151
|
Liu C, Liu YL, Perillo EP, Dunn AK, Yeh HC. Single-Molecule Tracking and Its Application in Biomolecular Binding Detection. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6804013. [PMID: 27660404 PMCID: PMC5028128 DOI: 10.1109/jstqe.2016.2568160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges.
Collapse
Affiliation(s)
- Cong Liu
- University of Texas at Austin, Austin, TX 78703 USA
| | | | | | | | | |
Collapse
|
152
|
Schnorrenberg S, Grotjohann T, Vorbrüggen G, Herzig A, Hell SW, Jakobs S. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster. eLife 2016; 5. [PMID: 27355614 PMCID: PMC4927295 DOI: 10.7554/elife.15567] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 µm deep within fly tissues. DOI:http://dx.doi.org/10.7554/eLife.15567.001
Collapse
Affiliation(s)
- Sebastian Schnorrenberg
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tim Grotjohann
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gerd Vorbrüggen
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Abteilung Entwicklungsbiologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alf Herzig
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center of Göttingen, Göttingen, Germany
| |
Collapse
|
153
|
Rieckher M. Light Sheet Microscopy to Measure Protein Dynamics. J Cell Physiol 2016; 232:27-35. [DOI: 10.1002/jcp.25451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| |
Collapse
|
154
|
Feng S, Holmes P. Will big data yield new mathematics? An evolving synergy with neuroscience. IMA JOURNAL OF APPLIED MATHEMATICS 2016; 81:432-456. [PMID: 27516705 PMCID: PMC4975073 DOI: 10.1093/imamat/hxw026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 06/06/2023]
Abstract
New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin-Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics.
Collapse
Affiliation(s)
- S Feng
- Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology, and Research, Abu Dhabi, United Arab Emirates
| | - P Holmes
- Program in Applied and Computational Mathematics, Department of Mechanical and Aerospace Engineering and Princeton Neuroscience Institute, Princeton University, NJ 08544
| |
Collapse
|
155
|
Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM, Sankaran S, Grosenick L, Broxton M, Yang S, Deisseroth K. SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function. Cell 2016; 163:1796-806. [PMID: 26687363 PMCID: PMC4775738 DOI: 10.1016/j.cell.2015.11.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/01/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022]
Abstract
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here, we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca(2+) imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function.
Collapse
Affiliation(s)
- Raju Tomer
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Isaac Kauvar
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aaron Andalman
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Vanessa M Burns
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Michael Broxton
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Samuel Yang
- CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
156
|
Icha J, Schmied C, Sidhaye J, Tomancak P, Preibisch S, Norden C. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development. J Vis Exp 2016:e53966. [PMID: 27167079 PMCID: PMC4941907 DOI: 10.3791/53966] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.
Collapse
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics;
| | | | | | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics
| | - Stephan Preibisch
- Max Planck Institute of Molecular Cell Biology and Genetics; HHMI Janelia Research Campus; Berlin Institute of Medical Systems Biology of the Max Delbrück Center
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics;
| |
Collapse
|
157
|
BERTHET BÉATRICE, MAIZEL ALEXIS. Light sheet microscopy and live imaging of plants. J Microsc 2016; 263:158-64. [DOI: 10.1111/jmi.12393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- BÉATRICE BERTHET
- Center for Organismal Studies (COS) University of Heidelberg Heidelberg Germany
| | - ALEXIS MAIZEL
- Center for Organismal Studies (COS) University of Heidelberg Heidelberg Germany
| |
Collapse
|
158
|
BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models. PLoS One 2016; 11:e0148379. [PMID: 26978075 PMCID: PMC4792475 DOI: 10.1371/journal.pone.0148379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/17/2016] [Indexed: 12/23/2022] Open
Abstract
BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.
Collapse
|
159
|
von Wangenheim D, Fangerau J, Schmitz A, Smith RS, Leitte H, Stelzer EHK, Maizel A. Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns. Curr Biol 2016; 26:439-49. [PMID: 26832441 DOI: 10.1016/j.cub.2015.12.047] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022]
Abstract
Plants form new organs with patterned tissue organization throughout their lifespan. It is unknown whether this robust post-embryonic organ formation results from stereotypic dynamic processes, in which the arrangement of cells follows rigid rules. Here, we combine modeling with empirical observations of whole-organ development to identify the principles governing lateral root formation in Arabidopsis. Lateral roots derive from a small pool of founder cells in which some take a dominant role as seen by lineage tracing. The first division of the founders is asymmetric, tightly regulated, and determines the formation of a layered structure. Whereas the pattern of subsequent cell divisions is not stereotypic between different samples, it is characterized by a regular switch in division plane orientation. This switch is also necessary for the appearance of patterned layers as a result of the apical growth of the primordium. Our data suggest that lateral root morphogenesis is based on a limited set of rules. They determine cell growth and division orientation. The organ-level coupling of the cell behavior ensures the emergence of the lateral root's characteristic features. We propose that self-organizing, non-deterministic modes of development account for the robustness of plant organ morphogenesis.
Collapse
Affiliation(s)
- Daniel von Wangenheim
- Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Jens Fangerau
- Center for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexander Schmitz
- Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute of Plant Breeding Research, 50829 Cologne, Germany
| | - Heike Leitte
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany.
| | - Alexis Maizel
- Center for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
160
|
Scherzinger A, Kleene F, Dierkes C, Kiefer F, Hinrichs KH, Jiang X. Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images. LECTURE NOTES IN COMPUTER SCIENCE 2016. [DOI: 10.1007/978-3-319-45886-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
161
|
Koo BU, Kang Y, Moon S, Lee WG. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging. Analyst 2015; 140:7373-81. [PMID: 26381726 DOI: 10.1039/c5an01423a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.
Collapse
Affiliation(s)
- Bon Ung Koo
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 1732 Deokyoungdaero, Giheung, Yongin 446-701, Republic of Korea.
| | | | | | | |
Collapse
|
162
|
Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Fowlkes CC, Gradinaru V. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 2015; 10:1860-1896. [PMID: 26492141 PMCID: PMC4917295 DOI: 10.1038/nprot.2015.122] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Collapse
Affiliation(s)
- Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nicholas C Flytzanis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Antti Lignell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, California, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
163
|
Iber D, Karimaddini Z, Ünal E. Image-based modelling of organogenesis. Brief Bioinform 2015; 17:616-27. [DOI: 10.1093/bib/bbv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 01/05/2023] Open
|
164
|
Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 2015; 5:15348. [PMID: 26481189 PMCID: PMC4611486 DOI: 10.1038/srep15348] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20–24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm−2 at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm−2, emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.
Collapse
|
165
|
Bosse JB, Hogue IB, Feric M, Thiberge SY, Sodeik B, Brangwynne CP, Enquist LW. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. Proc Natl Acad Sci U S A 2015; 112:E5725-33. [PMID: 26438852 PMCID: PMC4620878 DOI: 10.1073/pnas.1513876112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.
Collapse
Affiliation(s)
- Jens B Bosse
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Ian B Hogue
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Marina Feric
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544;
| |
Collapse
|
166
|
Puah WC, Wasser M. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis. Methods 2015; 96:103-117. [PMID: 26431669 DOI: 10.1016/j.ymeth.2015.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022] Open
Abstract
Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future.
Collapse
Affiliation(s)
- Wee Choo Puah
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.
| | - Martin Wasser
- Imaging Informatics Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.
| |
Collapse
|
167
|
Amat F, Höckendorf B, Wan Y, Lemon WC, McDole K, Keller PJ. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat Protoc 2015; 10:1679-96. [PMID: 26426501 DOI: 10.1038/nprot.2015.111] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light-sheet microscopy is a powerful method for imaging the development and function of complex biological systems at high spatiotemporal resolution and over long time scales. Such experiments typically generate terabytes of multidimensional image data, and thus they demand efficient computational solutions for data management, processing and analysis. We present protocols and software to tackle these steps, focusing on the imaging-based study of animal development. Our protocols facilitate (i) high-speed lossless data compression and content-based multiview image fusion optimized for multicore CPU architectures, reducing image data size 30-500-fold; (ii) automated large-scale cell tracking and segmentation; and (iii) visualization, editing and annotation of multiterabyte image data and cell-lineage reconstructions with tens of millions of data points. These software modules are open source. They provide high data throughput using a single computer workstation and are readily applicable to a wide spectrum of biological model systems.
Collapse
Affiliation(s)
- Fernando Amat
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Burkhard Höckendorf
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Yinan Wan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - William C Lemon
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Katie McDole
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Philipp J Keller
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
168
|
Full-color structured illumination optical sectioning microscopy. Sci Rep 2015; 5:14513. [PMID: 26415516 PMCID: PMC4586488 DOI: 10.1038/srep14513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022] Open
Abstract
In merits of super-resolved resolution and fast speed of three-dimensional (3D) optical sectioning capability, structured illumination microscopy (SIM) has found variety of applications in biomedical imaging. So far, most SIM systems use monochrome CCD or CMOS cameras to acquire images and discard the natural color information of the specimens. Although multicolor integration scheme are employed, multiple excitation sources and detectors are required and the spectral information is limited to a few of wavelengths. Here, we report a new method for full-color SIM with a color digital camera. A data processing algorithm based on HSV (Hue, Saturation, and Value) color space is proposed, in which the recorded color raw images are processed in the Hue, Saturation, Value color channels, and then reconstructed to a 3D image with full color. We demonstrated some 3D optical sectioning results on samples such as mixed pollen grains, insects, micro-chips and the surface of coins. The presented technique is applicable to some circumstance where color information plays crucial roles, such as in materials science and surface morphology.
Collapse
|
169
|
Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 2015; 10:1486-507. [PMID: 26334868 DOI: 10.1038/nprot.2015.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tribolium castaneum has become an important insect model organism for evolutionary developmental biology, genetics and biotechnology. However, few protocols for live fluorescence imaging of Tribolium have been reported, and little image data is available. Here we provide a protocol for recording the development of Tribolium embryos with light-sheet-based fluorescence microscopy. The protocol can be completed in 4-7 d and provides procedural details for: embryo collection, microscope configuration, embryo preparation and mounting, noninvasive live imaging for up to 120 h along multiple directions, retrieval of the live embryo once imaging is completed, and image data processing, for which exemplary data is provided. Stringent quality control criteria for developmental biology studies are also discussed. Light-sheet-based fluorescence microscopy complements existing toolkits used to study Tribolium development, can be adapted to other insect species, and requires no advanced imaging or sample preparation skills.
Collapse
|
170
|
Welling M, Ponti A, Pantazis P. Symmetry breaking in the early mammalian embryo: the case for quantitative single-cell imaging analysis. Mol Hum Reprod 2015; 22:172-81. [DOI: 10.1093/molehr/gav048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
|
171
|
3D print customized sample holders for live light sheet microscopy. Biochem Biophys Res Commun 2015; 463:1141-3. [DOI: 10.1016/j.bbrc.2015.06.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 02/01/2023]
|
172
|
Mathew B, Schmitz A, Muñoz-Descalzo S, Ansari N, Pampaloni F, Stelzer EHK, Fischer SC. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition. BMC Bioinformatics 2015; 16:187. [PMID: 26049713 PMCID: PMC4458345 DOI: 10.1186/s12859-015-0617-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/18/2015] [Indexed: 12/02/2022] Open
Abstract
Background Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. Results We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91 %) whereas the other methods each failed for at least one dataset (F-measure ≤ 69 %). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. Conclusion We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0617-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B Mathew
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - A Schmitz
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - S Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - N Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - F Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - E H K Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - S C Fischer
- Buchmann Institute for Molecular Life Sciences (BMLS), Fachbereich Biowissenschaften (FB15, IZN), Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|