151
|
Mangano VD, Clark TG, Auburn S, Campino S, Diakite M, Fry AE, Green A, Richardson A, Jallow M, Sisay-Joof F, Pinder M, Griffiths MJ, Newton C, Peshu N, Williams TN, Marsh K, Molyneux ME, Taylor TE, Modiano D, Kwiatkowski DP, Rockett KA. Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations. PLoS One 2009; 4:e4206. [PMID: 19145247 PMCID: PMC2621088 DOI: 10.1371/journal.pone.0004206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/26/2008] [Indexed: 11/30/2022] Open
Abstract
Interferon Regulatory Factor 1 (IRF-1) is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs) across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi). No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia) was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria.
Collapse
Affiliation(s)
- Valentina D Mangano
- Childhood Infection Group, The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 2008; 9:403-33. [PMID: 18593304 DOI: 10.1146/annurev.genom.9.081307.164258] [Citation(s) in RCA: 530] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility.
Collapse
Affiliation(s)
- Michael C Campbell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
153
|
Braun L, Hammonds E. Race, populations, and genomics: Africa as laboratory. Soc Sci Med 2008; 67:1580-8. [DOI: 10.1016/j.socscimed.2008.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Indexed: 11/29/2022]
|
154
|
Abstract
The South African government is committed to science and technology innovation, to establishing a knowledge-based economy and to harnessing life-sciences research for health and economic development. Given the constraints and the early stage of development of the field as a whole in South Africa, we found an impressive amount of research on human genomic variation in this country. Encouragingly, South Africa is beginning to apply genomics to address local health needs, including HIV and tuberculosis (TB) infections. We document a number of initiatives in South Africa that are beginning to study genetic variation within the various local indigenous populations. Other early initiatives focus on pharmacogenetic studies, mutation characterization in individual disease genes and genome-wide association studies. Public engagement in genomic issues is spear-headed by The Africa Genome Education Institute.
Collapse
|
155
|
Stover PJ, Caudill MA. Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. ACTA ACUST UNITED AC 2008; 108:1480-7. [PMID: 18755320 DOI: 10.1016/j.jada.2008.06.430] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 02/04/2008] [Indexed: 01/24/2023]
Abstract
The Institute of Medicine recently convened a workshop to review the state of the various domains of nutritional genomics research and policy and to provide guidance for further development and translation of this knowledge into nutrition practice and policy. Nutritional genomics holds the promise to revolutionize both clinical and public health nutrition practice and facilitate the establishment of (a) genome-informed nutrient and food-based dietary guidelines for disease prevention and healthful aging, (b) individualized medical nutrition therapy for disease management, and (c) better targeted public health nutrition interventions (including micronutrient fortification and supplementation) that maximize benefit and minimize adverse outcomes within genetically diverse human populations. As the field of nutritional genomics matures, which will include filling fundamental gaps in knowledge of nutrient-genome interactions in health and disease and demonstrating the potential benefits of customizing nutrition prescriptions based on genetics, registered dietitians will be faced with the opportunity of making genetically driven dietary recommendations aimed at improving human health.
Collapse
Affiliation(s)
- Patrick J Stover
- Cornell University, Division of Nutritional Sciences, Ithaca, NY 14853, USA.
| | | |
Collapse
|
156
|
Sirugo G, Hennig BJ, Adeyemo AA, Matimba A, Newport MJ, Ibrahim ME, Ryckman KK, Tacconelli A, Mariani-Costantini R, Novelli G, Soodyall H, Rotimi CN, Ramesar RS, Tishkoff SA, Williams SM. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum Genet 2008; 123:557-98. [PMID: 18512079 DOI: 10.1007/s00439-008-0511-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/07/2008] [Indexed: 01/13/2023]
Abstract
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.
Collapse
Affiliation(s)
- Giorgio Sirugo
- Medical Research Council Laboratories, Fajara, The Gambia, West Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Hellenthal G, Auton A, Falush D. Inferring human colonization history using a copying model. PLoS Genet 2008; 4:e1000078. [PMID: 18497854 PMCID: PMC2367454 DOI: 10.1371/journal.pgen.1000078] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/18/2008] [Indexed: 01/12/2023] Open
Abstract
Genome-wide scans of genetic variation can potentially provide detailed information on how modern humans colonized the world but require new methods of analysis. We introduce a statistical approach that uses Single Nucleotide Polymorphism (SNP) data to identify sharing of chromosomal segments between populations and uses the pattern of sharing to reconstruct a detailed colonization scenario. We apply our model to the SNP data for the 53 populations of the Human Genome Diversity Project described in Conrad et al. (Nature Genetics 38,1251-60, 2006). Our results are consistent with the consensus view of a single “Out-of-Africa” bottleneck and serial dilution of diversity during global colonization, including a prominent East Asian bottleneck. They also suggest novel details including: (1) the most northerly East Asian population in the sample (Yakut) has received a significant genetic contribution from the ancestors of the most northerly European one (Orcadian). (2) Native South Americans have received ancestry from a source closely related to modern North-East Asians (Mongolians and Oroquen) that is distinct from the sources for native North Americans, implying multiple waves of migration into the Americas. A detailed depiction of the peopling of the world is available in animated form. Humans like to tell stories. Amongst the most captivating is the story of the global spread of modern humans from their original homeland in Africa. Traditionally this has been the preserve of anthropologists, but geneticists are starting to make an important contribution. However, genetic evidence is typically analyzed in the context of anthropological preconceptions. For genetics to provide an accurate and detailed history without reference to anthropology, methods are required that translate DNA sequence data into histories. We introduce a statistical method that has three virtues. First, it is based on a copying model that incorporates the block-by-block inheritance of DNA from one generation to the next. This allows it to capture the rich information provided by patterns of DNA sharing across the whole genome. Second, its parameter space includes an enormous number of possible colonization scenarios, meaning that inferences are correspondingly rich in detail. Third, the inferred colonization scenario is determined algorithmically. We have applied this method to data from 53 human populations and find that while the current consensus is broadly supported, some populations have surprising histories. This scenario can be viewed as a movie, making it transparent where statistical analysis ends and where interpretation begins.
Collapse
Affiliation(s)
| | - Adam Auton
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Daniel Falush
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Environmental Research Institute, Cork, Ireland
- * E-mail:
| |
Collapse
|
158
|
Hughes AL, Welch R, Puri V, Matthews C, Haque K, Chanock SJ, Yeager M. Genome-wide SNP typing reveals signatures of population history. Genomics 2008; 92:1-8. [PMID: 18485661 DOI: 10.1016/j.ygeno.2008.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 02/11/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Single-nucleotide polymorphism (SNP) arrays have become a popular technology for disease-association studies, but they also have potential for studying the genetic differentiation of human populations. Application of the Affymetrix GeneChip Human Mapping 500K Array Set to a population of 102 individuals representing the major ethnic groups in the United States (African, Asian, European, and Hispanic) revealed patterns of gene diversity and genetic distance that reflected population history. We analyzed allelic frequencies at 388,654 autosomal SNP sites that showed some variation in our study population and 10% or fewer missing values. Despite the small size (23-31 individuals) of each subpopulation, there were no fixed differences at any site between any two subpopulations. As expected from the African origin of modern humans, greater gene diversity was seen in Africans than in either Asians or Europeans, and the genetic distance between the Asian and the European populations was significantly lower than that between either of these two populations and Africans. Principal components analysis applied to a correlation matrix among individuals was able to separate completely the major continental groups of humans (Africans, Asians, and Europeans), while Hispanics overlapped all three of these groups. Genes containing two or more markers with extraordinarily high genetic distance between subpopulations were identified as candidate genes for health differences between subpopulations. The results show that, even with modest sample sizes, genome-wide SNP genotyping technologies have great promise for capturing signatures of gene frequency difference between human subpopulations, with applications in areas as diverse as forensics and the study of ethnic health disparities.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | | | | | |
Collapse
|
159
|
Proportionally more deleterious genetic variation in European than in African populations. Nature 2008; 451:994-7. [PMID: 18288194 DOI: 10.1038/nature06611] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/17/2007] [Indexed: 01/05/2023]
Abstract
Quantifying the number of deleterious mutations per diploid human genome is of crucial concern to both evolutionary and medical geneticists. Here we combine genome-wide polymorphism data from PCR-based exon resequencing, comparative genomic data across mammalian species, and protein structure predictions to estimate the number of functionally consequential single-nucleotide polymorphisms (SNPs) carried by each of 15 African American (AA) and 20 European American (EA) individuals. We find that AAs show significantly higher levels of nucleotide heterozygosity than do EAs for all categories of functional SNPs considered, including synonymous, non-synonymous, predicted 'benign', predicted 'possibly damaging' and predicted 'probably damaging' SNPs. This result is wholly consistent with previous work showing higher overall levels of nucleotide variation in African populations than in Europeans. EA individuals, in contrast, have significantly more genotypes homozygous for the derived allele at synonymous and non-synonymous SNPs and for the damaging allele at 'probably damaging' SNPs than AAs do. For SNPs segregating only in one population or the other, the proportion of non-synonymous SNPs is significantly higher in the EA sample (55.4%) than in the AA sample (47.0%; P < 2.3 x 10(-37)). We observe a similar proportional excess of SNPs that are inferred to be 'probably damaging' (15.9% in EA; 12.1% in AA; P < 3.3 x 10(-11)). Using extensive simulations, we show that this excess proportion of segregating damaging alleles in Europeans is probably a consequence of a bottleneck that Europeans experienced at about the time of the migration out of Africa.
Collapse
|
160
|
Oleksyk TK, Zhao K, De La Vega FM, Gilbert DA, O'Brien SJ, Smith MW. Identifying selected regions from heterozygosity and divergence using a light-coverage genomic dataset from two human populations. PLoS One 2008; 3:e1712. [PMID: 18320033 PMCID: PMC2248624 DOI: 10.1371/journal.pone.0001712] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 01/30/2008] [Indexed: 11/18/2022] Open
Abstract
When a selective sweep occurs in the chromosomal region around a target gene in two populations that have recently separated, it produces three dramatic genomic consequences: 1) decreased multi-locus heterozygosity in the region; 2) elevated or diminished genetic divergence (FST) of multiple polymorphic variants adjacent to the selected locus between the divergent populations, due to the alternative fixation of alleles; and 3) a consequent regional increase in the variance of FST (S2FST) for the same clustered variants, due to the increased alternative fixation of alleles in the loci surrounding the selection target. In the first part of our study, to search for potential targets of directional selection, we developed and validated a resampling-based computational approach; we then scanned an array of 31 different-sized moving windows of SNP variants (5–65 SNPs) across the human genome in a set of European and African American population samples with 183,997 SNP loci after correcting for the recombination rate variation. The analysis revealed 180 regions of recent selection with very strong evidence in either population or both. In the second part of our study, we compared the newly discovered putative regions to those sites previously postulated in the literature, using methods based on inspecting patterns of linkage disequilibrium, population divergence and other methodologies. The newly found regions were cross-validated with those found in nine other studies that have searched for selection signals. Our study was replicated especially well in those regions confirmed by three or more studies. These validated regions were independently verified, using a combination of different methods and different databases in other studies, and should include fewer false positives. The main strength of our analysis method compared to others is that it does not require dense genotyping and therefore can be used with data from population-based genome SNP scans from smaller studies of humans or other species.
Collapse
Affiliation(s)
- Taras K Oleksyk
- Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
161
|
|
162
|
McDade TW. Life history theory and the immune system: steps toward a human ecological immunology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 37:100-25. [PMID: 14666535 DOI: 10.1002/ajpa.10398] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within anthropology and human biology, there is growing interest in immune function and its importance to the ecology of human health and development. Biomedical research currently dominates our understanding of immunology, and this paper seeks to highlight the potential contribution of a population-based, ecological approach to the study of human immune function. Concepts from life-history theory are applied to highlight the major challenges and demands that are likely to shape immune function in a range of ecological contexts. Immune function is a major component of maintenance effort, and since resources are limited, trade-offs are expected between investment in maintenance and other critical life-history functions involving growth and reproduction. An adaptationist, life-history perspective helps make sense of the unusual developmental trajectory of immune tissues, and emphasizes that this complex system is designed to incorporate information from the surrounding ecology to guide its development. As a result, there is substantial population variation in immune development and function that is not considered by current biomedical approaches. In an attempt to construct a framework for understanding this variation, immune development is considered in relation to the competing life-history demands that define gestation, infancy, childhood, adolescence, and adulthood. Each life stage poses a unique set of adaptive challenges, and a series of hypotheses is proposed regarding their implications for immune development and function. Research in human ecological immunology is in its earliest stages, but this is a promising area of exploration, and one in which anthropology is well-positioned to make important contributions.
Collapse
Affiliation(s)
- Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
163
|
Abstract
Germline mutations in the BRCA1 or BRCA2 tumour-suppressor genes are strong predictors of breast and/or ovarian cancer development. The contribution of these mutations to breast cancer risk within any specific population is a function of both their prevalence and their penetrance. Mutation prevalence varies among ethnic groups and may be influenced by founder mutations. Penetrance can be influenced by mutation-specific phenotypes and the potential modifying effects of the patient's own genetic and environmental background. Although estimates of both mutation prevalence and mutation penetrance rates are inconsistent and occasionally controversial, understanding them is crucial for providing accurate risk information to each patient.
Collapse
Affiliation(s)
- James D Fackenthal
- Department of Medicine and Center for Clinical Cancer Genetics, University of Chicago, Box MC2115, 5841 S. Maryland Avenue, Chicago, Illinois 60615, USA
| | | |
Collapse
|
164
|
Allerston CK, Shimizu M, Fujieda M, Shephard EA, Yamazaki H, Phillips IR. Molecular evolution and balancing selection in the flavin-containing monooxygenase 3 gene (FMO3). Pharmacogenet Genomics 2007; 17:827-39. [PMID: 17885620 DOI: 10.1097/fpc.0b013e328256b198] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Flavin-containing monooxygenase 3 (FMO3) is involved in the metabolism of foreign chemicals, including therapeutic drugs, and thus mediates interactions between humans and their chemical environment. Loss-of-function mutations in the gene cause the inherited disorder trimethylaminuria, or fish-odour syndrome. The objective was to gain insights into the evolutionary history of FMO3. METHODS Genetic diversity within FMO3 was characterized by sequencing 6.3 kb of genomic DNA, encompassing the entire coding sequence, some intronic and 3'-untranslated region, and 3.4 kb of 5'-flanking sequence, in 23 potential trimethylaminuric Japanese, and the same 3.4 kb 5'-flanking region in 45 unaffected Japanese. Mutational relationships among haplotypes were inferred from a reduced-median network. The time depth of the variation and ages of individual mutations were estimated by maximum-likelihood coalescent analysis. Test statistics were used to investigate whether the variation is compatible with neutral evolution. RESULTS Sixteen single-nucleotide polymorphisms (SNPs) were identified, which segregated as seven distinct haplotypes. Estimated ages of the mutations indicate that almost all predated migration out of Africa. Analysis of the heterozygosity of FMO3 SNPs indicates that genetic differentiation among continental populations is low (FST=0.050). Test statistics, based on allele-frequency spectrum, number and diversity of haplotypes, linkage disequilibrium and interspecific sequence comparisons, showed a significant departure from neutral expectations, because of an excess of intermediate-frequency SNPs and haplotypes, a ragged pairwise mismatch distribution and an excess of replacement polymorphisms. CONCLUSION The results provide evidence that FMO3 has been the subject of balancing selection. Finally, we identify mutations that are potential targets for selection.
Collapse
Affiliation(s)
- Charles K Allerston
- Department of Biochemistry and Molecular Biology, University College London, UK
| | | | | | | | | | | |
Collapse
|
165
|
Li Y, Li Y, Wu S, Han K, Wang Z, Hou W, Zeng Y, Wu R. Estimation of multilocus linkage disequilibria in diploid populations with dominant markers. Genetics 2007; 176:1811-21. [PMID: 17565957 PMCID: PMC1931551 DOI: 10.1534/genetics.106.068890] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of population structure and organization with DNA-based markers can provide important information regarding the history and evolution of a species. Linkage disequilibrium (LD) analysis based on allelic associations between different loci is emerging as a viable tool to unravel the genetic basis of population differentiation. In this article, we derive the EM algorithm to obtain the maximum-likelihood estimates of the linkage disequilibria between dominant markers, to study the patterns of genetic diversity for a diploid species. The algorithm was expanded to estimate and test linkage disequilibria of different orders among three dominant markers and can be technically extended to manipulate an arbitrary number of dominant markers. The feasibility of the proposed algorithm is validated by an example of population genetic studies of hickory trees, native to southeastern China, using dominant random amplified polymorphic DNA markers. Extensive simulation studies were performed to investigate the statistical properties of this algorithm. The precision of the estimates of linkage disequilibrium between dominant markers was compared with that between codominant markers. Results from simulation studies suggest that three-locus LD analysis displays increased power of LD detection relative to two-locus LD analysis. This algorithm is useful for studying the pattern and amount of genetic variation within and among populations.
Collapse
Affiliation(s)
- Yanchun Li
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. Localizing recent adaptive evolution in the human genome. PLoS Genet 2007; 3:e90. [PMID: 17542651 PMCID: PMC1885279 DOI: 10.1371/journal.pgen.0030090] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 04/20/2007] [Indexed: 12/20/2022] Open
Abstract
Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome with very strong evidence (p < 10−5) of a recent selective sweep and where our estimate of the position of the selective sweep falls within 100 kb of a known gene. Within these regions, genes of biological interest include genes in pigmentation pathways, components of the dystrophin protein complex, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome, with as much as 10% of the genome affected by linkage to a selective sweep. A selective sweep is a single realization of adaptive evolution at the molecular level. When a selective sweep occurs, it leaves a characteristic signal in patterns of variation in genomic regions linked to the selected site; therefore, recently released population genomic datasets can be used to search for instances of molecular adaptation. Here, we present a comprehensive scan for complete selective sweeps in the human genome. Our analysis is complementary to several recent analyses that focused on partial selective sweeps, in which the adaptive mutation still segregates at intermediate frequency in the population. Consequently, our analysis identifies many genomic regions that were not previously known to have experienced natural selection, including consistent evidence of selection in centromeric regions, which is possibly the result of meiotic drive. Genes within selected regions include pigmentation candidate genes, genes of the dystrophin protein complex, and olfactory receptors. Extensive testing demonstrates that the method we use to detect selective sweeps is strikingly robust to both alternative demographic scenarios and recombination rate variation. Furthermore, the method we use provides precise estimates of the genomic position of the selected site, which greatly facilitates the fine-scale mapping of functionally significant variation in human populations.
Collapse
Affiliation(s)
- Scott H Williamson
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
167
|
Cauci S, Di Santolo M, Casabellata G, Ryckman K, Williams SM, Guaschino S. Association of interleukin-1beta and interleukin-1 receptor antagonist polymorphisms with bacterial vaginosis in non-pregnant Italian women. Mol Hum Reprod 2007; 13:243-50. [PMID: 17314118 DOI: 10.1093/molehr/gam002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial vaginosis (BV) is the most prevalent alteration of vaginal microflora worldwide. BV is a polymicrobial disorder, and its etiology is elusive. Factors predisposing to this recurrent condition are not fully characterized. We aimed to investigate whether interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra) polymorphisms are associated with BV in non-pregnant white Italian women. Genomic DNA was obtained from 164 BV positive, and 406 control women. Two diallelic polymorphisms in the IL-1beta gene (IL-1B) representing C/T base transitions at - 511 and + 3954 positions and a variable number tandem repeats (VNTR) in intron 2 of the IL-1ra gene (IL-1RN) were assessed. We demonstrated that women who were homozygous for - 511 CC or + 3954 TT of the IL-1B gene were at increased risk for BV with an odds ratio (OR) = 1.5 [95% confidence interval (CI) = 1.03-2.14, P = 0.032], and OR = 2.8 (95% CI = 1.37-5.88, P = 0.004), respectively. The haplotype - 511/ + 3954 T-C was protective for BV, with an OR = 0.7 (95% CI = 0.49-0.90, P = 0.009). The IL-1RN VNTR genotype was not associated with BV, although the rare allele 3 showed a trend towards protection (P = 0.049). These data show that host genetic variants at the IL-1beta locus predispose to BV among Caucasian non-pregnant women. Further studies will determine whether these genetic polymorphisms modulate the risk for BV recurrence, and/or BV associated severe adverse outcomes as preterm birth and human immunodeficiency virus transmission.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Biomedical Sciences and Technologies, School of Medicine, University of Udine, Udine, Italy.
| | | | | | | | | | | |
Collapse
|
168
|
Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED, Ames MM, Weinshilboum RM. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 2006; 12:1794-803. [PMID: 16551864 DOI: 10.1158/1078-0432.ccr-05-1969] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Gemcitabine is a nucleoside analogue with activity against solid tumors. Gemcitabine metabolic inactivation is catalyzed by cytidine deaminase (CDA) or, after phosphorylation, by deoxycytidylate deaminase (DCTD). We set out to study the pharmacogenomics of CDA and DCTD. EXPERIMENTAL DESIGN The genes encoding CDA and DCTD were resequenced using DNA from 60 African American and 60 Caucasian American subjects. Expression constructs were created for nonsynonymous coding single nucleotide polymorphisms (cSNP) and reporter gene constructs were created for 5'-flanking region polymorphisms. Functional genomic studies were then conducted after the transfection of mammalian cells. RESULTS CDA resequencing revealed 17 polymorphisms, including one common nonsynonymous cSNP, 79 A>C (Lys27Gln). Recombinant Gln27 CDA had 66 +/- 5.1% (mean +/- SE) of the wild-type (WT) activity for gemcitabine but without a significant decrease in level of immunoreactive protein. The apparent Km (397 +/- 40 micromol/L) for the Gln27 allozyme was significantly higher than that for the WT (289 +/- 20 micromol/L; P < 0.025). CDA 5'-flanking region reporter gene studies showed significant differences among 5'-flanking region haplotypes in their ability to drive transcription. There were 29 SNPs in DCTD, including one nonsynonymous cSNP, 172 A>G (Asn58Asp), in Caucasian American DNA. Recombinant Asp58 DCTD had 11 +/- 1.4% of WT activity for gemcitabine monophosphate with a significantly elevated level of immunoreactive protein. No DCTD polymorphisms were observed in the initial 500 bp of the 5'-flanking region. CONCLUSIONS These results suggest that pharmacogenomic variation in the deamination of gemcitabine and its monophosphate might contribute to variation in therapeutic response to this antineoplastic agent.
Collapse
Affiliation(s)
- Judith A Gilbert
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Kim KJ, Lee HJ, Park MH, Cha SH, Kim KS, Kim HT, Kimm K, Oh B, Lee JY. SNP identification, linkage disequilibrium, and haplotype analysis for a 200-kb genomic region in a Korean population. Genomics 2006; 88:535-40. [PMID: 16919420 DOI: 10.1016/j.ygeno.2006.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 03/03/2006] [Accepted: 03/04/2006] [Indexed: 11/22/2022]
Abstract
Understanding patterns of linkage disequilibrium (LD) across genomes may facilitate association mapping studies to localize genetic variants influencing complex diseases, a recognition that led to the International Haplotype Mapping Project (HapMap). Divergent patterns of haplotype frequency and LD across global populations require that the HapMap database be supplemented with haplotype and LD data from additional populations. We conducted a pilot study of the LD and haplotype structure of a genomic region in a Korean population. A total of 165 SNPs were identified in a 200-kb region of 22q13.2 by direct sequencing. Unphased genotype data were generated for 76 SNPs in 90 unrelated Korean individuals. LD, haplotype diversity, and recombination rates were assessed in this region and compared with the HapMap database. The pattern of LD and haplotype frequencies of Korean samples showed a high degree of similarity with Japanese data. There was a strong correlation between high LD and low recombination frequency in this region. We found considerable similarities in local LD patterns between three Asian populations (Han Chinese, Japanese, and Korean) and the CEPH population. Haplotype frequencies were, however, significantly different between them. Our results should further the understanding of distinctive Korean genomic features and assist in designing appropriate association studies.
Collapse
Affiliation(s)
- Kwang Joong Kim
- Center for Genome Sciences, Korean National Institute of Health, Eunpyung-Gu, Seoul 122-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Reed FA, Tishkoff SA. African human diversity, origins and migrations. Curr Opin Genet Dev 2006; 16:597-605. [PMID: 17056248 DOI: 10.1016/j.gde.2006.10.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/06/2006] [Indexed: 01/09/2023]
Abstract
The continent of Africa is thought to be the site of origin of all modern humans and is the more recent origin of millions of African Americans. Although Africa has the highest levels of human genetic diversity both within and between populations, it is under-represented in studies of human genetics. Recent advances have been made in understanding the origins of modern humans within Africa, the rate of adaptations due to positive selection, the routes taken in the first migrations of modern humans out of Africa, and the degree of admixture with archaic populations. Africa is also in dire need of effective medical interventions, and studies of genetic variation in Africans will shed light on the genetic basis of diseases and resistance to infectious diseases. Thus, we have tremendous potential to learn about human variation and evolutionary history and to positively impact human health care from studies of genetic diversity in Africa.
Collapse
Affiliation(s)
- Floyd A Reed
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
171
|
Campino S, Kwiatkowski D, Dessein A. Mendelian and complex genetics of susceptibility and resistance to parasitic infections. Semin Immunol 2006; 18:411-22. [PMID: 17023176 DOI: 10.1016/j.smim.2006.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/18/2006] [Indexed: 11/24/2022]
Abstract
Uncovering the complex genetic basis of susceptibility and resistance to parasitic infectious diseases is an enormous challenge. It probably involves many different host genes, interacting with multiple parasite genetic and environmental factors. Several genes of interest have been identified by family and association studies in humans and by using mouse models, but more robust epidemiological studies and functional data are needed to authenticate these findings. With new technologies and statistical tools for whole-genome association analysis, the next few years are likely to see acceleration in the rate of gene discovery, which has the potential to greatly assist drug and vaccine development.
Collapse
Affiliation(s)
- Susana Campino
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | | | |
Collapse
|
172
|
Witherspoon DJ, Marchani EE, Watkins WS, Ostler CT, Wooding SP, Anders BA, Fowlkes JD, Boissinot S, Furano AV, Ray DA, Rogers AR, Batzer MA, Jorde LB. Human population genetic structure and diversity inferred from polymorphic L1(LINE-1) and Alu insertions. Hum Hered 2006; 62:30-46. [PMID: 17003565 DOI: 10.1159/000095851] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The L1 retrotransposable element family is the most successful self-replicating genomic parasite of the human genome. L1 elements drive replication of Alu elements, and both have had far-reaching impacts on the human genome. We use L1 and Alu insertion polymorphisms to analyze human population structure. METHODS We genotyped 75 recent, polymorphic L1 insertions in 317 individuals from 21 populations in sub-Saharan Africa, East Asia, Europe and the Indian subcontinent. This is the first sample of L1 loci large enough to support detailed population genetic inference. We analyzed these data in parallel with a set of 100 polymorphic Alu insertion loci previously genotyped in the same individuals. RESULTS AND CONCLUSION The data sets yield congruent results that support the recent African origin model of human ancestry. A genetic clustering algorithm detects clusters of individuals corresponding to continental regions. The number of loci sampled is critical: with fewer than 50 typical loci, structure cannot be reliably discerned in these populations. The inclusion of geographically intermediate populations (from India) reduces the distinctness of clustering. Our results indicate that human genetic variation is neither perfectly correlated with geographic distance (purely clinal) nor independent of distance (purely clustered), but a combination of both: stepped clinal.
Collapse
Affiliation(s)
- D J Witherspoon
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112-5330, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Wilson JN, Rockett K, Keating B, Jallow M, Pinder M, Sisay-Joof F, Newport M, Kwiatkowski D. A hallmark of balancing selection is present at the promoter region of interleukin 10. Genes Immun 2006; 7:680-3. [PMID: 16943796 DOI: 10.1038/sj.gene.6364336] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As an anti-inflammatory mediator IL10 is beneficial in certain contexts and deleterious in others. As increased production of IL10 favours protection against inflammatory disease, whereas low production promotes elimination of foreign pathogens by the host, we investigated the possible influence of balancing selection at this locus. We began by resequencing 48 European and 48 African chromosomes across 2.2 kb of the IL10 promoter region, and compared this with four neighbouring gene regions: MK2, IL19, IL20 and IL24. Analysis of nucleotide diversity showed a positive Tajima's D-test for IL10 in Europeans, of borderline statistical significance (1.89, P=0.05). Analysis of F(st) values showed significant population divergence at MK2, IL19, IL20 and IL24 (P<0.01) but not at IL10. Taken together, these findings are consistent with the hypothesis that balancing selection has played a role in the evolution of polymorphisms in the IL10 promoter region.
Collapse
Affiliation(s)
- J N Wilson
- Wellcome Trust Centre for Human Genetics, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Mellars P. Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 2006; 313:796-800. [PMID: 16902130 DOI: 10.1126/science.1128402] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pattern of dispersal of biologically and behaviorally modern human populations from their African origins to the rest of the occupied world between approximately 60,000 and 40,000 years ago is at present a topic of lively debate, centering principally on the issue of single versus multiple dispersals. Here I argue that the archaeological and genetic evidence points to a single successful dispersal event, which took genetically and culturally modern populations fairly rapidly across southern and southeastern Asia into Australasia, and with only a secondary and later dispersal into Europe.
Collapse
Affiliation(s)
- Paul Mellars
- Department of Archaeology, Cambridge University, Cambridge CB2 3DZ, UK.
| |
Collapse
|
175
|
Hendrie HC, Murrell J, Gao S, Unverzagt FW, Ogunniyi A, Hall KS. International studies in dementia with particular emphasis on populations of African origin. Alzheimer Dis Assoc Disord 2006; 20:S42-6. [PMID: 16917194 PMCID: PMC3212027 DOI: 10.1097/00002093-200607001-00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidemiologic studies on dementia generally have 2 major interacting objectives: descriptive, where rates of dementia and Alzheimer Disease (AD) are calculated for communities and selected populations, and analytic, which attempt to explain the observed phenotypic variations in communities and populations by identifying disease risk factors. The public health benefits derived from descriptive studies are exemplified by the recent published review of the global prevalence of dementia under the auspices of Alzheimer Disease International. This review emphasized the enormous and growing burden associated with dementia particularly for countries in the developing world and outlined strategies to influence policy making, planning, and healthcare allocation. One interesting feature of descriptive studies on dementia is that although the few epidemiologic studies conducted in Africa suggest that rates of dementia and AD are relatively low, rates of AD and dementia have been reported to be relatively high for African Americans. The Indianapolis-Ibadan Dementia Project has reported that the incidence rates for AD and dementia in Yoruba are less than half the incidence rates for AD and dementia in African Americans. Analytic studies are now underway to identify risk factors that may account for these rate differences. The risk factor model being applied, attempts to identify not only putative genetic and environmental factors but also their interactions. So far the major findings have included: apolipoprotein E e4, a major risk factor for AD in most populations, is also a risk factor for AD in African Americans but not for Yoruba; African Americans are at higher risk not only for AD, but also for diseases associated with increased cardiovascular risk such as hypertension, diabetes, and metabolic syndrome; African Americans have higher rates of hypercholesterolemia than Yoruba: there is an interaction between apolipoprotein E e4, cholesterol, and AD risk in both Yoruba and African Americans. We eventually hope to create a risk factor model that will not only account for the dementia rate differences between Yoruba and African Americans, but also help explain dementia rates in other developing and developed countries.
Collapse
Affiliation(s)
- Hugh C Hendrie
- Department of Psychiatry, and Center for Aging Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
176
|
Mellars P. Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc Natl Acad Sci U S A 2006; 103:9381-6. [PMID: 16772383 PMCID: PMC1480416 DOI: 10.1073/pnas.0510792103] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent research has provided increasing support for the origins of anatomically and genetically "modern" human populations in Africa between 150,000 and 200,000 years ago, followed by a major dispersal of these populations to both Asia and Europe sometime after ca. 65,000 before present (B.P.). However, the central question of why it took these populations approximately 100,000 years to disperse from Africa to other regions of the world has never been clearly resolved. It is suggested here that the answer may lie partly in the results of recent DNA studies of present-day African populations, combined with a spate of new archaeological discoveries in Africa. Studies of both the mitochondrial DNA (mtDNA) mismatch patterns in modern African populations and related mtDNA lineage-analysis patterns point to a major demographic expansion centered broadly within the time range from 80,000 to 60,000 B.P., probably deriving from a small geographical region of Africa. Recent archaeological discoveries in southern and eastern Africa suggest that, at approximately the same time, there was a major increase in the complexity of the technological, economic, social, and cognitive behavior of certain African groups, which could have led to a major demographic expansion of these groups in competition with other, adjacent groups. It is suggested that this complex of behavioral changes (possibly triggered by the rapid environmental changes around the transition from oxygen isotope stage 5 to stage 4) could have led not only to the expansion of the L2 and L3 mitochondrial lineages over the whole of Africa but also to the ensuing dispersal of these modern populations over most regions of Asia, Australasia, and Europe, and their replacement (with or without interbreeding) of the preceding "archaic" populations in these regions.
Collapse
Affiliation(s)
- Paul Mellars
- Department of Archaeology, Cambridge University, Downing Street, Cambridge CB2 3DZ, England.
| |
Collapse
|
177
|
Verrelli BC, Tishkoff SA, Stone AC, Touchman JW. Contrasting histories of G6PD molecular evolution and malarial resistance in humans and chimpanzees. Mol Biol Evol 2006; 23:1592-601. [PMID: 16751255 DOI: 10.1093/molbev/msl024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene result in several blood-related diseases in humans, they also confer resistance to malarial infection. This association between G6PD and malaria was supported by population genetic analyses of the G6PD locus, which indicated that these mutations may have recently risen in frequency in certain geographic regions as a result of positive selection. Here we characterize nucleotide sequence variation in a 5.2-kb region of the G6PD locus in a population sample of 56 chimpanzees, as well as among 7 other nonhuman primates, to compare with that in humans in determining whether other primates that are impacted by malaria also exhibit patterns of G6PD polymorphism or divergence consistent with positive selection. We find that chimpanzees have several amino acid variants but that the overall pattern at G6PD in chimpanzees, as well as in Old and New World primates in general, can be explained by recent purifying selection as well as strong functional constraint dating back to at least 30-40 MYA. These comparative analyses suggest that the recent signature of positive selection at G6PD in humans is unique.
Collapse
Affiliation(s)
- Brian C Verrelli
- Center for Evolutionary Functional Genomics, The Biodesign Institute, Tempe, Arizona, USA.
| | | | | | | |
Collapse
|
178
|
Menon R, Velez DR, Simhan H, Ryckman K, Jiang L, Thorsen P, Vogel I, Jacobsson B, Merialdi M, Williams SM, Fortunato SJ. Multilocus interactions at maternal tumor necrosis factor-alpha, tumor necrosis factor receptors, interleukin-6 and interleukin-6 receptor genes predict spontaneous preterm labor in European-American women. Am J Obstet Gynecol 2006; 194:1616-24. [PMID: 16731080 DOI: 10.1016/j.ajog.2006.03.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We hypothesize that genetic variations (single nucleotide polymorphisms-SNPs) in the tumor necrosis factor-alpha (TNF-alpha), TNF receptors (TNFRI and TNFRII), interleukin-6 (IL-6) and IL-6 receptor (IL-6R) genes predict high-risk status for spontaneous preterm birth (sPTB) in European-American women. In this study we examine the allelic and genotypic variations and the gene-gene interactions in the TNF-alpha, TNFRs, IL-6, and IL-6R genes in maternal DNA samples by using a case-control model. STUDY DESIGN Maternal DNA from cases of sPTB after preterm labor (n = 101) and controls (normal term labor and delivery) (n = 321) were genotyped for SNPs in the TNF-alpha (6), TNFRI (6), TNFRII (7), IL-6 (5), and IL-6R (3) loci. SNPs were tested for both allele and genotype differences (cases vs controls) with the use of standard genetic epidemiologic methods. Multilocus interaction was assessed with multifactor dimensionality reduction analysis (MDR) to test all single and multilocus combinations for the ability to predict sPTB. RESULTS Few significant allelic and genotypic associations were detected between cases and controls in maternal DNA. Single locus analysis documented independent association of SNPs at -7294 (allele and genotype) of TNFRI and 24660 (genotype) TNFRII loci with sPTB. MDR revealed a significant 3 locus model that includes SNPs -3448 of TNF-alpha, -7227 of IL-6, and 33314 of IL-6R. This interactive model allowed the successful prediction of pre- to low-risk genotypes is 3.50 (95% CI 2.52-4.87, P < .001). CONCLUSION This is the first report to document a multilocus interaction in sPTB that predicts 65.2% of the cases in a European-American sample. Although putatively significant associations with sPTB were seen at a few single locus sites in TNFRI and TNFRII, they were not as predictive as the 3-locus model produced by MDR, suggesting the use of multilocus analyses in gene association studies of complex disease such as sPTB.
Collapse
|
179
|
Lombard Z, Dalton DL, Venter PA, Williams RC, Bornman L. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol 2006; 67:643-54. [PMID: 16916662 DOI: 10.1016/j.humimm.2006.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Indexed: 11/16/2022]
Abstract
The vitamin D receptor (VDR) and the human leukocyte antigen (HLA) class II complex affect innate and/or adaptive immunity against Mycobacterium tuberculosis. HLA-DRB1, HLA-DQB1, and VDR gene (VDR) polymorphisms were previously associated with tuberculosis (TB) and are here investigated as candidates for TB susceptibility in the Venda population of South Africa. Genomic DNA from 95 patients with pulmonary tuberculosis (PTB) and 117 ethnically matched, healthy controls were typed for HLA-DRB1, DRB3, DRB4, DRB5, DQB1, and VDR polymorphisms FokI, BsmI, ApaI, and TaqI using polymerase chain reaction-sequence specific primers (PCR-SSP). Allele and haplotype frequencies were calculated by the estimator maximum (EM) algorithm. DRB1*1302 phenotype was significantly associated with TB occurring at a significantly higher allele frequency in cases than controls and found in haplotype with DQB1*0602/3. DQB1*0301-0304 phenotype was significantly associated with TB and found in haplotype with DRB1*1101-1121, showing significant linkage disequilibrium (LD) in both cases and controls. Only DRB1*1101-1121-DQB1*05 was significantly associated with TB based on the sequential Bonferroni p value. VDR SNP phenotypes were not associated with TB, but the haplotype F-b-A-T significantly protected from TB. In conclusion, common African HLA-DRB1 and -DQB1 variants, previously associated with protection from malaria and hepatitis B/C virus persistence, predispose the Venda to TB, whereas the proposedly active VDR haplotype F-b-A-T showed significant protection.
Collapse
Affiliation(s)
- Zane Lombard
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | | | | | | | | |
Collapse
|
180
|
Lombard Z, Brune AE, Hoal EG, Babb C, Van Helden PD, Epplen JT, Bornman L. HLA class II disease associations in southern Africa. ACTA ACUST UNITED AC 2006; 67:97-110. [PMID: 16441480 DOI: 10.1111/j.1399-0039.2006.00530.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Southern Africa harbors several population groups representing a diversity of gene pool origins. This provides a unique opportunity to study genetic disease predisposition in these populations against a common environmental background. Human leukocyte antigen (HLA) association studies of these populations could improve knowledge on inter-population variation and HLA-related disease susceptibility. The aim of this paper is to review HLA class II disease associations reported for southern African population groups, compare them with findings in other populations and identify those unique to southern Africa. A number of HLA class II disease associations appear to be unique to southern African populations. These include DRB1*14011 association with insulin-dependent diabetes mellitus susceptibility in the Xhosa and DRB1*10 and DQB1*0302 with rheumatoid arthritis susceptibility in the South African (SA) Indian and SA Coloreds, respectively. A noteworthy similarity in class II disease association was observed among southern African Caucasoid and their European parental populations. Unique HLA class II disease associations observed in southern Africa are consistent with the notion that unique environmental and natural selective factors have resulted in certain ethnic-specific HLA class II disease associations, while common HLA class II disease associations found across different populations support the notion that common diseases are caused by common, ancient alleles present in indigenous African populations.
Collapse
Affiliation(s)
- Z Lombard
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | | | | | | | | | | | | |
Collapse
|
181
|
Petersen DC, Glashoff RH, Shrestha S, Bergeron J, Laten A, Gold B, van Rensburg EJ, Dean M, Hayes VM. Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr 2006; 40:521-6. [PMID: 16284526 PMCID: PMC1369993 DOI: 10.1097/01.qai.0000186360.42834.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CXC chemokine ligand 12 (CXCL12), or stromal cell-derived factor 1 (SDF1), is the only known natural ligand for the HIV-1 coreceptor, CXC chemokine receptor 4 (CXCR4). A single nucleotide polymorphism (SNP) in the CXCL12 gene (SDF1-3'A) has been associated with disease progression to AIDS in some studies, but not others. Mutations in the CXCR4 gene are generally rare and have not been implicated in HIV-1/AIDS pathogenesis. This study analyzed the SDF1-3'A SNP and performed mutation screening for polymorphic markers in the CXCR4 gene to determine the presence or absence of significant associations with susceptibility to HIV-1 infection. The study consisted of 257 HIV-1-seropositive patients and 113 HIV-1-seronegative controls representing a sub-Saharan African population belonging to the Xhosa ethnic group of South Africa. The SDF1-3'A SNP was associated with an increased risk for HIV-1 infection (P = 0.0319) whereas no significant association was observed between the occurrence of the SDF1-3'A SNP and increased or decreased plasma levels of CXCL12. Comprehensive mutation analysis of the CXCR4 gene confirmed a high degree of genetic conservation within the coding region of this ancient population.
Collapse
Affiliation(s)
| | | | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL; and
| | - Julie Bergeron
- Basic Research Program, Science Applications International Corporation (SAIC), Frederick, MD
| | | | - Bert Gold
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD
| | | | - Michael Dean
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD
| | - Vanessa M. Hayes
- Urology, University of Stellenbosch, Tygerberg Medical School, South Africa
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Reprints: Vanessa M. Hayes, Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia (e-mail:)
| |
Collapse
|
182
|
Miljkovic-Gacic I, Bunker CH, Ferrell RE, Kammerer CM, Evans RW, Patrick AL, Kuller LH. Lipoprotein subclass and particle size differences in Afro-Caribbeans, African Americans, and white Americans: associations with hepatic lipase gene variation. Metabolism 2006; 55:96-102. [PMID: 16324926 DOI: 10.1016/j.metabol.2005.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 07/18/2005] [Indexed: 11/26/2022]
Abstract
Despite a higher prevalence of coronary heart disease risk factors, men of African origin have less coronary atherosclerosis, as measured by coronary calcification, than whites. In part, this is thought to be because of the less atherogenic lipoprotein profile observed in men of African origin, characterized by lower triglycerides and higher high-density lipoprotein (HDL) cholesterol. We hypothesized that the -514C>T polymorphism in the hepatic lipase gene (LIPC) plays a significant role in determining a less atherogenic lipoprotein profile observed in men of African origin. Previously conducted studies of the LIPC -514C>T polymorphism in African Americans may have been confounded by a higher level of European admixture; in addition, the results from these studies do not necessarily apply to other African populations because gene-environment interactions may differ. Thus, we compared nuclear magnetic resonance spectroscopy-measured lipoprotein subclass patterns and LIPC -514C>T genotypes in population-based samples of older white American (n = 532) and African American (n = 97) men from the Cardiovascular Health Study to those among older, less admixed, Afro-Caribbean men (n = 205) from the Tobago Health Study. Men of African origin had a more favorable lipoprotein profile than whites. In addition, levels of low-density lipoprotein cholesterol, total cholesterol, and triglyceride, and large and small very low-density lipoprotein, small low-density lipoprotein, as well as very low-density lipoprotein particle size, were remarkably lower in Afro-Caribbean men than in either African American or white men. The frequency of the LIPC -514T allele was much higher in Afro-Caribbeans (0.57) and in African Americans (0.49) than in whites (0.20). The -514T allele in both populations of African origin, but not in whites, was associated with elevated large HDL and greater HDL size. Our findings indicate that the higher frequency of the LIPC -514T allele found in men of African origin living in different environments significantly contributes to the more favorable distribution of HDL subclasses compared with whites.
Collapse
Affiliation(s)
- Iva Miljkovic-Gacic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
During the twentieth century the gene emerged as the major driving force of biology. Initially, even the nature and behavior of gene vehicles, the chromosomes, were subjected to doubts. The basic or standard gene concept, as a unit of function, mutation, and recombination, had to be revised. Half a century was required for reaching a general consensus about the chemical nature of the genetic material, DNA and RNA. The relationship between single genes and individual proteins was a great milestone at the middle of the twentieth century, but within two decades it was realized that the relationship was more complex. Understanding of genetic coding, transcription, and translation during the 1960s laid a firm foundation to the "nucleic doctrine," harking back to the dicta of Lederberg (1959) and meaning that single nucleic acid genes alone were responsible for each separate function within the cell. However, important aspects of gene expression are recognized now as a function of the genome and many genes collaborate in circuits. It has come to light that genes may be mobile, exist in plasmids and cytoplasmic organelles, and can be imported by nonsexual means from other organisms or as synthetic products. Epigenetics has reborn as a new field of developmental genetics. The unorthodox prion proteins can even simulate some gene properties. Genetics was to an extent reincarnated as of the twenty-first century by assimilating the tools of cybernetics and of many formerly distant areas of science. This overview highlights some of the historical milestones that contributed to the development of our image of the gene, extending elements of issues laid down by Rédei (2003).
Collapse
Affiliation(s)
- George P Rédei
- University of Missouri, Life Sciences Center, Columbia, Missouri 65203, USA
| | | | | |
Collapse
|
184
|
Ossorio PN. About face: forensic genetic testing for race and visible traits. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2006; 34:277-92. [PMID: 16789949 DOI: 10.1111/j.1748-720x.2006.00033.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
“DNAPrint Genomics, Inc. has applied the most recent advancements in human genomic technology for the deciphering of an individual's race. We are proud to introduce to the forensic community DNA WITNESS 2.0, a genetic test for the deduction of the heritable component of race, called Biogeographical Ancestry (BGA).”–Z. Gaskin“One definite and obvious consequence of the complexity of human demographic history is that races in any meaningful sense of the term do not exist in the human species.”–D. B. Goldstein and L. Chikhi
Collapse
|
185
|
Schirmer M, Toliat MR, Haberl M, Suk A, Kamdem LK, Klein K, Brockmöller J, Nürnberg P, Zanger UM, Wojnowski L. Genetic signature consistent with selection against the CYP3A4*1B allele in non-African populations. Pharmacogenet Genomics 2006; 16:59-71. [PMID: 16344723 DOI: 10.1097/01.fpc.0000182779.03180.ba] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 3A enzymes (CYP3A) play a major role in the metabolism of steroid hormones, drugs and other chemicals, including many carcinogens. The individually variable CYP3A expression, which remains mostly unexplained, has been suggested to affect clinical phenotypes. We investigated the CYP3A locus in five ethnic groups. The degree of linkage disequilibrium (LD) differed among ethnic groups, but the most common alleles of the conserved LD regions were remarkably similar. Non-African haplotypes are few; for example, only four haplotypes account for 80% of common European Caucasian alleles. Large LD blocks of high frequencies were suggestive of selection. Accordingly, European Caucasian and Asian cohorts each contained a block of single nucleotide polymorphism (SNPs) with very high P excess values. The overlap between these blocks in these two groups contained only two of the investigated 26 SNPs and one of them was the CYP3A4*1B allele. The region centromeric of CYP3A4*1B exhibited high haplotype homozygosity in European Caucasians as opposed to African-Americans. CYP3A4*1B showed a moderate effect on CYP3A4 mRNA and protein expression, as well as on CYP3A activity assessed as Vmax of testosterone 6beta-hydroxylation in a liver bank. Our data are consistent with a functional relevance of CYP3A4*1B and with selection against this allele in non-African populations. The elimination of CYP3A4*1B involved different parts of the CYP3A locus in European Caucasians and Asians. Because CYP3A4 is involved in the vitamin D metabolism, rickets may have been the underlying selecting factor.
Collapse
Affiliation(s)
- Markus Schirmer
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A 2005; 102:15942-7. [PMID: 16243969 PMCID: PMC1276087 DOI: 10.1073/pnas.0507611102] [Citation(s) in RCA: 644] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equilibrium models of isolation by distance predict an increase in genetic differentiation with geographic distance. Here we find a linear relationship between genetic and geographic distance in a worldwide sample of human populations, with major deviations from the fitted line explicable by admixture or extreme isolation. A close relationship is shown to exist between the correlation of geographic distance and genetic differentiation (as measured by F(ST)) and the geographic pattern of heterozygosity across populations. Considering a worldwide set of geographic locations as possible sources of the human expansion, we find that heterozygosities in the globally distributed populations of the data set are best explained by an expansion originating in Africa and that no geographic origin outside of Africa accounts as well for the observed patterns of genetic diversity. Although the relationship between F(ST) and geographic distance has been interpreted in the past as the result of an equilibrium model of drift and dispersal, simulation shows that the geographic pattern of heterozygosities in this data set is consistent with a model of a serial founder effect starting at a single origin. Given this serial-founder scenario, the relationship between genetic and geographic distance allows us to derive bounds for the effects of drift and natural selection on human genetic variation.
Collapse
Affiliation(s)
- Sohini Ramachandran
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Shields ED. Mandibular premolar and second molar root morphological variation in modern humans: What root number can tell us about tooth morphogenesis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 128:299-311. [PMID: 15838835 DOI: 10.1002/ajpa.20110] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This investigation of modern human mandibular premolar root variation tests the hypothesis that population-specific mandibular single-rooted premolar root size can predict a predisposition to root morphological complexity. Mandibular postcanines were examined and quantified from dental radiographs in a globally spread sample of 1,615 modern humans. Multirooted premolars and a fused molar root phenotype were investigated as probes into greater than, and less than, the normative root number. Twelve questions were addressed concerning root structure of mandibular premolars and second molars. A direct correlation was found between single-rooted mandibular premolar size and the predisposition to multirootedness. This correlation infers the following: 1) that postcanine primordia size during root formation predisposes to the development of more, or less, than the normative postcanine root number; and 2) that the epigenetic effect of tooth primordium size per se influences the induction of interradicular processes, which divides the root during its development. This simple developmental model helps explain the following observations: 1) population-specific variation in postcanine root number; 2) sexual dimorphism for multirooted mandibular premolar prevalence; 3) why microdont teeth are single-rooted; 4) the hierarchy of developmental canalization of interradicular processes; 5) megadont-hominin to late-hominin mandibular premolar root number transition; and 6) the fluctuation of mandibular premolar root number in primate evolutionary history.
Collapse
Affiliation(s)
- Edward D Shields
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada.
| |
Collapse
|
188
|
The use of racial, ethnic, and ancestral categories in human genetics research. Am J Hum Genet 2005; 77:519-32. [PMID: 16175499 PMCID: PMC1275602 DOI: 10.1086/491747] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 07/27/2005] [Indexed: 01/21/2023] Open
Abstract
The global dispersal of anatomically modern humans over the past 100,000 years has produced patterns of phenotypic variation that have exerted--and continue to exert--powerful influences on the lives of individuals and the experiences of groups. The recency of our common ancestry and continued gene flow among populations have resulted in less genetic differentiation among geographically distributed human populations than is observed in many other mammalian species. Nevertheless, differences in appearance have contributed to the development of ideas about "race" and "ethnicity" that often include the belief that significant inherited differences distinguish humans. The use of racial, ethnic, and ancestral categories in genetics research can imply that group differences arise directly through differing allele frequencies, with little influence from socially mediated mechanisms. At the same time, careful investigations of the biological, environmental, social, and psychological attributes associated with these categories will be an essential component of cross-disciplinary research into the origins, prevention, and treatment of common diseases, including those diseases that differ in prevalence among groups.
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW Until recently, the paucity of characterization of the epidemiology of venous thromboembolism among non-Caucasians has contributed to the misconception that race or ethnicity does not modify disease presentation. This review will describe the previously poorly documented magnitude of venous thromboembolism disease burden among four racial cohorts, by defining disease incidence and associated morbidity/mortality from available literature data. RECENT FINDINGS Emerging data suggest that African-Americans possess the highest burden of venous thromboembolism, and Asians the lowest, compared with the Caucasian population. In both racial groups, however, the inheritable thrombophilic risk factors prevalent in Caucasians (factor V Leiden, Prothrombin G20210A) are distinctly rare. The presence of yet undetermined modifiers of disease, conferring susceptibility or resistance to venous thromboembolism among these racial groups, is suspected and requires further investigation. SUMMARY Racial disparity in thrombotic disorders exists in the divergent patterns of disease incidence among different racial/ethnic cohorts, yet the genetic determinants of disease and modifiers of risk remain obscure. Further research focused on delineating the underlying etiologies of venous thromboembolism across different racial/ethnic groups promises to be a productive and much needed area of exploration.
Collapse
Affiliation(s)
- Haruka Itakura
- Stanford University, Division of Hematology, Stanford, CA 94305, USA.
| |
Collapse
|
190
|
Ray N, Currat M, Berthier P, Excoffier L. Recovering the geographic origin of early modern humans by realistic and spatially explicit simulations. Genome Res 2005; 15:1161-7. [PMID: 16077015 PMCID: PMC1182229 DOI: 10.1101/gr.3708505] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 05/18/2005] [Indexed: 11/24/2022]
Abstract
Most genetic and archeological evidence argue in favor of a recent and unique origin of modern humans in sub-Saharan Africa, but no attempt has ever been made at quantifying the likelihood of this model, relative to alternative hypotheses of human evolution. In this paper, we investigate the possibility of using multilocus genetic data to correctly infer the geographic origin of humans, and to distinguish between a unique origin (UO) and a multiregional evolution (ME) model. We introduce here an approach based on realistic simulations of the genetic diversity expected after an expansion process of modern humans into the Old World from different possible areas and their comparison to observed data. We find that the geographic origin of the expansion can be correctly recovered provided that a large number of independent markers are used, and that precise information on past demography and potential places of origins is available. In that case, it is also possible to unambiguously distinguish between a unique origin and a multiregional model of human evolution. Application to a real human data set of 377 STR markers tested in 22 populations points toward a unique but surprising North African origin of modern humans. We show that this result could be due to ascertainment bias in favor of markers selected to be polymorphic in Europeans. A new estimation modeling this bias explicitly reveals that East Africa is the most likely place of origin for modern humans.
Collapse
Affiliation(s)
- Nicolas Ray
- Computational and Molecular Population Genetics Lab, Zoological Institute, University of Bern, 3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
191
|
Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005; 77:171-92. [PMID: 16001361 PMCID: PMC1224522 DOI: 10.1086/432519] [Citation(s) in RCA: 664] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/03/2005] [Indexed: 12/22/2022] Open
Abstract
Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, alpha+ thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics and University Department of Paediatrics, Oxford, United Kingdom.
| |
Collapse
|
192
|
Adeyemo AA, Chen G, Chen Y, Rotimi C. Genetic structure in four West African population groups. BMC Genet 2005; 6:38. [PMID: 15978124 PMCID: PMC1180433 DOI: 10.1186/1471-2156-6-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 06/24/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. The presences of genetic sub-structure, if not properly accounted for, have been reported to lead to spurious association between a putative risk allele and a disease. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes). RESULTS There was no significant population genetic structure in the overall sample. The smallest probability is associated with an inferred cluster of 1 and little of the posterior probability is associated with a higher number of inferred clusters. The distribution of members of the sample to inferred clusters is consistent with this finding; roughly the same proportion of individuals from each group is assigned to each cluster with little variation between the ethnic groups. Analysis of molecular variance (AMOVA) showed that the between-population component of genetic variance is less than 0.1% in contrast to 99.91% for the within population component. Pair-wise genetic distances between the four ethnic groups were also very similar. Nonetheless, the small between-population genetic variance was sufficient to distinguish the two Ghanaian groups from the two Nigerian groups. CONCLUSION There was little evidence for significant population substructure in the four major West African ethnic groups represented in the AADM study sample. Ethnicity apparently did not introduce differential allele frequencies that may affect analysis and interpretation of linkage and association studies. These findings, although not entirely surprising given the geographical proximity of these groups, provide important insights into the genetic relationships between the ethnic groups studied and confirm previous results that showed close genetic relationship between most studied West African groups.
Collapse
Affiliation(s)
- Adebowale A Adeyemo
- College of Medicine, University of Ibadan, Ibadan. Nigeria
- National Human Genome Center, Howard University, Washington DC, USA
| | - Guanjie Chen
- National Human Genome Center, Howard University, Washington DC, USA
| | - Yuanxiu Chen
- National Human Genome Center, Howard University, Washington DC, USA
| | - Charles Rotimi
- National Human Genome Center, Howard University, Washington DC, USA
| |
Collapse
|
193
|
Tarazona-Santos E, Tishkoff SA. Divergent patterns of linkage disequilibrium and haplotype structure across global populations at the interleukin-13 (IL13) locus. Genes Immun 2005; 6:53-65. [PMID: 15602587 DOI: 10.1038/sj.gene.6364149] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-13 (IL-13) is a cytokine involved in Th2 immune response, which plays a role in susceptibility to infection by extracellular parasites as well as complex diseases of the immune system such as asthma and allergies. To determine the pattern of genetic diversity at the IL13 gene, we sequenced 3950 bp encompassing the IL13 gene and its promoter in 264 chromosomes from individuals originating from East and West Africa, Europe, China and South America. Thirty-one single-nucleotide polymorphisms (SNPs) arranged in 88 haplotypes were indentified, including the nonsynonymous substitution Arg130Gln in exon 4, which differs in frequency across ethnic groups. We show that genetic diversity and linkage disequilibrium (LD) are not evenly distributed across the gene and that sites in the 5' and 3' regions of the gene show strong differentiation among continental groups. We observe a divergent pattern of haplotype variation and LD across geographic regions and we identify a set of htSNPs that will be useful for functional genetic association studies of complex disease. We use several statistical tests to distinguish the effects of natural selection and demographic history on patterns of genetic diversity at the IL13 locus.
Collapse
Affiliation(s)
- E Tarazona-Santos
- Department of Biology, University of Maryland, College Park, MD 80742, USA
| | | |
Collapse
|
194
|
Beleza S, Gusmão L, Amorim A, Carracedo A, Salas A. The genetic legacy of western Bantu migrations. Hum Genet 2005; 117:366-75. [PMID: 15928903 DOI: 10.1007/s00439-005-1290-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
There is little knowledge on the demographic impact of the western wave of the Bantu expansion. Only some predictions could be made based mainly on indirect archaeological, linguistic, and genetic evidences. Apart from the very limited available data on the mitochondrial DNA (mtDNA) side, there are not, however, Y-chromosome studies revealing-if any-the male contribution of western Bantu-farmers. To elucidate the still poorly characterized western Bantu expansion, we analyzed Y-chromosome (25 biallelic polymorphisms and 15 microsatellite markers) and mtDNA (hypervariable control regions I and II and selected coding region RFLPs) variation in a population of 110 individuals from southwest Africa, and compared it with a database of 2,708 Y-chromosome profiles and of 2,565 mtDNAs from all other regions of Africa. This study reveals (1) a dramatic displacement of male and female Khoisan-speaking groups in the southwest, since both the maternal and the paternal genetic pools were composed exclusively by types carried by Bantu-speakers; (2) a clear bias in the admixture process towards the mating of male Europeans with female Sub-Saharan Africans; (3) the assimilation of east African lineages by the southwest (mainly mtDNA-L3f and Y-chromosome-B2a lineages); and (4) signatures of recent male and female gene flow from the southeast into the southwest. The data also indicate that the western stream of the Bantu expansion was a more gradual process than the eastern counterpart, which likely involved multiple short dispersals.
Collapse
Affiliation(s)
- Sandra Beleza
- Instituto de Patologia e Imunologia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | | | | | | | | |
Collapse
|
195
|
González-Neira A, Calafell F, Navarro A, Lao O, Cann H, Comas D, Bertranpetit J. Geographic stratification of linkage disequilibrium: a worldwide population study in a region of chromosome 22. Hum Genomics 2005; 1:399-409. [PMID: 15606995 PMCID: PMC3500194 DOI: 10.1186/1479-7364-1-6-399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies of haplotype diversity in a number of genomic regions have suggested that long stretches of DNA are preserved in the same chromosome, with little evidence of recombination events. The knowledge of the extent and strength of these haplotypes could become a powerful tool for future genetic analysis of complex traits. Different patterns of linkage disequilibrium (LD) have been found when comparing individuals of African and European descent, but there is scarce knowledge about the worldwide population stratification. Thus, the study of haplotype composition and the pattern of LD from a global perspective are relevant for elucidating their geographical stratification, as it may have implications in the future analysis of complex traits. We have typed 12 single nucleotide polymorphisms in a chromosome 22 region--previously described as having high LD levels in European populations -- in 39 different world populations. Haplotype structure has a clear continental structure with marked heterogeneity within some continents (Africa, America). The pattern of LD among neighbouring markers exhibits a strong clustering of all East Asian populations on the one hand and of Western Eurasian populations (including Europe) on the other, revealing only two major LD patterns, but with some very specific outliers due to specific demographic histories. Moreover, it should be taken into account that African populations are highly heterogeneous. The present results support the existence of a wide (but not total) communality in LD patterns in human populations from different continental regions, despite differences in their demographic histories, as population factors seem to be less relevant compared with genomic forces in shaping the patterns of LD.
Collapse
Affiliation(s)
- Anna González-Neira
- Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Francesc Calafell
- Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Oscar Lao
- Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Howard Cann
- Fondation Jean-Dausset, Centre d'Étude du Polymorphisme Humain (CEPH), Paris, France
| | - David Comas
- Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jaume Bertranpetit
- Unitat de Biologia Evolutiva, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
196
|
Sanchez JJ, Hallenberg C, Børsting C, Hernandez A, Morling N. High frequencies of Y chromosome lineages characterized by E3b1, DYS19-11, DYS392-12 in Somali males. Eur J Hum Genet 2005; 13:856-66. [PMID: 15756297 DOI: 10.1038/sj.ejhg.5201390] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We genotyped 45 biallelic markers and 11 STR systems on the Y chromosome in 201 male Somalis. In addition, 65 sub-Saharan Western Africans, 59 Turks and 64 Iraqis were typed for the biallelic Y chromosome markers. In Somalis, 14 Y chromosome haplogroups were identified including E3b1 (77.6%) and K2 (10.4%). The haplogroup E3b1 with the rare DYS19-11 allele (also called the E3b1 cluster gamma) was found in 75.1% of male Somalis, and 70.6% of Somali Y chromosomes were E3b1, DYS19-11, DYS392-12, DYS437-14, DYS438-11 and DYS393-13. The haplotype diversity of eight Y-STRs ('minimal haplotype') was 0.9575 compared to an average of 0.9974 and 0.9996 in European and Asian populations. In sub-Saharan Western Africans, only four haplogroups were identified. The West African clade E3a was found in 89.2% of the samples and the haplogroup E3b1 was not observed. In Turks, 12 haplogroups were found including J2*(xJ2f2) (27.1%), R1b3*(xR1b3d, R1b3f) (20.3%), E3b3 and R1a1*(xR1a1b) (both 11.9%). In Iraqis, 12 haplogroups were identified including J2*(xJ2f2) (29.7%) and J*(xJ2) (26.6%). The data suggest that the male Somali population is a branch of the East African population - closely related to the Oromos in Ethiopia and North Kenya - with predominant E3b1 cluster gamma lineages that were introduced into the Somali population 4000-5000 years ago, and that the Somali male population has approximately 15% Y chromosomes from Eurasia and approximately 5% from sub-Saharan Africa.
Collapse
Affiliation(s)
- Juan J Sanchez
- Department of Forensic Genetics, Institute of Forensic Medicine, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
197
|
Abstract
In this article, the authors argue that the overwhelming portion of the literature on intelligence, race, and genetics is based on folk taxonomies rather than scientific analysis. They suggest that because theorists of intelligence disagree as to what it is, any consideration of its relationships to other constructs must be tentative at best. They further argue that race is a social construction with no scientific definition. Thus, studies of the relationship between race and other constructs may serve social ends but cannot serve scientific ends. No gene has yet been conclusively linked to intelligence, so attempts to provide a compelling genetic link of race to intelligence are not feasible at this time. The authors also show that heritability, a behavior-genetic concept, is inadequate in regard to providing such a link.
Collapse
|
198
|
Abstract
During the last hundred years, the debate over the meaning of race has retained a highly consistent core, despite evolution of the technical details. Non-Europeans, and in particular, Africans, are assigned the role of deviants and outcasts, whose claim on our common humanity remains in doubt. Each time the technical facade of these racialist arguments is destroyed, the latest jargon and half-truths from the margins of science are used to rebuild them around the same core belief in Black inferiority. Because race is in part a genetic concept, the advent of molecular DNA technology has opened an important new chapter in this story. Unfortunately, the article by D. Rowe (2005, this issue, see record 2005-00117-007) begins from mistaken premises and merely restates the racialist view using the terminology of molecular genetics. No technology--even the awe-inspiring tools now available to DNA science--can overcome the handicap of fundamental conceptual errors. Race is not a concept that emerged from within modern genetics; rather, it was imposed by history, and its meaning is inseparable from that cultural origin. By ignoring its cultural meaning the reductionist narrative about race fails--both in the narrow terms of science and as a contribution to the broader social discourse.
Collapse
Affiliation(s)
- Richard S Cooper
- Department of Preventive Medicine and Epidemiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA.
| |
Collapse
|
199
|
Reiner AP, Ziv E, Lind DL, Nievergelt CM, Schork NJ, Cummings SR, Phong A, Burchard EG, Harris TB, Psaty BM, Kwok PY. Population structure, admixture, and aging-related phenotypes in African American adults: the Cardiovascular Health Study. Am J Hum Genet 2005; 76:463-77. [PMID: 15660291 PMCID: PMC1196398 DOI: 10.1086/428654] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 01/06/2005] [Indexed: 11/03/2022] Open
Abstract
U.S. populations are genetically admixed, but surprisingly little empirical data exists documenting the impact of such heterogeneity on type I and type II error in genetic-association studies of unrelated individuals. By applying several complementary analytical techniques, we characterize genetic background heterogeneity among 810 self-identified African American subjects sampled as part of a multisite cohort study of cardiovascular disease in older adults. On the basis of the typing of 24 ancestry-informative biallelic single-nucleotide-polymorphism markers, there was evidence of substantial population substructure and admixture. We used an allele-sharing-based clustering algorithm to infer evidence for four genetically distinct subpopulations. Using multivariable regression models, we demonstrate the complex interplay of genetic and socioeconomic factors on quantitative phenotypes related to cardiovascular disease and aging. Blood glucose level correlated with individual African ancestry, whereas body mass index was associated more strongly with genetic similarity. Blood pressure, HDL cholesterol level, C-reactive protein level, and carotid wall thickness were not associated with genetic background. Blood pressure and HDL cholesterol level varied by geographic site, whereas C-reactive protein level differed by occupation. Both ancestry and genetic similarity predicted the number and quality of years lived during follow-up, but socioeconomic factors largely accounted for these associations. When the 24 genetic markers were tested individually, there were an excess number of marker-trait associations, most of which were attenuated by adjustment for genetic ancestry. We conclude that the genetic demography underlying older individuals who self identify as African American is complex, and that controlling for both genetic admixture and socioeconomic characteristics will be required in assessing genetic associations with chronic-disease-related traits in African Americans. Complementary methods that identify discrete subgroups on the basis of genetic similarity may help to further characterize the complex biodemographic structure of human populations.
Collapse
Affiliation(s)
- Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98101-1448, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Fejerman L, Bouzekri N, Wu X, Adeyemo A, Luke A, Zhu X, Ward R, Cooper RS. Association between evolutionary history of angiotensinogen haplotypes and plasma levels. Hum Genet 2005; 115:310-8. [PMID: 15278435 DOI: 10.1007/s00439-004-1141-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Over the last decade, considerable effort has been invested in studying the associations between angiotensinogen (AGT) variants, AGT plasma levels and high blood pressure. Evidence accumulated to date consistently supports the relationship between the AGT locus and the protein level, while an influence on blood pressure has been difficult to establish; in both instances the predisposing molecular variants are not fully defined. An evolutionary approach, taking into account the phylogenetic relationship between all the polymorphisms at this locus, may improve our understanding of the genetic nature of these quantitative phenotypes. Accordingly we sequenced a 6.8 kb region of the AGT gene in 57 Nigerian individuals (29 with high AGT plasma levels and 28 with low AGT plasma levels). Haplotypes were grouped into seven major haplogroups and their phylogenetic relationship was established. The association between haplogroups and AGT plasma levels was investigated. A significant linear correlation was detected between haplogroup genetic distance and AGT levels, suggesting a nonrandom accumulation of risk-associated mutations during the evolutionary history of the AGT gene.
Collapse
Affiliation(s)
- Laura Fejerman
- Department of Biological Anthropology, Oxford University, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|