151
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
152
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
153
|
Cai X, Zhan H, Ye Y, Yang J, Zhang M, Li J, Zhuang Y. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases. Front Genet 2021; 12:785153. [PMID: 34917131 PMCID: PMC8670224 DOI: 10.3389/fgene.2021.785153] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The inhibitory regulators, known as immune checkpoints, prevent overreaction of the immune system, avoid normal tissue damage, and maintain immune homeostasis during the antimicrobial or antiviral immune response. Unfortunately, cancer cells can mimic the ligands of immune checkpoints to evade immune surveillance. Application of immune checkpoint blockade can help dampen the ligands expressed on cancer cells, reverse the exhaustion status of effector T cells, and reinvigorate the antitumor function. Here, we briefly introduce the structure, expression, signaling pathway, and targeted drugs of several inhibitory immune checkpoints (PD-1/PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, and IDO1). And we summarize the application of immune checkpoint inhibitors in tumors, such as single agent and combination therapy and adverse reactions. At the same time, we further discussed the correlation between immune checkpoints and microorganisms and the role of immune checkpoints in microbial-infection diseases. This review focused on the current knowledge about the role of the immune checkpoints will help in applying immune checkpoints for clinical therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Xin Cai
- Heilongjiang Administration of Traditional Chinese Medicine, Harbin, China
| | - Huajie Zhan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinjin Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
- *Correspondence: Yuan Zhuang, ; Jing Li, ; Minghui Zhang,
| | - Jing Li
- Department of Pathology and Electron Microscopy Center, Harbin Medical University, Harbin, China
- *Correspondence: Yuan Zhuang, ; Jing Li, ; Minghui Zhang,
| | - Yuan Zhuang
- Department of Pathology, Harbin Medical University, Harbin, China
- *Correspondence: Yuan Zhuang, ; Jing Li, ; Minghui Zhang,
| |
Collapse
|
154
|
Jacquelot N, Ghaedi M, Warner K, Chung DC, Crome SQ, Ohashi PS. Immune Checkpoints and Innate Lymphoid Cells-New Avenues for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5967. [PMID: 34885076 PMCID: PMC8657134 DOI: 10.3390/cancers13235967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
155
|
Wang Y, Li P, Mao S, Mo Z, Cao Z, Luo J, Zhou M, Liu X, Zhang S, Yu L. Exosome CTLA-4 Regulates PTEN/CD44 Signal Pathway in Spleen Deficiency Internal Environment to Promote Invasion and Metastasis of Hepatocellular Carcinoma. Front Pharmacol 2021; 12:757194. [PMID: 34744733 PMCID: PMC8564353 DOI: 10.3389/fphar.2021.757194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers, and its pathogenesis is complicated and difficult to screen. Currently, there is no effective treatment. In traditional Chinese medicine, a large proportion of patients with HCC have been diagnosed with spleen deficiency (SD) syndrome and treated with tonifying traditional Chinese medicine, which has significant clinical efficacy. However, the role and molecular mechanism of SD in HCC remain unclear. In this study, 40 mice were randomly divided into four groups: control, SD, HCC, and SD-HCC groups. The liver cancer model of SD was established by reserpine induction and orthotopic transplantation. The effects of SD on the proliferation, apoptosis, invasion, and metastasis of HCC cells were studied by cell proliferation, cell apoptosis, cell scratch, and transwell assay. We found that compared with the HCC group, the protein expressions of cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), phosphatase and tensin homolog (PTEN), and AKT (also known as protein kinase B or PKB) in the exosomes of the SD-HCC group were upregulated. In addition, the metastases and self-renewal of exosomes in the SD-HCC group were more aggressive than those in the HCC group, which could be partially reversed with the addition of CTLA-4 inhibitors. Further studies showed that in the internal environment of SD, CTLA-4 promoted tumor invasion and metastasis by regulating the PTEN/CD44 pathway. In conclusion, our findings suggest that during SD in the internal environment, exosome CTLA-4 regulates the PTEN/CD44 signal pathway to promote the proliferation, self-renewal, and metastasis of liver cancer.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhuomao Mo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirui Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xifeng Liu
- School of Life Sciences, Xiangya Medical College, Central South University, Changsha, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
156
|
Mazzoni M, Dell'Orso G, Grossi A, Ceccherini I, Viola S, Terranova P, Micalizzi C, Guardo D, Massaccesi E, Palmisani E, Calvillo M, Fioredda F, Malattia C, Dufour C, Ravelli A, Miano M. Underlying CTLA4 Deficiency in a Patient With Juvenile Idiopathic Arthritis and Autoimmune Lymphoproliferative Syndrome Features Successfully Treated With Abatacept-A Case Report. J Pediatr Hematol Oncol 2021; 43:e1168-e1172. [PMID: 33625086 DOI: 10.1097/mph.0000000000002120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Functional variants of the cytotoxic T-lymphocyte antigen-4 (CTLA4) could contribute to the pathogenesis of disorders characterized by abnormal T-cell responses. CASE PRESENTATION We report a case of a 13-year-old girl who first presented with polyarticular juvenile idiopathic arthritis poorly responsive to treatment. During the following years the patient developed cytopenias, chronic lymphoproliferation, high values of T-cell receptor αβ+ CD4- CD8- double-negative T cells and defective Fas-mediated T cells apoptosis. Autoimmune lymphoproliferative syndrome was diagnosed and therapy with mycophenolate mofetil was started, with good hematological control. Due to the persistence of active polyarthritis, mycophenolate mofetil was replaced with sirolimus. In the following months the patient developed hypogammaglobulinemia and started having severe diarrhea. Histologically, duodenitis and chronic gastritis were present. Using the next generation sequencing-based gene panel screening, a CTLA4 mutation was detected (p.Cys58Serfs*13). At the age of 21 the patient developed acute autoimmune hemolytic anemia; steroid treatment in combination with abatacept were started with clinical remission of all symptoms, even arthritis. CONCLUSIONS Targeted immunologic screening and appropriate genetic tests could help in the diagnosis of a specific genetically mediated immune dysregulation syndrome, allowing to select those patients who can take advantage of target therapy, as in the case of abatacept in CTLA4 deficiency.
Collapse
Affiliation(s)
- Marta Mazzoni
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic, and Maternal and Infant Health (DINOGMI), University of Genoa
| | | | | | | | - Stefania Viola
- Clinica Pediatrica e Reumatologia, IRCCS Istituto G. Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | - Clara Malattia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic, and Maternal and Infant Health (DINOGMI), University of Genoa
- Clinica Pediatrica e Reumatologia, IRCCS Istituto G. Gaslini, Genoa, Italy
| | | | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic, and Maternal and Infant Health (DINOGMI), University of Genoa
- Clinica Pediatrica e Reumatologia, IRCCS Istituto G. Gaslini, Genoa, Italy
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | |
Collapse
|
157
|
Chiang K, Largent AD, Arkatkar T, Thouvenel CD, Du SW, Shumlak N, Woods J, Li QZ, Liu Y, Hou B, Rawlings DJ, Jackson SW. Cutting Edge: A Threshold of B Cell Costimulatory Signals Is Required for Spontaneous Germinal Center Formation in Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2217-2222. [PMID: 34588220 DOI: 10.4049/jimmunol.2100548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
Cognate interactions between autoreactive B and T cells promote systemic lupus erythematosus pathogenesis by inter alia facilitating spontaneous germinal center (GC) formation. Whereas both myeloid and B cell APCs express B7 ligands (CD80 and CD86), the prevailing model holds that dendritic cell costimulation is sufficient for CD28-dependent T cell activation. In this study, we report that B cell-intrinsic CD80/CD86 deletion unexpectedly abrogates GCs in murine lupus. Interestingly, absent GCs differentially impacted serum autoantibodies. In keeping with distinct extrafollicular and GC activation pathways driving lupus autoantibodies, lack of GCs correlated with loss of RNA-associated autoantibodies but preserved anti-dsDNA and connective tissue autoantibody titers. Strikingly, even heterozygous B cell CD80/CD86 deletion was sufficient to prevent autoimmune GCs and RNA-associated autoantibodies. Together, these findings identify a key mechanism whereby B cells promote lupus pathogenesis by providing a threshold of costimulatory signals required for autoreactive T cell activation.
Collapse
Affiliation(s)
- Kristy Chiang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Andrea D Largent
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | | | - Samuel W Du
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Natali Shumlak
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Jonathan Woods
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yifan Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA; and.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA; .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
158
|
Westdorp H, Sweep MWD, Gorris MAJ, Hoentjen F, Boers-Sonderen MJ, van der Post RS, van den Heuvel MM, Piet B, Boleij A, Bloemendal HJ, de Vries IJM. Mechanisms of Immune Checkpoint Inhibitor-Mediated Colitis. Front Immunol 2021; 12:768957. [PMID: 34777387 PMCID: PMC8586074 DOI: 10.3389/fimmu.2021.768957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have provided tremendous clinical benefit in several cancer types. However, systemic activation of the immune system also leads to several immune-related adverse events. Of these, ICI-mediated colitis (IMC) occurs frequently and is the one with the highest absolute fatality. To improve current treatment strategies, it is important to understand the cellular mechanisms that induce this form of colitis. In this review, we discuss important pathways that are altered in IMC in mouse models and in human colon biopsy samples. This reveals a complex interplay between several types of immune cells and the gut microbiome. In addition to a mechanistic understanding, patients at risk should be identifiable before ICI therapy. Here we propose to focus on T-cell subsets that interact with bacteria after inducing epithelial damage. Especially, intestinal resident immune cells are of interest. This may lead to a better understanding of IMC and provides opportunities for prevention and management.
Collapse
Affiliation(s)
- Harm Westdorp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Mark W. D. Sweep
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
| | - Frank Hoentjen
- Department of Gastroenterology, Radboud University Medical Centre, Nijmegen, Netherlands
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | - Rachel S. van der Post
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - Berber Piet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Haiko J. Bloemendal
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
159
|
Abatacept is useful in auto-immune cytopenia with immunopathologic manifestations caused by CTLA-4 defects. Blood 2021; 139:300-304. [PMID: 34714911 DOI: 10.1182/blood.2021013496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
|
160
|
Yuan H, Nishikori M, Ueda C, Fujimoto M, Yasumi T, Otsuka Y, Kitawaki T, Hirata M, Haga H, Kanegane H, Takaori-Kondo A. A sporadic case of CTLA4 haploinsufficiency manifesting as Epstein-Barr virus-positive diffuse large B-cell lymphoma. J Clin Exp Hematop 2021; 62:52-57. [PMID: 34707038 PMCID: PMC9010496 DOI: 10.3960/jslrt.21026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) is a coinhibitory receptor that plays an essential role in maintaining immune system homeostasis by suppressing T-cell activation. We report a sporadic case of CTLA4 haploinsufficiency in a patient with Epstein–Barr virus-positive diffuse large B-cell lymphoma and subsequent benign lymphadenopathy. A missense mutation in exon 2 of the CTLA4 gene (c.251T>C, p.V84A) was found in the patient’s peripheral blood and buccal cell DNA, but not in her parents’ DNA. CTLA4 expression decreased in the peripheral regulatory T cells upon stimulation, whereas CTLA4 and PD-1-positive T cell subsets increased, possibly to compensate for the defective CTLA4 function. This case suggests that some adult lymphoma patients with no remarkable medical history have primary immune disorder. As immune-targeted therapies are now widely used for the treatment of malignancies, it is increasingly important to recognize the underlying primary immune disorders to properly manage the disease and avoid unexpected complications of immunotherapies.
Collapse
Affiliation(s)
- Hepei Yuan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chiyoko Ueda
- Department of Hematology, Kyoto Katsura Hospital, Kyoto Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Otsuka
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
161
|
Grover P, Goel PN, Greene MI. Regulatory T Cells: Regulation of Identity and Function. Front Immunol 2021; 12:750542. [PMID: 34675933 PMCID: PMC8524049 DOI: 10.3389/fimmu.2021.750542] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
T regulatory cells suppress a variety of immune responses to self-antigens and play a role in peripheral tolerance maintenance by limiting autoimmune disorders, and other pathological immune responses such as limiting immune reactivity to oncoprotein encoded antigens. Forkhead box P3 (FOXP3) expression is required for Treg stability and affects functional activity. Mutations in the master regulator FOXP3 and related components have been linked to autoimmune diseases in humans, such as IPEX, and a scurfy-like phenotype in mice. Several lines of evidence indicate that Treg use a variety of immunosuppressive mechanisms to limit an immune response by targeting effector cells, including secretion of immunoregulatory cytokines, granzyme/perforin-mediated cell cytolysis, metabolic perturbation, directing the maturation and function of antigen-presenting cells (APC) and secretion of extracellular vesicles for the development of immunological tolerance. In this review, several regulatory mechanisms have been highlighted and discussed.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
162
|
De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, Wong T, James K, Guidugli L, Agrawal PB, Genetti CA, Brownstein CA, Beggs AH, Löscher BS, Franke A, Boone B, Levy SE, Õunap K, Pajusalu S, Huentelman M, Ramsey K, Naymik M, Narayanan V, Veeraraghavan N, Billings P, Reese MG, Yandell M, Kingsmore SF. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med 2021; 13:153. [PMID: 34645491 PMCID: PMC8515723 DOI: 10.1186/s13073-021-00965-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. METHODS We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. RESULTS GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. CONCLUSIONS GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.
Collapse
Affiliation(s)
- Francisco M. De La Vega
- Fabric Genomics Inc., Oakland, CA USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA USA
- Current Address: Tempus Labs Inc., Redwood City, CA 94065 USA
| | - Shimul Chowdhury
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Barry Moore
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | | | | | - Edgar Javier Hernandez
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | - Terence Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Kiely James
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Lucia Guidugli
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Casie A. Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Braden Boone
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Shawn E. Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Matt Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Marcus Naymik
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | | | | | | | - Mark Yandell
- Fabric Genomics Inc., Oakland, CA USA
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | | |
Collapse
|
163
|
Mahat U, Ambani NM, Rotz SJ, Radhakrishnan K. Heterozygous CTLA4 splice site mutation c.458-1G > C presenting with immunodeficiency and variable degree of immune dysregulation in three generation kindred of Caribbean descent. Pediatr Hematol Oncol 2021; 38:658-662. [PMID: 33900894 DOI: 10.1080/08880018.2021.1906802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is an immune checkpoint, which downregulates T cell activation and T regulatory cell function. CTLA4 haploinsufficiency (CTLA4 HI) leads to T cell hyperactivation, immunodeficiency and variable degree of immune dysregulation. Furthermore, CTLA4 HI predisposes affected individuals to development of various cancers. Less well understood is the penetrance and expressivity of CTLA4 mutations. We describe five members of a single family with heterozygous CTLA4 splice site mutation c.458-1G > C, previously shown to result in CTLA-4 HI, who presented with immunodeficiency and variable degree of immune dysregulation. The host, environmental and the epigenetic factors affecting the penetrance and expressivity of CTLA4 mutations merits further investigation.
Collapse
Affiliation(s)
- Upendra Mahat
- Department of Pediatric Hematology Oncology and BMT, Cleveland Clinic Children's, Cleveland, Ohio, USA
| | - Nila Mistry Ambani
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Children's, Cleveland, Ohio, USA
| | - Seth J Rotz
- Department of Pediatric Hematology Oncology and BMT, Cleveland Clinic Children's, Cleveland, Ohio, USA
| | - Kadakkal Radhakrishnan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Children's, Cleveland, Ohio, USA
| |
Collapse
|
164
|
van Schewick CM, Lowe DM, Burns SO, Workman S, Symes A, Guzman D, Moreira F, Watkins J, Clark I, Grimbacher B. Bowel Histology of CVID Patients Reveals Distinct Patterns of Mucosal Inflammation. J Clin Immunol 2021; 42:46-59. [PMID: 34599484 PMCID: PMC8821476 DOI: 10.1007/s10875-021-01104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/18/2021] [Indexed: 01/22/2023]
Abstract
Diarrhea is the commonest gastrointestinal symptom in patients with common variable immunodeficiency (CVID). Different pathologies in patients' bowel biopsies have been described and links with infections have been demonstrated. The aim of this study was to analyze the bowel histology of CVID patients in the Royal-Free-Hospital (RFH) London CVID cohort. Ninety-five bowel histology samples from 44 adult CVID patients were reviewed and grouped by histological patterns. Reasons for endoscopy and possible causative infections were recorded. Lymphocyte phenotyping results were compared between patients with different histological features. There was no distinctive feature that occurred in most diarrhea patients. Out of 44 patients (95 biopsies), 38 lacked plasma cells. In 14 of 21 patients with nodular lymphoid hyperplasia (NLH), this was the only visible pathology. In two patients, an infection with Giardia lamblia was associated with NLH. An IBD-like picture was seen in two patients. A coeliac-like picture was found in six patients, four of these had norovirus. NLH as well as inflammation often occurred as single features. There was no difference in blood lymphocyte phenotyping results comparing groups of histological features. We suggest that bowel histology in CVID patients with abdominal symptoms falls into three major histological patterns: (i) a coeliac-like histology, (ii) IBD-like changes, and (iii) NLH. Most patients, but remarkably not all, lacked plasma cells. CVID patients with diarrhea may have an altered bowel histology due to poorly understood and likely diverse immune-mediated mechanisms, occasionally driven by infections.
Collapse
Affiliation(s)
- Cornelia M van Schewick
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Translational Cell Research, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - David M Lowe
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sarita Workman
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Andrew Symes
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - David Guzman
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Fernando Moreira
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | | | - Ian Clark
- Pathology Department, Royal Free Hospital, London, UK.
- Department of Pathology, Health Science Center, The University of Tennessee, 930 Madison Ave, Suite 500, Memphis, TN, 38163, USA.
| | - Bodo Grimbacher
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Translational Cell Research, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany.
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
165
|
Takae S, Furuta S, Iwahata H, Iwahata Y, Keino D, Kanamori R, Oyama K, Tanaka K, Shiraishi E, Suzuki Y, Sugishita Y, Horage Y, Sakamoto M, Mori T, Kitagawa H, Suzuki N. Cryopreservation of pediatric ovarian tissue with an updated version of the Edinburgh criteria for appropriate patient selection: One center's experience. Reprod Biomed Online 2021; 44:667-676. [DOI: 10.1016/j.rbmo.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
|
166
|
Rodina Y, Deripapa E, Shvets O, Mukhina A, Roppelt A, Yuhacheva D, Laberko A, Burlakov V, Abramov D, Tereshchenko G, Novichkova G, Shcherbina A. Rituximab and Abatacept Are Effective in Differential Treatment of Interstitial Lymphocytic Lung Disease in Children With Primary Immunodeficiencies. Front Immunol 2021; 12:704261. [PMID: 34566961 PMCID: PMC8458825 DOI: 10.3389/fimmu.2021.704261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
Background Interstitial lymphocytic lung disease (ILLD), a recently recognized complication of primary immunodeficiencies (PID), is caused by immune dysregulation, abnormal bronchus-associated lymphoid tissue (BALT) hyperplasia, with subsequent progressive loss of pulmonary function. Various modes of standard immunosuppressive therapy for ILLD have been shown as only partially effective. Objectives To retrospectively evaluate the safety and efficacy of abatacept or rituximab in treatment of ILLD in children with PID. Methods 29 children (median age 11 years) with various forms of PID received one of the two therapy regimens predominantly based on the lesions’ immunohistopathology: children with prevalent B-cell lung infiltration received rituximab (n = 16), and those with predominantly T-cell infiltration received abatacept (n = 17). Clinical and radiological symptoms were assessed using a severity scale developed for the study. Results The targeted therapy with abatacept (A) or rituximab (R) enabled long-term control of clinical (A 3.4 ± 1.3 vs. 0.6 ± 0.1; R 2.8 ± 1 vs. 0.7 ± 0.05, p < 0.01) and radiological (A 18.4 ± 3.1 vs. 6.0 ± 2.0; R 30 ± 7.1 vs. 10 ± 1.7, p < 0.01) symptoms of ILLD in both groups and significantly improved patients’ quality of life, as measured by the total scale (TS) score of 57 ± 2.1 in treatment recipients vs. 31.2 ± 1.9 before therapy (p < 0.01). Conclusions ILLD histopathology should be considered when selecting treatment. Abatacept and rituximab are effective and safe in differential treatment of ILLD in children.
Collapse
Affiliation(s)
- Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - E Deripapa
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - O Shvets
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A Roppelt
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D Yuhacheva
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - V Burlakov
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D Abramov
- Department of Pathology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - G Tereshchenko
- Department of Radiology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - G Novichkova
- Department of Hematology, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
167
|
Eftekhar SP, Yazdanpanah N, Rezaei N. Immune checkpoint inhibitors and cardiotoxicity: possible mechanisms, manifestations, diagnosis and management. Expert Rev Anticancer Ther 2021; 21:1211-1228. [PMID: 34511008 DOI: 10.1080/14737140.2021.1979396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a new class of anticancer drugs that enhance the immune system function and activate T cells against cancerous cells. Although cardiac complications are not common, they could be accompanied with high morbidity and mortality. AREAS COVERED Regarding the importance of cardiac complications and their subsequent burden on individuals and the healthcare system, this review attempts to discuss the mechanism, diagnosis, and management of myocarditis, besides recapitulating the possible mechanism of other cardiac adverse events. Moreover, we briefly discuss the concurrent administration of other chemotherapeutic agents. EXPERT OPINION Due to insufficient knowledge concerning the physiopathology of immune-related adverse events (irAEs) and their potential further complications, cardiovascular complications in particular and in the context of this paper's focus, cooperation of oncologists, immunologists, and cardiologists is necessary for the management of patients. Experimental approaches such as using corticosteroids are becoming a part of guidelines for managing cardiac irAEs. However, a unique algorithm for diagnosis and management is necessary, especially in myocarditis cases. Furthermore, more studies are required to resolve current challenges, including prevention of myocarditis, concurrent administration of other chemotherapeutic agents, and re-introducing patients with ICIs.
Collapse
Affiliation(s)
- Seyed Parsa Eftekhar
- School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Babol, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
168
|
Wong HS, Germain RN. Mesoscale T cell antigen discrimination emerges from intercellular feedback. Trends Immunol 2021; 42:865-875. [PMID: 34493455 DOI: 10.1016/j.it.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Mature T cells must distinguish between foreign and self-antigens to promote host defense while limiting autoimmunity. How such discrimination occurs reproducibly has been explored extensively regarding mechanisms regulating initial T cell activation at short time and length scales. Here, we suggest that T cells encounter a higher-level discriminatory boundary post-activation, empowering or constraining their responses over greater spatiotemporal scales. This boundary emerges from coordinated communication among at least three cell types, forming a control system governed by intercellular circuits, including negative feedback from regulatory T cells (Tregs). We propose that the nonlinearities inherent to this system can amplify subtle baseline imbalances in a single cell type's functional state, altering the threshold for productive T cell responses and autoimmune disease risk.
Collapse
Affiliation(s)
- Harikesh S Wong
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
169
|
Abolhassani H, Wang Y, Hammarström L, Pan-Hammarström Q. Hallmarks of Cancers: Primary Antibody Deficiency Versus Other Inborn Errors of Immunity. Front Immunol 2021; 12:720025. [PMID: 34484227 PMCID: PMC8416062 DOI: 10.3389/fimmu.2021.720025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023] Open
Abstract
Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies, mainly lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form of IEI with the highest proportion of malignant cases. In this review, we aimed to compare the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to dissect the impact of avoiding immune destruction, genome instability, and mutation, enabling replicative immortality, tumor-promoting inflammation, resisting cell death, sustaining proliferative signaling, evading growth suppressors, deregulating cellular energetics, inducing angiogenesis, and activating invasion and metastasis in these groups of patients. Moreover, some of the most promising approaches that could be clinically tested in both PAD and IEI patients were discussed.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
170
|
Casale F, Nguyen C, Birmingham SW, Mesinkovska NA. Cytotoxic T-Lymphocyte Antigen-4 Haploinsufficiency Cutaneous Manifestations. JAMA Dermatol 2021; 157:1127-1128. [PMID: 34259800 DOI: 10.1001/jamadermatol.2021.2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Fiore Casale
- Department of Dermatology, University of California Irvine School of Medicine, Irvine
| | - Cristina Nguyen
- Department of Dermatology, University of California Irvine School of Medicine, Irvine
| | - Suzanne W Birmingham
- Department of Dermatology, University of California Irvine School of Medicine, Irvine
| | | |
Collapse
|
171
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
172
|
Janman D, Hinze C, Kennedy A, Halliday N, Waters E, Williams C, Rowshanravan B, Hou TZ, Minogue S, Qureshi OS, Sansom DM. Regulation of CTLA-4 recycling by LRBA and Rab11. Immunology 2021; 164:106-119. [PMID: 33960403 PMCID: PMC8358724 DOI: 10.1111/imm.13343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022] Open
Abstract
CTLA-4 is an essential regulator of T-cell immune responses whose intracellular trafficking is a hallmark of its expression. Defects in CTLA-4 trafficking due to LRBA deficiency cause profound autoimmunity in humans. CTLA-4 rapidly internalizes via a clathrin-dependent pathway followed by poorly characterized recycling and degradation fates. Here, we explore the impact of manipulating Rab GTPases and LRBA on CTLA-4 expression to determine how these proteins affect CTLA-4 trafficking. We observe that CTLA-4 is distributed across several compartments marked by Rab5, Rab7 and Rab11 in both HeLa and Jurkat cells. Dominant negative (DN) inhibition of Rab5 resulted in increased surface CTLA-4 expression and reduced internalization and degradation. We also observed that constitutively active (CA) Rab11 increased, whereas DN Rab11 decreased CTLA-4 surface expression via an impact on CTLA-4 recycling, indicating CTLA-4 shares similarities with other recycling receptors such as EGFR. Additionally, we studied the impact of manipulating both LRBA and Rab11 on CTLA-4 trafficking. In Jurkat cells, LRBA deficiency was associated with markedly impaired CTLA-4 recycling and increased degradation that could not be corrected by expressing CA Rab11. Moreover LRBA deficiency reduced CTLA-4 colocalization with Rab11, suggesting that LRBA is upstream of Rab11. These results show that LRBA is required for effective CTLA-4 recycling by delivering CTLA-4 to Rab11 recycling compartments, and in its absence, CTLA-4 fails to recycle and undergoes degradation.
Collapse
Affiliation(s)
- Daniel Janman
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Claudia Hinze
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Alan Kennedy
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Neil Halliday
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Erin Waters
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Cayman Williams
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | | | - Tie Zheng Hou
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Shane Minogue
- Institute of Liver and Digestive HealthUniversity College LondonLondonUK
| | | | - David M. Sansom
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| |
Collapse
|
173
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain.,Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain.,Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain.,Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children's Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain.,Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,Research Institute Hospital 12 Octubre (imas12), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,Research Institute Hospital 12 Octubre (imas12), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
174
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
175
|
Hogendorf A, Szymańska M, Krasińska J, Baranowska-Jaźwiecka A, Ancuta M, Charubczyk A, Wyka K, Drozdz I, Sokolowska-Gadoux M, Zarebska J, Michalak A, Szadkowska A, Jarosz-Chobot P, Młynarski W. Clinical heterogeneity among pediatric patients with autoimmune type 1 diabetes stratified by immunoglobulin deficiency. Pediatr Diabetes 2021; 22:707-716. [PMID: 33840156 DOI: 10.1111/pedi.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) may coexist with primary immunodeficiencies, indicating a shared genetic background. OBJECTIVE To evaluate the prevalence and clinical characteristics of immunoglobulin deficiency (IgD) among children with T1D. METHODS Serum samples and medical history questionnaires were obtained during routine visits from T1D patients aged 4-18 years. IgG, IgA, IgM, and IgE were measured by nephelometry and enzyme-linked immunosorbent assay (ELISA). IgG and IgM deficiency (IgGD, IgMD) were defined as IgG/IgM >2 standard deviations (SD) below age-adjusted mean. IgE deficiency was defined as IgE <2 kIU/L. IgA deficiency (IgAD) was defined as IgA >2 SD below age-adjusted mean irrespective of other immunoglobulin classes (absolute if <0.07 g/L, partial otherwise) and as selective IgAD when IgA >2 SD below age-adjusted mean with normal IgG and IgM (absolute if <0.07 g/L, partial otherwise). RESULTS Among 395 patients (53.4% boys) with the median age of 11.2 (8.4-13.7) and diabetes duration 3.6 (1.1-6.0) years, 90 (22.8%) were found to have hypogammaglobulinemia. The IgGD and IgAD were the most common each in 40/395 (10.1%). Complex IgD was found in seven patients. Increased odds of infection-related hospitalization (compared to children without any IgD) was related to having any kind of IgD and IgAD; OR (95%CI) = 2.1 (1.2-3.7) and 3.7 (1.8-7.5), respectively. Furthermore, IgAD was associated with having a first-degree relative with T1D OR (95%CI) = 3.3 (1.4-7.6) and suffering from non-autoimmune comorbidities 3.3 (1.4-7.6), especially neurological disorders 3.5 (1.2-10.5). CONCLUSIONS IgDs frequently coexist with T1D and may be associated with several autoimmune and nonimmune related disorders suggesting their common genetic background.
Collapse
Affiliation(s)
- Anna Hogendorf
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Małgorzata Szymańska
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Joanna Krasińska
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland
| | - Anna Baranowska-Jaźwiecka
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Marta Ancuta
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Anna Charubczyk
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Krystyna Wyka
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland
| | - Izabela Drozdz
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland.,Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | | | - Joanna Zarebska
- Department of Children's Diabetology, John Paul II Upper Silesian Child Health Centre, Katowice, Poland
| | - Arkadiusz Michalak
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland.,Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology, and Nephrology, Medical University of Łódź, Łódź, Poland
| | | | - Wojciech Młynarski
- Department of Pediatrics, Oncology, and Hematology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
176
|
Więsik-Szewczyk E, Rutkowska E, Kwiecień I, Korzeniowska M, Sołdacki D, Jahnz-Różyk K. Patients with Common Variable Immunodeficiency Complicated by Autoimmune Phenomena Have Lymphopenia and Reduced Treg, Th17, and NK Cells. J Clin Med 2021; 10:3356. [PMID: 34362140 PMCID: PMC8348468 DOI: 10.3390/jcm10153356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Most patients with primary immune deficiency suffer from recurrent infections; however, paradoxical autoimmune phenomena can also manifest. The aim of this study was to identify immunological markers of autoimmune phenomena associated with common variable immunodeficiency (CVID). The study included 33 adults with CVID divided into two groups: (1) those with noninfectious autoimmune complications (CVID-C (n = 24)) and (2) those with only infectious symptoms (CVID-OI (n = 9)). Flow cytometry of peripheral blood was performed and compared with systemic lupus erythematosus (SLE) patients (n = 17) and healthy controls (n = 20). We found that all lymphocytes were lower in CVID-C and SLE. NK cells were lowest in CVID-C. Th17 cells were significantly reduced in CVID-C and SLE. Tregs were significantly lower in CVID-C and SLE. Bregs did not significantly differ between any groups. Class-switched memory B cells were significantly lower in CVID-C and CVID-OI. Lastly, plasmablasts were significantly higher in SLE. Among the T cell subsets, CVID-C patients had lower naive and recent thymic emigrant CD4+ T cells. In conclusion, reduced Treg, Th17, and NK cells are features of CVID with autoimmune complications, and class-switched memory B cells can help distinguish patients with different causes of autoimmunity. Future studies are needed to confirm whether reductions of Treg, Th17, and NK cells might be a biomarker of more complicated CVID cases.
Collapse
Affiliation(s)
- Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (I.K.)
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (I.K.)
| | - Marcelina Korzeniowska
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
| | - Dariusz Sołdacki
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-691 Warsaw, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
| |
Collapse
|
177
|
Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci U S A 2021; 118:2023739118. [PMID: 34301886 DOI: 10.1073/pnas.2023739118] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foxp3-expressing CD4+CD25+ regulatory T cells (Tregs) constitutively and highly express the immune checkpoint receptor cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), whose Treg-specific deficiency causes severe systemic autoimmunity. As a key mechanism of Treg-mediated suppression, Treg-expressed CTLA-4 down-regulates the expression of CD80/CD86 costimulatory molecules on antigen-presenting cells (APCs). Here, we show that Treg-expressed CTLA-4 facilitated Treg-APC conjugation and immune synapse formation. The immune synapses thus formed provided a stable platform whereby Tregs were able to deplete CD80/CD86 molecules on APCs by extracting them via CTLA-4-dependent trogocytosis. The depletion occurred even with Tregs solely expressing a mutant CTLA-4 form lacking the cytoplasmic portion required for its endocytosis. The CTLA-4-dependent trogocytosis of CD80/CD86 also accelerated in vitro and in vivo passive transfer of other membrane proteins and lipid molecules from APCs to Tregs without their significant reduction on the APC surface. Furthermore, CD80 down-regulation or blockade by Treg-expressed membrane CTLA-4 or soluble CTLA-4-immunoglobulin (CTLA-4-Ig), respectively, disrupted cis-CD80/programmed death ligand-1 (PD-L1) heterodimers and increased free PD-L1 on dendritic cells (DCs), expanding a phenotypically distinct population of CD80lo free PD-L1hi DCs. Thus, Tregs are able to inhibit the T cell stimulatory activity of APCs by reducing their CD80/CD86 expression via CTLA-4-dependent trogocytosis. This CD80/CD86 reduction on APCs is able to exert dual suppressive effects on T cell immune responses by limiting CD80/CD86 costimulation to naïve T cells and by increasing free PD-L1 available for the inhibition of programmed death-1 (PD-1)-expressing effector T cells. Blockade of CTLA-4 and PD-1/PD-L1 in combination may therefore synergistically hinder Treg-mediated immune suppression, thereby effectively enhancing immune responses, including tumor immunity.
Collapse
|
178
|
Marangoni F, Zhakyp A, Corsini M, Geels SN, Carrizosa E, Thelen M, Mani V, Prüßmann JN, Warner RD, Ozga AJ, Di Pilato M, Othy S, Mempel TR. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 2021; 184:3998-4015.e19. [PMID: 34157302 PMCID: PMC8664158 DOI: 10.1016/j.cell.2021.05.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/08/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
Foxp3+ T regulatory (Treg) cells promote immunological tumor tolerance, but how their immune-suppressive function is regulated in the tumor microenvironment (TME) remains unknown. Here, we used intravital microscopy to characterize the cellular interactions that provide tumor-infiltrating Treg cells with critical activation signals. We found that the polyclonal Treg cell repertoire is pre-enriched to recognize antigens presented by tumor-associated conventional dendritic cells (cDCs). Unstable cDC contacts sufficed to sustain Treg cell function, whereas T helper cells were activated during stable interactions. Contact instability resulted from CTLA-4-dependent downregulation of co-stimulatory B7-family proteins on cDCs, mediated by Treg cells themselves. CTLA-4-blockade triggered CD28-dependent Treg cell hyper-proliferation in the TME, and concomitant Treg cell inactivation was required to achieve tumor rejection. Therefore, Treg cells self-regulate through a CTLA-4- and CD28-dependent feedback loop that adjusts their population size to the amount of local co-stimulation. Its disruption through CTLA-4-blockade may off-set therapeutic benefits in cancer patients.
Collapse
Affiliation(s)
- Francesco Marangoni
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA.
| | - Ademi Zhakyp
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michela Corsini
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shannon N Geels
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Esteban Carrizosa
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Martin Thelen
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vinidhra Mani
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jasper N Prüßmann
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ross D Warner
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aleksandra J Ozga
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Di Pilato
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - Thorsten R Mempel
- The Center for Immunology and Inflammatory Diseases (CIID), Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
179
|
Wong HS, Park K, Gola A, Baptista AP, Miller CH, Deep D, Lou M, Boyd LF, Rudensky AY, Savage PA, Altan-Bonnet G, Tsang JS, Germain RN. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 2021; 184:3981-3997.e22. [PMID: 34157301 PMCID: PMC8390950 DOI: 10.1016/j.cell.2021.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.
Collapse
Affiliation(s)
- Harikesh S Wong
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | - Kyemyung Park
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA; Biophysics program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Anita Gola
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Antonio P Baptista
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Deeksha Deep
- Howard Hughes Medical Institute, Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meng Lou
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
180
|
Prinz JC. Antigen Processing, Presentation, and Tolerance: Role in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:750-759. [PMID: 34294386 DOI: 10.1016/j.jid.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/20/2022]
Abstract
Autoreactive T cells pose a constant risk for the emergence of autoimmune skin diseases in genetically predisposed individuals carrying certain HLA risk alleles. Immune tolerance mechanisms are opposed by broad HLA-presented self-immunopeptidomes, a predefined repertoire of polyspecific TCRs, the continuous generation of new antibody specificities by somatic recombination of Ig genes in B cells, and heightened proinflammatory reactivity. Increased autoantigen presentation by HLA molecules, cross-activation of pathogen-induced T cells against autologous structures, altered metabolism of self-proteins, and excessive production of proinflammatory signals may all contribute to the breakdown of immune tolerance and the development of autoimmune skin diseases.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany.
| |
Collapse
|
181
|
Quartuccio L, De Marchi G, Longhino S, Manfrè V, Rizzo MT, Gandolfo S, Tommasini A, De Vita S, Fox R. Shared Pathogenetic Features Between Common Variable Immunodeficiency and Sjögren's Syndrome: Clues for a Personalized Medicine. Front Immunol 2021; 12:703780. [PMID: 34322134 PMCID: PMC8311857 DOI: 10.3389/fimmu.2021.703780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Common variable immunodeficiency disorders (CVID) are a group of rare diseases of the immune system and the most common symptomatic primary antibody deficiency in adults. The “variable” aspect of CVID refers to the approximately half of the patients who develop non-infective complications, mainly autoimmune features, in particular organ specific autoimmune diseases including thyroiditis, and cytopenias. Among these associated conditions, the incidence of lymphoma, including mucosal associated lymphoid tissue (MALT) type, is increased. Although these associated autoimmune disorders in CVID are generally attributed to Systemic Lupus Erythematosus (SLE), we propose that Sjogren’s syndrome (SS) is perhaps a better candidate for the associated disease. SS is an autoimmune disorder characterized by the lymphocytic infiltrates of lacrimal and salivary glands, leading to dryness of the eyes and mouth. Thus, it is a lymphocyte aggressive disorder, in contrast to SLE where pathology is generally attributed to auto-antibody and complement activation. Although systemic lupus erythematosus (SLE) shares these features with SS, a much higher frequency of MALT lymphoma distinguishes SS from SLE. Also, the higher frequency of germ line encoded paraproteins such as the monoclonal rheumatoid factor found in SS patients would be more consistent with the failure of B-cell VDJ switching found in CVID; and in contrast to the hypermutation that characterizes SLE autoantibodies. Thus, we suggest that SS may fit as a better “autoimmune” association with CVID. Examining the common underlying biologic mechanisms that promote lymphoid infiltration by dysregulated lymphocytes and lymphoma in CVID may provide new avenues for treatment in both the diseases. Since the diagnosis of SLE or rheumatoid arthritis is usually based on specific autoantibodies, the associated autoimmune features of CVID patients may not be recognized in the absence of autoantibodies.
Collapse
Affiliation(s)
- Luca Quartuccio
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Simone Longhino
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Valeria Manfrè
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Maria Teresa Rizzo
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Alberto Tommasini
- Pediatric Immunology, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Robert Fox
- Rheumatology Clinic, Scripps Memorial Hospital and Research Foundation, La Jolla, CA, United States
| |
Collapse
|
182
|
Lo YC, Price C, Blenman K, Patil P, Zhang X, Robert ME. Checkpoint Inhibitor Colitis Shows Drug-Specific Differences in Immune Cell Reaction That Overlap With Inflammatory Bowel Disease and Predict Response to Colitis Therapy. Am J Clin Pathol 2021; 156:214-228. [PMID: 33555016 DOI: 10.1093/ajcp/aqaa217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Checkpoint inhibitor (CPI)-associated colitis can limit therapy and has resemblance to inflammatory bowel disease (IBD). Studies exploring mechanistic similarities between these colitides are limited, yet therapeutic targets for either disorder could emerge from shared pathophysiology. METHODS The morphology and inflammatory content of colonic biopsy specimens from anti-CTLA-4 and anti-PD-1/PD-L1 antibody-treated patients with CPI colitis were compared with initial biopsy specimens from patients with IBD. Predictors of the need for infliximab were sought in CPI patients. RESULTS Biopsy specimens from CPI patients showed significantly lower chronicity scores and similar activity scores compared with patients with IBD. Anti-CTLA-4 and IBD groups showed equivalent CD8, CD4, PD-1, and PD-L1 expression, while FoxP3 scores were lower and CD68 scores were higher in anti-CTLA-4 compared with IBD biopsy specimens. Anti-PD-1/PD-L1 group had lower scores for CD8, CD4, and PD-1 and equivalent scores for FoxP3, PD-L1, and CD68 compared with IBD. Anti-CTLA-4 biopsy specimens had higher scores for CD8, PD-1, PD-L1, and CD68 than anti-PD-1/PD-L1 biopsy specimens. CD8/FoxP3 ratios and CD68 scores were higher among CPI patients requiring infliximab therapy for colitis compared with those responding to steroids. CONCLUSIONS The proinflammatory immune phenotype of anti-CTLA-4-associated colitis has significant overlap with IBD. CD8/FoxP3 ratios may predict therapeutic response in CPI-associated colitis.
Collapse
Affiliation(s)
- Ying-Chun Lo
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Christina Price
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kim Blenman
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Pallavi Patil
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
183
|
Lehmkuhl P, Gentz M, Garcia de Otezya AC, Grimbacher B, Schulze-Koops H, Skapenko A. Dysregulated immunity in PID patients with low GARP expression on Tregs due to mutations in LRRC32. Cell Mol Immunol 2021; 18:1677-1691. [PMID: 34059789 PMCID: PMC8245512 DOI: 10.1038/s41423-021-00701-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Immune dysregulation diseases are characterized by heterogeneous clinical manifestations and may have severe disease courses. The identification of the genetic causes of these diseases therefore has critical clinical implications. We performed whole-exome sequencing of patients with immune dysregulation disorders and identified two patients with previously undescribed mutations in LRRC32, which encodes glycoprotein A repetitions predominant (GARP). These patients were characterized by markedly reduced numbers and frequencies of regulatory T cells (Tregs). Tregs with mutated LRRC32 exhibited strongly diminished cell-surface GARP expression and reduced suppressor function. In a model of conditional Garp deficiency in mice, we confirmed increased susceptibility to inflammatory diseases once GARP expression on Tregs was decreased. Garp deficiency led to an unstable Treg phenotype due to diminished Foxp3 protein acetylation and stability. Our study reinforces the understanding of the immunological mechanisms of immune dysregulation and expands the knowledge on the immunological function of GARP as an important regulator of Treg stability.
Collapse
Affiliation(s)
- Peter Lehmkuhl
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Magdalena Gentz
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andres Caballero Garcia de Otezya
- Institute for Immunodeficiency, Centre of Chronic Immunodeficiency, Medical Centre, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Centre of Chronic Immunodeficiency, Medical Centre, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
184
|
Krone KA, Winant AJ, Vargas SO, Platt CD, Bartnikas LM, Janssen E, Lillehei C, Lee EY, Fishman MP, Casey A. Pulmonary manifestations of immune dysregulation in CTLA-4 haploinsufficiency and LRBA deficiency. Pediatr Pulmonol 2021; 56:2232-2241. [PMID: 33710794 DOI: 10.1002/ppul.25373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The primary immunodeficiency syndromes of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) haploinsufficiency and lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency present with multisystem immune dysregulation. The aim of this study was to characterize and compare the pulmonary manifestations of these two diseases. METHODS We retrospectively analyzed the pulmonary clinical, radiologic, and histopathologic characteristics of six patients with CTLA-4 haploinsufficiency and four patients with LRBA deficiency with pulmonary involvement followed at a large tertiary care center. RESULTS Chronic respiratory symptoms were more frequent in patients with LRBA deficiency versus CTLA-4 haploinsufficiency (3/4 vs. 1/6). Cough was the most common respiratory symptom. Abnormalities in pulmonary exam and pulmonary function testing were more frequent in LRBA deficiency (4/4, 2/4) compared to CTLA-4 haploinsufficiency (1/6, 2/6). Chest computed tomography (CT) findings included mediastinal lymphadenopathy (4/4 in LRBA deficiency vs. 1/4 in CTLA-4 haploinsufficiency), pulmonary nodules (4/4, 3/4), ground-glass opacification (4/4, 3/4), and bronchiectasis (3/4, 1/4). Lymphocytic inflammation, concentrated bronchovasculocentrically and paraseptally, was the predominant pathologic finding and was observed in all patients who had lung biopsies (N = 3 with LRBA deficiency; N = 3 with CTLA-4 haploinsufficiency). CONCLUSION Despite phenotypic overlap amongst these diseases, LRBA deficiency demonstrated greater severity of pulmonary disease, indicated by respiratory symptoms, pulmonary exam, and intrathoracic radiologic findings. Chest CT was the most sensitive indicator of pulmonary involvement in both disorders. Lymphocytic inflammation is the key histologic feature of both disorders. Pediatric pulmonologists should consider these disorders of immune dysregulation in the relevant clinical context to provide earlier diagnosis, comprehensive pulmonary evaluation and treatment.
Collapse
Affiliation(s)
- Katie A Krone
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa M Bartnikas
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Lillehei
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Y Lee
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha P Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
185
|
Magerus A, Bercher-Brayer C, Rieux-Laucat F. The genetic landscape of the FAS pathway deficiencies. Biomed J 2021; 44:388-399. [PMID: 34171534 PMCID: PMC8514852 DOI: 10.1016/j.bj.2021.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dysfunction of the FAS-FASLG pathway causes a lymphoproliferative disorder with autoimmunity called Autoimmune lymphoproliferative syndrome (ALPS) mainly caused by FAS mutations. The goal of this review is to describe the genetic bases of the autoimmune lymphoproliferative syndrome and to underline their genetic complexity with the contribution of both germline and somatic events accounting for the variable clinical penetrance of the FAS mutations. Starting from the cohort of patients studied in the French cohort (>165 cases), we also reviewed the literature cases in order to depict a full description of the mutations affecting the FAS-FASLG pathway involved in the outcome of this rare non-malignant and non-infectious pediatric lymphoproliferative disease. We also discussed the variable clinical penetrance associated with mutations affecting the extracellular domain of the protein. Such non-penetrant germline mutations are frequently associated with an additional somatic event impacting the second allele of FAS. Moreover, the uncomplete clinical penetrance associated with mutations affecting the intracellular domain of FAS, in patient lacking additional FAS somatic event, suggested a potential digenic inheritance with a FAS mutation accompanied by a genetic modifier possibly impacting another player of the lymphocytes homeostasis (affecting the survival, activation or apoptosis of the peripheral leukocytes).
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France.
| | - Clara Bercher-Brayer
- University of Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
186
|
Precision Medicine in the Treatment of Primary Immune Deficiency Patients With Disorders of Immune Dysregulation. Clin Rev Allergy Immunol 2021; 63:1-8. [PMID: 34169440 DOI: 10.1007/s12016-021-08871-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
There are now more than 450 described monogenic germline mutations for inborn errors of immunity that result in the loss of expression, loss of function (LOF), or gain in function (GOF) of the encoded protein. Molecular characterization of these inborn errors of immunity has not only allowed us to characterize on a genetic basis these immune deficiency disorders but has provided a better understanding of the immunobiology of these inborn errors of immunity. More recently, these advances have allowed us to apply targeted therapy or precision medicine in their treatment. Of particular interest related to this review are those inborn errors of immunity that result in gain-of-function (GOF) genetic abnormalities. Many of these inborn errors of immunity fall into a new category referred to as diseases of immune dysregulation in which many of the patients not only exhibit an increased susceptibility to infection but also have a clinical phenotype associated with autoimmune processes and lymphoproliferative disease.
Collapse
|
187
|
Li CM, Chen Z. Autoimmunity as an Etiological Factor of Cancer: The Transformative Potential of Chronic Type 2 Inflammation. Front Cell Dev Biol 2021; 9:664305. [PMID: 34235145 PMCID: PMC8255631 DOI: 10.3389/fcell.2021.664305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent epidemiological studies have found an alarming trend of increased cancer incidence in adults younger than 50 years of age and projected a substantial rise in cancer incidence over the next 10 years in this age group. This trend was exemplified in the incidence of non-cardia gastric cancer and its disproportionate impact on non-Hispanic white females under the age of 50. The trend is concurrent with the increasing incidence of autoimmune diseases in industrialized countries, suggesting a causal link between the two. While autoimmunity has been suspected to be a risk factor for some cancers, the exact mechanisms underlying the connection between autoimmunity and cancer remain unclear and are often controversial. The link has been attributed to several mediators such as immune suppression, infection, diet, environment, or, perhaps most plausibly, chronic inflammation because of its well-recognized role in tumorigenesis. In that regard, autoimmune conditions are common causes of chronic inflammation and may trigger repetitive cycles of antigen-specific cell damage, tissue regeneration, and wound healing. Illustrating the connection between autoimmune diseases and cancer are patients who have an increased risk of cancer development associated with genetically predisposed insufficiency of cytotoxic T lymphocyte-associated protein 4 (CTLA4), a prototypical immune checkpoint against autoimmunity and one of the main targets of cancer immune therapy. The tumorigenic process triggered by CTLA4 insufficiency has been shown in a mouse model to be dependent on the type 2 cytokines interleukin-4 (IL4) and interleukin-13 (IL13). In this type 2 inflammatory milieu, crosstalk with type 2 immune cells may initiate epigenetic reprogramming of epithelial cells, leading to a metaplastic differentiation and eventually malignant transformation even in the absence of classical oncogenic mutations. Those findings complement a large body of evidence for type 1, type 3, or other inflammatory mediators in inflammatory tumorigenesis. This review addresses the potential of autoimmunity as a causal factor for tumorigenesis, the underlying inflammatory mechanisms that may vary depending on host-environment variations, and implications to cancer prevention and immunotherapy.
Collapse
Affiliation(s)
- Chris M Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
188
|
Ramirez NJ, Posadas-Cantera S, Caballero-Oteyza A, Camacho-Ordonez N, Grimbacher B. There is no gene for CVID - novel monogenetic causes for primary antibody deficiency. Curr Opin Immunol 2021; 72:176-185. [PMID: 34153571 DOI: 10.1016/j.coi.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
'There is no gene for fate' (citation from the movie 'GATTACA') - and there is no gene for CVID. Common Variable ImmunoDeficiency (CVID) is the most prevalent primary immunodeficiency in humans. CVID is characterized by an increased susceptibility to infections, hypogammaglobulinemia, reduced switched memory B cell numbers in peripheral blood and a defective response to vaccination, often complicated by autoimmune and autoinflammatory conditions. However, as soon as a genetic diagnosis has been made in a patient with CVID, the diagnosis must be changed to the respective genetic cause (www.esid.org). Therefore, there are genetic causes for primary antibody deficiencies, but not for CVID. Primary antibody deficiencies (PADs) are a heterogeneous group of disorders. Several attempts have been made to gain further insights into the pathogenesis of PAD, using unbiased approaches such as whole exome or genome sequencing. Today, in just about 35% of cases with PAD, monogenic mutations (including those in the gene TNFRSF13B) can be identified in a set of 68 genes [1•]. These mutations occur either sporadically or are inherited and do explain an often complex phenotype. In our review, we not only discuss gene defects identified in PAD patients previously diagnosed with CVID and/or CVID-like disorders such as IKZF1, CTNNBL1, TNFSF13 and BACH2, but also genetic defects which were initially described in non-CVID patients but have later also been observed in patients with PAD such as PLCG2, PIK3CG, PMS2, RNF31, KMT2D, STAT3. We also included interesting genetic defects in which the pathophysiology suggests a close relation to other known defects of the adaptive immune response, such as DEF6, SAMD9 and SAMD9L, and hence a CVID-like phenotype may be observed in the future. However, alternative mechanisms most likely add to the development of an antibody-deficient phenotype, such as polygenic origins, epigenetic changes, and/or environmental factors.
Collapse
Affiliation(s)
- Neftali J Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Integrated Research Training Group (IRTG) Medical Epigenetics, Collaborative Research Centre 992, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
189
|
Kelaidi C, Tzotzola V, Polychronopoulou S. The paradigm of hematological malignant versus non-malignant manifestations, driven by primary immunodeficiencies: a complex interplay. Fam Cancer 2021; 20:363-380. [PMID: 34128135 DOI: 10.1007/s10689-021-00266-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/28/2021] [Indexed: 01/25/2023]
Abstract
Hematological malignancies (HM) developed on underlying primary immunodeficiencies (PID) are rare and of unusual features. Differentiating between malignant and non-malignant lymphoproliferation in cases of pediatric hematology and oncology and revealing their molecular predisposition demonstrate the complex interplay between PID and HM. We retrospectively studied a case series of seven pediatric patients, all with PID with manifestations raising suspicion for HM or hypereosinophilic syndrome (HES) or confirmed HM of lymphoid origin. Combined immunodeficiency (CID) without detection of a known mutated gene or with ataxia-telangiectasia (AT), STAT3 gain of function (GOF), DOCK8 deficiency, and CTLA4 deficiency were diagnosed in three, one, one, one, and one patient, respectively. Acute lymphoblastic leukemia and Hodgkin lymphoma followed by second primary Burkitt lymphoma were diagnosed in one patient with CID each, while lymphomatoid granulomatosis in one patient with AT. Lymphoproliferative disease occurred in STAT3 GOF, CTLA4 deficiency and CID, one patient each, and idiopathic HES in DOCK8 deficiency (median age at presentation of PID or any hematological manifestation: four years). Four patients underwent hematopoietic cell transplantation (HCT) for STAT3 GOF, DOCK8 deficiency and CID in one, one, and two cases, respectively (median age: 10 years). At the last follow-up, all transplanted patients were alive. Reporting on patients' phenotype, genotype and course of disease shed light on the prevalence, characteristics, and pathophysiology of HM complicating PID. Discriminating the non-yet malignant lymphoproliferation from its malignant equivalent on the same pathophysiology background proved of additional value. Outcomes of PID after HCT, herein reported, are favorable.
Collapse
Affiliation(s)
- C Kelaidi
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Thivon 1 & Papadiamantopoulou, 11527, Athens, Greece.
| | - V Tzotzola
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Thivon 1 & Papadiamantopoulou, 11527, Athens, Greece
| | - S Polychronopoulou
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Thivon 1 & Papadiamantopoulou, 11527, Athens, Greece
| |
Collapse
|
190
|
Lanz AL, Riester M, Peters P, Schwerd T, Lurz E, Hajji MS, Rohlfs M, Ley-Zaporozhan J, Walz C, Kotlarz D, Klein C, Albert MH, Hauck F. Abatacept for treatment-refractory pediatric CTLA4-haploinsufficiency. Clin Immunol 2021; 229:108779. [PMID: 34116213 DOI: 10.1016/j.clim.2021.108779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
CTLA4-haploinsufficiency is a complex disease of immune dysregulation presenting with a broad spectrum of clinical manifestations. CTLA4-Fc fusion proteins such as abatacept have been described to alleviate immune dysregulation in several adult cases of CTLA4-haploinsufficiency. However, until now only few cases of pediatric CTLA4-haploinsufficiency treated with abatacept have been described. Here we present two pediatric cases of severe CTLA4-haploinsufficiency refractory to conventional immunosuppressive therapies that responded rapidly to treatment with abatacept. No side effects were observed during a follow-up period of 7-15 months. While one patient has successfully undergone HSCT the second patient continues to receive abatacept. Our cases demonstrate safe medium-term use of abatacept in the pediatric population.
Collapse
Affiliation(s)
- Anna-Lisa Lanz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Riester
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Peters
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eberhard Lurz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mohammad Samer Hajji
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Ley-Zaporozhan
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany; Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany; Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
191
|
Egg D, Rump IC, Mitsuiki N, Rojas-Restrepo J, Maccari ME, Schwab C, Gabrysch A, Warnatz K, Goldacker S, Patiño V, Wolff D, Okada S, Hayakawa S, Shikama Y, Kanda K, Imai K, Sotomatsu M, Kuwashima M, Kamiya T, Morio T, Matsumoto K, Mori T, Yoshimoto Y, Dybedal I, Kanariou M, Kucuk ZY, Chapdelaine H, Petruzelkova L, Lorenz HM, Sullivan KE, Heimall J, Moutschen M, Litzman J, Recher M, Albert MH, Hauck F, Seneviratne S, Pachlopnik Schmid J, Kolios A, Unglik G, Klemann C, Snapper S, Giulino-Roth L, Svaton M, Platt CD, Hambleton S, Neth O, Gosse G, Reinsch S, Holzinger D, Kim YJ, Bakhtiar S, Atschekzei F, Schmidt R, Sogkas G, Chandrakasan S, Rae W, Derfalvi B, Marquart HV, Ozen A, Kiykim A, Karakoc-Aydiner E, Králíčková P, de Bree G, Kiritsi D, Seidel MG, Kobbe R, Dantzer J, Alsina L, Armangue T, Lougaris V, Agyeman P, Nyström S, Buchbinder D, Arkwright PD, Grimbacher B. Therapeutic options for CTLA-4 insufficiency. J Allergy Clin Immunol 2021; 149:736-746. [PMID: 34111452 DOI: 10.1016/j.jaci.2021.04.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Heterozygous germline mutations in cytotoxic T lymphocyte-associated antigen-4 (CTLA4) impair the immunomodulatory function of regulatory T cells. Affected individuals are prone to life-threatening autoimmune and lymphoproliferative complications. A number of therapeutic options are currently being used with variable effectiveness. OBJECTIVE Our aim was to characterize the responsiveness of patients with CTLA-4 insufficiency to specific therapies and provide recommendations for the diagnostic workup and therapy at an organ-specific level. METHODS Clinical features, laboratory findings, and response to treatment were reviewed retrospectively in an international cohort of 173 carriers of CTLA4 mutation. Patients were followed between 2014 and 2020 for a total of 2624 months from diagnosis. Clinical manifestations were grouped on the basis of organ-specific involvement. Medication use and response were recorded and evaluated. RESULTS Among the 173 CTLA4 mutation carriers, 123 (71%) had been treated for immune complications. Abatacept, rituximab, sirolimus, and corticosteroids ameliorated disease severity, especially in cases of cytopenias and lymphocytic organ infiltration of the gut, lungs, and central nervous system. Immunoglobulin replacement was effective in prevention of infection. Only 4 of 16 patients (25%) with cytopenia who underwent splenectomy had a sustained clinical response. Cure was achieved with stem cell transplantation in 13 of 18 patients (72%). As a result of the aforementioned methods, organ-specific treatment pathways were developed. CONCLUSION Systemic immunosuppressants and abatacept may provide partial control but require ongoing administration. Allogeneic hematopoietic stem cell transplantation offers a possible cure for patients with CTLA-4 insufficiency.
Collapse
Affiliation(s)
- David Egg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Ina Caroline Rump
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Noriko Mitsuiki
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Maria-Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshiaki Shikama
- Division of Infection, Immunology and Infection, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kanda
- Department of Pediatrics, Hikone Municipal Hospital, Shiga, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Sotomatsu
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Makoto Kuwashima
- Department of Pediatrics, Kiryu Kosei General Hospital, Kiryū, Japan
| | - Takahiro Kamiya
- Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Yuri Yoshimoto
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Center for Primary Immunodeficiencies-Paediatric Immunology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hugo Chapdelaine
- Division of Clinical Immunology, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Lenka Petruzelkova
- Department of Paediatrics, Motol University Hospital, Second Medical Faculty in Prague, Charles University, Prague, Czech Republic
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Kathleen E Sullivan
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Jennifer Heimall
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, Brno, Czech Republic; Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Mike Recher
- Immunodeficiency Clinic, Medical Outpatient Unit and Immunodeficiency Lab, Department Biomedicine, University Hospital, Basel, Switzerland
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians Universität München, Munich, Germany
| | - Suranjith Seneviratne
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gary Unglik
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia
| | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Scott Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Lisa Giulino-Roth
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY
| | - Michael Svaton
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Sophie Hambleton
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, RECLIP, Spain
| | - Geraldine Gosse
- Montreal Clinical Research Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Steffen Reinsch
- Jena University Hospital, Pediatric Gastroenterology, Jena, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Yae-Jean Kim
- Division of Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shahrzad Bakhtiar
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Faranaz Atschekzei
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Schmidt
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - William Rae
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, United Kingdom; Southampton National Institute for Health Research Clinical Research Facility, University Hospital Southampton NHSFT, Southampton, United Kingdom
| | - Beata Derfalvi
- Division of Immunology, IWK Health Centre and Dalhousie University, Department of Pediatrics, Halifax, Nova Scotia, Canada
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ahmet Ozen
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayca Kiykim
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Pavlína Králíčková
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Godelieve de Bree
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatric and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Robin Kobbe
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Dantzer
- Division of Pediatric Allergy and Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Md
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona; Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Thais Armangue
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Vassilios Lougaris
- Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona, Barcelona, Spain
| | - Philipp Agyeman
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Sofia Nyström
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Buchbinder
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter D Arkwright
- Division of Pediatric Hematology, Children's Hospital of Orange County, Orange, Calif
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom; German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies, Albert Ludwig University of Freiburg, Freiburg, Germany; RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
192
|
Santiago JL, Sánchez-Pérez L, Pérez-Flores I, de la Higuera MAM, Romero NC, Querol-García J, Urcelay E, Sánchez-Fructuoso AI. Association of Polymorphisms in T-Cell Activation Costimulatory/Inhibitory Signal Genes With Allograft Kidney Rejection Risk. Front Immunol 2021; 12:650979. [PMID: 34149691 PMCID: PMC8206554 DOI: 10.3389/fimmu.2021.650979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The genes CD28, CD86 and CTLA-4 conform the costimulatory (CD28-CD86) or inhibitory (CTLA-4-CD86) signal in T-cell activation. T-cell immune response has a critical role in allograft rejection, and single nucleotide polymorphisms (SNPs) located in these genes have been widely analyzed with controversial results. We analyzed a group of SNPs located in the three genes: CD28: rs3116496; CD86: rs1129055; and CTLA-4: rs231775 and rs3087243 in a cohort of 632 consecutively recruited kidney transplanted subjects. All polymorphisms were genotyped by TaqMan chemistry and the diagnosis of rejection was confirmed by biopsy and categorized according to the Banff classification. The analyses showed a statistically significant protective effect to T cell-mediated rejection (TCMR) in carriers of the CTLA-4 rs3087243*G allele, especially in patients with TCMR Banff ≥2 in the overall cohort and in patients without thymoglobulin induction therapy. Both associations were corroborated as independent factors in the multivariate analysis. Interestingly, associations with rejection were not found for any SNP in patients with thymoglobulin induction therapy. As expected, considering the major role of these genes in T-cell activation, no effect was observed for antibody-mediated rejection (ABMR). In conclusion, the SNP rs3087243 located in the CTLA-4 gene may be considered a useful independent biomarker for TCMR risk especially for severe TCMR in patients who did no received thymoglobulin induction therapy.
Collapse
Affiliation(s)
- Jose Luis Santiago
- Lab. Genetics and Molecular Basis of Complex Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Immunology Department, Hospital Fundación Jiménez-Díaz, Madrid, Spain
| | - Luis Sánchez-Pérez
- Lab. Genetics and Molecular Basis of Complex Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Isabel Pérez-Flores
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | | | - Natividad Calvo Romero
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Javier Querol-García
- Lab. Genetics and Molecular Basis of Complex Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Elena Urcelay
- Lab. Genetics and Molecular Basis of Complex Diseases, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Ana Isabel Sánchez-Fructuoso
- Nephrology Department Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| |
Collapse
|
193
|
Zhao Z, Wang X, Bao XQ, Ning J, Shang M, Zhang D. Autoimmune polyendocrine syndrome induced by immune checkpoint inhibitors: a systematic review. Cancer Immunol Immunother 2021; 70:1527-1540. [PMID: 33200250 DOI: 10.1007/s00262-020-02699-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To summarize the clinical characteristics and immunological and genetic features of patients who developed autoimmune polyendocrine syndrome type II (APS-2) after treatment with immune checkpoint inhibitors (ICIs). DESIGN AND METHODS Several databases (MEDLINE/EMBASE/Cochrane) were searched for studies published between January 2000 and February 2020 involving patients with two or more endocrine disorders after ICI therapy. RESULTS Our final review included 22 articles comprising 23 patients (median age 56 years; 65.2% male patients). Of these patients, 60.9% received anti-programmed cell death 1 (PD-1) therapy, 17.4% received anti-programmed cell death ligand 1 (PD-L1) therapy, and 4.3% received anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) monotherapy. Patients underwent a median of four treatment cycles before the onset of the primary adverse event; the median time of onset was 8.5 weeks. Endocrine organs affected by ICI administration included the thyroid gland (18/23, 78.3%), pancreatic islets (17/23, 73.9%), pituitary gland (11/23, 47.8%), and adrenal gland (2/23, 8.7%). Related autoantibodies were detected in 65.2% of patients. In patients with diabetes, glutamic acid decarboxylase antibody was closely related to the development of diabetes ketoacidosis. The human leukocyte antigen genotype was reported in 34.8% (8/23) of patients, 5 (62.5%) of which had risk genotypes. CONCLUSIONS As a serious adverse event of ICI treatment, APS-2 is presented with abrupt initiation time and rapid development. Physicians should be aware of potential endocrine disorders and continue monitoring hormone status when treating cancer patients with ICIs.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
194
|
Kuijpers TJM, Kleinjans JCS, Jennen DGJ. From multi-omics integration towards novel genomic interaction networks to identify key cancer cell line characteristics. Sci Rep 2021; 11:10542. [PMID: 34006939 PMCID: PMC8131752 DOI: 10.1038/s41598-021-90047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Cancer is a complex disease where cancer cells express epigenetic and transcriptomic mechanisms to promote tumor initiation, progression, and survival. To extract relevant features from the 2019 Cancer Cell Line Encyclopedia (CCLE), a multi-layer nonnegative matrix factorization approach is used. We used relevant feature genes and DNA promoter regions to construct genomic interaction network to study gene-gene and gene-DNA promoter methylation relationships. Here, we identified a set of gene transcripts and methylated DNA promoter regions for different clusters, including one homogeneous lymphoid neoplasms cluster. In this cluster, we found different methylated transcription factors that affect transcriptional activation of EGFR and downstream interactions. Furthermore, the hippo-signaling pathway might not function properly because of DNA hypermethylation and low gene expression of both LATS2 and YAP1. Finally, we could identify a potential dysregulation of the CD28-CD86-CTLA4 axis. Characterizing the interaction of the epigenome and the transcriptome is vital for our understanding of cancer cell line behavior, not only for deepening insights into cancer-related processes but also for future disease treatment and drug development. Here we have identified potential candidates that characterize cancer cell lines, which give insight into the development and progression of cancers.
Collapse
Affiliation(s)
- T J M Kuijpers
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - J C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - D G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
195
|
Grammatikos A, Johnston S, Rice CM, Gompels M. A Family with a Novel CTLA4 Haploinsufficiency Mutation and Neurological Symptoms. J Clin Immunol 2021; 41:1411-1416. [PMID: 33956248 PMCID: PMC8310858 DOI: 10.1007/s10875-021-01027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/17/2021] [Indexed: 10/26/2022]
|
196
|
Jamee M, Hosseinzadeh S, Sharifinejad N, Zaki-Dizaji M, Matloubi M, Hasani M, Baris S, Alsabbagh M, Lo B, Azizi G. Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 2021; 205:28-43. [PMID: 33788257 DOI: 10.1111/cei.13600] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) haploinsufficiency (CHAI) and lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency (LATAIE) are newly identified inborn errors of immunity with shared molecular pathomechanisms and clinical manifestations. In this review, we aimed to provide differential comparisons regarding demographic, clinical, immunological and molecular characteristics between these two similar conditions. A literature search was conducted in PubMed, Web of Science and Scopus databases and included studies were systematically evaluated. Overall, 434 (222 CHAI and 212 LATAIE) patients were found in 101 eligible studies. The CHAI patients were mainly reported from North America and western Europe, while LATAIE patients were predominantly from Asian countries. In CHAI, positive familial history (P < 0·001) and in LATAIE, consanguineous parents (P < 0·001) were more common. In CHAI patients the rates of granulomas (P < 0·001), malignancies (P = 0·001), atopy (P = 0·001), cutaneous disorders (P < 0·001) and neurological (P = 0·002) disorders were higher, while LATAIE patients were more commonly complicated with life-threatening infections (P = 0·002), pneumonia (P = 0·006), ear, nose and throat disorders (P < 0·001), organomegaly (P = 0·023), autoimmune enteropathy (P = 0·038) and growth failure (P < 0·001). Normal lymphocyte subsets and immunoglobulins except low serum levels of CD9+ B cells (14·0 versus 38·4%, P < 0·001), natural killer (NK) cells (21 versus 41·1%, P < 0·001), immunoglobulin (Ig)G (46·9 versus 41·1%, P = 0·291) and IgA (54·5 versus 44·7%, P = 0·076) were found in the majority of CHAI and LATAIE patients, respectively. The most frequent biological immunosuppressive agents prescribed for CHAI and LATAIE patients were rituximab and abatacept, respectively. Further investigations into the best conditioning and treatment regimens pre- and post-transplantation are required to improve the survival rate of transplanted CHAI and LATAIE patients.
Collapse
Affiliation(s)
- M Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Hosseinzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - N Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - M Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - M Matloubi
- Medical Immunology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - M Hasani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - S Baris
- Pediatric Allergy and Immunology, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Marmara University Hospital, Istanbul, Turkey
| | - M Alsabbagh
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - B Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - G Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
197
|
Bode SFN, Rohr J, Müller Quernheim J, Seidl M, Speckmann C, Heinzmann A. Pulmonary granulomatosis of genetic origin. Eur Respir Rev 2021; 30:30/160/200152. [PMID: 33927005 PMCID: PMC9488645 DOI: 10.1183/16000617.0152-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Granulomatous inflammation of the lung can be a manifestation of different conditions and can be caused by endogenous inflammation or external triggers. A multitude of different genetic mutations can either predispose patients to infections with granuloma-forming pathogens or cause autoinflammatory disorders, both leading to the phenotype of pulmonary granulomatosis. Based on a detailed patient history, physical examination and a diagnostic approach including laboratory workup, pulmonary function tests (PFTs), computed tomography (CT) scans, bronchoscopy with bronchoalveolar lavage (BAL), lung biopsies and specialised microbiological and immunological diagnostics, a correct diagnosis of an underlying cause of pulmonary granulomatosis of genetic origin can be made and appropriate therapy can be initiated. Depending on the underlying disorder, treatment approaches can include antimicrobial therapy, immunosuppression and even haematopoietic stem cell transplantation (HSCT). Patients with immunodeficiencies and autoinflammatory conditions are at the highest risk of developing pulmonary granulomatosis of genetic origin. Here we provide a review on these disorders and discuss pathogenesis, clinical presentation, diagnostic approach and treatment. Pulmonary granulomatosis of genetic origin mostly occurs in immunodeficiency disorders and autoinflammatory conditions. In addition to specific approaches in this regard, the diagnostic workup needs to cover environmental and occupational aspects.https://bit.ly/31SqdHW
Collapse
Affiliation(s)
- Sebastian F N Bode
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Rohr
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim Müller Quernheim
- Dept of Pneumology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilan Seidl
- Institute for Surgical Pathology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Carsten Speckmann
- Centre for Paediatrics and Adolescent Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Centre for Chronic Immunodeficiency (CCI), Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzmann
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
198
|
Gámez-Díaz L, Seidel MG. Different Apples, Same Tree: Visualizing Current Biological and Clinical Insights into CTLA-4 Insufficiency and LRBA and DEF6 Deficiencies. Front Pediatr 2021; 9:662645. [PMID: 33996698 PMCID: PMC8113415 DOI: 10.3389/fped.2021.662645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a crucial immune checkpoint that is constitutively expressed in regulatory T (Treg) cells. Following T-cell activation, CTLA-4 is rapidly mobilized from its intracellular vesicle pool to the cell surface to control the availability of co-stimulatory B7 molecules, thereby maintaining immune homeostasis. Heterozygous mutations in CTLA-4 lead to defects in (i) CTLA-4 ligand binding, (ii) homo-dimerization, (iii) B7-transendocytosis, and (iv) CTLA-4 vesicle trafficking, resulting in an inborn error of immunity with predominant autoimmunity. CTLA-4 vesicle trafficking impairment is also observed in patients with lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency or the differentially expressed in FDCP6 homolog (DEF6) deficiency, caused by biallelic mutations in LRBA and DEF6, respectively. Therefore, patients with CTLA-4 insufficiency, LRBA deficiency, and-most recently reported-DEF6 deficiency present an overlapping clinical phenotype mainly attributed to a defective suppressive activity of Tregs, as all three diseases reduce overall surface expression of CTLA-4. In this paper, we describe the clinical phenotypes of these immune checkpoint defects, their patho-mechanisms, and visually compare them to other immune regulatory disorders (IPEX syndrome, CD27, and CD70 deficiencies) by using the immune deficiency and dysregulation (IDDA version 2.1) "kaleidoscope" score. This illustrates the variability of the degrees and manifestations of immune deficiency and dysregulation. Patients characteristically present with an increased risk of infections, autoimmune cytopenias, multi-organ autoimmunity, and inflammation, which are often severe and life-threatening. Furthermore, these patients suffer an increased risk of developing malignancies, especially Non-Hodgkin's lymphoma. Successful treatment options include regular administration of soluble CTLA-4-Ig fusion protein, Treg cell-sparing immune suppressants like sirolimus or mycophenolate mofetil, and hematopoietic stem cell transplantation. This mini-review highlights the most relevant biological and clinical features as well as treatment options for CTLA-4 insufficiency and LRBA and DEF6 deficiencies.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Faculty of Medicine, Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Markus G. Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Pediatric Hematology and Immunology, Medical University of Graz, Graz, Austria
| |
Collapse
|
199
|
Gámez-Díaz L, Grimbacher B. Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed J 2021; 44:400-411. [PMID: 34384744 PMCID: PMC8514790 DOI: 10.1016/j.bj.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited non-malignant and non-infectious lymphoproliferative syndrome caused by mutations in genes affecting the extrinsic apoptotic pathway (FAS, FASL, CASP10). The resulting FAS-mediated apoptosis defect accounts for the expansion and accumulation of autoreactive (double-negative) T cells leading to cytopenias, splenomegaly, lymphadenopathy, autoimmune disorders, and risk of lymphoma. However, there are other monogenetic disorders known as ALPS-like syndromes that can be clinically similar to ALPS but are genetically and biologically different, such as observed in patients with immune checkpoint deficiencies, particularly cytotoxic T-lymphocyte antigen 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive beige-like anchor protein LRBA deficiency. CTLA-4 insufficiency is caused by heterozygous mutations in CTLA-4, an essential negative immune regulator that is constitutively expressed on regulatory T (Treg) cells. Mutations in CTLA-4 affect CTLA-4 binding to CD80-CD86 costimulatory molecules, CTLA-4 homodimerization, or CTLA-4 intracellular vesicle trafficking upon cell activation. Abnormal CTLA-4 trafficking is also observed in patients with LRBA deficiency, a syndrome caused by biallelic mutations in LRBA that abolishes the LRBA protein expression. Both immune checkpoint deficiencies are biologically characterized by low levels of CTLA-4 protein on the cell surface of Tregs, accounting for the autoimmune manifestations observed in CTLA4-insufficient and LRBA-deficient patients. In addition, both immune checkpoint deficiencies present with an overlapping but heterogeneous clinical picture despite the difference in inheritance and penetrance. In this review, we describe the most prominent clinical features of ALPS, CTLA-4 insufficiency and LRBA deficiency, emphasizing their corresponding biological mechanisms. We also provide some clinical and laboratory approaches to diagnose these three rare immune disorders, together with therapeutic strategies that have worked best at improving prognosis and quality life of patients.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
200
|
Fieschi C, Viallard JF. [Common variable immunodeficiency disorders: Updated diagnostic criteria and genetics]. Rev Med Interne 2021; 42:465-472. [PMID: 33875312 DOI: 10.1016/j.revmed.2021.03.328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are a heterogeneous group of conditions with hypogammaglobulinemia as the common denominator. These are the most common symptomatic primary immunodeficiency disorder in adults. Two different clinical forms are described: one group only develops infections, while a second includes (sometimes without infections, at least at the onset of disease course) a variety of non-infectious autoimmune, inflammatory, granulomatous and/or lymphoproliferative manifestations, sometimes revealing the disease and often observed in Internal Medicine. The international diagnostic criteria for CVID were updated in 2016 and are the subject of several comments in this general review. The recent use of new sequencing techniques makes it possible to better genetically define CVID. The identification of such a genetic disease makes it possible to treat pathophysiologically, in particular autoimmune and lymphoproliferative complications, with targeted treatments, sometimes used in other diseases. Determining a genetic disease in these patients also makes it possible to provide appropriate genetic counseling, and therefore to monitor mutated individuals, symptomatic or not.
Collapse
Affiliation(s)
- C Fieschi
- Département d'immunologie, Assistance Publique hôpitaux de Paris (AP-HP), Université de Paris, Paris, France; Inserm U976, institut de recherche Saint-Louis, hôpital Saint-Louis, centre constitutif déficit immunitaire chez l'adulte, CEREDIH, Paris, France
| | - J-F Viallard
- Service de médecine interne et maladies infectieuses, hôpital Haut-Lévêque, CHU de Bordeaux, 5, avenue de Magellan, 33604 Pessac, France; Université de Bordeaux, Bordeaux, France.
| |
Collapse
|