation and pathology. Curr Opin Immunol 2013; 25:456-62. [PMID: 23743081 DOI: 10.1016/j.coi.2013.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022]
Abstract
The role of the mammalian intestinal microbiota in health and disease of the host has long been recognized and extensively studied. Largely, these studies have focused on the bacterial component of the microbiota. However, recent technological advances have shed new light on the microbiome at distinct anatomical locations and uncovered the role of additional microbial symbionts, including the virome and endogenous retroelements. Together, they have revealed interactions more intricate than previously recognized. Here, we review recent advances in our knowledge of this collective microbiome and the interactions with the immune system of their host.
Collapse
Affiliation(s)
- Bettina Mavrommatis
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | |
Collapse
|
154
|
Weill JC, Le Gallou S, Hao Y, Reynaud CA. Multiple players in mouse B cell memory. Curr Opin Immunol 2013; 25:334-8. [DOI: 10.1016/j.coi.2013.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 12/14/2022]
|
155
|
Zahn A, Daugan M, Safavi S, Godin D, Cheong C, Lamarre A, Di Noia JM. Separation of function between isotype switching and affinity maturation in vivo during acute immune responses and circulating autoantibodies in UNG-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5949-60. [PMID: 23667108 DOI: 10.4049/jimmunol.1202711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activation-induced deaminase converts deoxycytidine to deoxyuridine at the Ig loci. Complementary pathways, initiated by the uracil-DNA glycosylase (UNG) or the mismatch repair factor MSH2/MSH6, must process the deoxyuridine to initiate class-switch recombination (CSR) and somatic hypermutation. UNG deficiency most severely reduces CSR efficiency and only modestly affects the somatic hypermutation spectrum in vitro. This would predict isotype-switching deficiency but normal affinity maturation in Ung(-/-) mice in vivo, but this has not been tested. Moreover, puzzling differences in the amount of circulating Ig between UNG-deficient humans and mice make it unclear to what extent MSH2/MSH6 can complement for UNG in vivo. We find that Ab affinity maturation is indeed unaffected in Ung(-/-) mice, even allowing IgM responses with higher than normal affinity. Ung(-/-) mice display normal to only moderately reduced basal levels of most circulating Ig subclasses and gut-associated IgA, which are elicited in response to chronically available environmental Ag. In contrast, their ability to produce switched Ig in response to immunization or vesicular stomatitis virus infection is strongly impaired. Our results uncover a specific need for UNG in CSR for timely and efficient acute Ab responses in vivo. Furthermore, Ung(-/-) mice provide a novel model for separating isotype switching and affinity maturation during acute (but not chronic) Ab responses, which could be useful for dissecting their relative contribution to some infections. Interestingly, Ung(-/-) mice present with circulating autoantibodies, suggesting that UNG may impinge on tolerance.
Collapse
Affiliation(s)
- Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
156
|
Deal EM, Lahl K, Narváez CF, Butcher EC, Greenberg HB. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 2013; 123:2464-74. [PMID: 23635775 DOI: 10.1172/jci60945] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/26/2013] [Indexed: 12/22/2022] Open
Abstract
B cell-dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β-mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity.
Collapse
Affiliation(s)
- Emily M Deal
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5105, USA
| | | | | | | | | |
Collapse
|
157
|
|
158
|
Cahenzli J, Balmer ML, McCoy KD. Microbial-immune cross-talk and regulation of the immune system. Immunology 2013; 138:12-22. [PMID: 22804726 DOI: 10.1111/j.1365-2567.2012.03624.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/14/2012] [Accepted: 07/10/2012] [Indexed: 12/13/2022] Open
Abstract
We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function.
Collapse
Affiliation(s)
- Julia Cahenzli
- Department of Clinical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
159
|
Abstract
Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
160
|
Chorny A, Puga I, Cerutti A. Regulation of frontline antibody responses by innate immune signals. Immunol Res 2013; 54:4-13. [PMID: 22477522 DOI: 10.1007/s12026-012-8307-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mature B cells generate protective immunity by undergoing immunoglobulin (Ig) class switching and somatic hypermutation, two Ig gene-diversifying processes that usually require cognate interactions with T cells that express CD40 ligand. This T-cell-dependent pathway provides immunological memory but is relatively slow to occur. Thus, it must be integrated with a faster, T-cell-independent pathway for B-cell activation through CD40 ligand-like molecules that are released by innate immune cells in response to microbial products. Here, we discuss recent advances in our understanding of the interplay between the innate immune system and B cells, particularly "frontline" B cells located in the marginal zone of the spleen and in the intestine.
Collapse
Affiliation(s)
- Alejo Chorny
- Department of Medicine, The Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
161
|
Maruya M, Kawamoto S, Kato LM, Fagarasan S. Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency. Gut Microbes 2013; 4:165-71. [PMID: 23333864 PMCID: PMC3595078 DOI: 10.4161/gmic.23595] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A major function of immunoglobulin A (IgA) is to maintain balanced bacterial communities in the gut. We have previously shown that diversification of IgA upon somatic hypermutation (SHM) is critical for IgA function yet the principles governing the selection of IgA in the gut have remained elusive. Here we discuss recent progress in understanding this process as revealed by our studies in mice that lack the inhibitory co-receptor programmed cell death-1 (PD-1). We found that PD-1 affects the dynamics of germinal center (GC) B cells by controlling the number and the nature of T helper cells in the Peyer's patches (PPs). Deregulation of the T cell compartment impacts the selection of IgA plasma cells leading to gut dysbiosis. When the PD-1-dependent checkpoint is missing, gut bacteria go beyond the mucosal barrier and induce systemic GCs that can generate antibodies with auto-reactive properties.
Collapse
|
162
|
Mashoof S, Goodroe A, Du CC, Eubanks JO, Jacobs N, Steiner JM, Tizard I, Suchodolski JS, Criscitiello MF. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol 2013; 6:358-68. [PMID: 22929561 PMCID: PMC3514589 DOI: 10.1038/mi.2012.78] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many studies address the influence of the gut microbiome on the immune system, but few dissect the effect of T cells on gut microbiota and mucosal responses. We have employed larval thymectomy in Xenopus to study the gut microbiota with and without the influence of T lymphocytes. Pyrosequencing of 16S ribosomal RNA genes was used to assess the relative abundance of bacterial groups present in the stomach, small and large intestine. Clostridiaceae was the most abundant family throughout the gut, while Bacteroidaceae, Enterobacteriaceae, and Flavobacteriaceae also were well represented. Unifrac analysis revealed no differences in microbiota distribution between thymectomized and unoperated frogs. This is consistent with immunization data showing that levels of the mucosal immunoglobulin IgX are not altered significantly by thymectomy. This study in Xenopus represents the oldest organisms that exhibit class switch to a mucosal isotype and is relevant to mammalian immunology, as IgA appears to have evolved from IgX based upon phylogeny, genomic synteny, and function.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Anna Goodroe
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Christina C. Du
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jeannine O. Eubanks
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Natalie Jacobs
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Ian Tizard
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
163
|
Abstract
All multicellular organisms protect themselves against pathogens using sophisticated immune defenses. Functionally interconnected humoral and cellular facilities maintain immune homeostasis in the absence of overt infection and regulate the initiation and termination of immune responses directed against pathogens. Immune responses of invertebrates, such as flies, are innate and usually stereotyped; those of vertebrates, encompassing species as diverse as jawless fish and humans, are additionally adaptive, enabling more rapid and efficient immune reactivity upon repeated encounters with a pathogen. Many of the attributes historically defining innate and adaptive immunity are in fact common to both, blurring their functional distinction and emphasizing shared ancestry and co-evolution. These findings provide indications of the evolutionary forces underlying the origin of somatic diversification of antigen receptors and contribute to our understanding of the complex phenotypes of human immune disorders. Moreover, informed by phylogenetic considerations and inspired by improved knowledge of functional networks, new avenues emerge for innovative therapeutic strategies.
Collapse
|
164
|
Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1389-95. [PMID: 23378581 PMCID: PMC3564600 DOI: 10.4049/jimmunol.1203100] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammals are colonized by large numbers of microorganisms, including trillions of bacteria, most of which live in the intestinal tract. These indigenous microorganisms that inhabit the body of humans and animals are referred collectively to as the microbiota. Accumulating evidence indicates that the microbiota regulates the development and/or function of different types of immune cells in the intestine. For example, the microbiota drives homeostatic, pathogenic, and regulatory T cell immune responses that contribute to tissue homeostasis, but also can promote disease. The gut microbes also facilitate IgA responses, which in turn regulate the composition and function of the gut microbiota. Thus, the reciprocal regulation of the gut microbiota and the host immune system may influence the balance between homeostasis and disease in the intestine.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
165
|
Abstract
Immunoglobulin A (IgA) is the main intestinal antibody. In this issue of Immunity, Chen et al. (2012) show that intestinal T cells enhance protective IgA responses by expressing a short isoform of the CEACAM1 protein.
Collapse
Affiliation(s)
- Alejo Chorny
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
166
|
Carneiro-Sampaio M, Coutinho A. Interface of autoimmunity and immunodeficiency. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
167
|
Re-utilization of germinal centers in multiple Peyer's patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol 2013; 6:122-35. [PMID: 22785230 DOI: 10.1038/mi.2012.56] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Whereas gut IgA responses to the microbiota may be multi-centered and diverse, little is known about IgA responses to T-cell-dependent antigens following oral immunizations. Using a novel approach, gut IgA responses to oral hapten (4-hydroxy-3-nitrophenyl)acetyl-cholera toxin (NP-CT) conjugates were followed at the cellular and molecular level. Surprisingly, these responses were highly synchronized, strongly oligoclonal, and dominated by affinity matured cells. Extensive lineage trees revealed clonal relationships between NP-specific IgA cells in gut inductive and effector sites, suggesting expansion of the same B-cell clone in multiple Peyer's patches (PPs). Adoptive transfer experiments showed that this was achieved through re-utilization of already existing germinal centers (GCs) in multiple PPs by previously activated GC GL7(+) B cells, provided oral NP-CT was given before cell transfer. Taken together, these results explain why repeated oral immunizations are mandatory for an effective oral vaccine.
Collapse
|
168
|
Abstract
Because Peyer's patches (PP) are the main inductive sites for gut IgA responses we have focused this review on what we know about the function of PP germinal centers (GC). The vast majority of IgA gene sequences in the gut lamina propria (LP) are heavily mutated arguing for an origin in GC. Because PP GC formation is dependent on the presence of CD4 T cells, we speculate that all IgA responses in the normal gut are directly or indirectly T cell-dependent (TD). We hypothesize that the CD4 T cell involvement in gut IgA responses against the microbiota is different from that in systemic responses since cognate T-B cell interactions appear not to be required. In the absence of cognate interactions the function of CD4 follicular helper T cells (Tfh) in PP GC is unclear. However, production of IL-21 and IL-6 is more pronounced than in peripheral lymph nodes. Importantly, we discuss how multiple PP are involved in generating specific IgA responses to TD antigens given orally. Recently we found that oral immunization with NP-hapten conjugated to cholera toxin (NP-CT) stimulated a strong highly synchronized, oligoclonal and affinity matured IgA response. This was achieved through re-utilization of GC in multiple PP as GC IgA B cells emigrated into already established GC. Clonally related B cells were present in both inductive and effector lymphoid tissues in the gut and clonal trees involving multiple PP could be constructed in individual mice. Through adoptive transfer of B1-8(hi) NP-specific B cells we demonstrated that GL7(+) PP B cells could enter into pre-existing GC in PP, a process that was antigen-dependent but did not to require cognate Tfh interactions. Finally, we discuss the role of PP GC for the generation of memory B cells and long-lived plasma cells in the light of contrasting findings regarding IgA memory development to colonizing commensal bacteria versus that to oral immunization with enteropathogens or TD antigens.
Collapse
Affiliation(s)
- Nils Y Lycke
- Mucosal Immunobiology and Vaccines Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Gothenburg, Sweden
| | | |
Collapse
|
169
|
Nishio J, Honda K. Immunoregulation by the gut microbiota. Cell Mol Life Sci 2012; 69:3635-50. [PMID: 22527722 PMCID: PMC11114866 DOI: 10.1007/s00018-012-0993-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
The human intestinal mucosa is constantly exposed to commensal microbiota. Since the gut microbiota is beneficial to the host, hosts have evolved intestine-specific immune systems to co-exist with the microbiota. On the other hand, the intestinal microbiota actively regulates the host's immune system, and recent studies have revealed that specific commensal bacterial species induce the accumulation of specific immune cell populations. For instance, segmented filamentous bacteria and Clostridium species belonging to clusters XIVa and IV induce the accumulation of Th17 cells in the small intestine and Foxp3(+) regulatory T cells in the large intestine, respectively. The immune cells induced by the gut microbiota likely contribute to intestinal homeostasis and influence systemic immunity in the host.
Collapse
Affiliation(s)
- Junko Nishio
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Kenya Honda
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
170
|
Abstract
The intestinal mucosa contains the largest population of antibody-secreting plasma cells in the body, and in humans several grams of secretory immunoglobulin A (SIgA) are released into the intestine each day. In the gut lumen, SIgA serves as a first-line barrier that protects the epithelium from pathogens and toxins. Recently, next-generation sequencing has revolutionized our understanding of the nature of the intestinal microbiota and has also shed new light on the important roles of SIgA in the regulation of host-commensal homeostasis. Here, I discuss pathways of IgA induction in the context of SIgA specificity and function.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Strae 1, 30625 Hannover, Germany.
| |
Collapse
|
171
|
Mesin L, Sollid LM, Di Niro R. The intestinal B-cell response in celiac disease. Front Immunol 2012; 3:313. [PMID: 23060888 PMCID: PMC3463893 DOI: 10.3389/fimmu.2012.00313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/18/2012] [Indexed: 12/19/2022] Open
Abstract
The function of intestinal immunity is to provide protection toward pathogens while preserving the composition of the microflora and tolerance to orally fed nutrients. This is achieved via a number of tightly regulated mechanisms including production of IgA antibodies by intestinal plasma cells. Celiac disease is a common gut disorder caused by a dysfunctional immune regulation as signified, among other features, by a massive intestinal IgA autoantibody response. Here we review the current knowledge of this B-cell response and how it is induced, and we discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Luka Mesin
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
172
|
Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:79-103. [PMID: 22974238 DOI: 10.1146/annurev-pathol-020712-164004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of B cell lymphomas in the early 1980s led to the cloning of genes (c-MYC and IGH) at a chromosome translocation breakpoint. A rush followed to identify recurrently translocated genes in all types of cancer, which led to remarkable advances in our understanding of cancer genetics. B lymphocyte tumors commonly bear chromosome translocations to immunoglobulin genes, which points to a role for antibody gene diversification processes in tumorigenesis. The discovery of activation-induced cytidine deaminase (AID) and the use of murine models to study translocation have led to a new understanding of how these events contribute to the genesis of lymphomas. Here, we review these advances with a focus on AID and insights gained from the study of translocations in primary cells.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
173
|
Okada Y, Oh-oka K, Nakamura Y, Ishimaru K, Matsuoka S, Okumura K, Ogawa H, Hisamoto M, Okuda T, Nakao A. Dietary resveratrol prevents the development of food allergy in mice. PLoS One 2012; 7:e44338. [PMID: 22962611 PMCID: PMC3433457 DOI: 10.1371/journal.pone.0044338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022] Open
Abstract
Background Resveratrol is a bioactive polyphenol enriched in red wine that exhibits many beneficial health effects via multiple mechanisms. However, it is unclear whether resveratrol is beneficial for the prevention of food allergy. This study investigated whether resveratrol inhibited the development of food allergy by using a mouse model of the disease. Methodology/Principal Findings Mice fed standard diet or standard diet plus resveratrol were sensitized by intragastric administration of ovalbumin (OVA) and mucosal adjuvant cholera toxin (CT). Several manifestations of food allergy were then compared between the mice. The effects of resveratrol on T cells or dendritic cells were also examined by using splenocytes from OVA-specific T cell-receptor (TCR) transgenic DO11.10 mice or mouse bone marrow-derived dendritic cells (BMDCs) in vitro. We found that mice fed resveratrol showed reduced OVA-specific serum IgE production, anaphylactic reaction, and OVA-induced IL-13 and IFN-ã production from the mesenteric lymph nodes (MLNs) and spleens in comparison to the control mice, following oral sensitization with OVA plus CT. In addition, resveratrol inhibited OVA plus CT-induced IL-4, IL-13, and IFN-ã production in splenocytes from DO11.10 mice associated with inhibition of GATA-3 and T-bet expression. Furthermore, resveratrol suppressed the OVA plus CT-induced CD25 expression and IL-2 production in DO11.10 mice-splenocytes in association with decreases in CD80 and CD86 expression levels. Finally, resveratrol suppressed CT-induced cAMP elevation in association with decreases in CD80 and CD86 expression levels in BMDCs. Conclusions/Significance Ingestion of resveratrol prevented the development of a food allergy model in mice. Given the in vitro findings, resveratrol might do so by inhibiting DC maturation and subsequent early T cell activation and differentiation via downregulation of CT-induced cAMP activation in mice. These results suggest that resveratrol may have potential for prophylaxis against food allergy.
Collapse
Affiliation(s)
- Yui Okada
- Department of Immunology, University of Yamanashi Faculty of Medicine Chuo, Yamanashi, Japan
- The Institute of Enology and Viticulture, University of Yamanashi, Koufu, Yamanashi, Japan
| | - Kyoko Oh-oka
- Department of Immunology, University of Yamanashi Faculty of Medicine Chuo, Yamanashi, Japan
| | - Yuki Nakamura
- Department of Immunology, University of Yamanashi Faculty of Medicine Chuo, Yamanashi, Japan
| | - Kayoko Ishimaru
- Department of Immunology, University of Yamanashi Faculty of Medicine Chuo, Yamanashi, Japan
| | - Shuji Matsuoka
- Deparment of Pathology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masashi Hisamoto
- The Institute of Enology and Viticulture, University of Yamanashi, Koufu, Yamanashi, Japan
| | - Tohru Okuda
- The Institute of Enology and Viticulture, University of Yamanashi, Koufu, Yamanashi, Japan
| | - Atsuhito Nakao
- Department of Immunology, University of Yamanashi Faculty of Medicine Chuo, Yamanashi, Japan
- Atopy Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
174
|
Doi T, Kanai T, Mikami Y, Sujino T, Jun L, Ono Y, Hayashi A, Hibi T. IgA plasma cells express the negative regulatory co-stimulatory molecule programmed cell death 1 ligand and have a potential tolerogenic role in the intestine. Biochem Biophys Res Commun 2012; 425:918-23. [PMID: 22906740 DOI: 10.1016/j.bbrc.2012.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 01/22/2023]
Abstract
To maintain immune homeostasis in the intestine, the intestinal immune system has evolved several tolerogenic mechanisms toward intestinal microflora and food antigens. Although programmed cell death-1 (PD-1) protein has been implicated in immunological tolerance in the intestine and gut-associated lymphoid tissues (GALTs), distribution of its ligands PD-L1 and PD-L2 in the small intestine lamina propria (LP) are unknown. We investigated PD-L1 expression in intestinal LP and found that IgA plasma cells (PCs) were major PD-L1 expressing cells. PD-L1 expression levels on IgA PCs were higher than that on IgG PCs in peripheral lymphoid tissues. IgA PCs expressed antigen-presenting molecule MHC class II and co-stimulatory molecules CD80, CD86, and PD-L2. IgA PCs isolated from intestinal LP exhibited antigen presentation activity, and in the presence of TGF-β induced FoxP3(+) regulatory T cells, but not IFN-γ(+) Th1 cells, from naïve T cells. Thus, IgA PCs in the intestine may be involved in an immune regulatory role in the intestinal immune system.
Collapse
Affiliation(s)
- Tomomitsu Doi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
The interaction of the host with its abundant intestinal microbiota is complex and engages most of the cells in the intestinal mucosa. The inflammatory bowel diseases appear to be disorders of the host immune response to the microbiota. This is supported by data from induced gene mutations in mice and more recently by the identification of gene variants in humans that result in IBD or IBD susceptibility. These genetic studies have provided insights into the cells and molecular pathways involved in the host-microbiota dialog. This review discusses the innate, adaptive, and regulatory immune response to the microbiota in the context of the mouse and human genes that are involved in maintaining intestinal homeostasis and preventing inflammation. These data continue to support the hypothesis that inflammatory bowel disease results from a dysregulated adaptive immune response, particularly a CD4 T-cell response, to the microbiota. The microbiota itself is an active participant in these homeostatic processes. The microbiota composition is perturbed during inflammation, resulting in a dysbiosis that may induce or perpetuate inflammation. However, host genotype and the environment have a major impact on the shape of such dysbiosis, as well as upon which members of the microbiota stimulate pathogenic immune responses.
Collapse
Affiliation(s)
- Charles O. Elson
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA,Correspondence to: Charles O. Elson,
| | - Yingzi Cong
- Departments of Microbiology/Immunology and Pathology; University of Texas Medical Branch; Galveston, TX USA
| |
Collapse
|
176
|
Cieza RJ, Cao AT, Cong Y, Torres AG. Immunomodulation for gastrointestinal infections. Expert Rev Anti Infect Ther 2012; 10:391-400. [PMID: 22397571 DOI: 10.1586/eri.11.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal epithelium provides a barrier between a variety of luminal antigens and provides the components of intestinal innate and adaptive immunity. It is crucial that at this interface, the epithelial cell layer and the components of the intestinal immunity interact with dietary and bacterial antigens in a regulated way to maintain homeostasis. Failure to tightly control immune reactions can be detrimental and result in inflammation. In the current review, we described the regulatory mechanisms controlling host-immune homeostasis and the role of regulatory CD4(+) T cells, with a special emphasis in the regulatory T-cell subsets (Tregs). Furthermore, the participation of innate cell cross-talk in the polarization of intestinal immune responses is also evaluated. Finally, the recent characterization of host responses to normal commensal flora, the role of bacteria and bacterial factors in the maintenance of immunomodulation, and the disruption of this balance by bacterial enteric pathogens is also summarized.
Collapse
Affiliation(s)
- Roberto J Cieza
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
177
|
Spencer J, Klavinskis LS, Fraser LD. The human intestinal IgA response; burning questions. Front Immunol 2012; 3:108. [PMID: 22593756 PMCID: PMC3349913 DOI: 10.3389/fimmu.2012.00108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/17/2012] [Indexed: 12/14/2022] Open
Abstract
The title of this special topic invites us to identify areas in the field of IgA biology that are uncertain or in need of clarification. The inductive phase of the human intestinal IgA response has been a controversial area for some years. Therefore, to structure this review, we have identified key questions that are debated in this field. We have provided explanations of the origins of the uncertainties and have provided our own reasoned answers to the questions we pose.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, King’s College London School of Medicine at Guy’s King’s College and St. Thomas’ HospitalsLondon, UK
| | - Linda S. Klavinskis
- Peter Gorer Department of Immunobiology, King’s College London School of Medicine at Guy’s King’s College and St. Thomas’ HospitalsLondon, UK
| | - Louise D. Fraser
- Peter Gorer Department of Immunobiology, King’s College London School of Medicine at Guy’s King’s College and St. Thomas’ HospitalsLondon, UK
| |
Collapse
|
178
|
Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, Kato LM, Fagarasan S. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 2012; 336:485-9. [PMID: 22539724 DOI: 10.1126/science.1217718] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin A (IgA) is essential to maintain the symbiotic balance between gut bacterial communities and the host immune system. Here we provide evidence that the inhibitory co-receptor programmed cell death-1 (PD-1) regulates the gut microbiota through appropriate selection of IgA plasma cell repertoires. PD-1 deficiency generates an excess number of T follicular helper (T(FH)) cells with altered phenotypes, which results in dysregulated selection of IgA precursor cells in the germinal center of Peyer's patches. Consequently, the IgAs produced in PD-1-deficient mice have reduced bacteria-binding capacity, which causes alterations of microbial communities in the gut. Thus, PD-1 plays a critical role in regulation of antibody diversification required for the maintenance of intact mucosal barrier.
Collapse
Affiliation(s)
- Shimpei Kawamoto
- Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology, RIKEN Yokohama, Tsurumi, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Knoop KA, Newberry RD. Isolated Lymphoid Follicles are Dynamic Reservoirs for the Induction of Intestinal IgA. Front Immunol 2012; 3:84. [PMID: 22566964 PMCID: PMC3343265 DOI: 10.3389/fimmu.2012.00084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/03/2012] [Indexed: 12/12/2022] Open
Abstract
IgA is one of the most important molecules in the regulation of intestinal homeostasis. Peyer's patches have been traditionally recognized as sites for the induction of intestinal IgA responses, however more recent studies demonstrate that isolated lymphoid follicles (ILFs) can perform this function as well. ILF development is dynamic, changing in response to the luminal microbial burden, suggesting that ILFs play an important role providing an expandable reservoir of compensatory IgA inductive sites. However, in situations of immune dysfunction, ILFs can over-develop in response to uncontrollable enteric flora, resulting in ILF hyperplasia. The ability of ILFs to expand and respond to help control the enteric flora makes this dynamic reservoir an important arm of IgA inductive sites in intestinal immunity.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine St. Louis, MO, USA
| | | |
Collapse
|
180
|
Slack E, Balmer ML, Fritz JH, Hapfelmeier S. Functional flexibility of intestinal IgA - broadening the fine line. Front Immunol 2012; 3:100. [PMID: 22563329 PMCID: PMC3342566 DOI: 10.3389/fimmu.2012.00100] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/15/2012] [Indexed: 01/04/2023] Open
Abstract
Intestinal bacteria outnumber our own human cells in conditions of both health and disease. It has long been recognized that secretory antibody, particularly IgA, is produced in response to these microbes and hypothesized that this must play an important role in defining the relationship between a host and its intestinal microbes. However, the exact role of IgA and the mechanisms by which IgA can act are only beginning to be understood. In this review we attempt to unravel the complex interaction between so-called “natural,” “primitive” (T-cell-independent), and “classical” IgA responses, the nature of the intestinal microbiota/intestinal pathogens and the highly flexible dynamic homeostasis of the mucosal immune system. Such an analysis reveals that low-affinity IgA is sufficient to protect the host from excess mucosal immune activation induced by harmless commensal microbes. However, affinity-maturation of “classical” IgA is essential to provide protection from more invasive commensal species such as segmented filamentous bacteria and from true pathogens such as Salmonellatyphimurium. Thus a correlation is revealed between “sophistication” of the IgA response and aggressiveness of the challenge. A second emerging theme is that more-invasive species take advantage of host inflammatory mechanisms to more successfully compete with the resident microbiota. In many cases, the function of IgA may be to limit such inflammatory responses, either directly by coagulating or inhibiting virulence of bacteria before they can interact with the host or by modulating immune signaling induced by host recognition. Therefore IgA appears to provide an added layer of robustness in the intestinal ecosystem, promoting “commensal-like” behavior of its residents.
Collapse
Affiliation(s)
- Emma Slack
- Institute for Microbiology, Eidgenössische Technische Hochschule Zurich Zurich, Switzerland
| | | | | | | |
Collapse
|
181
|
Macpherson AJ, Geuking MB, Slack E, Hapfelmeier S, McCoy KD. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev 2012; 245:132-46. [PMID: 22168417 DOI: 10.1111/j.1600-065x.2011.01072.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunoglobulin A (IgA) is the main secretory immunoglobulin of mucous membranes and is powerfully induced by the presence of commensal microbes in the intestine. B cells undergo class switch recombination to IgA in the mucosa-associated lymphoid tissues, particularly mesenteric lymph nodes (MLNs) and Peyer's patches, through both T-dependent and T-independent pathways. IgA B cells primed in the mucosa traffic from the intestinal lymphoid structures, initially through the lymphatics and then join the bloodstream, to home back to the intestinal mucosa as IgA-secreting plasma cells. Once induced, anti-bacterial IgA can be extremely long-lived but is replaced if there is induction of additional IgA specificities by other microbes. The mucosal immune system is anatomically separated from the systemic immune system by the MLNs, which act as a firewall to prevent penetration of live intestinal bacteria to systemic sites. Dendritic cells sample intestinal bacteria and induce B cells to switch to IgA. In contrast, intestinal macrophages are adept at killing extracellular bacteria and are able to clear bacteria that have crossed the mucus and epithelial barriers. There is both a continuum between innate and adaptive immune mechanisms and compartmentalization of the mucosal immune system from systemic immunity that function to preserve host microbial mutualism.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Mucosal Immunology Lab, Maurice Müller Laboratories, University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
182
|
IgA synthesis: a form of functional immune adaptation extending beyond gut. Curr Opin Immunol 2012; 24:261-8. [PMID: 22503962 DOI: 10.1016/j.coi.2012.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody isotype in mammals. The primary function of IgA is to maintain homeostasis at mucosal surfaces. IgA is generated in specialized gut associated lymphoid tissues (GALT) by T cell-dependent and T cell-independent mechanisms. Studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Aberrant bacterial growth, by activating innate and adaptive immune cells, has emerged as a risk factor for inflammatory diseases such as metabolic disorders and autoimmune diseases. Dynamic diversification of IgA shields bacterial antigens preventing inflammatory responses, but when IgA regulation is suboptimal aberrant bacterial growth and inflammation can ensue.
Collapse
|
183
|
Macpherson AJ, Geuking MB, McCoy KD. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol 2012; 33:160-7. [PMID: 22410243 DOI: 10.1016/j.it.2012.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 12/30/2022]
Abstract
IgA is the most abundant immunoglobulin produced in mammals, and is mostly secreted across mucous membranes. At these frontiers, which are constantly assaulted by pathogenic and commensal microbes, IgA provides part of a layered system of immune protection. In this review, we describe how IgA induction occurs through both T-dependent and T-independent mechanisms, and how IgA is generated against the prodigious load of commensal microbes after mucosal dendritic cells (DCs) have sampled a tiny fraction of the microbial consortia in the intestinal lumen. To function in this hostile environment, IgA must be induced behind the 'firewall' of the mesenteric lymph nodes to generate responses that integrate microbial stimuli, rather than the classical prime-boost effects characteristic of systemic immunity.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Maurice Müller Laboratories, DKF, Universitätsklinik für Viszerale Chirurgie und Medizin, University Hospital (Inselspital), University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
184
|
Kirkland D, Benson A, Mirpuri J, Pifer R, Hou B, DeFranco AL, Yarovinsky F. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 2012; 36:228-38. [PMID: 22306056 DOI: 10.1016/j.immuni.2011.11.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/24/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2022]
Abstract
The Toll-like receptor adaptor protein MyD88 is essential for the regulation of intestinal homeostasis in mammals. In this study, we determined that Myd88-deficient mice are susceptible to colonic damage that is induced by dextran sulfate sodium (DSS) administration resulting from uncontrolled dissemination of intestinal commensal bacteria. The DSS-induced mortality of Myd88-deficient mice was completely prevented by antibiotic treatment to deplete commensal bacteria. By using cell type-specific Myd88-deficient mice, we established that B cell-intrinsic MyD88 signaling plays a central role in the resistance to DSS-induced colonic damage via the production of IgM and complement-mediated control of intestinal bacteria. Our results indicate that the lack of intact MyD88 signaling in B cells, coupled with impaired epithelial integrity, enables commensal bacteria to function as highly pathogenic organisms, causing rapid host death.
Collapse
Affiliation(s)
- Donna Kirkland
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Cerutti A, Cols M, Gentile M, Cassis L, Barra CM, He B, Puga I, Chen K. Regulation of mucosal IgA responses: lessons from primary immunodeficiencies. Ann N Y Acad Sci 2012; 1238:132-44. [PMID: 22129060 DOI: 10.1111/j.1749-6632.2011.06266.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adaptive co-evolution of mammals and bacteria has led to the establishment of complex commensal communities on mucosal surfaces. In spite of having available a wealth of immune-sensing and effector mechanisms capable of triggering inflammation in response to microbial intrusion, mucosal immune cells establish an intimate dialogue with microbes to generate a state of hyporesponsiveness against commensals and active readiness against pathogens. A key component of this homeostatic balance is IgA, a noninflammatory antibody isotype produced by mucosal B cells through class switching. This process involves activation of B cells by IgA-inducing signals originating from mucosal T cells, dendritic cells, and epithelial cells. Here, we review the mechanisms by which mucosal B cells undergo IgA diversification and production and discuss how the study of primary immunodeficiencies facilitates better understanding of mucosal IgA responses in humans.
Collapse
Affiliation(s)
- Andrea Cerutti
- Municipal Institute for Medical Research-Hospital del Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Bemark M, Boysen P, Lycke NY. Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Ann N Y Acad Sci 2012; 1247:97-116. [PMID: 22260403 DOI: 10.1111/j.1749-6632.2011.06378.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut immune system protects against mucosal pathogens, maintains a mutualistic relationship with the microbiota, and establishes tolerance against food antigens. This requires a balance between immune effector responses and induction of tolerance. Disturbances of this strictly regulated balance can lead to infections or the development inflammatory diseases and allergies. Production of secretory IgA is a unique effector function at mucosal surfaces, and basal mechanisms regulating IgA production have been the focus of much recent research. These investigations have aimed at understanding how long-term IgA-mediated mucosal immunity can best be achieved by oral or sublingual vaccination, or at analyzing the relationship between IgA production, the composition of the gut microbiota, and protection from allergies and autoimmunity. This research has lead to a better understanding of the IgA system; but at the same time seemingly conflicting data have been generated. Here, we discuss how gut IgA production is controlled, with special focus on how differences between T cell-dependent and T cell-independent IgA production may explain some of these discrepancies.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
187
|
Lindner C, Wahl B, Föhse L, Suerbaum S, Macpherson AJ, Prinz I, Pabst O. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. ACTA ACUST UNITED AC 2012; 209:365-77. [PMID: 22249449 PMCID: PMC3280880 DOI: 10.1084/jem.20111980] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Intestinal immunoglobulin A (IgA) ensures host defense and symbiosis with our commensal microbiota. Yet previous studies hint at a surprisingly low diversity of intestinal IgA, and it is unknown to what extent the diverse Ig arsenal generated by somatic recombination and diversification is actually used. In this study, we analyze more than one million mouse IgA sequences to describe the shaping of the intestinal IgA repertoire, its determinants, and stability over time. We show that expanded and infrequent clones combine to form highly diverse polyclonal IgA repertoires with very little overlap between individual mice. Selective homing allows expanded clones to evenly seed the small but not large intestine. Repertoire diversity increases during aging in a dual process. On the one hand, microbiota-, T cell-, and transcription factor RORγt-dependent but Peyer's patch-independent somatic mutations drive the diversification of expanded clones, and on the other hand, new clones are introduced into the repertoire of aged mice. An individual's IgA repertoire is stable and recalled after plasma cell depletion, which is indicative of functional memory. These data provide a conceptual framework to understand the dynamic changes in the IgA repertoires to match environmental and intrinsic stimuli.
Collapse
Affiliation(s)
- Cornelia Lindner
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
188
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
189
|
|
190
|
Geuking MB, McCoy KD, Macpherson AJ. The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism. Semin Immunol 2011; 24:36-42. [PMID: 22138187 DOI: 10.1016/j.smim.2011.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.
Collapse
Affiliation(s)
- M B Geuking
- Maurice Müller Laboratories, DKF, Universitätsklinik für Viszerale Chirurgie und Medizin, University Hospital (Inselspital), Murtenstrasse 35, University of Bern, 3010 Bern, Switzerland
| | | | | |
Collapse
|
191
|
Abstract
PURPOSE OF REVIEW The review summarizes the recent progress that has been made in understanding the function of immunoglobulin A (IgA) in promoting a healthy mutualism with the commensal microbiota and protecting against pathogens. Although IgA is by far the most abundant antibody produced by mammals, direct experimental evidence for its function is still lacking. RECENT FINDINGS IgA is the predominant antibody induced in response to intestinal colonization with commensal bacteria: even fish have been shown to have a mucosal immunoglobulin (IgT), which is produced in the mucosa and coats commensals in the intestinal lumen. Recent studies indicate that intestinal IgA can be highly specific to the inducing commensals. Priming of IgA also appears to be a long-lasting response dependent on the overall dose (integral) of the bacteria sampled rather than exhibiting prime-boost effects normally observed with systemic immunoglobulin responses. Not only is human IgA highly mutated, but a mouse model with deficient hypermutation but intact class-switch recombination also shows that this mutation process (presumably leading to better anticommensal affinities) is important for IgA protection at the mucosal surface. It has been shown that some IgA can be induced independently of T cells through stimulation by epithelial cell and plasmacytoid dendritic cell cytokines including BAFF and APRIL, although the relative roles of the T-dependent and T-independent IgA pathways in generating mucosal protection are still unclear. SUMMARY Protection at mucosal surfaces through the secretion of antibodies is a phylogenetically ancient function. Mammals can produce high and low-affinity IgA against their commensal microbes via T-cell-dependent and T-cell-independent pathways to contribute to host microbial mutualism. The process of improving IgA affinity to intestinal luminal contents through somatic hypermutation of immunoglobulin genes improves the level of protection at the mucosal surface and such mutations are abundant in human IgA sequences.
Collapse
|
192
|
Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F, Alt FW, Losson R, Reina-San-Martin B. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. ACTA ACUST UNITED AC 2011; 208:1649-60. [PMID: 21746811 PMCID: PMC3149220 DOI: 10.1084/jem.20110118] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunoglobulin class switch recombination (CSR) is initiated by double-stranded DNA breaks (DSBs) in switch regions triggered by activation-induced cytidine deaminase (AID). Although CSR correlates with epigenetic modifications at the IgH locus, the relationship between these modifications and AID remains unknown. In this study, we show that during CSR, AID forms a complex with KAP1 (KRAB domain-associated protein 1) and HP1 (heterochromatin protein 1) that is tethered to the donor switch region (Sμ) bearing H3K9me3 (trimethylated histone H3 at lysine 9) in vivo. Furthermore, in vivo disruption of this complex results in impaired AID recruitment to Sμ, inefficient DSB formation, and a concomitant defect in CSR but not in somatic hypermutation. We propose that KAP1 and HP1 tether AID to H3K9me3 residues at the donor switch region, thus providing a mechanism linking AID to epigenetic modifications during CSR.
Collapse
Affiliation(s)
- Beena Patricia Jeevan-Raj
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de Santé et de Recherche Médicale Unité 964/Centre National de Recherche Scientifique Unité Mixte de Recherche 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Khor B, Gardet A, Xavier RJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [PMID: 21677747 DOI: 10.1038/nature] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host-commensal relationship.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host-commensal relationship.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
195
|
Dimitrova P, Vassilev T, Shivarov V. Inhibition or overactivation of AICDA to eliminate pathologic B cell clones? Comment on the article by Hsu et al. ACTA ACUST UNITED AC 2011; 63:3174-5; author reply 3175-7. [PMID: 21656511 DOI: 10.1002/art.30491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
196
|
Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
197
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
198
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
199
|
Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
200
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|