151
|
Zhang R, Chen Z, Song Q, Wang S, Liu Z, Zhao X, Shi X, Guo W, Lang Y, Bottillo I, Shao L. Identification of seven exonic variants in the SLC4A1, ATP6V1B1, and ATP6V0A4 genes that alter RNA splicing by minigene assay. Hum Mutat 2021; 42:1153-1164. [PMID: 34157794 DOI: 10.1002/humu.24246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare tubular disease associated with variants in SLC4A1, ATP6V0A4, ATP6V1B1, FOXⅠ1, or WDR72 genes. Currently, there is growing evidence that all types of exonic variants can alter splicing regulatory elements, affecting the precursor messenger RNA (pre-mRNA) splicing process. This study was to determine the consequences of variants associated with dRTA on pre-mRNA splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 15 candidate variants, 7 variants distributed in SLC4A1 (c.1765C>T, p.Arg589Cys), ATP6V1B1 (c.368G>T, p.Gly123Val; c.370C>T, p.Arg124Trp; c.484G>T, p.Glu162* and c.1102G>A, p.Glu368Lys) and ATP6V0A4 genes (c.322C>T, p.Gln108* and c.1572G>A, p.Pro524Pro) were identified to result in complete or incomplete exon skipping by either disruption of exonic splicing enhancers (ESEs) and generation of exonic splicing silencers, or interference with the recognition of the classic splicing site, or both. To our knowledge, this is the first study on pre-mRNA splicing of exonic variants in the dRTA-related genes. These results highlight the importance of assessing the effects of exonic variants at the mRNA level and suggest that minigene analysis is an effective tool for evaluating the effects of splicing on variants in vitro.
Collapse
Affiliation(s)
- Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zeqing Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Qijing Song
- Emergency Center, People's Hospital of Jimo District, Qingdao, China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wencong Guo
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yanhua Lang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
152
|
Inouye S. Multiple Cypridina Luciferase Genes in the Genome of Individual Ostracods, Vargula hilgendorfii (Cypridina hilgendorfii). Photochem Photobiol 2021; 98:1293-1302. [PMID: 34181758 DOI: 10.1111/php.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The genomic structure of the Cypridina luciferase gene in Vargula hilgendorfii (formerly Cypridina hilgendorfii) was determined with three λ phage clones (λ34, λ45, and λ61). The luciferase genes in clones λ34 and λ61 consisted of 13 exons and 12 introns, and clone λ45 only contained exons 1-5. The splicing sites of the luciferase genes in λ34 and λ61 were conserved completely with the consensus sequence. The translated luciferases had 555 amino acid residues, which were over 98.6% identical to those of cDNA clones as previously reported. In contrast, each intron in clones λ34, λ45, and λ61 varied significantly in length. To explain the variation of intron length among the three V. hilgendorfii luciferase genes, genomic DNA was isolated from a single V. hilgendorfii specimen and the regions from exon 1-3 of the luciferase gene were amplified by polymerase chain reaction (PCR). PCR products with various lengths were detected and were confirmed as the luciferase gene fragments by Southern blot analysis. Furthermore, DNA sequence analysis indicated that at least seven luciferase gene groups might be present in the genome of a single specimen. Thus, multiple Cypridina luciferase genes exist in the genome of a single V. hilgendorfii specimen.
Collapse
Affiliation(s)
- Satoshi Inouye
- Yokohama Research Center, JNC Co, 5-1 Okawa, Kanazawa-ku, Yokohama, 236-8605, Japan
| |
Collapse
|
153
|
Targeting Alternative Splicing for Reversal of Cellular Senescence in the Context of Aesthetic Aging. Plast Reconstr Surg 2021; 147:25S-32S. [PMID: 33347071 DOI: 10.1097/prs.0000000000007618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARY Cellular senescence is a state of stable cell cycle arrest that has increasingly been linked with cellular, tissue, and organismal aging; targeted removal of senescent cells brings healthspan and lifespan benefits in animal models. Newly emerging approaches to specifically ablate or rejuvenate senescent cells are now the subject of intense study to explore their utility to provide novel treatments for the aesthetic signs and diseases of aging in humans. Here, we discuss different strategies that are being trialed in vitro, and more recently in vivo, for the targeted removal or reversal of senescent cells. Finally, we describe the evidence for a newly emerging molecular mechanism that may underpin senescence; dysregulation of alternative splicing. We will explore the potential of restoring splicing regulation as a novel "senotherapeutic" approach and discuss strategies by which this could be integrated into the established portfolio of skin aging therapeutics.
Collapse
|
154
|
Alves-Ferreira M, Azevedo A, Coelho T, Santos D, Sequeiros J, Alonso I, Sousa A, Lemos C. Beyond Val30Met transthyretin (TTR): variants associated with age-at-onset in hereditary ATTRv amyloidosis. Amyloid 2021; 28:100-106. [PMID: 33461327 DOI: 10.1080/13506129.2020.1857236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES V30M in transthyretin (TTR) gene is causative for hereditary ATTRv amyloidosis (familial amyloid polyneuropathy). ATTRv amyloidosis shows a wide variation in age-at-onset (AO) between clusters, families, and among generations. We aim at identifying genetic modifiers of disease onset that may contribute to this variability in Portuguese patients by identifying other variants in TTR locus, beyond the ATTRv amyloidosis causing variant that could play a regulatory role in its expression level. METHODS We analysed DNA samples of 330 ATTRV30M carriers (299 patients, 31 aged-asymptomatic carriers aged >40 years) from 120 families currently under follow-up. A generalised estimating equation analysis (GEE) was used to take into account non-independency of AO between relatives. An intensive in silico analysis was performed in order to understand a possible regulation of gene expression. RESULTS We found 11 rare variants in the promoter, coding and intron/exon boundaries of the TTR gene associated with the onset of symptoms before and after age 40 years, namely 2 novel ones and a tandem CA-dinucleotide repeat. Furthermore, of the 4 common variants found, one was significantly associated with AO and may influence the constitutive splicing of TTR pre-mRNA. The seven ATTRV30M/V30M homozygous do not carry any of the variants identified in this study, including the common ones. In silico analysis disclosed significant alterations in the mechanism of splicing, transcription factors and miRNAs binding. CONCLUSIONS Variants within the promoter region may modify disease expressivity and variants in the 3'UTR can impact the efficacy of novel therapeutic interventions. Importantly, the putative mechanisms of regulation of gene expression within the TTR gene deserve to be better explored, in order to be used in the future as potential therapeutical targets.
Collapse
Affiliation(s)
- Miguel Alves-Ferreira
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Azevedo
- ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade (UCA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Diana Santos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
155
|
Huang R, Zheng Z, Liu S, Yan P, Song D, Yin H, Hu P, Zhu X, Chang Z, Liu Y, Zhuang J, Meng T, Huang Z, Zhang J. Identification of prognostic and bone metastasis-related alternative splicing signatures in mesothelioma. Cancer Med 2021; 10:4478-4492. [PMID: 34041868 PMCID: PMC8267146 DOI: 10.1002/cam4.3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Mesothelioma (MESO) is an infrequent tumor derived from mesothelial cells of pleura, peritoneum, pericardium, and tunica vaginalis testis. Despite advancement in technologies and better understanding of tumor progression mechanism, the prognosis of MESO remains poor. The role of alternative splicing events (ASEs) in the oncogenesis, tumor metastasis and drug resistance has been widely discussed in multiple cancers. But the prognosis and potential therapeutic value of ASEs in MESO were not clearly studied by now. We constructed a prognostic model using RNA sequencing data and matched ASE data of MESO patients obtained from the TCGA and TCGASpliceSeq database. A total of 3,993 ASEs were identified associated with overall survival using Cox regression analysis. Eight of them were finally figured out to institute the model by lasso regression analysis. The risk score of the model can predict the prognosis independently. Among the identified 390 splicing factors (SF), HSPA1A and DDX3Y was significantly associated with 43 OS-SEs. Among these OS-SEs, SNX5-58744-AT (p = 0.048) and SNX5-58745-AT (p = 0.048) were significantly associated with bone metastasis. Co-expression analysis of signal pathways and SNX5-58744-AT, SNX5-58745-AT was also depicted using GSVA. Finally, we proposed that splicing factor (SF) HSPA1A could regulate SNX5-58744-AT (R = -0.414) and SNX5-58745-AT (R = 0.414) through the pathway "Class I MHC mediated antigen processing and presentation" (R = 0.400). In this way, tumorigenesis and bone metastasis of MESO were controlled.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Sijia Liu
- Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Juanwei Zhuang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
156
|
MLH1 intronic variants mapping to + 5 position of splice donor sites lead to deleterious effects on RNA splicing. Fam Cancer 2021; 19:323-336. [PMID: 32363481 DOI: 10.1007/s10689-020-00182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Germline pathogenic variants in the DNA mismatch repair genes (MMR): MLH1, MSH2, MSH6, and PMS2, are causative of Lynch syndrome (LS). However, many of the variants mapping outside the invariant splice site positions (IVS ± 1, IVS ± 2) are classified as variants of unknown significance (VUS). Three such variants (MLH1 c.588+5G>C, c.588+5G>T and c.677+5G>A) were identified in 8 unrelated LS families from Argentina, Brazil and Chile. Herein, we collected clinical information on these families and performed segregation analysis and RNA splicing studies to assess the implication of these VUS in LS etiology. Pedigrees showed a clear pattern of variant co-segregation with colorectal cancer and/or other LS-associated malignancies. Tumors presented deficient expression of MLH1-PMS2 proteins in 7/7 of the LS families, and MSI-high status in 3/3 cases. Moreover, RNA analyses revealed that c.588+5G>C and c.588+5G>T induce skipping of exon 7 whereas c.677+5G>A causes skipping of exon 8. In sum, we report that the combined clinical findings in the families and the molecular studies provided the evidences needed to demonstrate that the three MLH1 variants are causative of LS and to classify c.588+5G>C and c.677+5G>A as class 5 (pathogenic), and c.588+5G>T as class 4 (likely-pathogenic). Our findings underline the importance of performing clinical and family analyses, as well as RNA splicing assays in order to determine the clinical significance of intronic variants, and contribute to the genetic counseling and clinical management of patients and their relatives.
Collapse
|
157
|
Rosa RR, Garcia MA, Alves PT, Sousa EM, Pimentel LS, Barbosa LD, Loyola AM, Goulart LR, Faria PC, Cardoso SV. Revisiting the metallothionein genes polymorphisms and the risk of oral squamous cell carcinoma in a Brazilian population. Med Oral Patol Oral Cir Bucal 2021; 26:e334-e340. [PMID: 33340085 PMCID: PMC8141308 DOI: 10.4317/medoral.24215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background Metallothioneins (MTs) gene polymorphisms have been associated with the ability of free radical scavenging and detoxification of heavy metals leading to cancer development. Our aim was to revisit, in a Brazilian population, single-nucleotide polymorphisms (SNPs) of the MT gene family previously associated with oral squamous cell carcinoma (OSCC).
Material and Methods A case-control investigation with 28 OSCC patients and 45 controls was conducted, using conventional risk factors (tobacco use and alcohol consumption) as covariates. SNPs genotyping for rs8052334 (MT1B), rs964372 (MT1B), and rs1610216 (MT2A) was performed by PCR-RFLP, and SNPs for rs11076161 (MT1A) were analyzed by TaqMan assay.
Results The only SNP associated with increased risk for OSCC was the MT-1A AA genotype (OR = 4.7; p = 0.01). We have also evidenced for the first time a significant linkage disequilibrium between the SNPs of MT-2A and MT-1A in this population with the highest frequency (30%) of the unfavorable haplotype G/A/C/T (rs1610216 / rs11076161 / rs964372 / rs8052334) of MT gene polymorphisms (OR = 6.2; p = 0.04). Interestingly, after removing the effects of conventional risk factors, we have uncovered the significance of the AA genotype of the rs11076161 with increased odds of 19-fold higher towards OSCC development.
Conclusions This is the first demonstration that a significant linkage disequilibrium among gene polymorphisms of the MT family may affect susceptibility to oral cancer, which is conditioned by the G/A/C/T haplotype (rs1610216/rs11076161/rs964372/ rs8052334) and the MT-1A gene polymorphism has a potential clinical utility for the OSCC risk assessment. Key words:Oral squamous cell carcinoma, polymorphism, metallothionein, oral cancer.
Collapse
Affiliation(s)
- R-R Rosa
- Federal University of Uberlândia School of Dentistry, Area of Pathology Av. Pará, nº 1.720, CEP: 38.405-320 Uberlândia - MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Interaction of Adiponectin Genotypes and Insulin Resistance on the Occurrence of Taiwanese Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5570827. [PMID: 33997011 PMCID: PMC8110375 DOI: 10.1155/2021/5570827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
Backgrounds Adiponectin (apM1) may affect insulin sensitivity, and tumor necrosis factor (TNF-α) can inhibit the binding of insulin and insulin receptors. However, whether apM1 and TNF-α genes influence the development of metabolic syndrome (MetS) preceded by insulin resistance is unclear. The current study examines the interactions between the apM1 +45 genotypes, TNF-α -308 genotypes, and insulin resistance on the occurrence of MetS. Methods A total of 329 community residents were recruited, and their personal characteristics were collected. Waist circumference and biochemical markers were examined for determining MetS. Genotypes were identified by the polymerase chain reaction. Results After adjusting for the confounding effects, compared to apM1 +45 GG and GT genotypes carriers with HOMR-IR less than 2.0, those carriers with HOMA-IR greater than 2.0 had an increased MetS risk (OR = 4.35, 95% CI 2.14-8.85). Further, apM1 +45 TT carriers with HOMA-IR greater than 2.0 experienced a higher MetS risk (OR = 5.91, 95% CI 2.78-12.54). A significant interaction of the apM1 +45 genotype and insulin resistance on the MetS development was observed (P = 0.04). Conclusion Our data suggested that apM1 +45 genotypes might modify the effect of insulin resistance on the development of Taiwanese MetS.
Collapse
|
159
|
Functional Analysis of the PCCA and PCCB Gene Variants Predicted to Affect Splicing. Int J Mol Sci 2021; 22:ijms22084154. [PMID: 33923806 PMCID: PMC8073151 DOI: 10.3390/ijms22084154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
It is estimated that up to one-third of all variants causing inherited diseases affect splicing; however, their deleterious effects and roles in disease pathogenesis are often not fully characterized. Given their prevalence and the development of various antisense-based splice-modulating approaches, pathogenic splicing variants have become an important object of genomic medicine. To improve the accuracy of variant interpretation in public mutation repositories, we applied the minigene splicing assay to study the effects of 24 variants that were predicted to affect normal splicing in the genes associated with propionic acidemia (PA)—PCCA and PCCB. As a result, 13 variants (including one missense and two synonymous variants) demonstrated a significant alteration of splicing with the predicted deleterious effect at the protein level and were characterized as spliceogenic loss-of-function variants. The analysis of the available data for the studied variants and application of the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) guidelines allowed us to precisely classify five of the variants and change the pathogenic status of nine. Using the example of the PA genes, we demonstrated the utility of the minigene splicing assay in the fast and effective assessment of the spliceogenic effect for identified variants and highlight the necessity of their standardized classification.
Collapse
|
160
|
A novel tissue specific alternative splicing variant mitigates phenotypes in Ets2 frame-shift mutant models. Sci Rep 2021; 11:8297. [PMID: 33859300 PMCID: PMC8050053 DOI: 10.1038/s41598-021-87751-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
E26 avian leukemia oncogene 2, 3′ domain (Ets2) has been implicated in various biological processes. An Ets2 mutant model (Ets2db1/db1), which lacks the DNA-binding domain, was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair and curly whiskers. Here, we generated new Ets2 mutant models with a frame-shift mutation in exon 8 using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as embryonic development stopped before E8.5, as previously reported. When we rescued them by tetraploid complementation, these mice did not exhibit wavy hair or curly whisker phenotypes. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 Ets2em1/em1 embryos. This exon 8-skipped Ets2 mRNA was translated into protein, suggesting that this Ets2 mutant protein complemented the Ets2 function in the skin. Our data implies that novel splicing variants incidentally generated after genome editing may complicate the phenotypic analysis but may also give insight into the new mechanisms related to biological gene functions.
Collapse
|
161
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
162
|
Seabrook AJ, Harris JE, Velosa SB, Kim E, McInerney-Leo AM, Dwight T, Hockings JI, Hockings NG, Kirk J, Leo PJ, Love AJ, Luxford C, Marshall M, Mete O, Pennisi DJ, Brown MA, Gill AJ, Hockings GI, Clifton-Bligh RJ, Duncan EL. Multiple Endocrine Tumors Associated with Germline MAX Mutations: Multiple Endocrine Neoplasia Type 5? J Clin Endocrinol Metab 2021; 106:1163-1182. [PMID: 33367756 DOI: 10.1210/clinem/dgaa957] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Pathogenic germline MAX variants are associated with pheochromocytoma and paraganglioma (PPGL), pituitary neuroendocrine tumors and, possibly, other endocrine and nonendocrine tumors. OBJECTIVE To report 2 families with germline MAX variants, pheochromocytomas (PCs) and multiple other tumors. METHODS Clinical, genetic, immunohistochemical, and functional studies at University hospitals in Australia on 2 families with germline MAX variants undergoing usual clinical care. The main outcome measures were phenotyping; germline and tumor sequencing; immunohistochemistry of PC and other tumors; functional studies of MAX variants. RESULTS Family A has multiple individuals with PC (including bilateral and metastatic disease) and 2 children (to date, without PC) with neuroendocrine tumors (paravertebral ganglioneuroma and abdominal neuroblastoma, respectively). One individual has acromegaly; immunohistochemistry of PC tissue showed positive growth hormone-releasing hormone staining. Another individual with previously resected PCs has pituitary enlargement and elevated insulin-like growth factor (IGF-1). A germline MAX variant (c.200C>A, p.Ala67Asp) was identified in all individuals with PC and both children, with loss of heterozygosity in PC tissue. Immunohistochemistry showed loss of MAX staining in PCs and other neural crest tumors. In vitro studies confirmed the variant as loss of function. In Family B, the proband has bilateral and metastatic PC, prolactin-producing pituitary tumor, multigland parathyroid adenomas, chondrosarcoma, and multifocal pulmonary adenocarcinomas. A truncating germline MAX variant (c.22G>T, p.Glu8*) was identified. CONCLUSION Germline MAX mutations are associated with PCs, ganglioneuromas, neuroblastomas, pituitary neuroendocrine tumors, and, possibly, parathyroid adenomas, as well as nonendocrine tumors of chondrosarcoma and lung adenocarcinoma, suggesting MAX is a novel multiple endocrine neoplasia gene.
Collapse
Affiliation(s)
- Amanda J Seabrook
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jessica E Harris
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | | | - Edward Kim
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Aideen M McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Trisha Dwight
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | | | - Judy Kirk
- Familial Cancer Service, Westmead Hospital, Sydney, Australia
| | - Paul J Leo
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Amanda J Love
- Department of Endocrinology, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Catherine Luxford
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mhairi Marshall
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - David J Pennisi
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Matthew A Brown
- Guy's and St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, King's College London, London, UK
| | - Anthony J Gill
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Gregory I Hockings
- Endocrinology Unit, Greenslopes Private Hospital, Brisbane, Australia
- University of Queensland Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
| | - Emma L Duncan
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
- University of Queensland Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London; St Thomas' Campus, London, UK
- Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
163
|
Lobl MB, Clarey D, Schmidt C, Wichman C, Wysong A. Analysis of mutations in cutaneous squamous cell carcinoma reveals novel genes and mutations associated with patient-specific characteristics and metastasis: a systematic review. Arch Dermatol Res 2021; 314:711-718. [PMID: 33735396 DOI: 10.1007/s00403-021-02213-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) causes approximately 1,000,000 cases and 9000 deaths each year in the United States. While individual tumor sequencing studies have discovered driver mutations in SCC, there has yet to be a review and subsequent analysis synthesizing current studies. To conduct a comprehensive synthesis and analysis of SCC sequencing studies with individual patient-level data, a comprehensive literature search was performed. Statistical analyses were performed to identify trends. Studies meeting inclusion criteria included a total of 279 patients (189 localized SCCs, 90 metastatic SCCs). Several mutations were correlated with demographic characteristics (TP53, MLL4, BRCA2, COL4A1). TP53, TERT, SPEN, MLL3, and NOTCH2 mutations were significantly more likely to be found in metastatic versus localized SCCs even after the Bonferroni correction for multiple comparisons. Silent mutations were found more in localized SCCs than metastatic SCCs, and nonsense mutations were found more in metastatic SCCs than localized SCCs (p = 0.0003 and p = 0.04, respectively). Additional mutations were identified that have not yet been explored in SCC including AHNAK2, LRP1B, TRIO, MDN1, COL4A2, SVIL, VPS13C, DST, DMD, and DYSF. Overall, novel mutations were identified and differences between mutation patterns in localized and metastatic SCCs were found. These findings may have clinical applications.
Collapse
Affiliation(s)
- Marissa B Lobl
- Department of Dermatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dillon Clarey
- Department of Dermatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Cynthia Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher Wichman
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashley Wysong
- Department of Dermatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
164
|
Savarese M, Välipakka S, Johari M, Hackman P, Udd B. Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? J Neuromuscul Dis 2021; 7:203-216. [PMID: 32176652 PMCID: PMC7369045 DOI: 10.3233/jnd-190459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes. Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases. The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Välipakka
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
165
|
Markolin P, Davidson N, Hirt CK, Chabbert CD, Zamboni N, Schwank G, Krek W, Rätsch G. Identification of HIF-dependent alternative splicing in gastrointestinal cancers and characterization of a long, coding isoform of SLC35A3. Genomics 2021; 113:515-529. [PMID: 33418078 DOI: 10.1016/j.ygeno.2020.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
Intra-tumor hypoxia is a common feature in many solid cancers. Although transcriptional targets of hypoxia-inducible factors (HIFs) have been well characterized, alternative splicing or processing of pre-mRNA transcripts which occurs during hypoxia and subsequent HIF stabilization is much less understood. Here, we identify many HIF-dependent alternative splicing events after whole transcriptome sequencing in pancreatic cancer cells exposed to hypoxia with and without downregulation of the aryl hydrocarbon receptor nuclear translocator (ARNT), a protein required for HIFs to form a transcriptionally active dimer. We correlate the discovered hypoxia-driven events with available sequencing data from pan-cancer TCGA patient cohorts to select a narrow set of putative biologically relevant splice events for experimental validation. We validate a small set of candidate HIF-dependent alternative splicing events in multiple human gastrointestinal cancer cell lines as well as patient-derived human pancreatic cancer organoids. Lastly, we report the discovery of a HIF-dependent mechanism to produce a hypoxia-dependent, long and coding isoform of the UDP-N-acetylglucosamine transporter SLC35A3.
Collapse
Affiliation(s)
- Philipp Markolin
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland; Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Natalie Davidson
- Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Christian K Hirt
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zürich, Switzerland
| | - Gerald Schwank
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland; Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Rätsch
- Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland.
| |
Collapse
|
166
|
Morbidoni V, Baschiera E, Forzan M, Fumini V, Ali DS, Giorgi G, Buson L, Desbats MA, Cassina M, Clementi M, Salviati L, Trevisson E. Hybrid Minigene Assay: An Efficient Tool to Characterize mRNA Splicing Profiles of NF1 Variants. Cancers (Basel) 2021; 13:cancers13050999. [PMID: 33673681 PMCID: PMC7957615 DOI: 10.3390/cancers13050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by heterozygous loss of function mutations in the NF1 gene. Although patients are diagnosed according to clinical criteria and few genotype-phenotype correlations are known, molecular analysis remains important. NF1 displays allelic heterogeneity, with a high proportion of variants affecting splicing, including deep intronic alleles and changes outside the canonical splice sites, making validation problematic. Next Generation Sequencing (NGS) technologies integrated with multiplex ligation-dependent probe amplification (MLPA) have largely overcome RNA-based techniques but do not detect splicing defects. A rapid minigene-based system was set up to test the effects of NF1 variants on splicing. We investigated 29 intronic and exonic NF1 variants identified in patients during the diagnostic process. The minigene assay showed the coexistence of multiple mechanisms of splicing alterations for seven variants. A leaky effect on splicing was documented in one de novo substitution detected in a sporadic patient with a specific phenotype without neurofibromas. Our splicing assay proved to be a reliable and fast method to validate novel NF1 variants potentially affecting splicing and to detect hypomorphic effects that might have phenotypic consequences, avoiding the requirement of patient's RNA.
Collapse
Affiliation(s)
- Valeria Morbidoni
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Elisa Baschiera
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Monica Forzan
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Valentina Fumini
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Dario Seif Ali
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Gianpietro Giorgi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Lisa Buson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (V.M.); (E.B.); (M.F.); (V.F.); (D.S.A.); (G.G.); (L.B.); (M.A.D.); (M.C.); (M.C.); (L.S.)
- Istituto di Ricerca Pediatrica—IRP, Fondazione Città della Speranza, 35127 Padova, Italy
- Correspondence: ; Tel.: + 39-(04)-9821-1402
| |
Collapse
|
167
|
Qiao F, Zhang C, Wang Y, Liu G, Shao B, Hu P, Xu Z. Case Report: Prenatal Whole-Exome Sequencing to Identify a Novel Heterozygous Synonymous Variant in NIPBL in a Fetus With Cornelia de Lange Syndrome. Front Genet 2021; 12:628890. [PMID: 33633789 PMCID: PMC7900548 DOI: 10.3389/fgene.2021.628890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by a wide spectrum of abnormalities, including craniofacial dysmorphism, upper limb anomalies, pre- and post-natal growth restrictions, hirsutism and intellectual disability. Approximately 60% of cases are caused by NIPBL variants. Herein we report on a prenatal case presented with bilateral upper-extremity malformations and cardiac defects. Whole-exome sequencing (WES) was performed on the fetus–parental trio and a de novo heterozygous synonymous variant in NIPBL [chr5:37020979; NM_133433.4: c.5328G>A, p. (Gln1776=)] was identified. Reverse transcriptase–polymerase chain reaction (RT–PCR) was conducted to evaluate the potential splicing effect of this variant, which confirmed that the variant caused a deletion of exon 27 (103 bp) by disrupting the splice-donor site and changed the reading frame with the insertion of at least three stop codons. Our finding not only expands the mutation spectrum of NIPBL gene but also establishes the crucial role of WES in searching for underlying genetic variants. In addition, our research raises the important issue that synonymous mutations may be potential pathogenic variants and should not be neglected in clinical diagnoses.
Collapse
Affiliation(s)
- Fengchang Qiao
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiping Zhang
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
168
|
Jung H, Lee KS, Choi JK. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene 2021; 40:1347-1361. [PMID: 33420369 PMCID: PMC7892346 DOI: 10.1038/s41388-020-01614-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Previous studies studying mis-splicing mutations were based on exome data and thus our current knowledge is largely limited to exons and the canonical splice sites. To comprehensively characterise intronic mis-splicing mutations, we analysed 1134 pan-cancer whole genomes and transcriptomes together with 3022 normal control samples. The ratio-based splicing analysis resulted in 678 somatic intronic mutations, with 46% residing in deep introns. Among the 309 deep intronic single nucleotide variants, 245 altered core splicing codes, with 38% activating cryptic splice sites, 12% activating cryptic polypyrimidine tracts, and 36% and 12% disrupting authentic polypyrimidine tracts and branchpoints, respectively. All the intronic cryptic splice sites were created at pre-existing GT/AG dinucleotides or by GC-to-GT conversion. Notably, 85 deep intronic mutations indicated gain of splicing enhancers or loss of splicing silencers. We found that 64 tumour suppressors were affected by intronic mutations and blood cancers showed higher proportion of deep intronic mutations. In particular, a telomere maintenance gene, POT1, was recurrently mis-spliced by deep intronic mutations in blood cancers. We validated a pseudoexon activation involving a splicing silencer in POT1 by CRISPR/Cas9. Our results shed light on previously unappreciated mechanisms by which noncoding mutations acting on splicing codes in deep introns contribute to tumourigenesis.
Collapse
Affiliation(s)
- Hyunchul Jung
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam-si, Gyeongi-do, 13449, Republic of Korea.
| |
Collapse
|
169
|
Saint-Martin C, Cauchois-Le Mière M, Rex E, Soukarieh O, Arnoux JB, Buratti J, Bouvet D, Frébourg T, Gaildrat P, Shyng SL, Bellanné-Chantelot C, Martins A. Functional characterization of ABCC8 variants of unknown significance based on bioinformatics predictions, splicing assays, and protein analyses: Benefits for the accurate diagnosis of congenital hyperinsulinism. Hum Mutat 2021; 42:408-420. [PMID: 33410562 DOI: 10.1002/humu.24164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
ABCC8 encodes the SUR1 subunit of the β-cell ATP-sensitive potassium channel whose loss of function causes congenital hyperinsulinism (CHI). Molecular diagnosis is critical for optimal management of CHI patients. Unfortunately, assessing the impact of ABCC8 variants on RNA splicing remains very challenging as this gene is poorly expressed in leukocytes. Here, we performed bioinformatics analysis and cell-based minigene assays to assess the impact on splicing of 13 ABCC8 variants identified in 20 CHI patients. Next, channel properties of SUR1 proteins expected to originate from minigene-detected in-frame splicing defects were analyzed after ectopic expression in COSm6 cells. Out of the analyzed variants, seven induced out-of-frame splicing defects and were therefore classified as recessive pathogenic, whereas two led to skipping of in-frame exons. Channel functional analysis of the latter demonstrated their pathogenicity. Interestingly, the common rs757110 SNP increased exon skipping in our system suggesting that it may act as a disease modifier factor. Our strategy allowed determining the pathogenicity of all selected ABCC8 variants, and CHI-inheritance pattern for 16 out of the 20 patients. This study highlights the value of combining RNA and protein functional approaches in variant interpretation and reveals the minigene splicing assay as a new tool for CHI molecular diagnostics.
Collapse
Affiliation(s)
- Cécile Saint-Martin
- Department of Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Marine Cauchois-Le Mière
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Emily Rex
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Omar Soukarieh
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Jean-Baptiste Arnoux
- Department of Inherited Metabolic Disease, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Julien Buratti
- Department of Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Delphine Bouvet
- Department of Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Thierry Frébourg
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | | | - Alexandra Martins
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
170
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
171
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
172
|
Jiang W, Chen L. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Comput Struct Biotechnol J 2020; 19:183-195. [PMID: 33425250 PMCID: PMC7772363 DOI: 10.1016/j.csbj.2020.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing contributes to the majority of protein diversity in higher eukaryotes by allowing one gene to generate multiple distinct protein isoforms. It adds another regulation layer of gene expression. Up to 95% of human multi-exon genes undergo alternative splicing to encode proteins with different functions. Moreover, around 15% of human hereditary diseases and cancers are associated with alternative splicing. Regulation of alternative splicing is attributed to a set of delicate machineries interacting with each other in aid of important biological processes such as cell development and differentiation. Given the importance of alternative splicing events, their accurate mapping and quantification are paramount for downstream analysis, especially for associating disease with alternative splicing. However, deriving accurate isoform expression from high-throughput RNA-seq data remains a challenging task. In this mini-review, we aim to illustrate I) mechanisms and regulation of alternative splicing, II) alternative splicing associated human disease, III) computational tools for the quantification of isoforms and alternative splicing from RNA-seq.
Collapse
Affiliation(s)
- Wei Jiang
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| | - Liang Chen
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| |
Collapse
|
173
|
Kwon SM, Min S, Jeoun U, Sim MS, Jung GH, Hong SM, Jee BA, Woo HG, Lee C, Yoon G. Global spliceosome activity regulates entry into cellular senescence. FASEB J 2020; 35:e21204. [DOI: 10.1096/fj.202000395rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Affiliation(s)
- So Mee Kwon
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Seongki Min
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Un‐woo Jeoun
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Min Seok Sim
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Gu Hyun Jung
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Sun Mi Hong
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Byul A. Jee
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Hyun Goo Woo
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Changhan Lee
- USC Leonard Davis School of Gerontology Los Angeles CA USA
| | - Gyesoon Yoon
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| |
Collapse
|
174
|
A cDNA analysis disclosed the discordance of genotype-phenotype correlation in a patient with attenuated MPS II and a 76-base deletion in the gene for iduronate-2-sulfatase. Mol Genet Metab Rep 2020; 25:100692. [PMID: 33335838 PMCID: PMC7734304 DOI: 10.1016/j.ymgmr.2020.100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022] Open
Abstract
We previously showed that the genotype-phenotype correlation in MPS II is well-conserved in Japan (Kosuga et al., 2016). Almost all of our patients with attenuated MPS II have missense variants, which is expected to result in residual activity of iduronate-2-sulfatase. In contrast, our patients with severe MPS II have so-called null-type disease-associated variants, such as nonsense variants, frame-shifts, gene insertions, gene deletions and rearrangement with pseudogene (IDS2), none of which are expected to result in residual activity. However, we recently encountered a patient with attenuated MPS II who had a presumable null-type disease-associated variant and 76-base deletion located in exon 1 that extended into intron 1. To investigate this discordance, we extracted RNA from the leukocytes of the patient and performed reverse transcription polymerase chain reaction. One of the bands of the cDNA analysis was found to include a nucleotide sequence whose transcript was expected to generate an almost full-length IDS mature peptide lacking only part of its signal peptide as well as only one amino acid at the end of the N-terminus. This suggests that an alternative splicing donor site is generated in exon 1 upstream of the deleted region. Based on these observations, we concluded that the phenotype-genotype discordance in this patient with MPS II was due to the decreased amount of IDS protein induced by the low level of the alternatively spliced mRNA, lacking part of the region coding for the signal peptide but including the region coding almost the full mature IDS protein. The first 25 amino acids at the N-terminus of IDS protein are a signal peptide. The alternative splice transcript has only 13 (1 M-13 L) of those 25 amino acids; 14G-25G are missing, suggesting that the exclusively hydrophobic 1 M-13 L of the signal peptide of IDS might have a crucial role in the signal peptide.
Collapse
|
175
|
Shibata S, Ajiro M, Hagiwara M. Mechanism-Based Personalized Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion. Cell Chem Biol 2020; 27:1472-1482.e6. [DOI: 10.1016/j.chembiol.2020.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/29/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
|
176
|
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol 2020; 31:1606-1622. [PMID: 33004253 DOI: 10.1016/j.annonc.2020.08.2102] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Homologous recombination repair deficiency (HRD) is a frequent feature of high-grade serous ovarian, fallopian tube and peritoneal carcinoma (HGSC) and is associated with sensitivity to PARP inhibitor (PARPi) therapy. HRD testing provides an opportunity to optimise PARPi use in HGSC but methodologies are diverse and clinical application remains controversial. MATERIALS AND METHODS To define best practice for HRD testing in HGSC the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project that incorporated a systematic review approach. The main aims were to (i) define the term 'HRD test'; (ii) provide an overview of the biological rationale and the level of evidence supporting currently available HRD tests; (iii) provide recommendations on the clinical utility of HRD tests in clinical management of HGSC. RESULTS A broad range of repair genes, genomic scars, mutational signatures and functional assays are associated with a history of HRD. Currently, the clinical validity of HRD tests in ovarian cancer is best assessed, not in terms of biological HRD status per se, but in terms of PARPi benefit. Clinical trials evidence supports the use of BRCA mutation testing and two commercially available assays that also incorporate genomic instability for identifying subgroups of HGSCs that derive different magnitudes of benefit from PARPi therapy, albeit with some variation by clinical scenario. These tests can be used to inform treatment selection and scheduling but their use is limited by a failure to consistently identify a subgroup of patients who derive no benefit from PARPis in most studies. Existing tests lack negative predictive value and inadequately address the complex and dynamic nature of the HRD phenotype. CONCLUSIONS Currently available HRD tests are useful for predicting likely magnitude of benefit from PARPis but better biomarkers are urgently needed to better identify current homologous recombination proficiency status and stratify HGSC management.
Collapse
Affiliation(s)
- R E Miller
- Department of Medical Oncology, University College London, London, UK; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - A Leary
- Department of Medicine and INSERM U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Paris, France
| | - C L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - V Serra
- Experimental Therapeutics Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - D Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - D K Chang
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - D W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - J Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J A Ledermann
- UCL Cancer Institute, University College London, London, UK
| | - S Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK; MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - I Ray-Coquard
- Centre Leon Berard, Lyon, France; University Claude Bernard Groupe University of Lyon, France
| | - S P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - X Matias-Guiu
- Departments of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, Universities of Lleida and Barcelona, Irblleida, Idibell, Ciberonc, Barcelona, Spain
| | - E M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - L R Yates
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge; Guy's Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
177
|
Wang S, Wang Y, Wang J, Liu Z, Zhang R, Shi X, Han Y, Guo W, Bottillo I, Shao L. Six Exonic Variants in the SLC5A2 Gene Cause Exon Skipping in a Minigene Assay. Front Genet 2020; 11:585064. [PMID: 33250922 PMCID: PMC7674938 DOI: 10.3389/fgene.2020.585064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023] Open
Abstract
Background Familial renal glucosuria is a rare renal tubular disorder caused by SLC5A2 gene variants. Most of them are exonic variants and have been classified as missense variants. However, there is growing evidence that some of these variants can be detrimental by affecting the pre-mRNA splicing process. Therefore, we hypothesize that a certain proportion of SLC5A2 exonic variants can result in disease via interfering with the normal splicing process of the pre-mRNA. Methods We used bioinformatics programs to analyze 77 previously described presumed SLC5A2 missense variants and identified candidate variants that may alter the splicing of pre-mRNA through minigene assays. Results Our study indicated six of 7 candidate variants induced splicing alterations. Variants c.216C > A, c.294C > A, c.886G > C, c.932A > G and c.962A > G may disrupt splicing enhancer motifs and generate splicing silencer sequences resulting in the skipping of exon 3. Variants c.305C > T and c.1129G > A probably disturb splice sites leading to exon skipping. Conclusion To our knowledge, we report, for the first time, SLC5A2 exonic variants that produce alterations in pre-mRNA. Our research reinforces the importance of assessing the consequences for putative point variants at the mRNA level. Additionally, we propose that minigenes function analysis may be valuable to evaluate the impact of SLC5A2 exonic variants on pre-mRNA splicing without patients’ RNA samples.
Collapse
Affiliation(s)
- Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinchao Wang
- Yantai Branch of Wenden Osteopathic Hospital, Yantai, China
| | - Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yue Han
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wencong Guo
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Italy
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
178
|
Dong Y, Huang G, Wang X, Chu Z, Miao J, Zhou H. Meta-analysis of the association between adiponectin SNP 45, SNP 276, and type 2 diabetes mellitus. PLoS One 2020; 15:e0241078. [PMID: 33091065 PMCID: PMC7580922 DOI: 10.1371/journal.pone.0241078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Objective The present study aimed to determine whether the polymorphisms at rs2241766 and rs1501299 on the ADIPOQ gene were related to the susceptibility of type 2 diabetes mellitus (T2DM). Methods Eight databases, PubMed, GWAS, Embase, Lochrane, Ebsco, CNKI (Chinese National Knowledge Infrastructure), VIP (Viper Database) and ChinaInfo were searched, and a meta-analysis of susceptibility was conducted between SNP45, SNP276 polymorphisms and T2DM. Furthermore, HWE test was conducted to assess the genetic balance of the study, evaluate the quality of Newcastle–Ottawa quality assessment scale (NOS), and establishing allelic, dominant, recessive, heterozygous, and homozygous gene models. Results This meta-analysis included 53 articles, encompassing 9285 cases with rs2241766 and 14156 controls and 7747 cases with rs1501299 and 10607 controls. For the rs2241766 locus, a significant correlation was found in the three models by the subgroup analysis. Western Asians: dominant gene model (TT + TG vs. GG, P = 0.01); heterozygous gene model (TG vs. GG, P = 0.02); homozygous gene model (TT vs. GG, P = 0.01). South Asians: dominant gene model (TT + TG vs. GG, P = 0.004); heterozygous gene model (TG vs. GG, P = 0.009); homozygous gene model (TT vs. GG, P = 0.005). However, no statistically significant correlation was established among the five genetic models for rs1501299 locus. Conclusion The findings of the present study indicated that the T allele of rs2241766 polymorphism is the susceptibility locus of T2DM in the West Asian population, but has a protective effect in the South Asian population, albeit further studies are needed in other populations. Also, no association was found between the ADIPOQ rs1501299 polymorphism and T2DM.
Collapse
Affiliation(s)
- Yuwei Dong
- College of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
- * E-mail:
| | - Gongping Huang
- College of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Xin Wang
- College of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Zhaoming Chu
- College of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Jingzhi Miao
- College of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Houwen Zhou
- Xuzhou Technology Limited Company of United Gene, Xuzhou, Jiangsu, China
| |
Collapse
|
179
|
Riedmayr LM, Böhm S, Biel M, Becirovic E. Enigmatic rhodopsin mutation creates an exceptionally strong splice acceptor site. Hum Mol Genet 2020; 29:295-304. [PMID: 31816042 DOI: 10.1093/hmg/ddz291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/16/2023] Open
Abstract
The c.620 T > G mutation in rhodopsin found in the first mapped autosomal dominant retinitis pigmentosa (adRP) locus is associated with severe, early-onset RP. Intriguingly, another mutation affecting the same nucleotide (c.620 T > A) is related to a mild, late-onset RP. Assuming that both mutations are missense mutations (Met207Arg and Met207Lys) hampering the ligand-binding pocket, previous work addressed how they might differentially impair rhodopsin function. Here, we investigated the impact of both mutations at the mRNA and protein level in HEK293 cells and in the mouse retina. We show that, in contrast to c.620 T > A, c.620 T > G is a splicing mutation, which generates an exceptionally strong splice acceptor site (SAS) resulting in a 90 bp in-frame deletion and protein mislocalization in vitro and in vivo. Moreover, we identified the core element underlying the c.620 T > G SAS strength. Finally, we demonstrate that the c.620 T > G SAS is very flexible in branch point choice, which might explain its remarkable performance. Based on these results, we suggest that (i) point mutations should be routinely tested for mRNA splicing to avoid dispensable analysis of mutations on protein level, which do not naturally exist. (ii) Puzzling disease courses of mutations in other genes might also correlate with their effects on mRNA splicing. (iii) Flexibility in branch point choice might be another factor influencing the SAS strength. (iv) The core splice element identified in this study could be useful for biotechnological applications requiring effective SAS.
Collapse
Affiliation(s)
- Lisa M Riedmayr
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sybille Böhm
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
180
|
Nonsense-associated altered splicing of MAP3K1 in two siblings with 46,XY disorders of sex development. Sci Rep 2020; 10:17375. [PMID: 33060765 PMCID: PMC7567082 DOI: 10.1038/s41598-020-74405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
Although splicing errors due to single nucleotide variants represent a common cause of monogenic disorders, only a few variants have been shown to create new splice sites in exons. Here, we report an MAP3K1 splice variant identified in two siblings with 46,XY disorder of sex development. The patients carried a maternally derived c.2254C>T variant. The variant was initially recognized as a nonsense substitution leading to nonsense-mediated mRNA decay (p.Gln752Ter); however, RT-PCR for lymphoblastoid cell lines showed that this variant created a new splice donor site and caused 39 amino acid deletion (p.Gln752_Arg790del). All transcripts from the variant allele appeared to undergo altered splicing. The two patients exhibited undermasculinized genitalia with and without hypergonadotropism. Testosterone enanthate injections and dihydrotestosterone ointment applications yielded only slight increase in their penile length. Dihydrotestosterone-induced APOD transactivation was less significant in patients’ genital skin fibroblasts compared with that in control samples. This study provides an example of nonsense-associated altered splicing, in which a highly potent exonic splice site was created. Furthermore, our data, in conjunction with the previous data indicating the association between MAP3K1 and androgen receptor signaling, imply that the combination of testicular dysgenesis and androgen insensitivity may be a unique phenotype of MAP3K1 abnormalities.
Collapse
|
181
|
Fasano A, Formichi P, Taglia I, Bianchi S, Di Donato I, Battisti C, Federico A, Dotti MT. HTRA1 expression profile and activity on TGF-β signaling in HTRA1 mutation carriers. J Cell Physiol 2020; 235:7120-7127. [PMID: 32017060 DOI: 10.1002/jcp.29609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/13/2020] [Indexed: 11/06/2022]
Abstract
High temperature requirement A1 (HTRA1) is a serine protease playing a modulatory role in various cell processes, particularly in the regulation of transforming growth factor-β (TGF-β) signaling. A deleterious role in late-onset cerebral small vessel diseases (CSVDs) of heterozygous HTRA1 mutations, otherwise causative in homozygosity of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, was recently suggested. However, the pathomechanism of these heterozygous mutations is still undefined. Our aim is to evaluate the expression profile and activity of HTRA1 on TGF-β signaling in fibroblasts from four subjects carrying the HTRA1 heterozygous mutations-p.E42Dfs*173, p.A321T, p.G295R, and p.Q151K. We found a 50% reduction of HTRA1 expression in HTRA1 mutation carriers compared to the control. Moreover, we showed no changes in TGF-β signaling pathway downstream intermediate, Phospho Smad2/3. However, we found overexpression of genes involved in the extracellular matrix formation in two heterozygous HTRA1 carriers. Our results suggest that each heterozygous HTRA1 missense mutation displays a different and peculiar HTRA1 expression pattern and that CSVD phenotype may also result from 50% of HTRA1 expression.
Collapse
Affiliation(s)
- Alessandro Fasano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ilaria Taglia
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ilaria Di Donato
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
182
|
Akiba K, Ushijima K, Fukami M, Hasegawa Y. A heterozygous protein-truncating RFX6 variant in a family with childhood-onset, pregnancy-associated and adult-onset diabetes. Diabet Med 2020; 37:1772-1776. [PMID: 31001871 DOI: 10.1111/dme.13970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, heterozygous RFX6 mutations including p.Arg377Ter were identified in individuals with maturity-onset diabetes of the young (MODY). Clinical analysis of 36 individuals suggested that RFX6 mutation-induced MODY is characterized by low penetrance and relatively late onset. However, given the small number of previous reports and the limited clinical information of each case, further studies are necessary to clarify the phenotypic characteristics of RFX6 mutations. CASE REPORT We identified a previously reported p.Arg377Ter variant of RFX6 in a three-generation family with diabetes. The variant was detected through mutation screening for 30 diabetes-associated genes. The variant was not found in public databases and was predicted to encode a truncated protein or undergo nonsense-mediated mRNA decay. The proband showed glycosuria from 8 years of age and was diagnosed with MODY at 10 years of age, before the onset of puberty. She received basal and bolus insulin injection as initial therapy. The proband's mother exhibited glycosuria at 26 years of age when she conceived the first child. The mother was treated with insulin, oral hypoglycaemic drugs and diet. The proband and her mother were negative for islet cell autoantibodies. The maternal grandmother showed glycosuria around 50 years of age and was treated with oral hypoglycaemic drugs alone. CONCLUSION This study provides supporting evidence for the causal relationship between heterozygous RFX6 mutations and MODY. Furthermore, our results indicate that phenotypic consequences of RFX6 mutations are highly variable even within a single family, and possibly include childhood-onset and pregnancy-associated non-autoimmune diabetes.
Collapse
Affiliation(s)
- K Akiba
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - K Ushijima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - M Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Y Hasegawa
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center
| |
Collapse
|
183
|
Grønning AGB, Doktor TK, Larsen SJ, Petersen USS, Holm LL, Bruun GH, Hansen MB, Hartung AM, Baumbach J, Andresen BS. DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning. Nucleic Acids Res 2020; 48:7099-7118. [PMID: 32558887 PMCID: PMC7367176 DOI: 10.1093/nar/gkaa530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleotide variants can cause functional changes by altering protein-RNA binding in various ways that are not easy to predict. This can affect processes such as splicing, nuclear shuttling, and stability of the transcript. Therefore, correct modeling of protein-RNA binding is critical when predicting the effects of sequence variations. Many RNA-binding proteins recognize a diverse set of motifs and binding is typically also dependent on the genomic context, making this task particularly challenging. Here, we present DeepCLIP, the first method for context-aware modeling and predicting protein binding to RNA nucleic acids using exclusively sequence data as input. We show that DeepCLIP outperforms existing methods for modeling RNA-protein binding. Importantly, we demonstrate that DeepCLIP predictions correlate with the functional outcomes of nucleotide variants in independent wet lab experiments. Furthermore, we show how DeepCLIP binding profiles can be used in the design of therapeutically relevant antisense oligonucleotides, and to uncover possible position-dependent regulation in a tissue-specific manner. DeepCLIP is freely available as a stand-alone application and as a webtool at http://deepclip.compbio.sdu.dk.
Collapse
Affiliation(s)
- Alexander Gulliver Bjørnholt Grønning
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark.,Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Simon Jonas Larsen
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ulrika Simone Spangsberg Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Michael Birkerod Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anne-Mette Hartung
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark.,Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
184
|
A de novo synonymous variant in EFTUD2 disrupts normal splicing and causes mandibulofacial dysostosis with microcephaly: case report. BMC MEDICAL GENETICS 2020; 21:182. [PMID: 32943010 PMCID: PMC7499997 DOI: 10.1186/s12881-020-01121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Background Mandibulofacial dysostosis with microcephaly (MFDM) is a rare autosomal dominant genetic disease characterized by intellectual and growth retardations, as well as major microcephaly, induced by missense and splice site variants or microdeletions in the EFTUD2 gene. Case presentation Here, we investigate the case of a young girl with symptoms of MFDM and a normal karyotype. Whole-exome sequencing of the family was performed to identify genetic alterations responsible for this phenotype. We identified a de novo synonymous variant in the EFTUD2 gene. We demonstrated that this synonymous variant disrupts the donor splice-site in intron 9 resulting in the skipping of exon 9 and a frameshift that leads to a premature stop codon. Conclusions We present the first case of MFDM caused by a synonymous variant disrupting the donor splice site, leading to exon skipping.
Collapse
|
185
|
Wang Z, Li K, Chen W, Wang X, Huang Y, Wang W, Wu W, Cai Z, Huang W. Modulation of SRSF2 expression reverses the exhaustion of TILs via the epigenetic regulation of immune checkpoint molecules. Cell Mol Life Sci 2020; 77:3441-3452. [PMID: 31838573 PMCID: PMC7426320 DOI: 10.1007/s00018-019-03362-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
The elevated expression of immune checkpoints by the tumor microenvironment is associated with poor prognosis in several cancers due to the exhaustion of tumor-infiltrating lymphocytes (TILs), and the effective suppression of the expression of these genes is key to reversing the exhaustion of TILs. Herein, we determined that serine/arginine-rich splicing factor 2 (SRSF2) is a target for blocking the tumor microenvironment-associated immunosuppressive effects. We found that the expression of SRSF2 was increased in exhausted T cells and that SRSF2 was involved in multiple immune checkpoint molecules mediating TILs' exhaustion. Furthermore, SRSF2 was revealed to regulate the transcription of these immune checkpoint genes by associating with an acyl-transferases P300/CBP complex and altering the H3K27Ac level near these genes, thereafter influencing the recruitment of signal transducer and activator of transcription 3 (STAT3) to these gene promoters. Collectively, our data indicated that SRSF2 functions as a modulator of the anti-tumor response of T cells and may be a therapeutic target for reversing the exhaustion of TILs.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Wei Chen
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Xiaoxia Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Yikun Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Weiming Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Wanjun Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
186
|
Domingo D, Nawaz U, Corbett M, Espinoza JL, Tatton-Brown K, Coman D, Wilkinson MF, Gecz J, Jolly LA. A synonymous UPF3B variant causing a speech disorder implicates NMD as a regulator of neurodevelopmental disorder gene networks. Hum Mol Genet 2020; 29:2568-2578. [PMID: 32667670 PMCID: PMC10893962 DOI: 10.1093/hmg/ddaa151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.
Collapse
Affiliation(s)
- Deepti Domingo
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Urwah Nawaz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Mark Corbett
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | | | - Katrina Tatton-Brown
- St George’s University of London, London SW17, UK
- Southwest Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, London SW17, UK
| | - David Coman
- School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| |
Collapse
|
187
|
Computational discovery and modeling of novel gene expression rules encoded in the mRNA. Biochem Soc Trans 2020; 48:1519-1528. [PMID: 32662820 DOI: 10.1042/bst20191048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
The transcript is populated with numerous overlapping codes that regulate all steps of gene expression. Deciphering these codes is very challenging due to the large number of variables involved, the non-modular nature of the codes, biases and limitations in current experimental approaches, our limited knowledge in gene expression regulation across the tree of life, and other factors. In recent years, it has been shown that computational modeling and algorithms can significantly accelerate the discovery of novel gene expression codes. Here, we briefly summarize the latest developments and different approaches in the field.
Collapse
|
188
|
Khalili Alashti S, Fallahi J, Jokar A, Fardaei M. CRISPR/Cas9 knock-in toward creating a Rett syndrome cell model with a synonymous mutation in the MECP2 gene. J Gene Med 2020; 22:e3258. [PMID: 32761967 DOI: 10.1002/jgm.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Rett syndrome is an X-linked dominant neurodevelopmental disease caused by mutation in the methyl-CpG-binding protein 2 (MECP2) gene. This gene encodes a methylated DNA-binding protein, which acts as a transcriptional regulatory factor. The present study aimed to establish a cell model of Rett syndrome with the MECP2 synonymous mutation c.354G>T (p.Gly118Gly). In addition, the molecular mechanism of pathogenesis of this mutation was also investigated. METHODS To create a cell line containing the synonymous variant in MECP2 locus, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated homology-directed repair precise gene editing method was used. In addition, employing the synthesis of cDNA, the effect of this variant on splicing was investigated. RESULTS Using this model and molecular analysis, we found that the c.354G>T synonymous variant created a novel 5' cryptic splice donor site within the exon 3 of MECP2 gene, which resulted in the deletion of 25 nucleotides at the 3' end of exon 3 and presumably protein truncation. CONCLUSIONS The results of the present study show that an apparently neutral synonymous polymorphism, which may be commonly classified as non-pathogenic, may indeed lead to the creation of an aberrant splice site, thereby resulting in disease.
Collapse
Affiliation(s)
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
189
|
Tubeuf H, Charbonnier C, Soukarieh O, Blavier A, Lefebvre A, Dauchel H, Frebourg T, Gaildrat P, Martins A. Large-scale comparative evaluation of user-friendly tools for predicting variant-induced alterations of splicing regulatory elements. Hum Mutat 2020; 41:1811-1829. [PMID: 32741062 DOI: 10.1002/humu.24091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022]
Abstract
Discriminating which nucleotide variants cause disease or contribute to phenotypic traits remains a major challenge in human genetics. In theory, any intragenic variant can potentially affect RNA splicing by altering splicing regulatory elements (SREs). However, these alterations are often ignored mainly because pioneer SRE predictors have proved inefficient. Here, we report the first large-scale comparative evaluation of four user-friendly SRE-dedicated algorithms (QUEPASA, HEXplorer, SPANR, and HAL) tested both as standalone tools and in multiple combined ways based on two independent benchmark datasets adding up to >1,300 exonic variants studied at the messenger RNA level and mapping to 89 different disease-causing genes. These methods display good predictive power, based on decision thresholds derived from the receiver operating characteristics curve analyses, with QUEPASA and HAL having the best accuracies either as standalone or in combination. Still, overall there was a tight race between the four predictors, suggesting that all methods may be of use. Additionally, QUEPASA and HEXplorer may be beneficial as well for predicting variant-induced creation of pseudoexons deep within introns. Our study highlights the potential of SRE predictors as filtering tools for identifying disease-causing candidates among the plethora of variants detected by high-throughput DNA sequencing and provides guidance for their use in genomic medicine settings.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Camille Charbonnier
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Arnaud Lefebvre
- Computer Science, Information Processing and Systems Laboratory, UNIROUEN, Normandie University, Mont-Saint-Aignan, France
| | - Hélène Dauchel
- Computer Science, Information Processing and Systems Laboratory, UNIROUEN, Normandie University, Mont-Saint-Aignan, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
190
|
Nilsson K, Abdurahman S, Schwartz S. Influenza virus natural sequence heterogeneity in segment 8 affects interactions with cellular RNA-binding proteins and splicing efficiency. Virology 2020; 549:39-50. [PMID: 32829114 DOI: 10.1016/j.virol.2020.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Segment 8 mRNAs of influenza virus A/Brevig Misson/1918/1 (H1N1) are poorly spliced compared to segment 8 mRNAs of influenza virus A/Netherlands/178/95 (H3N2). Using oligonucleotide-mediated protein pull down with oligos spanning the entire length of segment 8 of either influenza virus H1N1 or influenza virus H3N2 we identified cellular RNA binding proteins that interacted with oligonucleotides derived from either H1N1 or H3N2 sequences. When the identified hot spots for RNA binding proteins in H1N1 segment 8 mRNAs were replaced by H3N2 sequences, splicing efficiency increased significantly. Replacing as few as three nucleotides of the H1N1 mRNA with sequences from H3N2 mRNA, enhanced splicing of the H1N1 mRNAs. Cellular proteins U2AF65 and HuR interacted preferentially with the 3'-splice site of H3N2 and overexpression of HuR reduced the levels of unspliced H1N1 mRNAs, suggesting that U2AF65 and HuR contribute to control of influenza virus mRNA splicing.
Collapse
MESH Headings
- A549 Cells
- Alternative Splicing
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Genetic Variation
- HeLa Cells
- Host-Pathogen Interactions/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Binding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Transfection
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Kersti Nilsson
- Department of Laboratory Medicine, BMC-B13, Lund University, 221 84, Lund, Sweden
| | - Samir Abdurahman
- Department of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, BMC-B13, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
191
|
Thompson BA, Walters R, Parsons MT, Dumenil T, Drost M, Tiersma Y, Lindor NM, Tavtigian SV, de Wind N, Spurdle AB. Contribution of mRNA Splicing to Mismatch Repair Gene Sequence Variant Interpretation. Front Genet 2020; 11:798. [PMID: 32849802 PMCID: PMC7398121 DOI: 10.3389/fgene.2020.00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/03/2020] [Indexed: 12/25/2022] Open
Abstract
Functional assays that assess mRNA splicing can be used in interpretation of the clinical significance of sequence variants, including the Lynch syndrome-associated mismatch repair (MMR) genes. The purpose of this study was to investigate the contribution of splicing assay data to the classification of MMR gene sequence variants. We assayed mRNA splicing for 24 sequence variants in MLH1, MSH2, and MSH6, including 12 missense variants that were also assessed using a cell-free in vitro MMR activity (CIMRA) assay. Multifactorial likelihood analysis was conducted for each variant, combining CIMRA outputs and clinical data where available. We collated these results with existing public data to provide a dataset of splicing assay results for a total of 671 MMR gene sequence variants (328 missense/in-frame indel), and published and unpublished repair activity measurements for 154 of these variants. There were 241 variants for which a splicing aberration was detected: 92 complete impact, 33 incomplete impact, and 116 where it was not possible to determine complete versus incomplete splicing impact. Splicing results mostly aided in the interpretation of intronic (72%) and silent (92%) variants and were the least useful for missense substitutions/in-frame indels (10%). MMR protein functional activity assays were more useful in the analysis of these exonic variants but by design they were not able to detect clinically important splicing aberrations identified by parallel mRNA assays. The development of high throughput assays that can quantitatively assess impact on mRNA transcript expression and protein function in parallel will streamline classification of MMR gene sequence variants.
Collapse
Affiliation(s)
- Bryony A Thompson
- Department of Pathology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhiannon Walters
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michael T Parsons
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Troy Dumenil
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark Drost
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne Tiersma
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Sean V Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | |
Collapse
|
192
|
Canson D, Glubb D, Spurdle AB. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum Mutat 2020; 41:1705-1721. [PMID: 32623769 DOI: 10.1002/humu.24074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of variants located outside donor and acceptor splice site motifs that affect messenger RNA (mRNA) processing. This review presents information about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list 95 exonic variants that impact splicing regulatory elements (SREs) in BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2. We utilized a pre-existing large-scale BRCA1 functional data set to map functional SREs, and assess the relative performance of different tools to predict effects of 283 variants on such elements. We also describe rare examples of intronic variants that impact branchpoint (BP) sites and create pseudoexons. We discuss the challenges in predicting variant effect on BP site usage and pseudoexonization, and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our review and analysis highlights the value of considering impact of variants outside donor and acceptor motifs on mRNA splicing and disease causation.
Collapse
Affiliation(s)
- Daffodil Canson
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Dylan Glubb
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
193
|
Kralovicova J, Borovska I, Kubickova M, Lukavsky PJ, Vorechovsky I. Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues Required for Correct Folding and 3' Splice-Site Selection. Cancers (Basel) 2020; 12:cancers12071865. [PMID: 32664474 PMCID: PMC7408900 DOI: 10.3390/cancers12071865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.
Collapse
Affiliation(s)
- Jana Kralovicova
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Ivana Borovska
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Monika Kubickova
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Peter J. Lukavsky
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Igor Vorechovsky
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-2381-206425; Fax: +44-2381-204264
| |
Collapse
|
194
|
Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, Hauchard J, Castelain G, Fiévet A, Meulemans L, Révillion F, Léoné M, Boutry-Kryza N, Delnatte C, Guillaud-Bataille M, Cleveland L, Reid S, Southon E, Soukarieh O, Drouet A, Di Giacomo D, Vezain M, Bonnet-Dorion F, Bourdon V, Larbre H, Muller D, Pujol P, Vaz F, Audebert-Bellanger S, Colas C, Venat-Bouvet L, Solano AR, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Gaildrat P, Sharan SK, Martins A. Calibration of Pathogenicity Due to Variant-Induced Leaky Splicing Defects by Using BRCA2 Exon 3 as a Model System. Cancer Res 2020; 80:3593-3605. [PMID: 32641407 DOI: 10.1158/0008-5472.can-20-0895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Julie Rondeaux
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Krieger
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France - Normandie University, UNICAEN, Caen, France
| | | | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Gaia Castelain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alice Fiévet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Laëtitia Meulemans
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | | | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Daniela Di Giacomo
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Myriam Vezain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Larbre
- Laboratoire d'Oncogénétique Moléculaire, Institut Godinot, Reims, France
| | - Danièle Muller
- Unité d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Pascal Pujol
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Fátima Vaz
- Breast Cancer Risk Evaluation Clinic, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | | | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | | | - Angela R Solano
- Genotipificacion y Cancer Hereditario, Departmento de Analisis Clinicos, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC), Ciudad Autonoma de Buenos Aires, Argentina
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
195
|
Beerepoot S, van Dooren SJM, Salomons GS, Boelens JJ, Jacobs EH, van der Knaap MS, van Kuilenburg ABP, Wolf NI. Metachromatic leukodystrophy genotypes in The Netherlands reveal novel pathogenic ARSA variants in non-Caucasian patients. Neurogenetics 2020; 21:289-299. [PMID: 32632536 PMCID: PMC7476914 DOI: 10.1007/s10048-020-00621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessively inherited sulfatide storage disease caused by deficient activity of the lysosomal enzyme arylsulfatase A (ASA). Genetic analysis of the ARSA gene is important in MLD diagnosis and screening of family members. In addition, more information on genotype prevalence will help interpreting MLD population differences between countries. In this study, we identified 31 different ARSA variants in the patient cohort (n = 67) of the Dutch expertise center for MLD. The most frequently found variant, c.1283C > T, p.(Pro428Leu), was present in 43 (64%) patients and resulted in a high prevalence of the juvenile MLD type (58%) in The Netherlands. Furthermore, we observed in five out of six patients with a non-Caucasian ethnic background previously unreported pathogenic ARSA variants. In total, we report ten novel variants including four missense, two nonsense, and two frameshift variants and one in-frame indel, which were all predicted to be disease causing in silico. In addition, one silent variant was found, c.1200C > T, that most likely resulted in erroneous exonic splicing, including partial skipping of exon 7. The c.1200C > T variant was inherited in cis with the pseudodeficiency allele c.1055A > G, p.(Asn352Ser) + ∗96A > G. With this study we provide a genetic base of the unique MLD phenotype distribution in The Netherlands. In addition, our study demonstrated the importance of genetic analysis in MLD diagnosis and the increased likelihood of unreported, pathogenic ARSA variants in patients with non-Caucasian ethnic backgrounds.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Silvy J M van Dooren
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Jaap Jan Boelens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatrics, Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Department of Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, The Netherlands. .,Amsterdam UMC, location VUmc, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
196
|
Poison exons in neurodevelopment and disease. Curr Opin Genet Dev 2020; 65:98-102. [PMID: 32615329 DOI: 10.1016/j.gde.2020.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
Poison exons are naturally occurring, highly conserved alternative exons that contain a premature termination codon. Inclusion of a poison exon in a transcript targets the transcript for nonsense mediated decay, decreasing the amount of protein produced. Poison exons are proposed to play an important role in tissue-specific expression, development and autoregulation of gene expression. Recently, several studies that performed systematic investigations of alternative splicing in the brain have highlighted the abundance of transcripts containing poison exons, some of which are spliced in a cell type-specific manner. Pathogenic variants in or near poison exons that result in aberrant splicing have been identified in several genes including FLNA, SCN1A and SNRPB. Improved understanding of the role of poison exons in development and disease may present opportunities to solve previously undiagnosed disease and to develop therapeutic approaches in the future.
Collapse
|
197
|
Lee D, Zhang J, Liu J, Gerstein M. Epigenome-based splicing prediction using a recurrent neural network. PLoS Comput Biol 2020; 16:e1008006. [PMID: 32584815 PMCID: PMC7343189 DOI: 10.1371/journal.pcbi.1008006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative RNA splicing provides an important means to expand metazoan transcriptome diversity. Contrary to what was accepted previously, splicing is now thought to predominantly take place during transcription. Motivated by emerging data showing the physical proximity of the spliceosome to Pol II, we surveyed the effect of epigenetic context on co-transcriptional splicing. In particular, we observed that splicing factors were not necessarily enriched at exon junctions and that most epigenetic signatures had a distinctly asymmetric profile around known splice sites. Given this, we tried to build an interpretable model that mimics the physical layout of splicing regulation where the chromatin context progressively changes as the Pol II moves along the guide DNA. We used a recurrent-neural-network architecture to predict the inclusion of a spliced exon based on adjacent epigenetic signals, and we showed that distinct spatio-temporal features of these signals were key determinants of model outcome, in addition to the actual nucleotide sequence of the guide DNA strand. After the model had been trained and tested (with >80% precision-recall curve metric), we explored the derived weights of the latent factors, finding they highlight the importance of the asymmetric time-direction of chromatin context during transcription.
Collapse
Affiliation(s)
- Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Jing Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Jason Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
198
|
Boonekamp FJ, Dashko S, Duiker D, Gehrmann T, van den Broek M, den Ridder M, Pabst M, Robert V, Abeel T, Postma ED, Daran JM, Daran-Lapujade P. Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences. ACS Synth Biol 2020; 9:1361-1375. [PMID: 32413257 PMCID: PMC7309318 DOI: 10.1021/acssynbio.0c00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The construction of powerful cell factories requires intensive and extensive remodelling of microbial genomes. Considering the rapidly increasing number of these synthetic biology endeavors, there is an increasing need for DNA watermarking strategies that enable the discrimination between synthetic and native gene copies. While it is well documented that codon usage can affect translation, and most likely mRNA stability in eukaryotes, remarkably few quantitative studies explore the impact of watermarking on transcription, protein expression, and physiology in the popular model and industrial yeast Saccharomyces cerevisiae. The present study, using S. cerevisiae as eukaryotic paradigm, designed, implemented, and experimentally validated a systematic strategy to watermark DNA with minimal alteration of yeast physiology. The 13 genes encoding proteins involved in the major pathway for sugar utilization (i.e., glycolysis and alcoholic fermentation) were simultaneously watermarked in a yeast strain using the previously published pathway swapping strategy. Carefully swapping codons of these naturally codon optimized, highly expressed genes, did not affect yeast physiology and did not alter transcript abundance, protein abundance, and protein activity besides a mild effect on Gpm1. The markerQuant bioinformatics method could reliably discriminate native from watermarked genes and transcripts. Furthermore, presence of watermarks enabled selective CRISPR/Cas genome editing, specifically targeting the native gene copy while leaving the synthetic, watermarked variant intact. This study offers a validated strategy to simply watermark genes in S. cerevisiae.
Collapse
Affiliation(s)
- Francine J. Boonekamp
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Donna Duiker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Thies Gehrmann
- Westerdijk Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Vincent Robert
- Westerdijk Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Thomas Abeel
- Intelligent Systems − Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628XE Delft, The Netherlands
| | - Eline D. Postma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
199
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
200
|
Velázquez C, Lastra E, Avila Cobos F, Abella L, de la Cruz V, Hernando BA, Hernández L, Martínez N, Infante M, Durán M. A comprehensive custom panel evaluation for routine hereditary cancer testing: improving the yield of germline mutation detection. J Transl Med 2020; 18:232. [PMID: 32522261 PMCID: PMC7288470 DOI: 10.1186/s12967-020-02391-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the context of our Regional Program of Hereditary Cancer, individuals fulfilling the criteria are tested for germline mutations to subsequently establish the clinical management. Our standard diagnostic approach focuses on sequencing a few classic high-risk genes, a method that frequently renders uninformative genetic results. This study aims to examine the improved yield offered by an On-Demand panel. Methods We designed an On-Demand panel for the analysis of 35-genes associated with inherited cancer susceptibility in a total of 128 cases of Hereditary Breast and Ovarian Cancer (HBOC) and Hereditary Nonpolyposis Colorectal Cancer (HNPCC). Results Eighteen deleterious mutations were detected, in both routinely (BRCA2, MLH1, MSH2, PMS2) and non-routinely (ATM, BLM, BRIP1, CHEK2, MUTYH) tested genes. The screening extended to 35 genes rendered by patients carrying several- up to 6-Variants of Unknown Significance (VUS). Moreover, we confirmed the splicing disruption at RNA level for a not previously reported BRIP1 splicing mutation. Using an On-Demand panel, we identified 18 pathogenic mutation carriers, seven of which would have gone unnoticed with traditional analysis. Conclusions Our results reinforce the utility of NGS gene panels in the diagnostic routine to increase the performance of genetic testing, especially in individuals from families with overlapping cancer phenotypes.
Collapse
Affiliation(s)
- Carolina Velázquez
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003, Valladolid, Spain. .,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France.
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, Burgos, Spain
| | | | - Luis Abella
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Virginia de la Cruz
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | | | - Lara Hernández
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003, Valladolid, Spain
| | - Noemí Martínez
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003, Valladolid, Spain
| | - Mar Infante
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003, Valladolid, Spain
| | - Mercedes Durán
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003, Valladolid, Spain
| |
Collapse
|