151
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
152
|
Long Z, Dou P, Cai W, Mao M, Wu R. MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging (Albany NY) 2023; 15:734-747. [PMID: 36734882 PMCID: PMC9970307 DOI: 10.18632/aging.204505] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
High-throughput microRNA (miRNA) sequencing of osteoporosis was analyzed from the Gene Expression Omnibus (GEO) database to investigate specific microRNAs that control osteogenesis. MiR-181a-5p was differentially expressed among healthy subjects and those with osteoporosis. Inhibitors and mimics were transfected into cells to modulate miR-181a-5p levels to examine the role in MC3T3-E1 functions. Alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining were used for morphological detection, and proteins of ALP and Runt-related transcription factor 2 (RUNX2), as osteogenesis markers, were detected. During the osteogenic differentiation of MC3T3-E1, the transcription level of miR-181a-5p was significantly increased. The inhibition of miR-181a-5p suppressed MC3T3-E1 osteogenic differentiation, whereas its overexpression functioned oppositely. Consistently, the miR-181a-5p antagomir aggravated osteoporosis in old mice. Additionally, we predicted potential target genes via TargetScan and miRDB and identified bone morphogenetic protein 3 (BMP3) as the target gene. Moreover, the reduced expression of miR-181a-5p was validated in our hospitalized osteoporotic patients. These findings have substantial implications for the strategies targeting miR-181a-5p to prevent osteoporosis and potential related fractures.
Collapse
Affiliation(s)
- Ze Long
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiliang Cai
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Minzhi Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
153
|
Ren R, Ma K, Jiang Y, Chen J, Kou Y, Ge Z, Chen Z, Wei X, Yu L. Endothelial miR-196b-5p regulates angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop. Am J Physiol Cell Physiol 2023; 324:C407-C419. [PMID: 36534502 DOI: 10.1152/ajpcell.00309.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis is involved in development, reproduction, wound healing, homeostasis, and other pathophysiological events. Imbalanced angiogenesis predisposes patients to various pathological processes, such as angiocardiopathy, inflammation, and tumorigenesis. MicroRNAs (miRNAs) have been found to be important in regulating cellular processing and physiological events including angiogenesis. However, the role of miRNAs that regulate angiogenesis (angiomiRs) is not fully understood. Here, we observed a downregulation of the miR-196 family in endothelial cells upon hypoxia. Functionally, miR-196b-5p inhibited the angiogenic functions of endothelial cells in vitro and suppressed angiogenesis in Matrigel plugs and skin wound healing in vivo. Mechanistically, miR-196b-5p bound onto the 3' untranslated region (UTR) of high-mobility group AT-hook 2 (HMGA2) mRNA and repressed the translation of HMGA2, which in turn represses HIF1α accumulation in endothelial cells upon hypoxia. Together, our results establish the role of endothelial miR-196b-5p as an angiomiR that negatively regulates endothelial growth in angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop. miR-196b-5p and its regulatory loop could be an important addition to the molecular mechanisms underlying angiogenesis and may serve as potential targets for antiangiogenic therapy.
Collapse
Affiliation(s)
- Ruizhe Ren
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Kefan Ma
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yuanqing Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Junbo Chen
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yaohui Kou
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Zhaoming Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiyang Wei
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| |
Collapse
|
154
|
Sun J, Gan L, Ding J, Ma R, Qian J, Xue K. Identification of non-coding RNAs and their functional network associated with optic nerve invasion in retinoblastoma. Heliyon 2023; 9:e13813. [PMID: 36852072 PMCID: PMC9958441 DOI: 10.1016/j.heliyon.2023.e13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Optic nerve invasion (ONI) is an important high-risk feature and prognostic indicator of retinoblastoma (RB). Emerging evidence has revealed that non-coding RNAs (ncRNAs) play important roles in tumor perineural invasion (PNI). Nevertheless, the regulatory role of ncRNAs in the ONI of RB is poorly understood. In the current study, whole-transcriptome sequencing was performed to assess the expression profiles of ncRNAs and mRNAs in RB tissues, with or without ONI. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we predicted the biological functions of differentially expressed (DE) mRNAs. We then constructed competing endogenous RNA (ceRNA) regulatory networks based on bioinformatics analysis. The hsa_circ_0015965/lncRNA MEG3-hsa-miR-378a-5p-NOTCH1 pathway was selected and validated by real-time qPCR, western blotting, and dual luciferase reporter assays. Moreover, we demonstrated that NOTCH1 promotes the malignant progression of RB. Taken together, our results provide novel insights into the mechanism underlying optic nerve invasion in RB.
Collapse
Affiliation(s)
- Jie Sun
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Lu Gan
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Jie Ding
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Ruiqi Ma
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Jiang Qian
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Kang Xue
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China
| |
Collapse
|
155
|
Rajakumar S, Jamespaulraj S, Shah Y, Kejamurthy P, Jaganathan MK, Mahalingam G, Ramya Devi KT. Long non-coding RNAs: an overview on miRNA sponging and its co-regulation in lung cancer. Mol Biol Rep 2023; 50:1727-1741. [PMID: 36441373 DOI: 10.1007/s11033-022-07995-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most devastating cause of death among all cancers worldwide, and non-small cell lung cancer (NSCLC) accounts for 80% of all the lung cancer cases. Beyond common genetic research and epigenomic studies, the extraordinary investigations of non-coding RNAs have provided insights into the molecular basis of cancer. Existing evidence from various cancer models highlights that the regulation of non-coding RNAs is crucial and that their deregulation may be a common reason for the development and progression of cancer, and competition of cancer therapeutics. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are increasingly recognized as potential cancer biomarkers for early detection and application of therapeutic strategies. The miRNAs have gained importance as master regulators of target mRNAs by negatively regulating their expression. The lncRNAs function as both tumor suppressors and oncogenes, and also compete with miRNAs that influence the translational inhibition processes. This review addresses the role of lncRNAs in lung cancer development, highlights their mechanisms of action, and provides an overview of the impact of lncRNAs on lung cancer survival and progression via miRNA sponging. The improved understanding of lung cancer mechanisms has opened opportunities to analyze molecular markers and their potential therapeutics.
Collapse
Affiliation(s)
- Santhosh Rajakumar
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Shalini Jamespaulraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Yashesh Shah
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Priyatharcini Kejamurthy
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
156
|
Abstract
ABSTRACT Sepsis and trauma remain the leading causes of morbidity and mortality. Our understanding of the molecular pathogenesis in the development of multiple organ dysfunction in sepsis and trauma has evolved as more focus is on secondary injury from innate immunity, inflammation, and the potential role of endogenous danger molecules. Studies of the past several decades have generated evidence for extracellular RNAs (exRNAs) as biologically active mediators in health and disease. Here, we review studies on plasma exRNA profiling in mice and humans with sepsis and trauma, the role and mode of action by exRNAs, such as ex-micro(mi)RNAs, in host innate immune response, and their potential implications in various organ injury during sepsis and trauma.
Collapse
Affiliation(s)
- Williams Brittney
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rosemary Kozar
- Shock Trauma Center and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chao Wei
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
157
|
da Silva TN, de Lima EV, Barradas TN, Testa CG, Picciani PH, Figueiredo CP, do Carmo FA, Clarke JR. Nanosystems for gene therapy targeting brain damage caused by viral infections. Mater Today Bio 2023; 18:100525. [PMID: 36619201 PMCID: PMC9816812 DOI: 10.1016/j.mtbio.2022.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.
Collapse
Affiliation(s)
| | - Emanuelle V. de Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Carla G. Testa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo H.S. Picciani
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ, 21941-598, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Flavia A. do Carmo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author.
| | - Julia R. Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author. Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
158
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, Zhang X, Chai J. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat 2023; 68:100936. [PMID: 36764075 DOI: 10.1016/j.drup.2023.100936] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
AIMS Long non-coding RNAs (lncRNAs), as one of the components of exosomes derived from cancer-associated fibroblasts (CAFs), exhibit a crucial role in the pathogenesis and chemoresistance of gastric cancer (GC). Herein, we investigated the role and mechanism of a novel lncRNA disheveled binding antagonist of beta catenin3 antisense1 (DACT3-AS1) and its involvement in GC. METHODS DACT3-AS1 was identified by RNA-sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The functional role of DACT3-AS1 in GC was evaluated using in vitro and in vivo experiments including Transwell assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, immunoblotting, and xenograft tumor mouse model. Dual-luciferase reporter assay was performed to assess the association between genes. RESULTS DACT3-AS1 was downregulated and involved in poor prognosis of patients with GC. The results from both in vitro and in vivo experiments showed that DACT3-AS1 suppressed cell proliferation, migration, and invasion through targeting miR-181a-5p/sirtuin 1 (SIRT1) axis. Additionally, DACT3-AS1 was transmitted from CAFs to GC cells mainly via exosomes. Exosomal DACT3-AS1 alleviated xenograft tumor growth. DACT3-AS1 conferred sensitivity of cancer cells to oxaliplatin through SIRT1-mediated ferroptosis both in vitro and in vivo. CONCLUSIONS CAFs-derived exosomal DACT3-AS1 is a suppressive regulator in malignant transformation and oxaliplatin resistance. DACT3-AS1 could be used for diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xianlin Qu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Weizhu Zhao
- Department of Radiology, Shandong University, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Changlei Liu
- Department of scientific research project, Shandong Excalibur Medical Research. LTD, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiang Zhang
- Department of scientific research project, Shandong Excalibur Medical Research. LTD, Jinan, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China.
| |
Collapse
|
159
|
Zhou H, Jia W, Lu L, Han R. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancers (Basel) 2023; 15:824. [PMID: 36765782 PMCID: PMC9913694 DOI: 10.3390/cancers15030824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Wentao Jia
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
| |
Collapse
|
160
|
Cyske Z, Gaffke L, Pierzynowska K, Węgrzyn G. Expression of Long Noncoding RNAs in Fibroblasts from Mucopolysaccharidosis Patients. Genes (Basel) 2023; 14:genes14020271. [PMID: 36833198 PMCID: PMC9957086 DOI: 10.3390/genes14020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this report, changes in the levels of various long non-coding RNAs (lncRNAs) were demonstrated for the first time in fibroblasts derived from patients suffering from 11 types/subtypes of mucopolysaccharidosis (MPS). Some kinds of lncRNA (SNHG5, LINC01705, LINC00856, CYTOR, MEG3, and GAS5) were present at especially elevated levels (an over six-fold change relative to the control cells) in several types of MPS. Some potential target genes for these lncRNAs were identified, and correlations between changed levels of specific lncRNAs and modulations in the abundance of mRNA transcripts of these genes (HNRNPC, FXR1, TP53, TARDBP, and MATR3) were found. Interestingly, the affected genes code for proteins involved in various regulatory processes, especially gene expression control through interactions with DNA or RNA regions. In conclusion, the results presented in this report suggest that changes in the levels of lncRNAs can considerably influence the pathomechanism of MPS through the dysregulation of the expression of certain genes, especially those involved in the control of the activities of other genes.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|
161
|
Sun J, Ru J, Ramos-Mucci L, Qi F, Chen Z, Chen S, Cribbs AP, Deng L, Wang X. DeepsmirUD: Prediction of Regulatory Effects on microRNA Expression Mediated by Small Molecules Using Deep Learning. Int J Mol Sci 2023; 24:1878. [PMID: 36768205 PMCID: PMC9915273 DOI: 10.3390/ijms24031878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Aberrant miRNA expression has been associated with a large number of human diseases. Therefore, targeting miRNAs to regulate their expression levels has become an important therapy against diseases that stem from the dysfunction of pathways regulated by miRNAs. In recent years, small molecules have demonstrated enormous potential as drugs to regulate miRNA expression (i.e., SM-miR). A clear understanding of the mechanism of action of small molecules on the upregulation and downregulation of miRNA expression allows precise diagnosis and treatment of oncogenic pathways. However, outside of a slow and costly process of experimental determination, computational strategies to assist this on an ad hoc basis have yet to be formulated. In this work, we developed, to the best of our knowledge, the first cross-platform prediction tool, DeepsmirUD, to infer small-molecule-mediated regulatory effects on miRNA expression (i.e., upregulation or downregulation). This method is powered by 12 cutting-edge deep-learning frameworks and achieved AUC values of 0.843/0.984 and AUCPR values of 0.866/0.992 on two independent test datasets. With a complementarily constructed network inference approach based on similarity, we report a significantly improved accuracy of 0.813 in determining the regulatory effects of nearly 650 associated SM-miR relations, each formed with either novel small molecule or novel miRNA. By further integrating miRNA-cancer relationships, we established a database of potential pharmaceutical drugs from 1343 small molecules for 107 cancer diseases to understand the drug mechanisms of action and offer novel insight into drug repositioning. Furthermore, we have employed DeepsmirUD to predict the regulatory effects of a large number of high-confidence associated SM-miR relations. Taken together, our method shows promise to accelerate the development of potential miRNA targets and small molecule drugs.
Collapse
Affiliation(s)
- Jianfeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lorenzo Ramos-Mucci
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Fei Qi
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 362021, China
| | - Zihao Chen
- Department of Computational Biology for Drug Discovery, Biolife Biotechnology Ltd., Zhumadian 463200, China
| | - Suyuan Chen
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., Otto-Hahn-Str asse 6b, 44227 Dortmund, Germany
| | - Adam P. Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
162
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
163
|
Huang Z, Wang Z, Xia H, Ge Z, Yu L, Li J, Bao H, Liang Z, Cui Y, Xu Y. Long noncoding RNA HAND2-AS1: A crucial regulator of malignancy. Clin Chim Acta 2023; 539:162-169. [PMID: 36528049 DOI: 10.1016/j.cca.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (LncRNAs) are single-stranded RNAs over 200 nucleotides in length that have no protein-coding function and have long been considered non-functional by-products of transcription. Recent studies have shown that dysregulation of lncRNAs may be involved in the malignant biological behavior of tumors. Targeted regulation of lncRNAs has become a research focus of anti-tumor treatment. LncRNAs heart and neural crest derivatives expressed 2 antisense RNA 1 (HAND2-AS1) was down-regulated in various tumors and can be used as a critical tumor regulator to modulate tumor cells proliferation, apoptosis, metastasis, invasion, metabolism and drug resistance. Additionally, aberrantly expressed HAND2-AS1 was closely related to the clinical pathological characteristics of cancer patients and serve as a promising tumor diagnostic and prognostic biomarker. This article aims to review the roles of HAND2-AS1 in tumorigenesis and development, as well as the underlying molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhensheng Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Ziqiang Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China; The key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, Heilongjiang, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
164
|
Qiu J, Guo Y, Wang S, Ren Q, Dong Z, Gao M, Ma J, Chen S, Liu S. Newly identified lncRNA-45 promotes breast cancer metastasis through activating the mTOR signaling pathway. Biochem Biophys Res Commun 2023; 640:40-49. [PMID: 36502630 DOI: 10.1016/j.bbrc.2022.11.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Metastasis, a complex multi-stage process, is the primary cause of breast cancer-related death. Unfortunately, the molecular mechanisms underlying tumor metastasis have not been fully elucidated thus far. Long noncoding RNAs (lncRNAs) dictate the behaviours of tumor cells via multiple signaling pathways, resulting in tumor cell migration and invasion, as well as all stages of cancer progression. LncRNAs function as regulators in shaping cellular activities directly through influencing key genes involved in biological processes of the tumor, and representing promising novel targets in cancer diagnosis and therapy. We therefore sought to define the correlations between lncRNA expression and breast cancer metastasis, especially to investigate the functional pathway underlying lncRNA-mediated tumor invasion and metastasis process. RESULTS In this study, we compared the lncRNA transcriptome profiles between primary breast cancer 4T1 cells and high metastatic 4T1-LG12 cells. We found that many differently expressed lncRNAs greatly correlated to the metastatic propensity of 4T1-LG12 cells, particularly lncRNA-45, a new lncRNA without functional annotations, which was found to be the most upregulated lncRNA transcribed by an internal region within the regulatory associated with protein of mechanistic target of rapamycin kinase (mTOR) complex 1 (Rptor) gene. LncRNA-45 was uncovered to be involved in the epithelial-to-mesenchymal transition process of breast cancer cells, as evidenced by the observation that lncRNA-45 knockdown significantly suppressed the invasive capability of parental 4T1-LG12 cells. Molecular mechanistic investigation showed that reduced activity of mTORC1-associated pathway led to a decrease of total ribosomal protein S6 kinase, polypeptide 1 (S6K1) content and enhancement of autophagy, consequently compromising the metastatic propensity in lncRNA-45 knockdown cells. CONCLUSIONS Overall, our experiments uncovered that the newly identified lncRNA-45 played a regulatory role in breast cancer cell metastasis.
Collapse
Affiliation(s)
- Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
165
|
Chiba Y, Adachi Y, Ando Y, Fujii S, Suto W, Sakai H. A lncRNA MALAT1 is a positive regulator of RhoA protein expression in bronchial smooth muscle cells. Life Sci 2023; 313:121289. [PMID: 36529281 DOI: 10.1016/j.lfs.2022.121289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS Augmented smooth muscle contractility of the airways associated with an increased expression of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of contraction, is one of the causes of airway hyperresponsiveness. However, the mechanism of the altered properties of airway smooth muscle cells, including the RhoA upregulation, is not fully understood. This study aims to define functional role of a long non-coding RNA MALAT1 in the RhoA expression and development of bronchial smooth muscle (BSM) hyper-contractility. MAIN METHODS Cultured human BSM cells were transfected with MALAT1 antisense oligonucleotide (AS), miR-133a-3p mimic, and/or inhibitor, and then stimulated with interleukin-13 (IL-13). In animal experiments, the ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. KEY FINDINGS Treatment of the cells with IL-13 induced an increase in RhoA protein. Either MALAT1 AS or miR-133a-3p mimic transfection inhibited the IL-13-induced upregulation of RhoA. The inhibitory effect of MALAT1 AS was abolished by co-transfection with miR-133a-3p inhibitor. In BSMs of the murine asthma model, upregulations of Malat1 and RhoA protein were observed concomitantly with downregulation of miR-133a-3p. SIGNIFICANCE These findings suggest that MALAT1 positively regulates RhoA protein expression by inhibiting miR-133a-3p in BSM cells, and that its upregulation causes the RhoA upregulation, resulting in an augmented BSM contractility.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Yukika Adachi
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Shigeki Fujii
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
166
|
Barber K, Mendonca P, Soliman KFA. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer's Disease. Brain Sci 2023; 13:145. [PMID: 36672126 PMCID: PMC9856590 DOI: 10.3390/brainsci13010145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
167
|
Zheng X, Li F, Zhao H, Tang Y, Xue K, Zhang X, Liang W, Zhao R, Lv X, Song X, Zhang C, Xu Y, Zhang Y. A novel method to identify and characterize personalized functional driver lncRNAs in cancer samples. Comput Struct Biotechnol J 2023; 21:2471-2482. [PMID: 37077174 PMCID: PMC10106482 DOI: 10.1016/j.csbj.2023.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Cancer is a highly heterogeneous disease, and different individuals of the same cancer type can display different therapeutic effects and prognosis. Genetic variation of long non-coding RNA is the key factor driving tumor development, and plays an important role in genetic and biological heterogeneity. Therefore, it is of great significance to identify lncRNA as a driving factor in the non-coding region and explain its function in tumors for revealing the pathogenesis of cancer. In this study, we developed an integrated method to identify Personalized Functional Driver lncRNAs (PFD-lncRNAs) by integrating the DNA copy number data, gene expression data, and the biological subpathways information. Then, we applied the method to identify 2695 PFD-lncRNAs in 5334 samples across 19 cancer types. We performed an analysis of the association between PFD-lncRNAs and drug sensitivity, which provides medication guidance in disease therapy and drug discovery in the individual. Our research is of great significance for elucidating the biological roles of lncRNA genetic variation in cancer, revealing the related mechanism of cancer, and providing novel insights for individualized medicine.
Collapse
|
168
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
169
|
Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl Oncol 2023; 27:101596. [PMID: 36473401 PMCID: PMC9727168 DOI: 10.1016/j.tranon.2022.101596] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sakshi Bhushan
- Department of Botany, Central University Jammu, Jammu and Kashmir 181143, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | | | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain; Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand 248007, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
170
|
Ding N, Song X, Yu H, Wang J, Huang L, Zhou Y, He X. Mechanism of Exosomal LncRNA PART1 in Esophageal Cancer Angiogenesis by Targeting miR-302a-3p/CDC25A Axis. Technol Cancer Res Treat 2023; 22:15330338231184327. [PMID: 37386808 PMCID: PMC10333641 DOI: 10.1177/15330338231184327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE LncRNA PART1 has been confirmed related to multiple cancer bioactivities mediated with vascular endothelial growth factor signaling. Nevertheless, the role of LncRNA PART1 in esophageal cancer induced angiogenesis remains unclear. The present work focused on assessing LncRNA PART1 effects on esophageal cancer-induced angiogenesis and exploring possible mechanisms. METHODS Western blot and immunofluorescence were conducted for identifying EC9706 exosomes. MiR-302a-3p and LncRNA PART1 levels were assessed by real-time quantitative polymerase chain reaction. Cell Counting Kit-8, EdU, wound healing, transwell, and tubule information were adopted for detecting human umbilical vein endothelial cell viability, proliferation, migration, invasion, and tubule information, respectively. Starbase software and dual-luciferase reporter were conducted for predicting and judging the expression interrelation of LncRNA PART1 and its potential target-miR-302a-3p. The same methods were carried out for verifying the inhibiting influences of miR-302a-3p upregulation and its potential target-cell division cycle 25 A. RESULTS LncRNA PART1 levels were upregulated and related to the overall survival of patients in esophageal cancer. EC9706-Exos accelerated human umbilical vein endothelial cell proliferation, migration, invasion, and tubule formation via LncRNA PART1. LncRNA PART1 served as a sponge of miR-302a-3p, then miR-302a-3p targeted cell division cycle 25 A, and EC9706-Exos accelerated human umbilical vein endothelial cell angiogenesis via LncRNA PART1/ miR-302a-3p/cell division cycle 25 A axis. CONCLUSION EC9706-Exos accelerates human umbilical vein endothelial cell angiogenesis via LncRNA PART1/miR-302a-3p/ cell division cycle 25 A axis, indicating EC9706-Exos may act as a promoter of angiogenesis. Our research will contribute to clarify the mechanism of tumor angiogenesis.
Collapse
Affiliation(s)
- Naixin Ding
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Song
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Yu
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Tumor Biobank, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqin Zhou
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xia He
- Department of Radiotherapy, Jiangsu
Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated
Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
171
|
van Amerongen RA, Tuit S, Wouters AK, van de Meent M, Siekman SL, Meeuwsen MH, Wachsmann TLA, Remst DFG, Hagedoorn RS, van der Steen DM, de Ru AH, Verdegaal EME, van Veelen PA, Falkenburg JHF, Heemskerk MHM. PRAME and CTCFL-reactive TCRs for the treatment of ovarian cancer. Front Immunol 2023; 14:1121973. [PMID: 37026005 PMCID: PMC10070997 DOI: 10.3389/fimmu.2023.1121973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/06/2023] [Indexed: 04/08/2023] Open
Abstract
Recurrent disease emerges in the majority of patients with ovarian cancer (OVCA). Adoptive T-cell therapies with T-cell receptors (TCRs) targeting tumor-associated antigens (TAAs) are considered promising solutions for less-immunogenic 'cold' ovarian tumors. In order to treat a broader patient population, more TCRs targeting peptides derived from different TAAs binding in various HLA class I molecules are essential. By performing a differential gene expression analysis using mRNA-seq datasets, PRAME, CTCFL and CLDN6 were selected as strictly tumor-specific TAAs, with high expression in ovarian cancer and at least 20-fold lower expression in all healthy tissues of risk. In primary OVCA patient samples and cell lines we confirmed expression and identified naturally expressed TAA-derived peptides in the HLA class I ligandome. Subsequently, high-avidity T-cell clones recognizing these peptides were isolated from the allo-HLA T-cell repertoire of healthy individuals. Three PRAME TCRs and one CTCFL TCR of the most promising T-cell clones were sequenced, and transferred to CD8+ T cells. The PRAME TCR-T cells demonstrated potent and specific antitumor reactivity in vitro and in vivo. The CTCFL TCR-T cells efficiently recognized primary patient-derived OVCA cells, and OVCA cell lines treated with demethylating agent 5-aza-2'-deoxycytidine (DAC). The identified PRAME and CTCFL TCRs are promising candidates for the treatment of patients with ovarian cancer, and are an essential addition to the currently used HLA-A*02:01 restricted PRAME TCRs. Our selection of differentially expressed genes, naturally expressed TAA peptides and potent TCRs can improve and broaden the use of T-cell therapies for patients with ovarian cancer or other PRAME or CTCFL expressing cancers.
Collapse
Affiliation(s)
| | - Sander Tuit
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marian van de Meent
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Sterre L. Siekman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Miranda H. Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dennis F. G. Remst
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Els M. E. Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Mirjam H. M. Heemskerk,
| |
Collapse
|
172
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022; 15:191-202. [DOI: 10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
173
|
Errafii K, Jayyous A, Arredouani A, Khatib H, Azizi F, Mohammad RM, Abdul-Ghani M, Chikri M. Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. ALL LIFE 2022. [DOI: https://doi.org/10.1080/26895293.2022.2033853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Khaoula Errafii
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- African Genome Center, Mohamed IV Polytechnic, Benguerir, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Amin Jayyous
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
| | - Abdelillah Arredouani
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Fouad Azizi
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Abdul-Ghani
- Diabetes and Obesity Clinical Research Center, Hamad General Hospital, Doha, Qatar
- Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI, USA
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamed Chikri
- Biochemistry and Clinical Neuroscience Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohammad Ben Abdullah University, Fes, Morocco
- Qatar Biomedical Research Institute, Hamad Ben Khalifa University, HBKU, Doha, Qatar
| |
Collapse
|
174
|
Huang P, Xia L, Guo Q, Huang C, Wang Z, Huang Y, Qin S, Leng W, Li D. Genome-wide association studies identify miRNA-194 as a prognostic biomarker for gastrointestinal cancer by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5. Front Oncol 2022; 12:1025594. [PMID: 36620589 PMCID: PMC9815773 DOI: 10.3389/fonc.2022.1025594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background The dysregulated genes and miRNAs in tumor progression can be used as biomarkers for tumor diagnosis and prognosis. However, the biomarkers for predicting the clinical outcome of gastrointestinal cancer (GIC) are still scarce. Methods Genome-wide association studies were performed to screen optimal prognostic miRNA biomarkers. RNA-seq, Ago-HITS-CLIP-seq, western blotting and qRT-PCR assays were conducted to identify target genes of miR-194. Genome-wide CRISPR-cas9 proliferation screening analysis were conducted to distinguish passenger gene and driver gene. Results A total of 9 prognostic miRNAs for GIC were identified by global microRNA expression analysis. Among them, miR-194 was the only one miRNA that significantly associated with overall survival, disease-specific survival and progress-free interval in both gastric, colorectal and liver cancers, indicating miR-194 was an optimal prognostic biomarker for GIC. RNA-seq analysis confirmed 18 conservative target genes of miR-194. Four of them, including ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5, were directly targeted by miR-194 and required for cell proliferation. Cell proliferation assay validated that miR-194 inhibits cell proliferation by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5 in GIC. Conclusion In summary, miR-194 is an optimal biomarker for predicting the outcome of GIC. Our finding highlights that miR-194 exerts a tumor-suppressive role in digestive system cancers by targeting ATP6V1F, PPP1R14B, BTF3L4 and SLC7A5.
Collapse
Affiliation(s)
- Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yinxuan Huang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China,*Correspondence: Shanshan Qin, ; Weidong Leng, ; Dandan Li,
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,*Correspondence: Shanshan Qin, ; Weidong Leng, ; Dandan Li,
| | - Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China,Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China,*Correspondence: Shanshan Qin, ; Weidong Leng, ; Dandan Li,
| |
Collapse
|
175
|
Wang L, Shui X, Zhang M, Mei Y, Xia Y, Lan G, Hu L, Gan CL, Tian Y, Li R, Gu X, Zhang T, Chen D, Lee TH. MiR-191-5p Attenuates Tau Phosphorylation, Aβ Generation, and Neuronal Cell Death by Regulating Death-Associated Protein Kinase 1. ACS Chem Neurosci 2022; 13:3554-3566. [PMID: 36454178 DOI: 10.1021/acschemneuro.2c00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Dysregulation of microRNAs has been implicated in diverse diseases, including Alzheimer's disease (AD). MiR-191-5p in plasma/serum has been identified as a novel and promising noninvasive diagnostic biomarker for AD. However, whether miR-191-5p is involved in AD pathogenesis is largely unknown, and its levels in human AD brains are undetermined. Herein, we demonstrated that miR-191-5p downregulated tau phosphorylation at multiple AD-related sites and promoted neurite outgrowth using immunoblotting, immunofluorescence, and neurite outgrowth assays. Moreover, immunoblotting and enzyme-linked immunosorbent assays indicated that miR-191-5p decreased amyloid precursor protein phosphorylation levels and beta-amyloid (Aβ) generation. Furthermore, miR-191-5p reduced ceramide-induced neuronal cell death analyzed by trypan blue staining, the in situ cell death detection kit, and Annexin V-FITC/PI flow cytometry. Next, we verified that death-associated protein kinase 1 (DAPK1) was a direct target of miR-191-5p through the dual luciferase reporter assay and confirmed that the effects of miR-191-5p were antagonized by restoration of DAPK1 expression. Finally, the hippocampal miR-191-5p level was found to be decreased in humans with AD compared with controls and was inversely correlated with the DAPK1 expression level. Collectively, these findings suggest that miR-191-5p might exert inhibitory effects on tau phosphorylation, Aβ secretion, and neuronal cell death by directly targeting DAPK1, providing an attractive therapeutic option for AD.
Collapse
Affiliation(s)
- Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Mi Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Yingxue Mei
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Yongfang Xia
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Guihua Lan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Li Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Chen-Ling Gan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Xi Gu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350122, China
| |
Collapse
|
176
|
Vetchinkina EA, Kalinkin AI, Kuznetsova EB, Kiseleva AE, Alekseeva EA, Nemtsova MV, Bure IV. Diagnostic and prognostic value of long non-coding RNA PROX1‑AS1 and miR-647 expression in gastric cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-50-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction. Gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Epigenetic alternations of non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs can contribute to its pathogenesis and progression, and could be potent diagnostic and prognostic biomarkers.Aim. Estimation of PROX1‑AS1 and miR-647 expression in gastric cancer and investigation of its clinical significance. Materials and methods. Tumor and adjacent normal tissues (n = 62), and sectional normal tissue samples (n = 5) were included in the study. The expression of the ncRNAs was quantified by reverse transcription-polymerase chain reaction assay.Results. We have reviled the significant difference in the PROX1‑AS1 expression in tumor (p = 0.002) and non-tumor tissues (p <0.001) obtained from gastric cancer patients in comparison with sectional gastric tissues without pathology. Pearson correlation analysis confirmed a negative correlation between PROX1‑AS1 and miR-647 in gastric cancer both in tumor (р <0,001) and adjacent normal tissues (р <0.001). Besides, expression of PROX1‑AS1 and miR-647 was associated with the size and extent of the primary tumor.Conclusion. The obtained results allow to suggest a potential prognostic value of PROX1‑AS1 and miR-647 in gastric cancer.
Collapse
Affiliation(s)
- E. A. Vetchinkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | | | - E. B. Kuznetsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - A. E. Kiseleva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. A. Alekseeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - M. V. Nemtsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - I. V. Bure
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
177
|
Autophagy-Related ncRNAs in Pancreatic Cancer. Pharmaceuticals (Basel) 2022; 15:ph15121547. [PMID: 36558998 PMCID: PMC9785627 DOI: 10.3390/ph15121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a malignancy accounting for only 3% of total cancers, but with a low 5-year relative survival rate. Approximately 80% of PC patients are diagnosed at a late stage when the disease has already spread from the primary site. Despite advances in PC treatment, there is an urgently needed for the identification of novel therapeutic strategies for PC, particularly for patients who cannot undergo classical surgery. Autophagy is an evolutionarily conserved process used by cells to adapt to metabolic stress via the degrading or recycling of damaged or unnecessary organelles and cellular components. This process is elevated in PC and, thus, it contributes to the onset, progression, and cancer cell resistance to chemotherapy in pancreatic tumors. Autophagy inhibition has been shown to lead to cancer regression and to increase the sensitivity of pancreatic cells to radiation and chemotherapy. Emerging studies have focused on the roles of non-coding RNAs (ncRNAs), such as miRNAs, long non-coding RNAs, and circular RNAs, in PC development and progression. Furthermore, ncRNAs have been reported as crucial regulators of many biological processes, including autophagy, suggesting that ncRNA-based autophagy targeting methods could be promising novel molecular approaches for specifically reducing autophagic flux, thus improving the management of PC patients. In this review, we briefly summarize the existing studies regarding the role and the regulatory mechanisms of autophagy-related ncRNAs in the context of this cancer.
Collapse
|
178
|
Kazemizadeh H, Kashefizadeh A. CRISPR-Cas9-mediated gene therapy in lung cancer. Clin Transl Oncol 2022; 25:1156-1166. [PMID: 36495467 DOI: 10.1007/s12094-022-03039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
As the largest cause of cancer-related deaths worldwide, pulmonary cancer is the most common form of the disease. Several genetic, epigenetic, and environmental factors come into play during the multi-step mechanism of tumorigenesis. The heterogeneity that makes discovering successful therapeutics for pulmonary cancer problematic is significantly influenced by the epigenetic landscape, including DNA methylation, chromatin architecture, histone modifications, and noncoding RNA control. Clinical activity of epigenetic-targeted medicines has been reported in hematological tumors, and these compounds may also have therapeutic effects in solid tumors. Over the course of the past few years, some researchers have successfully modified the expression of genes in cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) technique. The utilization of this technology allows for the induction of site-specific mutagenesis, epigenetic alterations, and the regulation of gene expression. This study will present an overview of the primary epigenetic alterations seen in pulmonary cancer, as well as a summary of therapeutic implications for targeting epigenetics in the management of pulmonary cancer, with a particular emphasis on the technique known as CRISPR/Cas9.
Collapse
Affiliation(s)
- Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
179
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
180
|
Agrawal D, Kumari R, Ratre P, Rehman A, Srivastava RK, Reszka E, Goryacheva IY, Mishra PK. Cell-free circulating miRNAs-lncRNAs-mRNAs as predictive markers for breast cancer risk assessment in women exposed to indoor air pollution. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100267. [DOI: 10.1016/j.cscee.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
|
181
|
Zhu Y, Han Y, Almuntashiri S, Dutta S, Wang X, Owen CA, Zhang D. Dysregulation of miR-103a Mediates Cigarette Smoking-induced Lipid-laden Macrophage Formation. Am J Respir Cell Mol Biol 2022; 67:695-707. [PMID: 36066909 PMCID: PMC9743184 DOI: 10.1165/rcmb.2022-0202oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoke (CS) is considered a major risk factor for chronic obstructive pulmonary disease (COPD) that is currently the third leading cause of death in the United States. Studies have indicated that patients with COPD have elevated blood low-density lipoprotein levels, which may contribute to the dysregulation of lipid metabolism. Accumulating data show that microRNAs (miRNAs) are involved in various human diseases. However, the role of microRNAs in the pathogenesis of COPD remains poorly defined. In this study, we found that miR-103a expression was significantly reduced in alveolar macrophages from smokers and patients with COPD versus that in alveolar macrophages from nonsmokers. Our data indicated that reactive oxygen species negatively regulate miR-103a in macrophages. Functionally, miR-103a modulates the expressions of genes involved in lipid metabolism and directly targets low-density lipoprotein receptors in macrophages. Furthermore, overexpression of miR-103a suppressed the accumulation of lipid droplets and reduced the reactive oxygen species, both in vitro and in vivo. Taken together, our findings indicate that downregulation of miR-103a contributes to cigarette smoke-induced lipid-laden macrophage formation and plays a critical role in lipid homeostasis in lung macrophages in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
182
|
Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022; 478:1573-1598. [DOI: 10.1007/s11010-022-04614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
|
183
|
Lei Q, Yang Y, Zhou W, Liu W, Li Y, Qi N, Li Q, Wen Z, Ding L, Huang X, Li Y, Wu J. MicroRNA-based therapy for glioblastoma: Opportunities and challenges. Eur J Pharmacol 2022; 938:175388. [PMID: 36403686 DOI: 10.1016/j.ejphar.2022.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor and is characterized by high mortality and morbidity rates and unpredictable clinical behavior. The disappointing prognosis for patients with GBM even after surgery and postoperative radiation and chemotherapy has fueled the search for specific targets to provide new insights into the development of modern therapies. MicroRNAs (miRNAs/miRs) act as oncomirs and tumor suppressors to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, the cell cycle, apoptosis, invasion, stem cell behavior, angiogenesis, the microenvironment and chemo- and radiotherapy resistance, which makes them attractive candidates as prognostic biomarkers and therapeutic targets or agents to advance GBM therapeutics. However, one of the major challenges of successful miRNA-based therapy is the need for an effective and safe system to deliver therapeutic compounds to specific tumor cells or tissues in vivo, particularly systems that can cross the blood-brain barrier (BBB). This challenge has shifted gradually as progress has been achieved in identifying novel tumor-related miRNAs and their targets, as well as the development of nanoparticles (NPs) as new carriers to deliver therapeutic compounds. Here, we provide an up-to-date summary (in recent 5 years) of the current knowledge of GBM-related oncomirs, tumor suppressors and microenvironmental miRNAs, with a focus on their potential applications as prognostic biomarkers and therapeutic targets, as well as recent advances in the development of carriers for nontoxic miRNA-based therapy delivery systems and how they can be adapted for therapy.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Yongmin Yang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenhui Zhou
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenwen Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China; School of Medicine, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Yixin Li
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Nanchang Qi
- Clinical Laboratory, The First People's Hospital of Kunming, Kunming, 650021, Yunnan, PR China
| | - Qiangfeng Li
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Zhonghui Wen
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, PR China
| | - Yu Li
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, PR China.
| | - Jin Wu
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China.
| |
Collapse
|
184
|
Hu Q, Zhang N, Sui T, Li G, Wang Z, Liu M, Zhu X, Huang B, Lu J, Li Z, Zhang Y. Anti-hsa-miR-59 alleviates premature senescence associated with Hutchinson-Gilford progeria syndrome in mice. EMBO J 2022; 42:e110937. [PMID: 36382717 PMCID: PMC9811625 DOI: 10.15252/embj.2022110937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a lethal premature aging disorder without an effective therapeutic regimen. Because of their targetability and influence on gene expression, microRNAs (miRNAs) are attractive therapeutic tools to treat diseases. Here we identified that hsa-miR-59 (miR-59) was markedly upregulated in HGPS patient cells and in multiple tissues of an HGPS mouse model (LmnaG609G/G609G ), which disturbed the interaction between RNAPII and TFIIH, resulting in abnormal expression of cell cycle genes by targeting high-mobility group A family HMGA1 and HMGA2. Functional inhibition of miR-59 alleviated the cellular senescence phenotype of HGPS cells. Treatment with AAV9-mediated anti-miR-59 reduced fibrosis in the quadriceps muscle, heart, and aorta, suppressed epidermal thinning and dermal fat loss, and yielded a 25.5% increase in longevity of LmnaG609G/G609G mice. These results identify a new strategy for the treatment of HGPS and provide insight into the etiology of HGPS disease.
Collapse
Affiliation(s)
- Qianying Hu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Na Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Tingting Sui
- The Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal ScienceJilin UniversityChangchunChina
| | - Guanlin Li
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Zhiyao Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Mingyue Liu
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Xiaojuan Zhu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Jun Lu
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Zhanjun Li
- The Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal ScienceJilin UniversityChangchunChina
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| |
Collapse
|
185
|
Biogenesis, classification, and role of LncRNAs in tumor angiogenesis: A focus on tumor and its neighbouring cells, and interaction with miRNAs. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
186
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
187
|
Nourmohammadi F, Forghanifard MM, Abbaszadegan MR, Zarrinpour V. EZH2 regulates oncomiR-200c and EMT markers in esophageal squamous cell carcinomas. Sci Rep 2022; 12:18290. [PMID: 36316365 PMCID: PMC9622866 DOI: 10.1038/s41598-022-23253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
EZH2, as a histone methyltransferase, has been associated with cancer development and metastasis possibly through the regulation of microRNAs and cellular pathways such as EMT. In this study, the effect of EZH2 expression on miR-200c and important genes of the EMT pathway was investigated in esophageal squamous cell carcinoma (ESCC). Comparative qRT-PCR was used to examine EZH2 expression in ESCC lines (YM-1 and KYSE-30) following the separately transfected silencing and ectopic expressional EZH2 vectors in ESCC. Subsequently, expression of miR-200c and EMT markers was also assessed using qRT-PCR, western blotting and immunocytochemistry. Underexpression of Mir200c was detected in YM-1 and KYSE-30 cells after EZH2 silencing, while its overexpression was observed after EZH2 induced expression. Following EZH2 silencing, downregulation of mesenchymal markers and upregulation of epithelial markers were detected in the ESCCs. Our results demonstrate that EZH2 regulates the expression of miR-200c and critical EMT genes, implying that overexpression of Zeb2, Fibronectin, N-cadherin, and Vimentin lead to a mesenchymal phenotype and morphology while underexpression of epithelial genes, enhance cell migration after enforced expression of EZH2 in ESCCs. EZH2 gene can be a beneficial treatment marker for patients with esophageal cancer through decrease invasiveness of the disease and efficient response to neoadjuvant therapy.
Collapse
Affiliation(s)
| | | | | | - Vajiheh Zarrinpour
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
188
|
Shree N, Ding Z, Flaws J, Choudhury M. Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:1034. [PMID: 36355117 PMCID: PMC9695656 DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/22/2025] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
Affiliation(s)
- Nitya Shree
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Jodi Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| |
Collapse
|
189
|
Kim H, Kim J, Ryu J. Noncoding RNAs as a novel approach to target retinopathy of prematurity. Front Pharmacol 2022; 13:1033341. [PMID: 36386230 PMCID: PMC9641647 DOI: 10.3389/fphar.2022.1033341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/21/2024] Open
Abstract
Retinopathy of prematurity (ROP), a vascular disease characterized by abnormal vessel development in the retina, has become a primary cause of blindness in children around the world. ROP can be developed during two different phases: vessel loss and vessel proliferation. Once preterm infants with immature retinal vessel growth are exposed to high level of oxygen inside the incubator, vessel loss can occur. When infants are exposed to room air, they may experience the proliferation of vessels in the retina. Although multiple factors are reported to be involved in the pathogenesis of ROP, including vaso-endothelial growth factors (VEGFs) and hypoxia-inducible factors, the pathogenesis of ROP is not completely understood. Although laser therapy and pharmacologic agents, such as anti-VEGF agents, have been commonly used to treat ROP, the incidence of ROP is rapidly rising. Given that current therapies can be invasive and long-term effects are not fully known, the search for novel therapeutic targets with less destructive properties needs to be considered. Within the last decade, the field of noncoding RNA therapy has shown potential as next-generation therapy to treat diverse diseases. In this review, we introduce various noncoding RNAs regulating ROP and discuss their role as potential therapeutic targets in ROP.
Collapse
Affiliation(s)
- Hyunjong Kim
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Jaesub Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
190
|
Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res 2022; 50:10839-10856. [PMID: 36215040 DOI: 10.1093/nar/gkac864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harsha Amarasekara
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Kruhlak
- Microscopy Core Facility, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
191
|
Bernardo BC, Yildiz GS, Kiriazis H, Harmawan CA, Tai CMK, Ritchie RH, McMullen JR. In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function. Cells 2022; 11:cells11193117. [PMID: 36231079 PMCID: PMC9563608 DOI: 10.3390/cells11193117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
MicroRNA 34a (miR-34a) is elevated in the heart in a setting of cardiac stress or pathology, and we previously reported that inhibition of miR-34a in vivo provided protection in a setting of pressure overload-induced pathological cardiac hypertrophy and dilated cardiomyopathy. Prior work had also shown that circulating or cardiac miR-34a was elevated in a setting of diabetes. However, the therapeutic potential of inhibiting miR-34a in vivo in the diabetic heart had not been assessed. In the current study, type 1 diabetes was induced in adult male mice with 5 daily injections of streptozotocin (STZ). At 8 weeks post-STZ, when mice had established type 1 diabetes and diastolic dysfunction, mice were administered locked nucleic acid (LNA)-antimiR-34a or saline-control with an eight-week follow-up. Cardiac function, cardiac morphology, cardiac fibrosis, capillary density and gene expression were assessed. Diabetic mice presented with high blood glucose, elevated liver and kidney weights, diastolic dysfunction, mild cardiac enlargement, cardiac fibrosis and reduced myocardial capillary density. miR-34a was elevated in the heart of diabetic mice in comparison to non-diabetic mice. Inhibition of miR-34a had no significant effect on diastolic function or atrial enlargement, but had a mild effect on preventing an elevation in cardiac enlargement, fibrosis and ventricular gene expression of B-type natriuretic peptide (BNP) and the anti-angiogenic miRNA (miR-92a). A miR-34a target, vinculin, was inversely correlated with miR-34a expression, but other miR-34a targets were unchanged. In summary, inhibition of miR-34a provided limited protection in a mouse model with established type 1 diabetes-induced cardiomyopathy and failed to improve diastolic function. Given diabetes represents a systemic disorder with numerous miRNAs dysregulated in the diabetic heart, as well as other organs, strategies targeting multiple miRNAs and/or earlier intervention is likely to be required.
Collapse
Affiliation(s)
- Bianca C. Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gunes S. Yildiz
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | - Rebecca H. Ritchie
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Royal Parade, Parkville, VIC 3052, Australia
| | - Julie R. McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: ; Tel.: +61-3-8532-1194
| |
Collapse
|
192
|
Ahmed R, Samanta S, Banerjee J, Kar SS, Dash SK. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100131. [PMID: 36568259 PMCID: PMC9780070 DOI: 10.1016/j.crphar.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Over the past few decades, thyroid cancer has become one of the most common types of endocrine cancer, contributing to an increase in prevalence. In the year 2020, there were 586,202 newly diagnosed cases of thyroid cancer around the world. This constituted approximately 3.0% of all patients diagnosed with cancer. The World Health Organization reported that there will be 2.3 million women receiving treatment for breast cancer in 2020, with 685,000. Despite the fact that carcinoma is one of the world's leading causes of death, there is still a paucity of information about its biology. MicroRNAs (miRNAs; miRs) are non-coding RNAs that can reduce gene expression by cleaving the 3' untranslated regions of mRNA. These factors make them a potential protein translation inhibitor. Diverse biological mechanisms implicated in the genesis of cancer are modulated by miRNA. The investigation of global miRNA expression in cancer showed regulatory activity through up regulation and down-regulation in several cancers, including thyroid cancer and breast cancer. In thyroid cancer, miRNA influences several cancers related signaling pathways through modulating MAPK, PI3K, and the RAS pathway. In breast cancer, the regulatory activity of miRNA was played through the cyclin protein family, protein kinases and their inhibitors, and other growth promoters or suppressors, which modulated cell proliferation and cell cycle progression. This article's goal is to discuss key miRNA expressions that are involved in the development of thyroid and breast cancer as well as their therapeutic manipulation for these two specific cancer types.
Collapse
Affiliation(s)
- Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College and Hospital, Kolkata, 700004, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India,Corresponding author.
| |
Collapse
|
193
|
Wen X, Dai Y, Wu S, Li J. miR-127-3p Inhibits Breast Cancer Cell Behaviors via Targeting Benzodiazepine Receptor-Associated Protein 1 (BZRAP1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs are key regulators of cell proliferation, apoptosis, and anti-cancer immune response. This study intends to evaluate miR-127-3p’s role in breast cancer cells (BC). After transfection, miR-156 and BZRAP1 expression was assessed by qRT-PCR and Western blotting along with
analysis of cell proliferation and apoptosis by MTT and flow cytometry. Finally, an in vivo tumor model was established to verify miR-127-3p’s in vivo effect. Transfection of si-BZRAP1/miR-127-3p into MCF-7 cells reduced BZRAP1 expression, inhibited cell proliferation and
promoted apoptosis. miR-127-3p is confirmed to target BZRAP1 and exerts tumor suppressor activity by inhibiting BZRAP1. miR-127-3p inhibited BC cell growth and promote apoptosis by targeting BZRAP1, indicating that it is expected to be a target for the treatment of BC. The significance of
this study is to confirm that miR-127-3p may participate in tumor progression via BZRAP1, and may become a potential target for treating tumor. Further analysis of the pathogenesis of breast cancer and detection of miR-127-3p/BZRAP1 in BC has important application value in the treatment.
Collapse
Affiliation(s)
- Xiaoqiang Wen
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Yinhai Dai
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Shaofeng Wu
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Junqiang Li
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| |
Collapse
|
194
|
Wang Q, Chen C, Xu X, Shu C, Cao C, Wang Z, Fu Y, Xu L, Xu K, Xu J, Xia A, Wang B, Xu G, Zou X, Su R, Kang W, Xue Y, Mo R, Sun B, Wang S. APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201889. [PMID: 35975461 PMCID: PMC9534967 DOI: 10.1002/advs.202201889] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Indexed: 05/29/2023]
Abstract
Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Xiao Xu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Chuanjun Shu
- Department of BioinformaticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing210000China
| | - Changchang Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhangding Wang
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Yao Fu
- Department of PathologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Lei Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Kaiyue Xu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Jiawen Xu
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Anliang Xia
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Bo Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Guifang Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Xiaoping Zou
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wei Kang
- Department of Anatomical and Cellular PathologyInstitute of Digestive DiseaseState Key Laboratory of Digestive DiseaseState Key Laboratory of Translational OncologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongSAR999077China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ran Mo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Shouyu Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
- Center for Public Health ResearchMedical School of Nanjing UniversityNanjing210000China
| |
Collapse
|
195
|
Li W(J, Liu X, Dougherty EM, Tang DG. MicroRNA-34a, Prostate Cancer Stem Cells, and Therapeutic Development. Cancers (Basel) 2022; 14:4538. [PMID: 36139695 PMCID: PMC9497236 DOI: 10.3390/cancers14184538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease and typically presents with multiple distinct cancer foci. Heterogeneity in androgen receptor (AR) expression levels in PCa has been observed for decades, from untreated tumors to castration-resistant prostate cancer (CRPC) to disseminated metastases. Current standard-of-care therapies for metastatic CRPC can only extend life by a few months. Cancer stem cells (CSCs) are defined as a subpopulation of cancer cells that exists in almost all treatment-naive tumors. Additionally, non-CSCs may undergo cellular plasticity to be reprogrammed to prostate cancer stem cells (PCSCs) during spontaneous tumor progression or upon therapeutic treatments. Consequently, PCSCs may become the predominant population in treatment-resistant tumors, and the "root cause" for drug resistance. microRNA-34a (miR-34a) is a bona fide tumor-suppressive miRNA, and its expression is dysregulated in PCa. Importantly, miR-34a functions as a potent CSC suppressor by targeting many molecules essential for CSC survival and functions, which makes it a promising anti-PCSC therapeutic. Here, we conducted a comprehensive literature survey of miR-34a in the context of PCa and especially PCSCs. We provided an updated overview on the mechanisms of miR-34a regulation followed by discussing its tumor suppressive functions in PCa. Finally, based on current advances in miR-34a preclinical studies in PCa, we offered potential delivery strategies for miR-34a-based therapeutics for treating advanced PCa.
Collapse
Affiliation(s)
- Wen (Jess) Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily M. Dougherty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Genetics & Genomics Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, USA
| | - Dean G. Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
196
|
LncRNA H19 Promotes Lung Adenocarcinoma Progression via Binding to Mutant p53 R175H. Cancers (Basel) 2022; 14:cancers14184486. [PMID: 36139647 PMCID: PMC9496924 DOI: 10.3390/cancers14184486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This research explored the association and interaction between lncRNA H19 and mutant p53 (R175H) in lung adenocarcinoma development and progression. H19 over-expression may induce the elevated expression of mtp53 and interact with mtp53, which prolongs the p53 half-life and promotes transcriptional activity, leading to the progression of lung adenocarcinoma. The simultaneous inhibition of H19 and mtp53 may provide a novel strategy. Abstract Background: Accumulating data suggest that long non-coding RNA (lncRNA) H19 and p53are closely related to the prognosis of lung cancer. This study aims to analyze the association and interaction betweenH19 and mutant p53 R175H in lung adenocarcinoma (LAC). Methods: Mutant-type (Mt) p53 R175H was assessed by using RT-PCR in LAC cells and 100 cases of LAC tissue samples for association with H19 expression. Western blot, RNA-pull down, immunoprecipitation-Western blot and animal experiments were used to evaluate the interaction between H19 and mtp53. Results: Mtp53 R175H and H19 were over-expressed in LAC tissues and cells, while H19 over-expression extended the p53 half-life and enhanced transcriptional activity. Combined with anti-p53, ShH19 can significantly inhibit tumor growth in vivo. Conclusions: H19 over-expression may induce the elevated expression of mtp53 and interact with mtp53, leading to LAC progression. In addition, the high expression of mtp53 R175H is associated with poor overall survival inpatients. The simultaneous inhibition of H19 and mtp53 may provide a novel strategy for the effective control of LAC clinically.
Collapse
|
197
|
Transgenic construction and functional miRNA analysis identify the role of miR-7 in prostate cancer suppression. Oncogene 2022; 41:4645-4657. [DOI: 10.1038/s41388-022-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
|
198
|
Elevated interleukin-17A levels despite reduced microRNA-326 gene expression in celiac disease patients under gluten-free diet. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2022; 60:166-172. [DOI: 10.2478/rjim-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction: The microRNA-326 (miR-326) gene, by targeting ETS Proto-Oncogene 1 (ETS1), regulates the differentiation and interleukin-17A production of T helper 17 (Th17) cells. Celiac disease (CD) is an intestinal autoimmune disorder, in which the cascade of Th17 cells plays an important role in its pathogenicity. The aim of this study was to evaluate the expression changes of miR-326 and its two target genes ETS1 and IL-17A in celiac disease patients under a gluten-free diet (GFD). We expected the expression of miR-326 and IL-17A gene to decrease, and the expression of the ETS1 gene to increase, following the adherence to GFD.
Methods: Peripheral blood samples of 40 CD patients under GFD (for more than 1 year) and 40 healthy individuals were collected. RNA was extracted, cDNA was synthesized and the miR-326, ETS1 and IL-17A gene expressions were evaluated by the quantitative polymerase real-time qPCR method. P-value ˂ 0.05 was considered statistically significant.
Results: Although miR-326 mRNA expression was significantly lower in CD patients (P = 0.001), no significant difference was observed in ETS1 mRNA level between the two groups (P = 0.54), but IL-17A was significantly overexpressed in CD patients (P=0.002). No significant correlation was observed between the expression of the studied genes and the patientsʼ symptoms and Marsh classification.
Conclusion:Adherence to the GFD for one to two years did not have the expected effect on the expression of genes in this panel. The most important finding that contradicted our hypothesis was the observation of high IL-17A levels in CD patients despite dieting, which may be related to the protective effect of this cytokine on intestinal tight junctions, which needs to be confirmed in further studies.
Collapse
|
199
|
Wang Y, Wang L, Yu X, Gong W. MiR-30a-3p Targeting FLT1 Modulates Trophoblast Cell Proliferation in the Pathogenesis of Preeclampsia. Horm Metab Res 2022; 54:633-640. [PMID: 35981547 DOI: 10.1055/a-1880-1126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preeclampsia (PE) may pose significant adverse effects on pregnant women. Dysregulation of angiogenesis, trophoblast invasion, and proliferation are known to be associated with PE development and progression. Fms related tyrosine kinase 1 (FLT1), an anti-angiogenic factor, is consistently upregulated in PE patients. Recent papers highlight that aberrant miR-30a-3p expression contributes to PE development. More effects are needed to assess the biological function of placental miR-30a-3p in PE. The soluble FLT1 (sFLT1) and FLT1 levels were tested by ELISA assay and Western blotting assay. mRNA levels were measured by RT-qPCR assay. Colony formation and MTT assays were applied to assess the effect of miR-30a-3p on trophoblast cell proliferation. The serum sFLT1 and placental FLT1 levels were substantially high in patients with PE. Using miRNA microarray assay, we identified miR-30a-3p upregulation in PE patients' placenta tissues. We further confirmed that miR-30a-3p binds to the 3'-UTR of FLT1 gene and positively regulate its expression. Forcing miR-30a-3p expression inhibited trophoblast cell proliferation and vice versa. In conclusion, persistent high levels of FLT1 and miR-30a-3p may pose adverse effects on angiogenesis and trophoblast proliferation in placenta of PE patients. Therefore, targeting FLT1 and miR-30a-3p may serve as ideal strategies for managing patients with PE.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lanlan Wang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaoyan Yu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wenwen Gong
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
200
|
Yu Y, Dong H, Zhang Y, Sun J, Li B, Chen Y, Feng M, Yang X, Gao S, Jiang W. MicroRNA-223 downregulation promotes HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome. Arch Virol 2022; 167:1841-1854. [PMID: 35731327 DOI: 10.1007/s00705-022-05499-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Hepatitis B virus (HBV) and its related protein, HBV X (HBx), play an important role in podocyte injury in HBV-associated glomerulonephritis (HBV-GN). The microRNA MiR-223 is expressed in several diseases, including HBV-associated disease, while the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a major role in pyroptosis. In this study, we investigated the function and mechanism of action of miR-223 in HBx-induced podocyte pyroptosis. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay showed that miR-223 was downregulated in HBx-transfected podocytes. Transfection with an miR-223 mimic abolished the expression of the NLRP3 inflammasome and the cytokines that are released as a result of NLRP3 overexpression. Moreover, transfection with HBx and NLRP3 overexpression plasmids increased the expression of pyroptosis-related proteins, especially in the presence of miR-223 inhibitors. Thus, miR-223 downregulation plays an important role in HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome, suggesting that miR-223 is a potential therapeutic target for alleviating HBV-GN inflammation.
Collapse
Affiliation(s)
- Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hui Dong
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yue Zhang
- Department of Stomatology, Qingdao Municipal Hospital Group, Qingdao, 266003, Shandong, China
| | - Jingyi Sun
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Baoshuang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yueqi Chen
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Moxuan Feng
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xiaoqian Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Shengbo Gao
- Department of Nephrology, The People's Hospital of Changle County, Weifang, 262400, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|