151
|
Anderson AJ, Ruehl WW, Fleischmann LK, Stenstrom K, Entriken TL, Cummings BJ. DNA damage and apoptosis in the aged canine brain: relationship to Abeta deposition in the absence of neuritic pathology. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24:787-99. [PMID: 11191713 DOI: 10.1016/s0278-5846(00)00106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. In addition to beta-amyloid (Abeta) deposition and cytoskeletal neuropathology, both the Alzheimer's disease (AD) and Down's syndrome (DS) human brain exhibit marked evidence of DNA damage, however, it is difficult to separate events that occur in conjunction with neurofibrillary pathology versus Abeta pathology in these systems. 2. In contrast, the aged canine brain exhibits the accumulation of Abeta into diffuse deposits similar to those found in early AD and DS in the absence of neurofibrillary pathology. Furthermore, Abeta deposition in canine brain is correlated with cognitive deficits. 3. In order to test the hypothesis that TUNEL labeling for DNA damage in AD is not simply a consequence of agonal artifacts, postmortem artifacts, or neurofibrillary pathology, and may be directly related to Abeta deposition, we examined Abeta immunoreactivity, PHF-1 immunoreactivity, and TUNEL labeling in this animal model. 4. These experiments reveal a relationship between the amount of DNA damage detected by TUNEL labeling and levels of Abeta deposition. Further, in animals with no TUNEL labeling, we detected no Abeta immunoreactivity. 5. These data support the hypothesis that TUNEL labeling in AD ans DS is not a consequence of agonal artifact, postmortem artifact, or tau pathology, and may be directly related to Abeta deposition and perhaps AD pathogenesis.
Collapse
Affiliation(s)
- A J Anderson
- Institute for Brain Aging and Dementia, University of California, Irvine 92696-4540, USA
| | | | | | | | | | | |
Collapse
|
152
|
Anderson AJ, Stoltzner S, Lai F, Su J, Nixon RA. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol Aging 2000; 21:511-24. [PMID: 10924764 DOI: 10.1016/s0197-4580(00)00126-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously shown that Alzheimer disease (AD) brain exhibits terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) for DNA damage and morphological evidence for apoptosis. Down syndrome (DS) is a neurodegenerative disorder that exhibits significant neuropathological parallels with AD. In accordance with these parallels and the need to clarify the mechanism of cell death in DS and AD, we investigated two principal issues in the present study. First, we investigated the hypothesis that TUNEL labeling for DNA damage and morphological evidence for apoptosis is also present in the DS brain. All DS cases employed had a neuropathological diagnosis of AD. Analysis of these cases showed that DS brain exhibits a significant increase in the number of TUNEL-labeled nuclei relative to controls matched for age, Postmortem Delay, and Archival Length, and that a subset of TUNEL-positive nuclei exhibits apoptotic morphologies. We also report that Archival Length in 10% formalin can significantly affect TUNEL labeling in postmortem human brain, and therefore, that Archival Length must be controlled for as a variable in this type of study. Second, we investigated whether biochemical evidence for the mechanism of cell death in DS and AD could be detected. To address this question we employed pulsed-field gel electrophoresis (PFGE) as a sensitive method to evaluate DNA integrity. Although apoptotic oligonucleosomal laddering has not previously been observed in AD, PFGE of DNA from control, DS and AD brain in the present study revealed evidence of high molecular weight DNA fragmentation indicative of apoptosis. This represents biochemical support for an apoptotic mechanism of cell death in DS and AD.
Collapse
Affiliation(s)
- A J Anderson
- Institute for Brain Aging and Dementia, University of California, Irvine, 1113 Gillespie NRF, Irvine, CA 92697-4540, USA.
| | | | | | | | | |
Collapse
|
153
|
Abstract
BACKGROUND & AIMS Many reports indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) have antineoplastic effects, but the precise molecular mechanism(s) responsible are unclear. We evaluated the effect of cyclooxygenase (COX) inhibitors (NSAIDs) on human colon carcinoma cells (HCA-7) and identified several genes that are regulated after treatment with NS-398, a selective COX-2 inhibitor. METHODS Differential display polymerase chain reaction cloning techniques were used to identify genes regulated by treatment with NSAIDs and selective COX-2 inhibitors. RESULTS A prostate apoptosis response 4 (Par-4) gene was up-regulated after NSAID treatment. Par-4 was first isolated from prostate carcinoma cells undergoing apoptosis, and expression of Par-4 sensitized cancer cells to apoptotic stimuli. Par-4 levels were increased in cells treated with COX inhibitors such as NS-398, nimesulide, SC-58125, and sulindac sulfide. Treatment of HCA-7 cells with these agents also induced apoptotic cell death. CONCLUSIONS The results suggest that regulation of Par-4 contributes to the proapoptotic effects of high-dose COX inhibitors (NSAIDs) by serving as a downstream mediator leading to initiation of programmed cell death.
Collapse
Affiliation(s)
- Z Zhang
- Division of Gastroenterology, Department of Medicine and Cell Biology, Vanderbilt University Medical Center, Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
154
|
Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci 2000. [PMID: 10804206 DOI: 10.1523/jneurosci.20-10-03641.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of ionotropic glutamate receptors of the AMPA and NMDA subtypes likely contributes to neuronal injury and death in various neurodegenerative disorders. Excitotoxicity can manifest as either apoptosis or necrosis, but the mechanisms that determine the mode of cell death are not known. We now report that levels of AMPA receptor subunits GluR-1 and GluR-4 are rapidly decreased in cultured rat hippocampal neurons undergoing apoptosis in response to withdrawal of trophic support (WTS), whereas levels of NMDA receptor subunits NR1, NR2A, and NR2B are unchanged. Exposure of isolated synaptosomal membranes to "apoptotic" cytosolic extracts resulted in rapid degradation of AMPA receptor subunits. Treatment of cells and synaptosomal membranes with the caspase inhibitors prevented degradation of AMPA receptor subunits, demonstrating a requirement for caspases in the process. Calcium responses to AMPA receptor activation were reduced after withdrawal of trophic support and enhanced after treatment with caspase inhibitors. Vulnerability of neurons to excitotoxic necrosis was decreased after withdrawal of trophic support and potentiated by treatment with caspase inhibitors. Our data indicate that caspase-mediated degradation of AMPA receptor subunits occurs during early periods of cell stress and may serve to ensure apoptosis by preventing excitotoxic necrosis.
Collapse
|
155
|
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222-9. [PMID: 10782128 DOI: 10.1016/s0166-2236(00)01548-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) is a multifaceted organelle that regulates protein synthesis and trafficking, cellular responses to stress, and intracellular Ca2+ levels. In neurons, it is distributed between the cellular compartments that regulate plasticity and survival, which include axons, dendrites, growth cones and synaptic terminals. Intriguing communication networks between ER, mitochondria and plasma membrane are being revealed that provide mechanisms for the precise regulation of temporal and spatial aspects of Ca2+ signaling. Alterations in Ca2+ homeostasis in ER contribute to neuronal apoptosis and excitotoxicity, and are being linked to the pathogenesis of several different neurodegenerative disorders, including Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
156
|
Pedersen WA, Luo H, Kruman I, Kasarskis E, Mattson MP. The prostate apoptosis response-4 protein participates in motor neuron degeneration in amyotrophic lateral sclerosis. FASEB J 2000; 14:913-24. [PMID: 10783145 DOI: 10.1096/fasebj.14.7.913] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostate apoptosis response-4 (Par-4), a protein containing a leucine zipper domain within a death domain, is up-regulated in prostate cancer cells and hippocampal neurons induced to undergo apoptosis. Here, we report higher Par-4 levels in lumbar spinal cord samples from patients with amyotrophic lateral sclerosis (ALS) than in lumbar spinal cord samples from neurologically normal patients. We also compared the levels of Par-4 in lumbar spinal cord samples from wild-type and transgenic mice expressing the human Cu/Zn-superoxide dismutase gene with a familial ALS mutation. Relative to control samples, higher Par-4 levels were observed in lumbar spinal cord samples prepared from the transgenic mice at a time when they had hind-limb paralysis. Immunohistochemical analyses of human and mouse lumbar spinal cord sections revealed that Par-4 is localized to motor neurons in the ventral horn region. In culture studies, exposure of primary mouse spinal cord motor neurons or NSC-19 motor neuron cells to oxidative insults resulted in a rapid and large increase in Par-4 levels that preceded apoptosis. Pretreatment of the motor neuron cells with a Par-4 antisense oligonucleotide prevented oxidative stress-induced apoptosis and reversed oxidative stress-induced mitochondrial dysfunction that preceded apoptosis. Collectively, these data suggest a role for Par-4 in models of motor neuron injury relevant to ALS.
Collapse
Affiliation(s)
- W A Pedersen
- Sanders-Brown Research Center on Aging, Department of Neurology, and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
157
|
Garrido R, Malecki A, Hennig B, Toborek M. Nicotine attenuates arachidonic acid-induced neurotoxicity in cultured spinal cord neurons. Brain Res 2000; 861:59-68. [PMID: 10751565 DOI: 10.1016/s0006-8993(00)01977-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arachidonic acid release from cellular membranes due to spinal cord trauma may be one of the principal destructive events that can lead to progressive injury to spinal cord tissue. Exposure to arachidonic acid can compromise neuronal survival and viability. Because nicotine is known to be a neuroprotective agent, we propose that it can prevent arachidonic acid-induced neurotoxicity. To study this hypothesis, effects of nicotine on mitochondrial function, cellular energy content and apoptotic cell death were measured in cultured spinal cord neurons treated with arachidonic acid. Nicotine attenuated arachidonic acid-induced compromised cell viability and cellular ATP levels in spinal cord neurons. Nicotine exerted these protective effects when used at the concentration of 10 microM and only after a 2-h pre-treatment before a co-exposure to arachidonic acid. Antagonists of nicotinic receptors, such as alpha-bungarotoxin or mecamylamine, only partially reversed these neuroprotective effects of nicotine. In addition, nicotine prevented arachidonic acid-induced activation of caspase-3 activity and apoptotic cell death. These results indicate that nicotine pre-treatment can exert a protective effect against arachidonic acid-induced injury to spinal cord neurons.
Collapse
Affiliation(s)
- R Garrido
- Department of Surgery, Division of Neurosurgery, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
158
|
Hu Q, Jin LW, Starbuck MY, Martin GM. Broadly altered expression of the mRNA isoforms of FE65, a facilitator of beta amyloidogenesis, in Alzheimer cerebellum and other brain regions. J Neurosci Res 2000; 60:73-86. [PMID: 10723070 DOI: 10.1002/(sici)1097-4547(20000401)60:1<73::aid-jnr8>3.0.co;2-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FE65 is a key "adapter" protein that links a multiprotein complex to an intracellular domain of beta-amyloid precursor protein (betaPP). Its overexpression modulates the trafficking of betaPP and facilitates the generation of beta-amyloid (Abeta). FE65 is predominantly expressed in brain tissues. An exon 9-inclusive isoform is exclusively expressed in neurons, and an exon 9-exclusive isoform is only expressed in non-neuronal cells. We quantitated the two isoforms in middle temporal cortex, middle frontal cortex, cerebellar cortex and caudate nucleus of 17 Alzheimer disease (AD) patients, 12 normal controls and 9 non-AD neurodegenerative disease controls by reverse transcription-competitive polymerase chain reaction (RT-cPCR). Expression of the two isoforms was significantly and differentially altered, with a 30-57% decrease in levels of the neuronal form (P < 0.05-0.002) and a 73-135% increase in levels of non-neuronal form (P < 0.02-0.001), in the temporal and frontal cortex of AD brains. These alterations presumably reflect advanced neurodegenerative processes of these regions. Surprisingly, expression of both isoforms was significantly up-regulated by 42-66% in the cerebellar cortex and caudate nucleus of AD brains when compared to normal brains (P < 0.05-0.005). Diffuse Abeta-positive plaques were observed in the cerebellum of these AD subjects but not in the normal controls. Selective up-regulation of only the FE65 neuronal isoform was seen in the cerebellar cortex in association with other neurodegenerative diseases (largely Parkinson's disease). Because FE65 modulates trafficking of betaPP toward the production of Abeta, the up-regulation of FE65 in AD cerebellum may be relevant to the genesis of diffuse plaques. Thus, early biochemical alterations in AD, not complicated by advanced pathology, may be beneficially investigated in the less-affected regions of the brain, such as the cerebellum.
Collapse
Affiliation(s)
- Q Hu
- Department of Pathology, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
159
|
Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann N Y Acad Sci 2000; 893:154-75. [PMID: 10672236 DOI: 10.1111/j.1749-6632.1999.tb07824.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic degeneration and death of nerve cells are defining features of Alzheimer's disease (AD) and Parkinson's disease (PD), the two most prevalent age-related neurodegenerative disorders. In AD, neurons in the hippocampus and basal forebrain (brain regions that subserve learning and memory functions) are selectively vulnerable. In PD dopamine-producing neurons in the substantia nigra-striatum (brain regions that control body movements) selectively degenerate. Studies of postmortem brain tissue from AD and PD patients have provided evidence for increased levels of oxidative stress, mitochondrial dysfunction and impaired glucose uptake in vulnerable neuronal populations. Studies of animal and cell culture models of AD and PD suggest that increased levels of oxidative stress (membrane lipid peroxidation, in particular) may disrupt neuronal energy metabolism and ion homeostasis, by impairing the function of membrane ion-motive ATPases and glucose and glutamate transporters. Such oxidative and metabolic compromise may there-by render neurons vulnerable to excitotoxicity and apoptosis. Studies of the pathogenic mechanisms of AD-linked mutations in amyloid precursor protein (APP) and presenilins strongly support central roles for perturbed cellular calcium homeostasis and aberrant proteolytic processing of APP as pivotal events that lead to metabolic compromise in neurons. Specific molecular "players" in the neurodegenerative processes in AD and PD are being identified and include Par-4 and caspases (bad guys) and neurotrophic factors and stress proteins (good guys). Interestingly, while studies continue to elucidate cellular and molecular events occurring in the brain in AD and PD, recent data suggest that both AD and PD can manifest systemic alterations in energy metabolism (e.g., increased insulin resistance and dysregulation of glucose metabolism). Emerging evidence that dietary restriction can forestall the development of AD and PD is consistent with a major "metabolic" component to these disorders, and provides optimism that these devastating brain disorders of aging may be largely preventable.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
160
|
Abstract
Many neurological disorders involve cell death. During development of the nervous system, cell death is a normal feature. Elimination of substantial numbers of initially generated cells enables useful pruning of "mismatched" or excessive cells produced by exuberance during the proliferative and migratory phases of development. Such cell death, occurring by "programmed" pathways, is termed apoptosis. In mature organisms, cells die in two major fashions, either by necrosis or apoptosis. In the adult nervous system, because there is little cell production during adulthood, there is little normal cell death. However, neurological disease is often associated with significant neural cell death. Acute disorders, occurring over minutes to hours, such as brain trauma, infarction, hemorrhage, or infection, prominently involve cell death, much of which is by necrosis. Chronic disorders, with relatively slow central nervous system degeneration, may occur over years or decades, but may involve cell losses. Such disorders include motor neuron diseases such as amyotrophic lateral sclerosis (ALS), cerebral dementing disorders such as Alzheimer's disease and frontotemporal dementia, and a variety of degenerative movement disorders including Parkinson's disease, Huntington's disease, and the inherited ataxias. There is evidence that the mechanism of neuronal cell death in these disorders may involve apoptosis. Direct conclusive evidence of apoptosis is scarce in these chronic disorders, because of the swiftness of cell death in relation to the slowness of the disease. Thus, at any particular time point of assessment, very few cells would be expected to be undergoing death. However, it is clearly of importance to define the type of cell death in these disorders. Of significance is that while treating the underlying causes of these conditions is an admirable goal, it may also be possible to develop productive therapies based on alleviating the process of cell death. This is particularly likely if this cell loss is through apoptosis, a programmed process for which the molecular cascade is increasingly understood. This article reviews our understanding of apoptosis in the nervous system, concentrating on its possible roles in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- L S Honig
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas 75235-9036, USA
| | | |
Collapse
|
161
|
Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74:443-56. [PMID: 10646495 DOI: 10.1046/j.1471-4159.2000.740443.x] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor nuclear factor kappaB (NF-kappaB) is moving to the forefront of the fields of apoptosis and neuronal plasticity because of recent findings showing that activation of NF-kappaB prevents neuronal apoptosis in various cell culture and in vivo models and because NF-kappaB is activated in association with synaptic plasticity. Activation of NF-kappaB was first shown to mediate antiapoptotic actions of tumor necrosis factor in cultured neurons and was subsequently shown to prevent death of various nonneuronal cells. NF-kappaB is activated by several cytokines and neurotrophic factors and in response to various cell stressors. Oxidative stress and elevation of intracellular calcium levels are particularly important inducers of NF-kappaB activation. Activation of NF-kappaB can interrupt apoptotic biochemical cascades at relatively early steps, before mitochondrial dysfunction and oxyradical production. Gene targets for NF-kappaB that may mediate its antiapoptotic actions include the antioxidant enzyme manganese superoxide dismutase, members of the inhibitor of apoptosis family of proteins, and the calcium-binding protein calbindin D28k. NF-kappaB is activated by synaptic activity and may play important roles in the process of learning and memory. The available data identify NF-kappaB as an important regulator of evolutionarily conserved biochemical and molecular cascades designed to prevent cell death and promote neuronal plasticity. Because NF-kappaB may play roles in a range of neurological disorders that involve neuronal degeneration and/or perturbed synaptic function, pharmacological and genetic manipulations of NF-kappaB signaling are being developed that may prove valuable in treating disorders ranging from Alzheimer's disease to schizophrenia.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | | | | | |
Collapse
|
162
|
Camandola S, Poli G, Mattson MP. The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J Neurochem 2000; 74:159-68. [PMID: 10617117 DOI: 10.1046/j.1471-4159.2000.0740159.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor activator protein-1 (AP-1) is activated in response to physiological activity in neuronal circuits and in response to neuronal injury associated with various acute and chronic neurodegenerative conditions. The membrane lipid peroxidation product 4-hydroxy-2,3-nonenal (HNE) is increasingly implicated in the disruption of neuronal calcium homeostasis that occurs in various paradigms of neuronal excitotoxicity and apoptosis. The possible mechanistic links between lipid peroxidation and alterations in gene transcription during neuronal apoptosis have not previously been examined. We now report that exposure of cultured rat cortical neurons to an apoptotic concentration of HNE results in a large increase in AP-1 DNA-binding activity. The protein synthesis inhibitor cycloheximide blocked the induction of AP-1, consistent with a requirement for induction of expression of AP-1 family members. The broad-spectrum caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone and the caspase-3 inhibitor N-acetyl-Asp-Glu-Val-Asp-aldehyde blocked HNE-induced increases in AP-1 DNA-binding activity, demonstrating a requirement for caspase activation in the activation of AP-1. HNE induced phosphorylation of c-Jun N-terminal kinase (JNK), which was prevented by caspase inhibitors, indicating that HNE was acting at or upstream of JNK phosphorylation. The intracellular calcium chelator BAPTA-acetoxymethyl ester completely prevented stimulation of AP-1 DNA-binding by HNE, indicating a requirement for calcium. Moreover, agents that suppress mitochondrial calcium uptake (ruthenium red) and membrane permeability transition (cyclosporin A) attenuated AP-1 activation by HNE, suggesting a contribution of mitochondrial alterations to AP-1 activation. Collectively, our data suggest a scenario in which HNE disrupts neuronal calcium homeostasis and perturbs mitochondrial function, resulting in caspase activation. Activated caspases, in turn, induce activation of JNK, resulting in stimulation of AP-1 DNA-binding protein production. This transcriptional pathway induced by HNE may modulate the cell death process.
Collapse
Affiliation(s)
- S Camandola
- Sanders-Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA
| | | | | |
Collapse
|
163
|
Abstract
Alzheimer's disease (AD) is characterized by the deposition of senile plaques (SPs) and neurofibrillary tangles (NFTs) in vulnerable brain regions. SPs are composed of aggregated beta-amyloid (Abeta) 40/42(43) peptides. Evidence implicates a central role for Abeta in the pathophysiology of AD. Mutations in betaAPP and presenilin 1 (PS1) lead to elevated secretion of Abeta, especially the more amyloidogenic Abeta42. Immunohistochemical studies have also emphasized the importance of Abeta42 in initiating plaque pathology. Cell biological studies have demonstrated that Abeta is generated intracellularly. Recently, endogenous Abeta42 staining was demonstrated within cultured neurons by confocal immunofluorescence microscopy and within neurons of PS1 mutant transgenic mice. A central question about the role of Abeta in disease concerns whether extracellular Abeta deposition or intracellular Abeta accumulation initiates the disease process. Here we report that human neurons in AD-vulnerable brain regions specifically accumulate gamma-cleaved Abeta42 and suggest that this intraneuronal Abeta42 immunoreactivity appears to precede both NFT and Abeta plaque deposition. This study suggests that intracellular Abeta42 accumulation is an early event in neuronal dysfunction and that preventing intraneuronal Abeta42 aggregation may be an important therapeutic direction for the treatment of AD.
Collapse
|
164
|
Davis PK, Johnson GV. The microtubule binding of Tau and high molecular weight Tau in apoptotic PC12 cells is impaired because of altered phosphorylation. J Biol Chem 1999; 274:35686-92. [PMID: 10585448 DOI: 10.1074/jbc.274.50.35686] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although the importance of the microtubule network throughout cell life is well established, the dynamics of microtubules during apoptosis, a regulated cell death process, is unclear. In a previous study (Davis, P. K., and Johnson, G. V. (1999) Biochem. J. 340, 51-58) we demonstrated that the phosphorylation of the microtubule-associated protein tau was increased during neuronal PC12 cell apoptosis. The purpose of this study was to determine whether the increased tau phosphorylation that occurred during apoptosis impaired the microtubule binding capacity of tau. This study is the first demonstration that microtubule-binding by tau and high molecular weight tau is significantly impaired as a result of altered phosphorylation during a naturally occurring process, apoptosis. Furthermore, co-immunofluorescence studies reveal for the first time that tau populations within an apoptotic neuronal PC12 cell exhibit differential phosphorylation. In control PC12 cells, Tau-1 staining (Tau-1 recognizes an unphosphorylated epitope) is evident throughout the entire cell body. In contrast, Tau-1 immunoreactivity in apoptotic PC12 cells is retained in the nuclear/perinuclear region but is significantly decreased in the cytoplasm up to the plasma membrane. The selective distribution of phosphorylated tau in apoptotic PC12 cells indicates that tau likely plays a significant role in the cytoskeletal changes that occur during apoptosis.
Collapse
Affiliation(s)
- P K Davis
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
165
|
Page G, Kögel D, Rangnekar V, Scheidtmann KH. Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 1999; 18:7265-73. [PMID: 10602480 DOI: 10.1038/sj.onc.1203170] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dlk/ZIP kinase is a newly discovered serine/threonine kinase which, due to its homology to DAP kinase, was named DAP like kinase, Dlk. This kinase is tightly associated with nuclear structures, it undergoes extensive autophosphorylation and phosphorylates myosin light chain and core histones H3, H2A and H4 in vitro. Moreover, it possesses a leucine zipper which mediates interaction with transcription factor ATF-4, therefore it was called ZIP kinase. We employed the yeast two-hybrid system to identify interaction partners of Dlk that might serve as regulators or targets. Besides ATF-4 and others we found Par-4, a modulator of transcription factor WT1 and mediator of apoptosis. Complex formation between Dlk and Par-4 was confirmed by GST pull-down experiments and kinase reactions in vitro and coexpression experiments in vivo. The interaction domain within Dlk was mapped to an arginine-rich region between residues 338 - 417, rather than to the leucine zipper. Strikingly, coexpression of Dlk and Par-4 lead to relocation of Dlk from the nucleus to the cytoplasm, particularly to actin filaments. These interactions provoked a dramatic reorganization of the cytoskeleton and morphological symptoms of apoptosis, thus suggesting a functional relationship between Dlk and Par-4 in the control of apoptosis.
Collapse
Affiliation(s)
- G Page
- Institute of Genetics, University of Bonn, Roemerstr. 164, D-53117 Bonn, Germany
| | | | | | | |
Collapse
|
166
|
Abstract
Activation of the transcription factor nuclear factor kappa B (NF-kB) has been intensely studied in the past several years due to its role as an inducible regulator of inflammation, apoptosis, transformation, and oncogenesis. Recently, increasing evidence supports a role for NF-kB in regulation of anti-apoptotic gene expression and promotion of cell survival (May and Ghosh [1999] Science 284:272-273). Studies in the past 5 years have provided evidence that NF-kB regulates neuronal survival as well. Moreover, atypical protein kinase (aPKC) has been shown to play a novel role in modulating the NF-kB pathway. In this review, I focus on neurons and the factors that contribute to regulation of NF-kB via aPKC.
Collapse
Affiliation(s)
- M W Wooten
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
167
|
Qiu SG, Krishnan S, el-Guendy N, Rangnekar VM. Negative regulation of Par-4 by oncogenic Ras is essential for cellular transformation. Oncogene 1999; 18:7115-23. [PMID: 10597313 DOI: 10.1038/sj.onc.1203199] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oncogenic variants of the cellular Ras protein are often associated with different types of human cancers. However, the mechanisms by which oncogenic Ras induces transformation are not fully established. Expression of the transcriptional repressor Par-4 was down-regulated by oncogenic Ras via the Raf-MEK-ERK pathway. Restoration of Par-4 levels by abrogation of the Raf-MEK-ERK pathway with the MEK-inhibitor PD98059 or by ectopic Par-4, that acted to inhibit ERK expression and activation, was sufficient to suppress oncogenic Ras-induced transformation. These findings identify Par-4 as a novel target that has to be down-modulated by oncogenic Ras for successful transformation.
Collapse
Affiliation(s)
- S G Qiu
- Department of Surgery, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
168
|
Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K, Lassmann H. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1459-66. [PMID: 10550301 PMCID: PMC1866960 DOI: 10.1016/s0002-9440(10)65460-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal loss is prominent in Alzheimer's disease (AD), and its mechanisms remain unresolved. Apoptotic cell death has been implicated on the basis of studies demonstrating DNA fragmentation and an up-regulation of proapoptotic proteins in the AD brain. However, DNA fragmentation in neurons is too frequent to account for the continuous neuronal loss in a degenerative disease extending over many years. Furthermore, the typical apoptotic morphology has not been convincingly documented in AD neurons with fragmented DNA. We report the detection of the activated form of caspase-3, the central effector enzyme of the apoptotic cascade, in AD and Down's syndrome (DS) brain using an affinity-purified antiserum. In AD and DS, single neurons with apoptotic morphology showed cytoplasmic immunoreactivity for activated caspase-3, whereas no neurons were labeled in age-matched controls. Apoptotic neurons were identified at an approximate frequency of 1 in 1100 to 5000 neurons in the cases examined. Furthermore, caspase-3 immunoreactivity was detected in granules of granulovacuolar degeneration. Our results provide direct evidence for apoptotic neuronal death in AD with a frequency compatible with the progression of neuronal degeneration in this chronic disease and identify autophagic vacuoles of granulovacuolar degeneration as possible means for the protective segregation of early apoptotic alterations in the neuronal cytoplasm.
Collapse
Affiliation(s)
- Christine Stadelmann
- Brain Research Institute, University of Vienna, Vienna, Austria; IDUN Pharmaceuticals, Inc.,†
| | | | | | | | - Wolfgang Brück
- University of Göttingen, Göttingen, Germany; and the Ludwig Boltzmann Institute for Clinical Neurobiology,¶
| | | | - Hans Lassmann
- Brain Research Institute, University of Vienna, Vienna, Austria; IDUN Pharmaceuticals, Inc.,†
| |
Collapse
|
169
|
Nalca A, Qiu SG, El-Guendy N, Krishnan S, Rangnekar VM. Oncogenic Ras sensitizes cells to apoptosis by Par-4. J Biol Chem 1999; 274:29976-83. [PMID: 10514481 DOI: 10.1074/jbc.274.42.29976] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain mutations in the mammalian ras gene are oncogenic and are often detected in human cancers. Oncogenic Ras induces the transcription activity of NF-kappaB that confers cell survival. Oncogenic Ras also down-modulates the expression of Par-4, a transcriptional repressor protein, that is essential but not sufficient on its own to induce apoptosis. Here we show that reintroduction of Par-4 by transient transfection leads to apoptosis in cells expressing oncogenic Ras but not in those that lack oncogenic Ras expression. Par-4 abrogates oncogenic Ras-inducible NF-kappaB transcription activity but does not interfere with cytoplasmic activation, or the DNA binding activity, of NF-kappaB. Because abrogation of NF-kappaB transcription activity is sufficient to cause apoptosis in cells expressing oncogenic Ras, our findings identify Par-4 as a novel example of a pro-apoptotic protein that selectively inhibits oncogenic Ras-dependent NF-kappaB function at the transcription level and suggest a mechanism by which Par-4 expression may selectively induce apoptosis in oncogenic Ras-expressing cells.
Collapse
Affiliation(s)
- A Nalca
- Department of Surgery, Division of Urology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
170
|
Mattson MP, Duan W. “Apoptotic” biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<152::aid-jnr15>3.0.co;2-v] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
171
|
Chan SL, Tammariello SP, Estus S, Mattson MP. Prostate apoptosis response-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation. J Neurochem 1999; 73:502-12. [PMID: 10428045 DOI: 10.1046/j.1471-4159.1999.0730502.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostate apoptosis response-4 (Par-4) is the product of a gene up-regulated in prostate cancer cells undergoing apoptosis. We now report that Par-4 mRNA and protein levels rapidly and progressively increase 4-24 h following trophic factor withdrawal (TFW) in cultured embryonic rat hippocampal neurons. The increased Par-4 levels follow an increase of reactive oxygen species, and precede mitochondrial membrane depolarization, caspase activation, and nuclear chromatin condensation/fragmentation. Pretreatment of cultures with 17beta-estradiol, vitamin E, and uric acid largely prevented Par-4 induction and cell death following TFW, demonstrating necessary roles for oxidative stress and membrane lipid peroxidation in TFW-induced neuronal apoptosis. Par-4 antisense oligonucleotide treatment blocked Par-4 protein increases and attenuated mitochondrial dysfunction, caspase activation, and cell death following TFW. Collectively, our data identify Par-4 as an early and pivotal player in neuronal apoptosis resulting from TFW and suggest that estrogen and antioxidants may prevent apoptosis, in part, by suppressing Par-4 production.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging and Department of Physiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | |
Collapse
|
172
|
Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res 1999; 57:315-23. [PMID: 10412022 DOI: 10.1002/(sici)1097-4547(19990801)57:3<315::aid-jnr3>3.0.co;2-#] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Alzheimer's disease (AD) synapses degenerate and neurons die in brain regions involved in learning and memory processes. Although the cellular and molecular mechanisms underlying the neurodegenerative process in AD are unclear, increasing evidence suggests roles for amyloid beta-peptide (Abeta) and biochemical cascades associated with a form of programmed cell death called apoptosis. Cysteine proteases of the caspase family are activated in neurons undergoing apoptosis and apparently play a major role in the cell death process by cleaving yet-to-be-identified substrates. We now report that caspase activity is increased in brain tissue and neurons from AD patients, and in cultured hippocampal neurons undergoing apoptosis after exposure to amyloid beta-peptide (Abeta). Western blot analyses using antibodies against different subunits of 2-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) types of ionotropic glutamate receptors indicate that AMPA receptor subunits (GluR1, GluR2/3, and GluR4), but not NMDA receptor subunits (NR1 and NR2A), are proteolytically cleaved after exposure of hippocampal neurons to apoptotic insults, including Abeta, and that the caspase inhibitor zVAD-fmk suppresses such cleavage. Western blot analysis of brain tissue from AD patients and age-matched controls revealed evidence for increased proteolysis of AMPA receptor subunits in AD. Our data suggest roles for caspase-mediated cleavage of AMPA receptor subunits in modifying neuronal responsivity to glutamate and in the neurodegenerative process in AD.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
173
|
Kruman II, Nath A, Maragos WF, Chan SL, Jones M, Rangnekar VM, Jakel RJ, Mattson MP. Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:39-46. [PMID: 10393834 PMCID: PMC1866661 DOI: 10.1016/s0002-9440(10)65096-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Progressive neuronal degeneration in brain regions involved in learning and memory processes is a common occurrence in patients infected with human immunodeficiency virus type 1 (HIV-1). We now report that levels of Par-4, a protein recently linked to neuronal apoptosis in Alzheimer's disease, are increased in neurons in hippocampus of human patients with HIV encephalitis and in monkeys infected with a chimeric strain of HIV-1 and simian immunodeficiency virus. Par-4 levels increased rapidly in cultured hippocampal neurons following exposure to the neurotoxic HIV-1 protein Tat, and treatment of the cultures with a Par-4 antisense oligonucleotide protected the neurons against Tat-induced apoptosis. Additional findings show that Par-4 participates at an early stage of Tat-induced neuronal apoptosis before caspase activation, oxidative stress, and mitochondrial dysfunction. Our data suggest that Par-4 may be a mediator of neuronal apoptosis in HIV encephalitis and that therapeutic approaches targeting the Par-4 apoptotic cascade may prove beneficial in preventing neuronal degeneration and associated dementia in patients infected with HIV-1.
Collapse
Affiliation(s)
| | | | | | | | - Melina Jones
- and the Departments of Surgery and Microbiology and Immunology and Markey Cancer Center,¶
| | | | | | | |
Collapse
|
174
|
Abstract
The mechanism whereby mutations in the presenilin-1 (PS-1) gene on chromosome 14 cause early-onset inherited Alzheimer's disease are unknown. We report that PC6 neural cells (a subclone of PC12 cells) expressing PS-1 mutations (M146V and L286V) exhibit increased superoxide production, nitrotyrosine accumulation, and membrane lipid peroxidation following exposure to amyloid beta-peptide 1-42 (Abeta). Mitochondrial calcium accumulation and membrane depolarization following exposure to Abeta were enhanced in cells expressing mutant PS-1. Overexpression of mitochondrial Mn-SOD greatly reduced superoxide production, nitrotyrosine formation, membrane lipid peroxidation, intramitochondrial calcium accumulation, and membrane depolarization following exposure to Abeta and conferred resistance to the apoptosis-enhancing action of the PS-1 mutations. Nitric oxide synthase inhibitors and the peroxynitrite scavenger uric acid blocked the apoptosis-enhancing action of PS-1 mutations. The data suggest pivotal roles for superoxide production and resulting peroxynitrite formation in the pathogenic mechanism of PS-1 mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
175
|
Duan W, Rangnekar VM, Mattson MP. Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J Neurochem 1999; 72:2312-22. [PMID: 10349840 DOI: 10.1046/j.1471-4159.1999.0722312.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synapses are often located at great distances from the cell body and so must be capable of transducing signals into both local and distant responses. Although progress has been made in understanding biochemical cascades involved in neuronal death during development of the nervous system and in various neurodegenerative disorders, it is not known whether such cascades function locally in synaptic compartments. Prostate apoptosis response-4 (Par-4) is a leucine zipper and death domain-containing protein that plays a role in neuronal apoptosis. We now report that Par-4 levels are rapidly increased in cortical synaptosomes and in dendrites of hippocampal neurons in culture and in vivo, following exposure to apoptotic or excitotoxic insults. Par-4 expression is regulated at the translational level within synaptic compartments. Par-4 antisense treatment suppressed mitochondrial dysfunction and caspase activation in synaptosomes and prevented death of cultured hippocampal neurons following exposure to excitotoxic and apoptotic insults. Local translational regulation of death-related proteins in synaptic compartments may play a role in programmed cell death, adaptive remodeling of synapses, and neurodegenerative disorders.
Collapse
Affiliation(s)
- W Duan
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | |
Collapse
|
176
|
Fu W, Begley JG, Killen MW, Mattson MP. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 1999; 274:7264-71. [PMID: 10066788 DOI: 10.1074/jbc.274.11.7264] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomerase is a protein-RNA enzyme complex that adds a six-base DNA sequence (TTAGGG) to the ends of chromosomes and thereby prevents their shortening. Reduced telomerase activity is associated with cell differentiation and accelerated cellular senescence, whereas increased telomerase activity is associated with cell transformation and immortalization. Because many types of cancer have been associated with reduced apoptosis, whereas cell differentiation and senescence have been associated with increased apoptosis, we tested the hypothesis that telomerase activity is mechanistically involved in the regulation of apoptosis. Levels of telomerase activity in cultured pheochromocytoma cells decreased prior to cell death in cells undergoing apoptosis. Treatment of cells with the oligodeoxynucleotide TTAGGG or with 3,3'-diethyloxadicarbocyanine, agents that inhibit telomerase activity in a concentration-dependent manner, significantly enhanced mitochondrial dysfunction and apoptosis induced by staurosporine, Fe2+ (an oxidative insult), and amyloid beta-peptide (a cytotoxic peptide linked to neuronal apoptosis in Alzheimer's disease). Overexpression of Bcl-2 and the caspase inhibitor zVAD-fmk protected cells against apoptosis in the presence of telomerase inhibitors, suggesting a site of action of telomerase prior to caspase activation and mitochondrial dysfunction. Telomerase activity decreased in cells during the process of nerve growth factor-induced differentiation, and such differentiated cells exhibited increased sensitivity to apoptosis. Our data establish a role for telomerase in suppressing apoptotic signaling cascades and suggest a mechanism whereby telomerase may suppress cellular senescence and promote tumor formation.
Collapse
Affiliation(s)
- W Fu
- Sanders Brown Research Center on Aging and the Department of Anatomy & Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
177
|
Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 1999; 72:1019-29. [PMID: 10037473 DOI: 10.1046/j.1471-4159.1999.0721019.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which express the human PS1M146V mutation at normal levels, exhibit increased vulnerability to amyloid beta-peptide toxicity. The endangering action of mutant PS1 was associated with increased superoxide production, mitochondrial membrane depolarization, and caspase activation. The peroxynitrite-scavenging antioxidant uric acid and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone protected hippocampal neurons expressing mutant PS1 against cell death induced by amyloid beta-peptide. Increased oxidative stress may contribute to the pathogenic action of PS1 mutations, and antioxidants may counteract the adverse property of such AD-linked mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Begley JG, Duan W, Chan S, Duff K, Mattson MP. Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J Neurochem 1999; 72:1030-9. [PMID: 10037474 DOI: 10.1046/j.1471-4159.1999.0721030.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease is characterized by amyloid beta-peptide deposition, synapse loss, and neuronal death, which are correlated with cognitive impairments. Mutations in the presenilin-1 gene on chromosome 14 are causally linked to many cases of early-onset inherited Alzheimer's disease. We report that synaptosomes prepared from transgenic mice harboring presenilin-1 mutations exhibit enhanced elevations of cytoplasmic calcium levels following exposure to depolarizing agents, amyloid beta-peptide, and a mitochondrial toxin compared with synaptosomes from nontransgenic mice and mice overexpressing wild-type presenilin-1. Mitochondrial dysfunction and caspase activation following exposures to amyloid beta-peptide and metabolic insults were exacerbated in synaptosomes from presenilin-1 mutant mice. Agents that buffer cytoplasmic calcium or that prevent calcium release from the endoplasmic reticulum protected synaptosomes against the adverse effect of presenilin-1 mutations on mitochondrial function. Abnormal synaptic calcium homeostasis and mitochondrial dysfunction may contribute to the pathogenic mechanism of presenilin-1 mutations.
Collapse
Affiliation(s)
- J G Begley
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
179
|
Weidemann A, Paliga K, Dürrwang U, Reinhard FB, Schuckert O, Evin G, Masters CL. Proteolytic processing of the Alzheimer's disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J Biol Chem 1999; 274:5823-9. [PMID: 10026204 DOI: 10.1074/jbc.274.9.5823] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is characterized by neurodegeneration and deposition of betaA4, a peptide that is proteolytically released from the amyloid precursor protein (APP). Missense mutations in the genes coding for APP and for the polytopic membrane proteins presenilin (PS) 1 and PS2 have been linked to familial forms of early-onset Alzheimer's disease. Overexpression of presenilins, especially that of PS2, induces increased susceptibility for apoptosis that is even more pronounced in cells expressing presenilin mutants. Additionally, presenilins themselves are targets for activated caspases in apoptotic cells. When we analyzed APP in COS-7 cells overexpressing PS2, we observed proteolytic processing close to the APP carboxyl terminus. Proteolytic conversion was increased in the presence of PS2-I, which encodes one of the known PS2 pathogenic mutations. The same proteolytic processing occurred in cells treated with chemical inducers of apoptosis, suggesting a participation of activated caspases in the carboxyl-terminal truncation of APP. This was confirmed by showing that specific caspase inhibitors blocked the apoptotic conversion of APP. Sequence analysis of the APP cytosolic domain revealed a consensus motif for group III caspases ((IVL)ExD). Mutation of the corresponding Asp664 residue abolished cleavage, thereby identifying APP as a target molecule for caspase-like proteases in the pathways of programmed cellular death.
Collapse
Affiliation(s)
- A Weidemann
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Alzheimer's disease (AD) is the most common and devastating neurodegenerative disease of the elderly. Many research findings on familial AD suggest that the mechanisms of the pathogenesis of the disorder is more complex although the overall neuropathology of all cases of AD is surprisingly very similar. Genetic studies on some families have shown that mutations in the genes encoding beta-amyloid precursor protein and presenilins 1 and 2 are responsible for early-onset AD. In addition, apolipoprotein E gene allele E4 and the bleomycin hydrolase locus are shown to be genetic risk factors for late-onset AD in certain sporadic cases. Mitochondrial dysfunctions and age-related oxidative stress may also contribute to degenerative processes in AD. Although several studies support the amyloid cascade hypothesis as the mechanism of the disease, transgenic experiments and recent findings on a variant form of an AD family suggest that A beta deposition may not be sufficient to cause AD. Identification in the future of other genetic, environmental, and age-related factors, may provide additional targets for therapies.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | | |
Collapse
|
181
|
Overexpression in neurons of human presenilin-1 or a presenilin-1 familial Alzheimer disease mutant does not enhance apoptosis. J Neurosci 1998. [PMID: 9822738 DOI: 10.1523/jneurosci.18-23-09790.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Programmed cell death, or apoptosis, has been implicated in Alzheimer's disease (AD). DNA damage was assessed in primary cortical neurons infected with herpes simplex virus (HSV) vectors expressing the familial Alzheimer's disease (FAD) gene presenilin-1 (PS-1) or an FAD mutant of this gene, A246E. After infection, immunoreactivity for PS-1 was shown to be enhanced in infected cells. The infected cells exhibited no cytotoxicity, as evaluated by trypan blue exclusion and mitochondrial function assays. Quantitative analysis of cells that were immunohistochemically labeled using a Klenow DNA fragmentation assay or the TUNEL method revealed no enhancement of apoptosis in PS-1-infected cells. This result was confirmed using assays for chromatin condensation and for DNA fragmentation. Expression of PS-1 protected against induction of apoptosis in the cortical neurons by etoposide or staurosporine. The specificity of this phenotype was demonstrated by the fact that cortical cultures infected with recombinant HSV vectors expressing the amyloid precursor protein (APP-695) showed, in contrast, a significant increase in the number of apoptotic cells and an increase in DNA fragmentation for all parameters tested. Our results indicate that overexpression of wild-type or A246E mutant PS-1 does not enhance apoptosis in postmitotic cortical cells and suggest that the previously reported enhancement of apoptosis by presenilins may be dependent on cell type.
Collapse
|
182
|
Zhang Z, Hartmann H, Do VM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Sommer B, van de Wetering M, Clevers H, Saftig P, De Strooper B, He X, Yankner BA. Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 1998; 395:698-702. [PMID: 9790190 DOI: 10.1038/27208] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations of the presenilin-1 gene are a major cause of familial early-onset Alzheimer's disease. Presenilin-1 can associate with members of the catenin family of signalling proteins, but the significance of this association is unknown. Here we show that presenilin-1 forms a complex with beta-catenin in vivo that increases beta-catenin stability. Pathogenic mutations in the presenilin-1 gene reduce the ability of presenilin-1 to stabilize beta-catenin, and lead to increased degradation of beta-catenin in the brains of transgenic mice. Moreover, beta-catenin levels are markedly reduced in the brains of Alzheimer's disease patients with presenilin-1 mutations. Loss of beta-catenin signalling increases neuronal vulnerability to apoptosis induced by amyloid-beta protein. Thus, mutations in presenilin-1 may increase neuronal apoptosis by altering the stability of beta-catenin, predisposing individuals to early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Z Zhang
- Department of Neurology, Harvard Medical School, The Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
|