151
|
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019; 156:329-338. [PMID: 30666624 DOI: 10.1111/imm.13046] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated inflammation is one of the hallmarks of cancer initiation and progression. Emerging evidence indicates that inflammasomes play a central role in regulating immune cell functions in various infections and cancer. Inflammasomes are multimeric complexes consisting of nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs). Among the NLRs, NOD1, NOD2 and NLRP3 respond to a variety of endogenous (i.e. damage-associated molecular patterns) and exogenous (i.e. pathogen-associated molecular patterns) stimuli. The NLRP3 inflammasome is associated with the onset and progression of autoinflammatory and autoimmune diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, and cryopyrin-associated periodic fever syndrome. NLRP3 is also associated with a wide variety of infections and tumorigenesis that are closely correlated with chemotherapy response and prognosis. In this review, we explore the rapidly expanding body of research on the expression and functions of NLRP3 in infections and cancers and outline novel inhibitors targeting the NLRP3 inflammasome that could be developed as therapeutic alternatives to current anticancer treatment.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
152
|
Giraud E, Rouault E, Fiette L, Colle JH, Smirlis D, Melanitou E. Osteopontin in the host response to Leishmania amazonensis. BMC Microbiol 2019; 19:32. [PMID: 30736736 PMCID: PMC6368773 DOI: 10.1186/s12866-019-1404-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Leishmania (L.) spp are intracellular eukaryotic parasites responsible for cutaneous or visceral leishmaniasis, replicating predominantly in macrophages (MF). In C57BL/6 mice virulence with L. amazonensis has been associated with inhibition of Th1 immune responses and an uncontrolled lesion development, whereas DBA/2 mice control any lesion. Parasitic clearance by the MFs requires the activation of proper immune responses. One of the immune related genes expressed in immune cells including MF, codes for osteopontin (OPN). OPN is a secreted glycoprotein, acting as an immune regulator. Its implication in promoting Th1 immunity in response to infectious microorganisms and its known protective effect against viral and bacterial infections via activation of the immune response, render OPN a molecule of interest in the study of the host response to L. amazonensis. RESULTS We examined the host response to L. amazonensis of opn mutant and wild type C57BL/6 mice. Bone marrow derived MFs were infected with the parasites in vitro, and opn mutant and wild type mice were inoculated in vivo by intradermal injection in the ears. The DBA/2 strain known to control L. amazonensis infection was also used for comparison. Our data indicate that the parasites increased opn gene expression and OPN protein while parasitic proliferation was contained in the presence of OPN. In the presence of parasites the expression of inflammation-related transcripts was inhibited. Interleukin-1-beta (IL-1β), and transcripts of the NLR-family (NLRC4, NLRP3) were down regulated after L. amazonensis infection. In the absence of OPN, the inhibition by the parasites of IL-1β transcripts was less efficient and a pyroptosis-like cell phenotype was detected in vitro, suggesting a central role of OPN in the host-response to L. amazonensis. Similarly, in vivo, in the absence of OPN, while the clinical inflammatory phenotype is more severe, an increase of these transcripts was observed. CONCLUSIONS L. amazonensis infection induces opn gene expression and protein, which in turn participates in shaping the host response to the parasites, seemingly by decreasing the activation of inflammation. OPN, further evaluated as a target for Leishmaniasis control represents an additional interest in improving vaccination strategies against the parasites.
Collapse
Affiliation(s)
- Emilie Giraud
- Immunophysiology and Parasitism Laboratory and Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.,Present address: Insect-Virus Interactions Laboratory / CNRS UMR2000, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Eline Rouault
- Immunophysiology and Parasitism Laboratory and Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.,Present address : GENOSAFE Laboratories, 1 rue de l'Internationale, Evry, 91000, France
| | - Laurence Fiette
- Human Histopathology and animal models Laboratory, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.,Present address: Institut Mutualiste Montsouris Research, Paris, France
| | - Jean-Hervé Colle
- Nuclear Magnetic Resonance of Biomolecules unit, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Despoina Smirlis
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 127 Bas. Sofias Avenue, 11521, Athens, Greece
| | - Evie Melanitou
- Immunophysiology and Parasitism Laboratory and Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
153
|
de Carvalho RVH, Andrade WA, Lima-Junior DS, Dilucca M, de Oliveira CV, Wang K, Nogueira PM, Rugani JN, Soares RP, Beverley SM, Shao F, Zamboni DS. Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome. Cell Rep 2019; 26:429-437.e5. [PMID: 30625325 PMCID: PMC8022207 DOI: 10.1016/j.celrep.2018.12.047] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
Activation of the NLRP3 inflammasome by Leishmania parasites is critical for the outcome of leishmaniasis, a disease that affects millions of people worldwide. We investigate the mechanisms involved in NLRP3 activation and demonstrate that caspase-11 (CASP11) is activated in response to infection by Leishmania species and triggers the non-canonical activation of NLRP3. This process accounts for host resistance to infection in macrophages and in vivo. We identify the parasite membrane glycoconjugate lipophosphoglycan (LPG) as the molecule involved in CASP11 activation. Cytosolic delivery of LPG in macrophages triggers CASP11 activation, and infections performed with Lpg1-/- parasites reduce CASP11/NLRP3 activation. Unlike bacterial LPS, purified LPG does not activate mouse CASP11 (or human Casp4) in vitro, suggesting the participation of additional molecules for LPG-mediated CASP11 activation. Our data identify a parasite molecule involved in CASP11 activation, thereby establishing the mechanisms underlying inflammasome activation in response to Leishmania species.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Warrison A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Djalma S Lima-Junior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marisa Dilucca
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline V de Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kun Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Paula M Nogueira
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Jeronimo N Rugani
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Rodrigo P Soares
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
154
|
Karaś MA, Turska-Szewczuk A, Janczarek M, Szuster-Ciesielska A. Glycoconjugates of Gram-negative bacteria and parasitic protozoa - are they similar in orchestrating the innate immune response? Innate Immun 2019; 25:73-96. [PMID: 30782045 PMCID: PMC6830889 DOI: 10.1177/1753425918821168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Innate immunity is an evolutionarily ancient form of host defense that serves to limit infection. The invading microorganisms are detected by the innate immune system through germline-encoded PRRs. Different classes of PRRs, including TLRs and cytoplasmic receptors, recognize distinct microbial components known collectively as PAMPs. Ligation of PAMPs with receptors triggers intracellular signaling cascades, activating defense mechanisms. Despite the fact that Gram-negative bacteria and parasitic protozoa are phylogenetically distant organisms, they express glycoconjugates, namely bacterial LPS and protozoan GPI-anchored glycolipids, which share many structural and functional similarities. By activating/deactivating MAPK signaling and NF-κB, these ligands trigger general pro-/anti-inflammatory responses depending on the related patterns. They also use conservative strategies to subvert cell-autonomous defense systems of specialized immune cells. Signals triggered by Gram-negative bacteria and parasitic protozoa can interfere with host homeostasis and, depending on the type of microorganism, lead to hypersensitivity or silencing of the immune response. Activation of professional immune cells, through a ligand which triggers the opposite effect (antagonist versus agonist) appears to be a promising solution to restoring the immune balance.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | | |
Collapse
|
155
|
Wen Y, Crowley SD. Renal Effects of Cytokines in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:443-454. [PMID: 31399978 DOI: 10.1007/978-981-13-8871-2_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preclinical studies point to a key role for immune cells in hypertension via augmenting renal injury and/or hypertensive responses. Blood pressure elevation in rheumatologic patients is attenuated by anti-inflammatory therapies. Both the innate and adaptive immune systems contribute to the pathogenesis of hypertension by modulating renal sodium balance, blood flow, and functions of the vasculature and epithelial cells in the kidney. Monocytes/macrophages and T lymphocytes are pivotal mediators of hypertensive responses, while dendritic cells and B lymphocytes can regulate blood pressure indirectly by promoting T lymphocytes activation. Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF), interleukin-1 (IL-1), interleukin-17 (IL-17), and interferon-γ (IFN), amplify blood pressure elevation and/or renal injury. By contrast, interleukin-10 (IL-10) protects against renal and vascular function when produced by T helper 2 cells (Th2) and regulatory T cells (Treg). Thus, understanding the renal effects of cytokines in hypertension will provide targets for precise immunotherapies to inhibit targeted organ damage while preserving necessary immunity.
Collapse
Affiliation(s)
- Yi Wen
- Division of Nephrology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.,Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA.
| |
Collapse
|
156
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
157
|
Pro-inflammatory cytokine Interleukin-1β (IL-1β) controls Leishmania infection. Cytokine 2018; 112:27-31. [DOI: 10.1016/j.cyto.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022]
|
158
|
Muxel SM, Acuña SM, Aoki JI, Zampieri RA, Floeter-Winter LM. Toll-Like Receptor and miRNA-let-7e Expression Alter the Inflammatory Response in Leishmania amazonensis-Infected Macrophages. Front Immunol 2018; 9:2792. [PMID: 30555476 PMCID: PMC6283264 DOI: 10.3389/fimmu.2018.02792] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Parasite recognition by Toll-like receptors (TLRs) contributes to macrophage activation and subsequent control of Leishmania infection through the coordinated production of pro-inflammatory and microbicidal effector molecules. The modulation of microRNA (miRNA) expression by Leishmania infection potentially mediates the post-transcriptional regulation of the expression of genes involved in leishmanicidal activity. Here, the contribution of TLR signaling to the miRNA profile and gene expression was evaluated in Leishmania amazonensis-infected murine macrophages. The infectivity of L. amazonensis was higher in murine bone marrow-derived macrophages from mice knockout for myeloid differentiation factor 88 (MyD88−/−), TLR2 (TLR2−/−), or TLR4 (TLR4−/−) than wild type C57BL/6 (WT). L. amazonensis infection of WT macrophages modulated the expression of 32% of the miRNAs analyzed, while 50% were upregulated. The absence of MyD88, TLR2, and TLR4 altered the percentage of miRNAs modulated during L. amazonensis infection, including the downregulation of let-7e expression. Moreover, the absence of signals mediated by MyD88, TLR2, or TLR4 reduced nitric oxide synthase 2 (Nos2) mRNA expression during infection. Indeed, the inhibition of let-7e increased levels of the Nos2 mRNA and NOS2 (or iNOS) protein and nitric oxide (NO) production in L. amazonensis-infected macrophages (4–24 h). The absence of TLR2 and inhibition of let-7e increased the expression of the arginase 1 (Arg1) mRNA but did not alter the protein level during infection. However, higher levels of the L-arginine transporters Cat2B and Cat1 were detected in the absence of Myd88 signaling during infection but were not altered following let-7e inhibition. The inhibition of let-7e impacted the global expression of genes in the TLR pathway by upregulating the expression of recognition and adaptors molecules, such as Tlr6, Tlr9, Ly96, Tirap, Traf 6, Ticam1, Tollip, Casp8, Map3k1, Mapk8, Nfkbib, Nfkbil1, Ppara, Mapk8ip3, Hspd1, and Ube2n, as well as immunomodulators, such as Ptgs2/Cox2, Csf 2, Csf 3, Ifnb1, Il6ra, and Ilr1, impacting NOS2 expression, NO production and parasite infectiveness. In conclusion, L. amazonensis infection alters the TLR signaling pathways by modulating the expression of miRNAs in macrophages to subvert the host immune responses.
Collapse
Affiliation(s)
- Sandra Marcia Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stephanie Maia Acuña
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Ide Aoki
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Andrade Zampieri
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
159
|
Silva LM, de Sousa JR, Hirai KE, Dias LB, Furlaneto IP, Carneiro FRO, de Souza Aarão TL, Sotto MN, Quaresma JAS. The inflammasome in leprosy skin lesions: an immunohistochemical evaluation. Infect Drug Resist 2018; 11:2231-2240. [PMID: 30519061 PMCID: PMC6237140 DOI: 10.2147/idr.s172806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Leprosy is a chronic infectious disease presenting with a spectrum of clinical manifestations that correspond to the type of immune response that develops in the host. Factors that may be involved in this process include inflammasomes, cytosolic proteins responsible for the activation of caspase 1, IL-1β and IL-18 secretion, and induction of a type of death called pyroptosis. Patients and methods We evaluated the expression of inflammasome markers (nucleotide-binding oligomerization domain-like receptor containing pyrin domain 1 [NLRP1], nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 [NLRP3], caspase 1, IL-1β, and IL-18) by immunohistochemistry in 43 samples of skin lesions of leprosy patients from the groups indeterminate (I) leprosy (13 patients), tuberculoid (TT) leprosy (15 patients), and lepromatous leprosy (LL; 15 patients). Results The evaluated markers were most upregulated in LL lesions, followed by lesions of TT leprosy and I leprosy. Differences were statistically significant between the I leprosy and LL leprosy forms and between the I leprosy and TT leprosy forms. Positive and significant correlations were found between IL-18 and caspase 1 in LL (r=0.7516, P=0.0012) and TT leprosy (r=0.7366, P=0.0017). In I leprosy, correlations were detected between caspase 1 and IL-1β (r=0.6412, P=0.0182), NLRP1 and IL-18 (r=0.5585, P=0.473), NLRP3 and IL-18 (r=0.6873, P=0.0094), and NLRP1 and NLRP3 (r=0.8040, P=0.0009). Conclusion The expression of inflammasome markers in LL lesions indicates the ineffectiveness of this protein complex in controlling the infection. Caspase 1 may be involved in the pyroptotic cell death in the lepromatous form of the disease. Inflammasomes may act together in the initial phase of I leprosy; this phenomenon may influence the clinical outcome of the disease.
Collapse
Affiliation(s)
- Luciana Mota Silva
- Center of Biological and Health Science, State University of Para, Belem, Brazil,
| | - Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal Do Para University, Belem, Brazil, .,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil,
| | - Kelly Emi Hirai
- Center of Biological and Health Science, State University of Para, Belem, Brazil,
| | - Leônidas Braga Dias
- Center of Biological and Health Science, State University of Para, Belem, Brazil,
| | | | | | | | - Mirian Nacagami Sotto
- School of Medicine, Sao Paulo University, Sao Paulo, Brazil.,Tropical Medicine Institute, Sao Paulo University, Sao Paulo, Brazil,
| | - Juarez Antonio Simões Quaresma
- Center of Biological and Health Science, State University of Para, Belem, Brazil, .,Tropical Medicine Center, Federal Do Para University, Belem, Brazil, .,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil, .,Tropical Medicine Institute, Sao Paulo University, Sao Paulo, Brazil,
| |
Collapse
|
160
|
Almeida-da-Silva CLC, Ramos-Junior ES, Morandini AC, Rocha GDC, Marinho Y, Tamura AS, de Andrade KQ, Bellio M, Savio LEB, Scharfstein J, Ojcius DM, Coutinho-Silva R. P2X7 receptor-mediated leukocyte recruitment and Porphyromonas gingivalis clearance requires IL-1β production and autocrine IL-1 receptor activation. Immunobiology 2018; 224:50-59. [PMID: 30429052 DOI: 10.1016/j.imbio.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1β secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1β secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1β, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1β production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Erivan S Ramos-Junior
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Ana Carolina Morandini
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Gabrielle da Costa Rocha
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Ygor Marinho
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Augusto Shuiti Tamura
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Kívia Queiroz de Andrade
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Maria Bellio
- Department of Immunology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 91941-902 Brazil.
| | - Luiz Eduardo Baggio Savio
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Julio Scharfstein
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - David M Ojcius
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| |
Collapse
|
161
|
Staurengo-Ferrari L, Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Fattori V, Zaninelli TH, Badaro-Garcia S, Borghi SM, Carvalho TT, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Trans-Chalcone Attenuates Pain and Inflammation in Experimental Acute Gout Arthritis in Mice. Front Pharmacol 2018; 9:1123. [PMID: 30333752 PMCID: PMC6176465 DOI: 10.3389/fphar.2018.01123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain and reduction in the life quality of patients. Trans-Chalcone (1,3-diphenyl-2-propen-1-one) is a flavonoid precursor presenting biological activities such as anti-inflammatory and antioxidant proprieties. Thus, the aim of this work was to evaluate the protective effects of trans-Chalcone in experimental gout arthritis in mice. Mice were treated with trans-Chalcone (3, 10, or 30 mg/kg, per oral) or vehicle (Tween 80 20% plus saline) 30 min before intra-articular injection of MSU (100 μg/knee joint, intra-articular). We observed that trans-Chalcone inhibited MSU-induced mechanical hyperalgesia, edema, and leukocyte recruitment (total leukocytes, neutrophils, and mononuclear cells) in a dose-dependent manner. Trans-Chalcone also decreased inflammatory cell recruitment as observed in Hematoxylin and Eosin (HE) staining and the intensity of fluorescence of LysM-eGFP+ cells in the confocal microscopy. Trans-Chalcone reduced MSU-induced oxidative stress as observed by an increase in the antioxidant defense [Glutathione (GSH), Ferric Reducing (FRAP), and 2,2’-Azinobis-3-ethylbenzothiazoline 6-sulfonic acid (ABTS assays)] and reduction in reactive oxygen and nitrogen species production [superoxide anion (NBT assay) and nitrite (NO assay)]. Furthermore, it reduced in vivo MSU-induced interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and IL-6 production, and increased Transforming growth factor-β (TGF-β) production. Importantly, trans-Chalcone reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and thereby the mRNA expression of the inflammasome components Nlrp3 (cryopyrin), Asc (apoptosis-associated speck-like protein containing a CARD), Pro-caspase-1 and Pro-IL-1β. In vitro, trans-Chalcone reduced the MSU-induced release of IL-1β in lipopolysaccharide (LPS)-primed macrophages. Therefore, the pharmacological effects of trans-Chalcone indicate its therapeutic potential as an analgesic and anti-inflammatory flavonoid for the treatment of gout.
Collapse
Affiliation(s)
| | - Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sergio M Borghi
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
162
|
Montoya A, Yepes L, Bedoya A, Henao R, Delgado G, Vélez ID, Robledo SM. Transforming Growth Factor Beta (TGFβ1) and Epidermal Growth Factor (EGF) as Biomarkers of Leishmania (V) braziliensis Infection and Early Therapeutic Response in Cutaneous Leishmaniasis: Studies in Hamsters. Front Cell Infect Microbiol 2018; 8:350. [PMID: 30333964 PMCID: PMC6176012 DOI: 10.3389/fcimb.2018.00350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: In cutaneous leishmaniasis, the host immune response is responsible for the development of skin injuries but also for resolution of the disease especially after antileishmanial therapy. The immune factors that participate in the regulation of inflammation, remodeling of the extracellular matrix, cell proliferation and differentiation may constitute biomarkers of diseases or response to treatment. In this work, we analyzed the production of the growth factors EGF, TGFβ1, PDGF, and FGF during the infection by Leishmania parasites, the development of the injuries and the early response to treatment. Methodology: Golden hamsters were infected with L. (V) braziliensis. The growth factors were detected in skin scrapings and biopsies every 2 weeks after infected and then at day 7 of treatment with different drug candidates by RT-qPCR. The parasitic load was also quantified by RT-qPCR in skin biopsies sampled at the end of the study. Results: The infection by L. (V) braziliensis induced the expression of all the growth factors at day 15 of infection. One month after infection, EGF and TGFβ1 were expressed in all hamsters with inverse ratio. While the EGF and FGF levels decreased between day 15 and 30 of infection, the TGFβ1 increased and the PGDF levels did not change. The relative expression of EGF and TGFβ1 increased notably after treatment. However, the increase of EGF was associated with clinical cure while the increase of TGFβ1 was associated with failure to treatment. The amount of parasites in the cutaneous lesion at the end of the study decreased according to the clinical outcome, being lower in the group of cured hamsters and higher in the group of hamsters that had a failure to the treatment. Conclusions: A differential profile of growth factor expression occurred during the infection and response to treatment. Higher induction of TGFβ1 was associated with active disease while the higher levels of EGF are associated with adequate response to treatment. The inversely EGF/TGFβ1 ratio may be an effective biomarker to identify establishment of Leishmania infection and early therapeutic response, respectively. However, further studies are needed to validate the utility of the proposed biomarkers in field conditions.
Collapse
Affiliation(s)
- Andrés Montoya
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Lina Yepes
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Alexander Bedoya
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Raúl Henao
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Iván D Vélez
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
163
|
Luz NF, Khouri R, Van Weyenbergh J, Zanette DL, Fiuza PP, Noronha A, Barral A, Boaventura VS, Prates DB, Chan FKM, Andrade BB, Borges VM. Leishmania braziliensis Subverts Necroptosis by Modulating RIPK3 Expression. Front Microbiol 2018; 9:2283. [PMID: 30323793 PMCID: PMC6172319 DOI: 10.3389/fmicb.2018.02283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022] Open
Abstract
Leishmania braziliensis infection causes skin ulcers, typically found in localized cutaneous leishmaniasis (LCL). This tissue pathology associates with different modalities of cell necrosis, which are subverted by the parasite as a survival strategy. Herein we examined the participation of necroptosis, a specific form of programmed necrosis, in LCL lesions and found reduced RIPK3 and PGAM5 gene expression compared to normal skin. Assays using infected macrophages demonstrated that the parasite deactivates both RIPK3 and MLKL expression and that these molecules are important to control the intracellular L. braziliensis replication. Thus, LCL-related necroptosis may be targeted to control infection and disease immunopathology.
Collapse
Affiliation(s)
- Nivea F Luz
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Ricardo Khouri
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Johan Van Weyenbergh
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dalila L Zanette
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Paloma P Fiuza
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Almerio Noronha
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Aldina Barral
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Viviane S Boaventura
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Deboraci B Prates
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Brazil
| | - Valeria M Borges
- Instituto Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
164
|
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Pinho-Ribeiro FA, Fattori V, Zaninelli TH, Badaro-Garcia S, Borghi SM, Andrade KC, Clemente-Napimoga JT, Alves-Filho JC, Cunha TM, Fraceto LF, Cunha FQ, Napimoga MH, Casagrande R, Verri WA. 15d-PGJ 2-loaded nanocapsules ameliorate experimental gout arthritis by reducing pain and inflammation in a PPAR-gamma-sensitive manner in mice. Sci Rep 2018; 8:13979. [PMID: 30228306 PMCID: PMC6143605 DOI: 10.1038/s41598-018-32334-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Gout arthritis (GA) is a painful inflammatory disease in response to monosodium urate (MSU) crystals in the joints. 15deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural activator of PPAR-γ with analgesic, anti-inflammatory, and pro-resolution properties. Thus, we aimed to evaluate the effect and mechanisms of action of 15d-PGJ2 nanocapsules (NC) in the model of GA in mice, since a reduction of 33-fold in the dose of 15d-PGJ2 has been reported. Mice were treated with 15d-PGJ2-loaded NC, inert NC, free 15d-PGJ2 (without NC), or 15d-PGJ2-loaded NC+ GW9662, a PPAR-γ inhibitor. We show that 15d-PGJ2-loaded NC provided analgesic effect in a dose that the free 15d-PGJ2 failed to inhibiting pain and inflammation. Hence, 15d-PGJ2-loaded NC reduced MSU-induced IL-1β, TNF-α, IL-6, IL-17, and IL-33 release and oxidative stress. Also, 15d-PGJ2-loaded NC decreased the maturation of IL-1β in LPS-primed BMDM triggered by MSU. Further, 15d-PGJ2-loaded NC decreased the expression of the components of the inflammasome Nlrp3, Asc, and Pro-caspase-1, as consequence of inhibiting NF-κB activation. All effects were PPAR-γ-sensitive. Therefore, we demonstrated that 15d-PGJ2-loaded NC present analgesic and anti-inflammatory properties in a PPAR-γ-dependent manner inhibiting IL-1β release and NF-κB activation in GA. Concluding, 15d-PGJ2-loaded NC ameliorates MSU-induced GA in a PPAR-γ-sensitive manner.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Tiago H Zaninelli
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Stephanie Badaro-Garcia
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Ketlem C Andrade
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University, Sorocaba, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes s/n, 14050-490, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Researcher Center, Campinas, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rod. Celso Garcia Cid, Km 380, PR445, 86057-970, Cx. Postal 10.011, Londrina, Paraná, Brazil.
| |
Collapse
|
165
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
166
|
Ruiz-Miyazawa KW, Borghi SM, Pinho-Ribeiro FA, Staurengo-Ferrari L, Fattori V, Fernandes GS, Casella AM, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. The citrus flavanone naringenin reduces gout-induced joint pain and inflammation in mice by inhibiting the activation of NFκB and macrophage release of IL-1β. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
167
|
Van den Kerkhof M, Van Bockstal L, Gielis JF, Delputte P, Cos P, Maes L, Caljon G, Hendrickx S. Impact of primary mouse macrophage cell types on Leishmania infection and in vitro drug susceptibility. Parasitol Res 2018; 117:3601-3612. [PMID: 30141075 DOI: 10.1007/s00436-018-6059-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023]
Abstract
Primary mouse macrophages are frequently used to provide an in vitro intracellular model to evaluate antileishmanial drug efficacy. The present study compared the phenotypic characteristics of Swiss, BALB/c, and C57BL/6 mouse bone marrow-derived macrophages and peritoneal exudate cells using different stimulation and adherence protocols upon infection with a Leishmania infantum laboratory strain and two clinical isolates. Evaluation parameters were susceptibility to infection, permissiveness to amastigote multiplication, and impact on drug efficacy. Observed variations in infection of peritoneal exudate cells can mostly be linked to changes in the inflammatory cytokine profiles (IL-6, TNF-α, KC/GRO) rather than to differences in initial production of nitric oxide and reactive oxygen species. Optimization of the cell stimulation and adherence conditions resulted in comparable infection indices among peritoneal exudate cells and the various types of bone marrow-derived macrophages. BALB/c-derived bone marrow-derived macrophages were slightly more permissive to intracellular amastigote replication. Evaluation of antileishmanial drug potency in the various cell systems revealed minimal variation for antimonials and paromomycin, and no differences for miltefosine and amphotericin B. The study results allow to conclude that drug evaluation can be performed in all tested primary macrophages as only marginal differences are observed in terms of susceptibility to infection and impact of drug exposure. Combined with some practical considerations, the use of 24-h starch-stimulated, 48-h adhered, Swiss-derived peritoneal exudate cells can be advocated as an efficient, reliable, relatively quick, and cost-effective tool for routine drug susceptibility testing in vitro whenever the use of primary cells is feasible.
Collapse
Affiliation(s)
- M Van den Kerkhof
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - L Van Bockstal
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - J F Gielis
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - P Delputte
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - P Cos
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - L Maes
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| | - Sarah Hendrickx
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
168
|
Aranda-Souza MÂ, de Lorena VMB, Dos Santos Correia MT, de Figueiredo RCBQ. In vitro effect of Bothrops leucurus lectin (BLL) against Leishmania amazonensis and Leishmania braziliensis infection. Int J Biol Macromol 2018; 120:431-439. [PMID: 30118767 DOI: 10.1016/j.ijbiomac.2018.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022]
Abstract
Leishmania amazonensis and Leishmania braziliensis are the main causative agents of American Tegumentary Leishmaniasis (ATL) in Brazil. As intracellular parasites, the infection by Leishmania species is dependent on the host immune response and the immunotherapy could be promissory for the development of new strategies to combat ATL. In this work we investigated the leishmanicidal potential of a galactose-binding lectin from the snake venom of Bothrops leucurus (BLL) during the infection with L. amazonensis and L. braziliensis. BLL inhibited the promastigote growth and viability of both species in a mechanism dependent on galactose and calcium. The treatment with BLL also decreases the survival of intracellular parasites for both species and induced profound ultrastructural changes on amastigotes without apparent damage to the host cells. The analysis of the cytokine profile revealed that BLL induced an increase in the proinflammatory cytokines IL-6 and TNF-α by infected macrophages in both species, but differed in relation to IL-1β and IL-10 response. Future works using in vitro and in vivo models are necessary to support the use of these lectins as biotechnological tool in immunological studies.
Collapse
Affiliation(s)
- Mary Ângela Aranda-Souza
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Fundação Oswaldo Cruz, Recife, Brazil.
| | - Virginia Maria Barros de Lorena
- Laboratório de Imunoparasitologia, Instituto Aggeu Magalhães, Departamento de Imunologia, Fundação Oswaldo Cruz, Recife, Brazil
| | | | | |
Collapse
|
169
|
Abstract
PURPOSE OF REVIEW Inflammatory cytokines contribute to the pathogenesis of hypertension through effects on renal blood flow and sodium handling. This review will update recent advances that explore the renal actions of immune cells and cytokines in the pathogenesis of hypertension. RECENT FINDINGS Populations of cells from both the innate and adaptive immune systems contribute to hypertension by modulating functions of the vasculature and epithelial cells in the kidney. Macrophages and T lymphocytes can directly regulate the hypertensive response and consequent target organ damage. Dendritic cells and B lymphocytes can alter blood pressure (BP) indirectly by facilitating T-cell activation. Proinflammatory cytokines, including tumor necrosis factor-α, interleukin 17, interleukin 1, and interferon-γ augment BP and/or renal injury when produced by T helper 1 cells, T helper 17 cells, and macrophages. In contrast, interleukin 10 improves vascular and renal functions in preclinical hypertension studies. The effects of transforming growth factor-β are complex because of its profibrotic and immunosuppressive functions that also depend on the localization and concentration of this pleiotropic cytokine. SUMMARY Preclinical studies point to a key role for cytokines in hypertension via their actions in the kidney. Consistent with this notion, anti-inflammatory therapies can attenuate BP elevation in human patients with rheumatologic disease. Conversely, impaired natriuresis may further polarize both T lymphocytes and macrophages toward a proinflammatory state, in a pathogenic, feed-forward loop of immune activation and BP elevation. Understanding the precise renal actions of cytokines in hypertension will be necessary to inhibit cytokine-dependent hypertensive responses while preserving systemic immunity and tumor surveillance.
Collapse
|
170
|
Yin F, Liu J, Gao S, Liu A, Zhao S, Li S, Wang J, Li Y, Luo J, Guan G, Yin H. Exploring the TLR and NLR signaling pathway relevant molecules induced by the Theileria annulata infection in calves. Parasitol Res 2018; 117:3269-3276. [PMID: 30084033 DOI: 10.1007/s00436-018-6026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023]
Abstract
Theileria annulata is the pathogen of bovine tropical theileriosis. It is extremely harmful to the cattle industry, with huge economic losses. The toll-like receptor (TLR) and NOD-like receptor (NLR) signaling pathways are crucial for resistance to infection of the protozoa, such as Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma cruzi. However, the role of these immune-related pathways is unclear during T. annulata infection. In the present study, peripheral blood mononuclear cells and serum were separated from blood samples of calves infected with homogenized tick supernatants carrying T. annulata sporozoites at 12 h, 24 h, 36 h, 48 h, 72 h, 96 h, 120 h, 144 h and 168 h postinoculation. The Custom RT2 Profiler PCR Array was used to explore the mRNA levels of 42 TLR and NLR signaling pathway relevant genes. The TLR1, TLR6, TLR10, NLRP1, and MyD88 genes and their downstream signaling molecules significantly differed after the T. annulata infection in comparison with that of preinfection from 72 h to 168 h postinoculation. The serum concentrations of IL-6, IL-1β, and TNFα were significantly increased at 96 h and 168 h postinfection. These findings provided novel information to help determine the mechanisms of TLR and NLR signaling pathway involvement in protection against T. annulata infection.
Collapse
Affiliation(s)
- Fangyuan Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Sitong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
171
|
Shahzad K, Gadi I, Nazir S, Al-Dabet MM, Kohli S, Bock F, Breitenstein L, Ranjan S, Fuchs T, Halloul Z, Nawroth PP, Pelicci PG, Braun-Dullaeus RC, Camerer E, Esmon CT, Isermann B. Activated protein C reverses epigenetically sustained p66 Shc expression in plaque-associated macrophages in diabetes. Commun Biol 2018; 1:104. [PMID: 30271984 PMCID: PMC6123684 DOI: 10.1038/s42003-018-0108-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
Impaired activated protein C (aPC) generation is associated with atherosclerosis and diabetes mellitus. Diabetes-associated atherosclerosis is characterized by the hyperglycaemic memory, e.g., failure of disease improvement despite attenuation of hyperglycaemia. Therapies reversing the hyperglycaemic memory are lacking. Here we demonstrate that hyperglycaemia, but not hyperlipidaemia, induces the redox-regulator p66Shc and reactive oxygen species (ROS) in macrophages. p66Shc expression, ROS generation, and a pro-atherogenic phenotype are sustained despite restoring normoglycemic conditions. Inhibition of p66Shc abolishes this sustained pro-atherogenic phenotype, identifying p66Shc-dependent ROS in macrophages as a key mechanism conveying the hyperglycaemic memory. The p66Shc-associated hyperglycaemic memory can be reversed by aPC via protease-activated receptor-1 signalling. aPC reverses glucose-induced CpG hypomethylation within the p66Shc promoter by induction of the DNA methyltransferase-1 (DNMT1). Thus, epigenetically sustained p66Shc expression in plaque macrophages drives the hyperglycaemic memory, which-however-can be reversed by aPC. This establishes that reversal of the hyperglycaemic memory in diabetic atherosclerosis is feasible.
Collapse
Affiliation(s)
- Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany.
- Department of Biotechnology, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Sumra Nazir
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Fabian Bock
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
- Department of Medicine, Vanderbilt University Medical Center, 37232, Nashville, TN, USA
| | - Lukas Breitenstein
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Tina Fuchs
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, 68167, Mannheim, Germany
| | - Zuhir Halloul
- Division of Vascular Surgery, Department of General, Abdominal and Vascular Surgery Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, 69120, Heidelberg, Germany
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti, 435, 20141, Milan, Italy
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, 75015, Paris, France
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, and Department of Pathology and Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, OK, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
172
|
Wang X, Gong P, Zhang X, Li S, Lu X, Zhao C, Yu Q, Wei Z, Yang Y, Liu Q, Yang Z, Li J, Zhang X. NLRP3 Inflammasome Participates in Host Response to Neospora caninum Infection. Front Immunol 2018; 9:1791. [PMID: 30105037 PMCID: PMC6077289 DOI: 10.3389/fimmu.2018.01791] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/19/2018] [Indexed: 02/01/2023] Open
Abstract
Neospora caninum is an intracellular protozoan parasite closely related to Toxoplasma gondii that mainly infects canids as the definitive host and cattle as the intermediate host, resulting in abortion in cattle and leading to financial losses worldwide. Commercial vaccines or drugs are not available for the prevention and treatment of bovine neosporosis. Knowledge about the hallmarks of the immune response to this infection could form the basis of important prevention strategies. The innate immune system first responds to invading parasite and subsequently initiates the appropriate adaptive immune response against this parasite. Upon infection, activation of host pattern-recognition receptors expressed by immune cells triggers the innate immune response. Toll-like receptors, NOD-like receptors, and C-type lectin receptors play key roles in recognizing protozoan parasite. Therefore, we aimed to explore the role of the NLRP3 inflammasome during the acute period of N. caninum infection. In vitro results showed that N. caninum infection of murine bone marrow-derived macrophages activated the NLRP3 inflammasome, accompanied by the release of IL-1β and IL-18, cleavage of caspase-1, and induction of cell death. K+ efflux induced by N. caninum infection participated in the activation of the inflammasome. Infection of mice deficient in NLRP3, ASC, and caspase-1/11 resulted in decreased production of IL-18 and reduced IFN-γ in serum. Elevated numbers of monocytes/macrophages and neutrophils were found at the initial infection site, but they failed to limit N. caninum replication. These findings suggest that the NLRP3 inflammasome is involved in the host response to N. caninum infection at the acute stage and plays an important role in limiting parasite growth, and it may enhance Th1 response by inducing production of IFN-γ. These findings may help devise protocols for controlling neosporosis.
Collapse
Affiliation(s)
- Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shan Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiangyun Lu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Chunyan Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qile Yu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yongjun Yang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qun Liu
- National Animal Protozoa Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
173
|
Douguet L, Bod L, Labarthe L, Lengagne R, Kato M, Couillin I, Prévost-Blondel A. Inflammation drives nitric oxide synthase 2 expression by γδ T cells and affects the balance between melanoma and vitiligo associated melanoma. Oncoimmunology 2018; 7:e1484979. [PMID: 30228955 DOI: 10.1080/2162402x.2018.1484979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023] Open
Abstract
The high expression of inducible nitric oxide synthase (NOS2) by myeloid-derived suppressor cells (MDSCs) is a key mechanism of immune evasion in cancer. Recently we reported that NOS2 is also expressed by γδ T cells in melanoma, contributing to their polarization towards a pro-tumor phenotype. The molecular mechanisms underlying regulation of NOS2 expression in tumor-induced γδ T cells remain unexplored. By using the model of mice transgenic for the ret oncogene (Ret mice) that develops a spontaneous metastatic melanoma, we evidence that interleukin (IL)-1β and IL-6 drive NOS2 expression in γδ T cells. Indeed, their in vivo neutralization lessens the γδ T cell capacity to produce not only NOS2, but also IL-17 involved in the recruitment of MDSCs at the primary tumor site. The treatment also delayed tumor cell dissemination and induced vitiligo in a significant proportion of Ret mice. Interestingly, Ret mice developing a less aggressive melanoma, characterized by the spontaneous development of a concomitant autoimmune vitiligo, exhibit a weaker concentration of inflammatory cytokines and a reduction of tumor infiltrating γδ T cells expressing NOS2, when compared to Ret mice without any signs of vitiligo. Overall our results support that the level of inflammation at the tumor site regulates NOS2 expression by γδ T cells and the development of vitiligo associated melanoma.
Collapse
Affiliation(s)
- Laetitia Douguet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lloyd Bod
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laura Labarthe
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Renée Lengagne
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Masashi Kato
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | - Armelle Prévost-Blondel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
174
|
Graham DB, Jasso GJ, Mok A, Goel G, Ng ACY, Kolde R, Varma M, Doench JG, Root DE, Clish CB, Carr SA, Xavier RJ. Nitric Oxide Engages an Anti-inflammatory Feedback Loop Mediated by Peroxiredoxin 5 in Phagocytes. Cell Rep 2018; 24:838-850. [PMID: 30044981 PMCID: PMC6156773 DOI: 10.1016/j.celrep.2018.06.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/25/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Phagocyte microbiocidal mechanisms and inflammatory cytokine production are temporally coordinated, although their respective interdependencies remain incompletely understood. Here, we identify a nitric-oxide-mediated antioxidant response as a negative feedback regulator of inflammatory cytokine production in phagocytes. In this context, Keap1 functions as a cellular redox sensor that responds to elevated reactive nitrogen intermediates by eliciting an adaptive transcriptional program controlled by Nrf2 and comprised of antioxidant genes, including Prdx5. We demonstrate that engaging the antioxidant response is sufficient to suppress Toll-like receptor (TLR)-induced cytokine production in dendritic cells and that Prdx5 is required for attenuation of inflammatory cytokine production. Collectively, these findings delineate the reciprocal regulation of inflammation and cellular redox systems in myeloid cells.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Guadalupe J Jasso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02114, USA
| | - Amanda Mok
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aylwin C Y Ng
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA
| | - Raivo Kolde
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
175
|
Thorstenberg ML, Rangel Ferreira MV, Amorim N, Canetti C, Morrone FB, Alves Filho JC, Coutinho-Silva R. Purinergic Cooperation Between P2Y 2 and P2X7 Receptors Promote Cutaneous Leishmaniasis Control: Involvement of Pannexin-1 and Leukotrienes. Front Immunol 2018; 9:1531. [PMID: 30038612 PMCID: PMC6046465 DOI: 10.3389/fimmu.2018.01531] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
The release of damage-associated molecular patterns, including uridine triphosphate (UTP) and adenosine triphosphate (ATP) to the extracellular milieu is a key component of innate immune response to infection. Previously, we showed that macrophage infection by the protozoan parasite Leishmania amazonensis—the etiological agent of cutaneous leishmaniasis—can be controlled by ATP- and UTP-mediated activation of P2Y and P2X7 receptors (activated by UTP/ATP and ATP, respectively), which provided comparable immune responses against the parasite. Interestingly, in context of Leishmania amazonensis infection, UTP/P2Y triggered apoptosis, reactive oxygen species, and oxide nitric (NO) production, which are characteristic of P2X7 receptor activation. Here, we examined a possible “cross-talk” between P2Y2 and P2X7 receptors, and the requirement for pannexin-1 (PANX-1) in the control of L. amazonensis infection in mouse peritoneal macrophages and in vivo. UTP treatment reduced L. amazonensis parasite load, induced extracellular ATP release [which was pannexin-1 (PANX-1) dependent], and triggered leukotriene B4 (LTB4) production in macrophages. UTP-induced parasite control was blocked by pharmacological antagonism of P2Y2 or P2X7 receptors and was absent in macrophages lacking P2X7 or PANX-1. In addition, ATP release induced by UTP was also inhibited by PANX-1 blocker carbenoxolone, and partially reversed by inhibitors of vesicle traffic and actin cytoskeleton dynamics. In vivo, UTP treatment reduced footpad and popliteal lymph node parasite load, and the lesion in wild-type (WT) mice; fact not observed in P2X7−/− mice. Our data reveal that P2Y2 and P2X7 receptors cooperate to trigger potent innate immune responses against L. amazonensis infection.
Collapse
Affiliation(s)
- Maria Luiza Thorstenberg
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinícius Rangel Ferreira
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Amorim
- Laboratório de inflamação, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de inflamação, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Fernanda B Morrone
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Carlos Alves Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
176
|
Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Borghi SM, Staurengo-Ferrari L, Fattori V, Amaral FA, Teixeira MM, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Hesperidin Methylchalcone Suppresses Experimental Gout Arthritis in Mice by Inhibiting NF-κB Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6269-6280. [PMID: 29852732 DOI: 10.1021/acs.jafc.8b00959] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gout arthritis is a painful inflammatory disease induced by monosodium urate (MSU) crystals. We evaluate the therapeutic potential of the flavonoid hesperidin methylchalcone (HMC) in a mouse model of gout arthritis induced by intra-articular injection of MSU (100 μg/10 μL). Orally given HMC (3-30 mg/kg, 100 μL) reduced in a dose-dependent manner the MSU-induced hyperalgesia (44%, p < 0.05), edema (54%, p < 0.05), and leukocyte infiltration (70%, p < 0.05). HMC (30 mg/kg) inhibited MSU-induced infiltration of LysM-eGFP+ cells (81%, p < 0.05), synovitis (76%, p < 0.05), and oxidative stress (increased GSH, FRAP, and ABTS by 62, 78, and 73%, respectively; reduced O2- and NO by 89 and 48%, p < 0.05) and modulated cytokine production (reduced IL-1β, TNF-α, IL-6, and IL-10 by 35, 72, 37, and 46%, respectively, and increased TGF-β by 90%, p < 0.05). HMC also inhibited MSU-induced NF-κB activation (41%, p < 0.05), gp91phox (66%, p < 0.05) and NLRP3 inflammasome components mRNA expression in vivo (72, 77, 71, and 73% for NLRP3, ASC, pro-caspase-1, and pro-IL-1 β, respectively, p < 0.05), and induced Nrf2/HO-1 mRNA expression (3.9- and 5.1-fold increase, respectively, p < 0.05). HMC (30, 100, and 300 μM) did not inhibit IL-1β secretion by macrophages primed by LPS and challenged with MSU (450 μg/mL), demonstrating that the anti-inflammatory effect of HMC in gout arthritis depends on inhibiting NF-κB but not on direct inhibition of inflammasome. The pharmacological effects of HMC indicate its therapeutic potential for the treatment of gout.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Sergio M Borghi
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia , Universidade Federal de Minas Gerais , 31270-567 Belo Horizonte , Minas Gerais , Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia , Universidade Federal de Minas Gerais , 31270-567 Belo Horizonte , Minas Gerais , Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Avenida Bandeirantes s/n , 14050-490 Ribeirão Preto , São Paulo , Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Avenida Bandeirantes s/n , 14050-490 Ribeirão Preto , São Paulo , Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Avenida Bandeirantes s/n , 14050-490 Ribeirão Preto , São Paulo , Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas , Universidade Estadual de Londrina-UEL , Avenida Robert Koch, 60, Hospital Universitário , 86038-350 Londrina , Paraná , Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas , Universidade Estadual de Londrina-UEL , Rod. Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011 , 86057-970 Londrina , Paraná , Brazil
| |
Collapse
|
177
|
Staurengo-Ferrari L, Trevelin SC, Fattori V, Nascimento DC, de Lima KA, Pelayo JS, Figueiredo F, Casagrande R, Fukada SY, Teixeira MM, Cunha TM, Liew FY, Oliveira RD, Louzada-Junior P, Cunha FQ, Alves-Filho JC, Verri WA. Interleukin-33 Receptor (ST2) Deficiency Improves the Outcome of Staphylococcus aureus-Induced Septic Arthritis. Front Immunol 2018; 9:962. [PMID: 29867945 PMCID: PMC5968393 DOI: 10.3389/fimmu.2018.00962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 μl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (−/−) and interferon-γ (IFN-γ)−/− mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2−/− bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Silvia C Trevelin
- Cardiovascular Division, British Heart Foundation Centre, King's College London, London, United Kingdom.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Fattori
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Daniele C Nascimento
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kalil A de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacinta S Pelayo
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Florêncio Figueiredo
- Laboratory of Pathology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Centre, Londrina State University, Londrina, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rene D Oliveira
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
178
|
Saha A, Basu M, Ukil A. Recent advances in understanding Leishmania donovani
infection: The importance of diverse host regulatory pathways. IUBMB Life 2018; 70:593-601. [PMID: 29684241 DOI: 10.1002/iub.1759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Amrita Saha
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Moumita Basu
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Anindita Ukil
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| |
Collapse
|
179
|
Ramachandran RA, Lupfer C, Zaki H. The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence. Adv Microb Physiol 2018; 72:65-115. [PMID: 29778217 DOI: 10.1016/bs.ampbs.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.
Collapse
Affiliation(s)
| | | | - Hasan Zaki
- UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
180
|
Calophyllum brasiliense Modulates the Immune Response and Promotes Leishmania amazonensis Intracellular Death. Mediators Inflamm 2018; 2018:6148351. [PMID: 29670464 PMCID: PMC5833474 DOI: 10.1155/2018/6148351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
Calophyllum brasiliense is a plant from the Brazilian rain forests and has been used in folk medicine for the treatment of various diseases, including leishmaniasis. This infectious disease depends on the Leishmania sp. and the host immune response. C. brasiliense antileishmanial activity is well known, but the effects on immune response remain to be investigated. This study showed the leishmanicidal and immunomodulatory effects of a 30 μg/mL of hydroalcoholic extract of C. brasiliense in murine macrophages before and after Leishmania (Leishmania) amazonensis infection. The semiquantitative cytokine RNA expression was determined by RT-PCR and the anti-Leishmania activity was measured by infection index (IF). Hydroalcoholic extract of C. brasiliense reduced more than 95% of IF when used before and after Leishmania infection, with 3 and 24 h of treatment (p < 0.05). C. brasiliense inhibited or reduced significantly (p < 0.05) the TNF-α, IL-1β, IL-18, and IL-10 mRNA expression. The antileishmanial and anti-inflammatory effects showed the potential of C. brasiliense as an alternative therapy for leishmaniasis and it must be investigated.
Collapse
|
181
|
NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa infection. Inflamm Res 2018; 67:479-493. [PMID: 29353310 DOI: 10.1007/s00011-018-1132-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Molecular mechanisms underlying the interactions between Pseudomonas aeruginosa, the common opportunistic pathogen in cystic fibrosis individuals, and host induce a number of marked inflammatory responses and associate with complex therapeutic problems due to bacterial resistance to antibiotics in chronic stage of infection. METHODS Pseudomonas aeruginosa is recognized by number of pattern recognition receptors (PRRs); NOD-like receptors (NLRs) are a class of PRRs, which can recognize a variety of endogenous and exogenous ligands, thereby playing a critical role in innate immunity. RESULTS NLR activation initiates forming of a multi-protein complex called inflammasome that induces activation of caspase-1 and resulted in cleavage of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. When the IL-1β is secreted excessively, this causes tissue damage and extensive inflammatory responses that are potentially hazardous for the host. CONCLUSIONS Recent evidence has laid out inflammasome-forming NLR far beyond inflammation. This review summarizes current knowledge regarding the various roles played by different NLRs and associated down-signals, either in recognition of P. aeruginosa or may be associated with such bacterial pathogen infection, which may relate to for the complexity of lung diseases caused by P. aeruginosa.
Collapse
|
182
|
Hartley MA, Eren RO, Rossi M, Prevel F, Castiglioni P, Isorce N, Desponds C, Lye LF, Beverley SM, Drexler SK, Fasel N. Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β. MICROBIAL CELL 2018; 5:137-149. [PMID: 29487860 PMCID: PMC5826701 DOI: 10.15698/mic2018.03.619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses. Presence of the cytoplasmic Leishmania RNA virus-1 (LRV1) within Leishmania guyanensis, worsens lesional inflammation and parasite burden, as the viral dsRNA genome acts as a potent innate immunogen stimulating Toll-Like-Receptor-3 (TLR3). Here we investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. We included the cytoplasmic dsRNA sensors, namely, the RIG-like receptors (RLRs) and the inflammasome-dependent and -independent Nod-like-receptors (NLRs). Our study found no role for RLRs or inflammasome-dependent NLRs in the pathology of L. guyanensis infection irrespective of its LRV1-status. Further, neither LRV1-bearing L. guyanensis (LgyLRV1+) nor LRV1-negative L. guyanensis (LgyLRV1-) activated the inflammasome in vitro. Interestingly, similarly to L. donovani, L. guyanensis infection induced the up-regulation of the A20 protein, known to be involved in the evasion of inflammasome activation. Moreover, we observed that LgyLRV1+ promoted the transcription of inflammasome-independent NLRC2 (also called NOD2) and NLRC5. However, only NLRC2 showed some contribution to LRV1-dependent pathology. These data confirmed that the endosomal TLR3 pathway is the dominant route of LRV1-dependent signalling, thus excluding the cytosolic and inflammasome pathways. We postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi O Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Patrik Castiglioni
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan K Drexler
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
183
|
Dey R, Joshi AB, Oliveira F, Pereira L, Guimarães-Costa AB, Serafim TD, de Castro W, Coutinho-Abreu IV, Bhattacharya P, Townsend S, Aslan H, Perkins A, Karmakar S, Ismail N, Karetnick M, Meneses C, Duncan R, Nakhasi HL, Valenzuela JG, Kamhawi S. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe 2017; 23:134-143.e6. [PMID: 29290574 DOI: 10.1016/j.chom.2017.12.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Abstract
Leishmania donovani parasites are the cause of visceral leishmaniasis and are transmitted by bites from phlebotomine sand flies. A prominent feature of vector-transmitted Leishmania is the persistence of neutrophils at bite sites, where they protect captured parasites, leading to enhanced disease. Here, we demonstrate that gut microbes from the sand fly are egested into host skin alongside Leishmania parasites. The egested microbes trigger the inflammasome, leading to a rapid production of interleukin-1β (IL-1β), which sustains neutrophil infiltration. Reducing midgut microbiota by pretreatment of Leishmania-infected sand flies with antibiotics or neutralizing the effect of IL-1β in bitten mice abrogates neutrophil recruitment. These early events are associated with impairment of parasite visceralization, indicating that both gut microbiota and IL-1β are important for the establishment of Leishmania infections. Considering that arthropods harbor a rich microbiota, its potential egestion after bites may be a shared mechanism that contributes to severity of vector-borne disease.
Collapse
Affiliation(s)
- Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Amritanshu B Joshi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lais Pereira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anderson B Guimarães-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Waldionê de Castro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Shannon Townsend
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Hamide Aslan
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alec Perkins
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Subir Karmakar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Morgan Karetnick
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Robert Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
184
|
IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. J Invest Dermatol 2017; 138:1107-1115. [PMID: 29246797 DOI: 10.1016/j.jid.2017.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
Cutaneous leishmaniasis due to Leishmania braziliensis infection is an inflammatory disease in which skin ulcer development is associated with mononuclear cell infiltrate and high levels of inflammatory cytokine production. Recently, NLRP3 inflammasome activation and IL-1β production have been associated with increased pathology in murine cutaneous leishmaniasis. We hypothesized that cutaneous leishmaniasis patients have increased expression of NLRP3, leading to high levels of IL-1β production. In this article we show high production of IL-1β in biopsy samples and Leishmania antigen-stimulated peripheral blood mononuclear cells from patients infected with L. braziliensis and reduced IL-1β levels after cure. IL-1β production positively correlated with the area of necrosis in lesions and duration of the lesions. The main source of IL-1β was intermediate monocytes (CD14++CD16+). Furthermore, our murine experiments show that IL-1β production in response to L. braziliensis was dependent on NLRP3, caspase-1, and caspase-recruiting domain (ASC). Additionally, we observed an increased expression of the NLRP3 gene in macrophages and the NLRP3 protein in intermediate monocytes from cutaneous leishmaniasis patients. These results identify an important role for human intermediate monocytes in the production of IL-1β, which contributes to the immunopathology observed in cutaneous leishmaniasis patients.
Collapse
|
185
|
Co-factor-independent phosphoglycerate mutase of Leishmania donovani modulates macrophage signalling and promotes T-cell repertoires bearing epitopes for both MHC-I and MHC-II. Parasitology 2017; 145:292-306. [PMID: 29140228 DOI: 10.1017/s0031182017001494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunoactivation depends upon the antigen potential to modulate T-cell repertoires. The present study has enumerated the effect of 61 kDa recombinant Leishmania donovani co-factor-independent phosphoglycerate mutase (rLd-iPGAM) on mononuclear cells of healthy and treated visceral leishmaniasis subjects as well as on THP-1 cell line. rLd-iPGAM stimulation induced higher expression of interleukin-1β (IL-1β) in the phagocytic cell, its receptor and CD69 on T-cell subsets. These cellular activations resulted in upregulation of host-protective cytokines IL-2, IL-12, IL-17, tumour necrosis factor-α and interferon-γ, and downregulation of IL-4, IL-10 and tumour growth factor-β. This immune polarization was also evidenced by upregulation of nuclear factor-κ light-chain enhancer of activated B cells p50 and regulated expression of suppressor of mother against decapentaplegic protein-4. rLd-iPGAM stimulation also promoted lymphocyte proliferation and boosted the leishmaniacidal activity of macrophages by upregulating reactive oxygen species. It also induced 1·8-fold higher release of nitric oxide (NO) by promoting the transcription of inducible nitric oxide synthase gene. Besides, in silico analysis suggested the presence of major histocompatibility complex class I and II restricted epitopes, which can proficiently trigger CD8+ and CD4+ cells, respectively. This study reports rLd-iPGAM as an effective immunoprophylactic agent, which can be used in future vaccine design.
Collapse
|
186
|
Bruno F, Castelli G, Vitale F, Giacomini E, Roberti M, Colomba C, Cascio A, Tolomeo M. Effects of trans-stilbene and terphenyl compounds on different strains of Leishmania and on cytokines production from infected macrophages. Exp Parasitol 2017; 184:31-38. [PMID: 29154845 DOI: 10.1016/j.exppara.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023]
Abstract
Most of the antileishmanial modern therapies are not satisfactory due to high toxicity or emergence of resistance and high cost of treatment. Previously, we observed that two compounds of a small library of trans-stilbene and terphenyl derivatives, ST18 and TR4, presented the best activity and safety profiles against Leishmania infantum promastigotes and amastigotes. In the present study we evaluated the effects of ST18 and the TR4 in 6 different species of Leishmania and the modifications induced by these two compounds in the production of 8 different cytokines from infected macrophages. We observed that TR4 was potently active in all Leishmania species tested in the study showing a leishmanicidal activity higher than that of ST18 and meglumine antimoniate in the most of the species. Moreover, TR4 was able to decrease the levels of IL-10, a cytokine able to render the host macrophage inactive allowing the persistence of parasites inside its phagolysosome, and increase the levels of IL-1β, a cytokine important for host resistance to Leishmania infection by inducible iNOS-mediated production of NO, and IL-18, a cytokine implicated in the development of Th1-type immune response.
Collapse
Affiliation(s)
- Federica Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Germano Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Fabrizio Vitale
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Elisa Giacomini
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Claudia Colomba
- Department of Health Promotion Sciences, Section of Infectious Diseases, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Section of Infectious Diseases, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Manlio Tolomeo
- Department of Health Promotion Sciences, Section of Infectious Diseases, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|
187
|
Dos Santos JC, Damen MSMA, Oosting M, de Jong DJ, Heinhuis B, Gomes RS, Araújo CS, Netea MG, Ribeiro-Dias F, Joosten LAB. The NOD2 receptor is crucial for immune responses towards New World Leishmania species. Sci Rep 2017; 7:15219. [PMID: 29123157 PMCID: PMC5680260 DOI: 10.1038/s41598-017-15412-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
American Tegumentary Leishmaniasis is a chronic infection caused by Leishmania protozoan. It is not known whether genetic variances in NOD-like receptor (NLR) family members influence the immune response towards Leishmania parasites and modulate intracellular killing. Using functional genomics, we investigated whether genetic variants in NOD1 or NOD2 influence the production of cytokines by human PBMCs exposed to Leishmania. In addition, we examined whether recognition of Leishmania by NOD2 contributes to intracellular killing. Polymorphisms in the NOD2 gene decreased monocyte- and lymphocyte-derived cytokine production after stimulation with L. amazonensis or L. braziliensis compared to individuals with a functional NOD2 receptor. The phagolysosome formation is important for Leishmania-induced cytokine production and upregulation of NOD2 mRNA expression. NOD2 is crucial to control intracellular infection caused by Leishmania spp. NOD2 receptor is important for Leishmania recognition, the control of intracellular killing, and the induction of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Michelle S M A Damen
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J de Jong
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Bas Heinhuis
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carla Santos Araújo
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands. .,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
188
|
Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front Immunol 2017; 8:1492. [PMID: 29167671 PMCID: PMC5682306 DOI: 10.3389/fimmu.2017.01492] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
189
|
How Inflammasomes Inform Adaptive Immunity. J Mol Biol 2017; 430:217-237. [PMID: 28987733 DOI: 10.1016/j.jmb.2017.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
An immune response consists of a finely orchestrated interplay between initial recognition of potential microbial threats by the innate immune system and subsequent licensed adaptive immune neutralization. The initial recognition integrates environmental cues derived from pathogen-associated molecular patterns and cell-intrinsic damage-associated molecular patterns to contextualize the insult and inform a tailored adaptive response via T and B lymphocytes. While there are much data to support the role of transcriptional responses downstream of pattern recognition receptors in informing the adaptive immune response, markedly less attention has been paid to the role of post-translational responses to pathogen-associated molecular pattern and damage-associated molecular pattern recognition by the innate immune system, and how this may influence adaptive immunity. A well-characterized post-translational consequence of pattern recognition receptor signaling is the assembly of a multimeric signaling platform, termed the inflammasome, by members of the nucleotide-binding oligomerization domain (Nod), leucine-rich repeat-containing receptors (NLRs), and pyrin and HIN domain (PYHIN) families. Inflammasomes assemble in response to cytosolic perturbations, such as mitochondrial dysfunction and aberrant ion fluxes in the case of the canonical NLRP3 inflammasome or the presence of bacterial lipopolysaccharides in the case of the non-canonical inflammasome. Assembly of the inflammasome allows for the cleavage and activation of inflammatory caspases. These activated inflammatory caspases in turn cleave pro-form inflammatory cytokines into their mature bioactive species and lead to unconventional protein secretion and lytic cell death. In this review, we discuss evidence for inflammasome-mediated instruction and contextualization of infectious and sterile agents to the adaptive immune system.
Collapse
|
190
|
Scorza BM, Wacker MA, Messingham K, Kim P, Klingelhutz A, Fairley J, Wilson ME. Differential Activation of Human Keratinocytes by Leishmania Species Causing Localized or Disseminated Disease. J Invest Dermatol 2017; 137:2149-2156. [PMID: 28647347 PMCID: PMC5786447 DOI: 10.1016/j.jid.2017.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 11/23/2022]
Abstract
All Leishmania species parasites are introduced into mammalian skin through a sand fly bite, but different species cause distinct clinical outcomes. Mouse studies suggest that early responses are critical determinants of subsequent adaptive immunity in leishmaniasis, yet few studies address the role of keratinocytes, the most abundant cell in the epidermis. We hypothesized that Leishmania infection causes keratinocytes to produce immunomodulatory factors that influence the outcome of infection. Incubation of primary or immortalized human keratinocytes with Leishmania infantum or Leishmania major, which cause visceral or cutaneous leishmaniasis, respectively, elicited dramatically different responses. Keratinocytes incubated with L. infantum significantly increased expression of proinflammatory genes for IL-6, IL-8, tumor necrosis factor, and IL-1B, whereas keratinocytes exposed to several L. major isolates did not. Furthermore, keratinocyte-monocyte co-incubation studies across a 4 µM semipermeable membrane suggested that L. infantum-exposed keratinocytes release soluble factors that enhance monocyte control of intracellular L. infantum replication (P < 0.01). L. major-exposed keratinocytes had no comparable effect. These data suggest that L. infantum and L. major differentially activate keratinocytes to release factors that limit infection in monocytes. We propose that keratinocytes initiate or withhold a proinflammatory response at the site of infection, generating a microenvironment uniquely tailored to each Leishmania species that may affect the course of disease.
Collapse
Affiliation(s)
- Breanna M Scorza
- University of Iowa, Interdisciplinary Graduate Program in Immunology, Iowa City, Iowa, USA
| | - Mark A Wacker
- University of Iowa, Department of Internal Medicine, Iowa City, Iowa, USA
| | - Kelly Messingham
- University of Iowa, Department of Dermatology, Iowa City, Iowa, USA
| | - Peter Kim
- University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Janet Fairley
- University of Iowa, Department of Dermatology, Iowa City, Iowa, USA; Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| | - Mary E Wilson
- University of Iowa, Interdisciplinary Graduate Program in Immunology, Iowa City, Iowa, USA; University of Iowa, Department of Internal Medicine, Iowa City, Iowa, USA; University of Iowa, Department of Microbiology, Iowa City, Iowa, USA; Veterans' Affairs Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
191
|
Clay GM, Valadares DG, Graff JW, Ulland TK, Davis RE, Scorza BM, Zhanbolat BS, Chen Y, Sutterwala FS, Wilson ME. An Anti-Inflammatory Role for NLRP10 in Murine Cutaneous Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2823-2833. [PMID: 28931602 DOI: 10.4049/jimmunol.1500832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
The role of the nucleotide-binding domain and leucine-rich repeat containing receptor NLRP10 in disease is incompletely understood. Using three mouse strains lacking the gene encoding NLRP10, only one of which had a coincidental mutation in DOCK8, we documented a role for NLRP10 as a suppressor of the cutaneous inflammatory response to Leishmania major infection. There was no evidence that the enhanced local inflammation was due to enhanced inflammasome activity. NLRP10/DOCK8-deficient mice harbored lower parasite burdens at the cutaneous site of inoculation compared with wild-type controls, whereas NLRP10-deficient mice and controls had similar parasite loads, suggesting that DOCK8 promotes local growth of parasites in the skin, whereas NLRP10 does not. NLRP10-deficient mice developed vigorous adaptive immune responses, indicating that there was not a global defect in the development of Ag-specific cytokine production. Bone marrow chimeras showed that the anti-inflammatory role of NLRP10 was mediated by NLRP10 expressed in resident cells in the skin rather than by bone marrow-derived cells. These data suggest a novel role for NLRP10 in the resolution of local inflammatory responses during L. major infection.
Collapse
Affiliation(s)
- Gwendolyn M Clay
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242
| | - Diogo G Valadares
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Joel W Graff
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Veterans Affairs Medical Center, Iowa City, IA 52246
| | - Tyler K Ulland
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242
| | - Richard E Davis
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Breanna M Scorza
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | | | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Fayyaz S Sutterwala
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242.,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Mary E Wilson
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Veterans Affairs Medical Center, Iowa City, IA 52246.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
192
|
Sorgi CA, Zarini S, Martin SA, Sanchez RL, Scandiuzzi RF, Gijón MA, Guijas C, Flamand N, Murphy RC, Faccioli LH. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid. Sci Rep 2017; 7:10981. [PMID: 28887514 PMCID: PMC5591212 DOI: 10.1038/s41598-017-11496-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/25/2017] [Indexed: 11/15/2022] Open
Abstract
The differentiation of resident tissue macrophages from embryonic precursors and that of inflammatory macrophages from bone marrow cells leads to macrophage heterogeneity. Further plasticity is displayed through their ability to be polarized as subtypes M1 and M2 in a cell culture microenvironment. However, the detailed regulation of eicosanoid production and its involvement in macrophage biology remains unclear. Using a lipidomics approach, we demonstrated that eicosanoid production profiles between bone marrow-derived (BMDM) and peritoneal macrophages differed drastically. In polarized BMDMs, M1 and M2 phenotypes were distinguished by thromboxane B2, prostaglandin (PG) E2, and PGD2 production, in addition to lysophospholipid acyltransferase activity. Although Alox5 expression and the presence of 5-lipoxygenase (5-LO) protein in BMDMs was observed, the absence of leukotrienes production reflected an impairment in 5-LO activity, which could be triggered by addition of exogenous arachidonic acid (AA). The BMDM 5-LO regulatory mechanism was not responsive to PGE2/cAMP pathway modulation; however, treatment to reduce glutathione peroxidase activity increased 5-LO metabolite production after AA stimulation. Understanding the relationship between the eicosanoids pathway and macrophage biology may offer novel strategies for macrophage-associated disease therapy.
Collapse
Affiliation(s)
- Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Simona Zarini
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Sarah A Martin
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Raphael L Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Rodrigo F Scandiuzzi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Carlos Guijas
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, 92037, CA, USA
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, G1V 4G5, Quebec, Canada
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Lucia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
193
|
Synthetic analogs of an Entamoeba histolytica glycolipid designed to combat intracellular Leishmania infection. Sci Rep 2017; 7:9472. [PMID: 28842620 PMCID: PMC5572710 DOI: 10.1038/s41598-017-09894-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022] Open
Abstract
Intracellular pathogens belonging to the genus Leishmania have developed effective strategies that enable them to survive within host immune cells. Immunostimulatory compounds that counteract such immunological escape mechanisms represent promising treatment options for diseases. Here, we demonstrate that a lipopeptidephosphoglycan (LPPG) isolated from the membrane of a protozoan parasite, Entamoeba histolytica (Eh), shows considerable immunostimulatory effects targeted against Leishmania (L.) major, a representative species responsible for cutaneous leishmaniasis (CL). Treatment led to a marked reduction in the number of intracellular Leishmania parasites in vitro, and ameliorated CL in a mouse model. We next designed and synthesized analogs of the phosphatidylinositol anchors harbored by EhLPPG; two of these analogs reproduced the anti-leishmanial activity of the native compound by inducing production of pro-inflammatory cytokines. The use of such compounds, either alone or as a supportive option, might improve the currently unsatisfactory treatment of CL and other diseases caused by pathogen-manipulated immune responses.
Collapse
|
194
|
Lima-Junior DS, Mineo TWP, Calich VLG, Zamboni DS. Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production To Trigger Inflammasome Assembly and Restriction of Parasite Replication. THE JOURNAL OF IMMUNOLOGY 2017; 199:2055-2068. [PMID: 28784846 DOI: 10.4049/jimmunol.1700258] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of Leishmaniasis, a disease that can be lethal and affects 12 million people worldwide. Leishmania replicates intracellularly in macrophages, a process that is essential for disease progression. Although the production of reactive oxygen species (ROS) accounts for restriction of parasite replication, Leishmania is known to induce ROS upon macrophage infection. We have recently demonstrated NLRP3 inflammasome activation in infected macrophages, a process that is important for the outcome of infection. However, the molecular mechanisms responsible for inflammasome activation are unknown. In this article, we demonstrate that ROS induced via NADPH oxidase during the early stages of L. amazonensis infection is critical for inflammasome activation in macrophages. We identified that ROS production during L. amazonensis infection occurs upon engagement of Dectin-1, a C-type lectin receptor that signals via spleen tyrosine kinase (Syk) to induce ROS. Accordingly, inflammasome activation in response to L. amazonensis is impaired by inhibitors of NADPH oxidase, Syk, focal adhesion kinase, and proline-rich tyrosine kinase 2, and in the absence of Dectin-1. Experiments performed with Clec7a-/- mice support the critical role of Dectin-1 for inflammasome activation, restriction of parasite replication in macrophages, and mouse resistance to L. amazonensis infection in vivo. Thus, we reported that activation of the Dectin-1/Syk/ROS/NLRP3 pathway during L. amazonensis phagocytosis is important for macrophage restriction of the parasite replication and effectively accounts for host resistance to Leishmania infection.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Tiago W P Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil; and
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, São Paulo University, São Paulo 05508-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| |
Collapse
|
195
|
Gupta AK, Ghosh K, Palit S, Barua J, Das PK, Ukil A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2. FASEB J 2017; 31:5087-5101. [PMID: 28765172 DOI: 10.1096/fj.201700407r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
In visceral leishmaniasis, we found that the antileishmanial drug Amp B produces a higher level of IL-1β over the infected control. Moreover, administering anti-IL-1β antibody to infected Amp B-treated mice showed significantly less parasite clearance. Investigation revealed that Leishmania inhibits stimuli-induced expression of a multiprotein signaling platform, NLRP3 inflammasome, which in turn inhibits caspase-1 activation mediated maturation of IL-1β from its pro form. Attenuation of NLRP3 and pro-IL-1β in infection was found to result from decreased NF-κB activity. Transfecting infected cells with constitutively active NF-κB plasmid increased NLRP3 and pro-IL-1β expression but did not increase mature IL-1β, suggesting that IL-1β maturation requires a second signal, which was found to be reactive oxygen species (ROS). Decreased NF-κB was attributed to increased expression of A20, a negative regulator of NF-κB signaling. Silencing A20 in infected cells restored NLRP3 and pro-IL-1β expression, but also increased matured IL-1β, implying an NF-κB-independent A20-modulated IL-1β maturation. Macrophage ROS is primarily regulated by mitochondrial uncoupling protein 2 (UCP2), and UCP2-silenced infected cells showed an increased IL-1β level. Short hairpin RNA-mediated knockdown of A20 and UCP2 in infected mice independently documented decreased liver and spleen parasite burden and increased IL-1β production. These results suggest that Leishmania exploits A20 and UCP2 to impair inflammasome activation for disease propagation.-Gupta, A. K., Ghosh, K., Palit, S., Barua, J., Das, P. K., Ukil, A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Kuntal Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shreyasi Palit
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Jayita Barua
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
196
|
Gomes RS, Silva MVT, Dos Santos JC, de Lima Silva LL, Batista AC, Machado JR, Teixeira MM, Dorta ML, de Oliveira MAP, Dinarello CA, Joosten LAB, Ribeiro-Dias F. IL-32γ promotes the healing of murine cutaneous lesions caused by Leishmania braziliensis infection in contrast to Leishmania amazonensis. Parasit Vectors 2017; 10:336. [PMID: 28709468 PMCID: PMC5513196 DOI: 10.1186/s13071-017-2268-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/03/2017] [Indexed: 08/26/2023] Open
Abstract
Background Interleukin 32 (IL-32) is a pro-inflammatory cytokine induced in patients with American tegumentary leishmaniasis (ATL) caused by Leishmania braziliensis. Here, we investigated whether IL-32 is also expressed in patient lesions caused by L. amazonensis. In addition, we evaluated experimental L. amazonensis and L. braziliensis infections in C57BL/6 transgenic mice for human IL-32γ (IL-32γTg) in comparison with wild-type (WT) mice that do not express the IL-32 gene. Results Human cutaneous lesions caused by L. amazonensis express higher levels of IL-32 than healthy control skin. In mice, the presence of IL-32γ promoted the control of cutaneous lesions caused by L. braziliensis, but not lesions caused by L. amazonensis in an ear dermis infection model. In addition, IL-32γTg mice displayed less tissue parasitism and inflammation in IL-32γTg than WT mice during the healing phase of L. braziliensis infection. Production of antigen-specific pro-inflammatory cytokines was higher in IL-32γTg mice than in WT mice during L. braziliensis infection but not during L. amazonensis infection. Conclusions Human cutaneous lesions caused by L. amazonensis express high levels of IL-32. In mice, the presence of IL-32γ contributes to the lesion healing caused by L. braziliensis but not by L. amazonensis. Data suggest that despite the ability for both species to induce IL-32 in humans, the connections between this cytokine and other immune players induced by related species of parasites can lead to distinct outcomes of the murine infections.
Collapse
Affiliation(s)
- Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Jéssica Cristina Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.,Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucas Luiz de Lima Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Juliana Reis Machado
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Charles A Dinarello
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil. .,Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
197
|
Anti-parasite therapy drives changes in human visceral leishmaniasis-associated inflammatory balance. Sci Rep 2017; 7:4334. [PMID: 28659627 PMCID: PMC5489532 DOI: 10.1038/s41598-017-04595-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Visceral leishmaniasis (VL) remains a major public health problem worldwide. Cytokine balance is thought to play a critical role in the development of this disease. Here, we perform a prospective exploratory study addressing whether simultaneous assessment of circulating levels of different lipid mediators and cytokines could highlight specific pathways involved with VL pathogenesis. VL patients displayed substantial increases in serum levels of Prostaglandin F2α (PGF2α), Leukotriene B4 (LTB4), Resolvin D1 (RvD1), IL-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α compared with uninfected endemic control group, while exhibiting decreased levels of TGF-β1. Hierarchical cluster analysis of the prospective changes in the expression level of theses parameters upon anti-Leishmania treatment initiation revealed that the inflammatory profile observed in active disease gradually changed over time and was generally reversed at day 30 of therapy. Furthermore, not only the individual concentrations of most of the inflammatory biomarkers changed upon treatment, but the correlations between those and several biochemical parameters used to characterize VL disease activity were also modified over time. These results demonstrate that an inflammatory imbalance hallmarks active VL disease and open perspective for manipulation of these pathways in future studies examining a potential host-directed therapy against VL.
Collapse
|
198
|
Franco LH, Fleuri AKA, Pellison NC, Quirino GFS, Horta CV, de Carvalho RVH, Oliveira SC, Zamboni DS. Autophagy downstream of endosomal Toll-like receptor signaling in macrophages is a key mechanism for resistance to Leishmania major infection. J Biol Chem 2017; 292:13087-13096. [PMID: 28607148 DOI: 10.1074/jbc.m117.780981] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/26/2017] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is caused by protozoan parasites of the genus Leishmania In mammalians, these parasites survive and replicate in macrophages and parasite elimination by macrophages is critical for host resistance. Endosomal Toll-like receptors (TLRs) have been shown to be crucial for resistance to Leishmania major in vivo For example, mice in the resistant C57BL/6 genetic background that are triple-deficient for TLR3, -7, and -9 (Tlr3/7/9-/-) are highly susceptible to L. major infection. Tlr3/7/9-/- mice are as susceptible as mice deficient in MyD88 or UNC93B1, a chaperone required for appropriate localization of endosomal TLRs, but the mechanisms are unknown. Here we found that macrophages infected with L. major undergo autophagy, which effectively accounted for restriction of parasite replication. Signaling via endosomal TLRs was required for autophagy because macrophages deficient for TLR3, -7, and 9, UNC93B1, or MyD88 failed to undergo L. major-induced autophagy. We also confirmed that Myd88-/-, Tlr3/7/9-/-, and Unc93b1-/- cells were highly permissive to L. major replication. Accordingly, shRNA-mediated suppression of Atg5, an E3 ubiquitin ligase essential for autophagosome elongation, in macrophages impaired the restriction of L. major replication in C57BL/6, but did not affect parasite replication in Myd88-/- or Unc93b1-/- macrophages. Rapamycin treatment reduced inflammatory lesions formed in the ears of Leishmania-infected C57BL/6 and Tlr3/7/9-/- mice, indicating that autophagy operates downstream of TLR signaling and is relevant for disease development in vivo Collectively, our results indicate that autophagy contributes to macrophage resistance to L. major replication, and mechanistically explain the previously described endosomal TLR-mediated resistance to L. major infection.
Collapse
Affiliation(s)
- Luis H Franco
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| | - Anna K A Fleuri
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| | - Natália C Pellison
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| | - Gustavo F S Quirino
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| | - Catarina V Horta
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| | - Renan V H de Carvalho
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| | - Sérgio C Oliveira
- the Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte MG 31270-901, Brazil
| | - Dario S Zamboni
- From the Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 and
| |
Collapse
|
199
|
Wang X, Gong P, Zhang X, Wang J, Tai L, Wang X, Wei Z, Yang Y, Yang Z, Li J, Zhang X. NLRP3 inflammasome activation in murine macrophages caused by Neospora caninum infection. Parasit Vectors 2017; 10:266. [PMID: 28558839 PMCID: PMC5450200 DOI: 10.1186/s13071-017-2197-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/15/2017] [Indexed: 11/23/2022] Open
Abstract
Background Neospora caninum is an intracellular parasite that causes significant economic losses in cattle industry. Understanding the host resistance mechanisms in the innate immune response to neosporosis could facilitate the exploration of approaches for controlling N. caninum infection. The NLR inflammasome is a multiprotein platform in the cell cytoplasm and plays critical roles in the host response against microbes. Methods Neospora caninum-infected wild-type (WT) macrophages and Nlrp3−/− macrophages, and inhibitory approaches were used to investigate inflammasome activation and its role in N. caninum infection. Inflammasome RT Profiler PCR Arrays were used to identify the primary genes involved in N. caninum infection. The expression of the sensor protein NLRP3, processing of caspase-1, secretion of IL-1β and cell death were detected. Neospora caninum replication in macrophages was also assessed. Results Many NLR molecules participated in the recognition of N. caninum, especially the sensor protein NLRP3, and further study revealed that the NLRP3 distribution became punctate in the cell cytoplasm, which facilitated inflammasome activation. Inflammasome activation-mediated caspase-1 processing and IL-1β cleavage in response to N. caninum infection were observed and were correlated with the time of infection and number of infecting parasites. LDH-related cell death was also observed, and this death was regarded as beneficial for the clearance of N. caninum. Treatment of N. caninum-infected macrophages with caspase-1, pan-caspase and NLRP3 inhibitors led to the impaired release of active IL-1β and a failure to restrict parasite replication. And Neospora caninum infected peritoneal macrophages from Nlrp3-deficient mice displayed greatly decreased release of active IL-1β and the failure of caspase-1 cleavage. Conclusions The NLRP3 inflammasome can be activated in N. caninum-infected macrophages, and plays a protective role in the host response to control N. caninum. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Jielin Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Lixin Tai
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Xu Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Yongjun Yang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China.
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China.
| |
Collapse
|
200
|
Moreira RB, Pirmez C, de Oliveira-Neto MP, Aguiar LS, Gonçalves AJS, Pereira LOR, Abreu L, De Oliveira MP. AIM2 inflammasome is associated with disease severity in tegumentary leishmaniasis caused by Leishmania (V.) braziliensis. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- R. B. Moreira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - C. Pirmez
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. de Oliveira-Neto
- Instituto Nacional de Infectologia; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. S. Aguiar
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - A. J. S. Gonçalves
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. O. R. Pereira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. Abreu
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. De Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| |
Collapse
|