151
|
Wang Y, Ma X, Qiao X, Yang P, Sheng Q, Zhou M, Yue T. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. EFOOD 2021. [DOI: 10.2991/efood.k.210621.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
152
|
Splichalova A, Pechar R, Killer J, Splichalova Z, Bunesova VN, Vlkova E, Salmonova HS, Splichal I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8122002. [PMID: 33333934 PMCID: PMC7765441 DOI: 10.3390/microorganisms8122002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-typhoidal Salmonella serovars are worldwide spread foodborne pathogens that cause diarrhea in humans and animals. Colonization of gnotobiotic piglet intestine with porcine indigenous mucinolytic Bifidobacterium boum RP36 strain and non-mucinolytic strain RP37 and their interference with Salmonella Typhimurium infection were compared. Bacterial interferences and impact on the host were evaluated by clinical signs of salmonellosis, bacterial translocation, goblet cell count, mRNA expression of mucin 2, villin, claudin-1, claudin-2, and occludin in the ileum and colon, and plasmatic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both bifidobacterial strains colonized the intestine comparably. Neither RP36 nor RP37 B. boum strains effectively suppressed signs of salmonellosis. Both B. boum strains suppressed the growth of S. Typhimurium in the ileum and colon. The mucinolytic RP36 strain increased the translocation of S. Typhimurium into the blood, liver, and spleen.
Collapse
Affiliation(s)
- Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
- Department of Research, Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zdislava Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
| | - Hana Subrtova Salmonova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (R.P.); (J.K.); (V.N.B.); (E.V.); (H.S.S.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
- Correspondence: ; Tel.: +420-491-418-539; Fax: +420-491-478-264
| |
Collapse
|
153
|
Potential role of the gut microbiota in neuromyelitis optica spectrum disorder: Implication for intervention. J Clin Neurosci 2020; 82:193-199. [PMID: 33257156 DOI: 10.1016/j.jocn.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota plays an important role in the occurrence and development of neuroimmunological diseases. Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system that is characterized by the peripheral production of the disease-specific serum autoantibody aquaporin-4 (AQP4)-IgG. Recently, accumulating evidence has provided insights into the associations of gut microbiota dysbiosis and intestinal mucosal barrier destruction with NMOSD, but the underlying pathogenesis remains unclear. Thus, a microbiota intervention might be a potential therapeutic strategy for NMOSD by regulating the gut microbiota, repairing the intestinal mucosal barrier, and modulating intestinal immunity and peripheral immunity.
Collapse
|
154
|
Riva A, Gray EH, Azarian S, Zamalloa A, McPhail MJ, Vincent RP, Williams R, Chokshi S, Patel VC, Edwards LA. Faecal cytokine profiling as a marker of intestinal inflammation in acutely decompensated cirrhosis. JHEP Rep 2020; 2:100151. [PMID: 32838247 PMCID: PMC7391986 DOI: 10.1016/j.jhepr.2020.100151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Gut dysbiosis and inflammation perpetuate loss of gut barrier integrity (GBI) and pathological bacterial translocation (BT) in cirrhosis, contributing to infection risk. Little is known about gut inflammation in cirrhosis and how this differs in acute decompensation (AD). We developed a novel approach to characterise intestinal immunopathology by quantifying faecal cytokines (FCs) and GBI markers. METHODS Faeces and plasma were obtained from patients with stable cirrhosis (SC; n = 16), AD (n = 47), and healthy controls (HCs; n = 31). A panel of 15 cytokines and GBI markers, including intestinal fatty-acid-binding protein-2 (FABP2), d-lactate, and faecal calprotectin (FCAL), were quantified by electrochemiluminescence/ELISA. Correlations between analytes and clinical metadata with univariate and multivariate analyses were performed. RESULTS Faecal (F) IL-1β, interferon gamma, tumour necrosis factor alpha, IL-21, IL-17A/F, and IL-22 were significantly elevated in AD vs. SC (q <0.01). F-IL-23 was significantly elevated in AD vs. HC (p = 0.0007). FABP2/d-lactate were significantly increased in faeces in AD vs. SC and AD vs. HC (p <0.0001) and in plasma (p = 0.0004; p = 0.011). F-FABP2 correlated most strongly with disease severity (Spearman's rho: Child-Pugh 0.466; p <0.0001; model for end-stage liver disease 0.488; p <0.0001). FCAL correlated with plasma IL-21, IL-1β, and IL-17F only and none of the faecal analytes. F-cytokines and F-GBI markers were more accurate than plasma in discriminating AD from SC. CONCLUSIONS FC profiling represents an innovative approach to investigating the localised intestinal cytokine micro-environment in cirrhosis. These data reveal that AD is associated with a highly inflamed and permeable gut barrier. FC profiles are very different from the classical innate-like features of systemic inflammation. There is non-specific upregulation of TH1/TH17 effector cytokines and those known to mediate intestinal barrier damage. This prevents mucosal healing in AD and further propagates BT and systemic inflammation. LAY SUMMARY The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- AUROC, area under the receiver operating characteristic
- BT, bacterial translocation
- Bacterial translocation
- CLIF-C AD, Chronic Liver Failure Consortium-acute decompensation
- Chronic liver disease
- Cytokines
- DS, discriminant score
- FABP2, fatty-acid-binding protein-2
- FCAL, faecal calprotectin
- FDR, false discovery rate
- FL, faecal lysate
- FWER, family-wise error rate
- GVB, gut vascular barrier
- Gut inflammation
- HC, healthy control
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- Intestinal barrier function
- MELD, model for end-stage liver disease
- OPLS-DA, orthogonal projection to latent structures discriminant analysis
- PAMP, pathogen-associated molecular pattern
- PCA, principal component analysis
- ROC, receiver operating characteristic
- SC, stable cirrhosis
- UKELD, United Kingdom model for end-stage liver disease
Collapse
Affiliation(s)
- Antonio Riva
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elizabeth H. Gray
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sarah Azarian
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ane Zamalloa
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Mark J.W. McPhail
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Royce P. Vincent
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, UK
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Roger Williams
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vishal C. Patel
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Lindsey A. Edwards
- Institute of Hepatology London, Foundation for Liver Research, London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
155
|
Li Y, Jiao HL, Bai YK, Wang P. Effect of manipulative reduction combined with air enema on intestinal mucosal immune function in children with intussusception. Pak J Med Sci 2020; 36:1640-1644. [PMID: 33235589 PMCID: PMC7674862 DOI: 10.12669/pjms.36.7.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: To explore the effect of manipulative reduction combined with air enema on intestinal mucosal immune function in children with intussusception. Methods: This is a prospective randomized controlled study in which 60 children with primary intussusception admitted to Hebei Children’s Hospital from October 2018 to October 2019 were selected for this study. They were randomly divided into two groups. The 30 patients in the experimental group underwent manipulative reduction and air enema reduction, and 30 patients in the control group underwent only air enema reduction. Pain scores and pressure during enema were recorded and analyzed. Fasting blood of children in the experimental group were drawn to test the serum T lymphocyte subsets CD3+, CD4+, CD8+ levels, B lymphocyte subsets CD19+ level, and NK cell subsets CD56+ levels before reduction. Among them, fasting blood of 28 children with successful reduction were drawn again in the morning after reduction, and the indicators of each immune cell subgroup before and after reduction were analyzed. Two children with unsuccessful reduction were no longer tested for these indicators. Results: Twenty-Eight children in the experimental group had successful reduction, and two children with unsuccessful reduction were changed to open surgery (28/30). Twenty five Children in the control group had successful reduction, and five were changed to open surgery (25/30). There was no significant difference in the success rate of reduction between two groups (p>0.05). Close observation for 12~24h after reduction found that none of the children had signs of peritonitis. The pain score and reduction pressure of the observation group were lower than those of the control group, and the difference was statistically significant (p<0.05). The levels of serum CD3+, CD4+, and CD8+ after reduction in the experimental group were significantly higher than before reduction, and the difference was statistically significant (p<0.05). CD19+ level was significantly lower than before reduction, and the difference was statistically significant (p<0.05). There was no significant difference in changes of other indicators. Conclusions: Manipulative reduction combined with air enema reduction can relieve pain and air injection pressure during enema, reduce reperfusion injury caused by intestinal ischemia, and protect intestinal mucosal immune function, which is a favored treatment.
Collapse
Affiliation(s)
- Yang Li
- Yang Li, Department of Minimally Invasive Surgery, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, P.R. China
| | - Han-Liang Jiao
- Han-liang Jiao, Department of Pediatrics, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, P.R. China
| | - Yu-Kun Bai
- Yu-kun Bai, Department of Pediatrics, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, P.R. China
| | - Ping Wang
- Ping Wang, Department of Pediatrics, Hebei Children's Hospital, Shijiazhuang, 050031, Hebei, P.R. China
| |
Collapse
|
156
|
Liu D, Ge L, Wang Q, Su J, Chen X, Wang C, Huang K. Low-level contamination of deoxynivalenol: A threat from environmental toxins to porcine epidemic diarrhea virus infection. ENVIRONMENT INTERNATIONAL 2020; 143:105949. [PMID: 32673909 PMCID: PMC7357974 DOI: 10.1016/j.envint.2020.105949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 05/27/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungal species that commonly present in the global environment, especially in cereals and animal forages. The changing global environment may further increase the exposure to these toxins, posing a serious threat to humans and animals. Recently, coronavirus has become one of the most important pathogens threatening human and animal health. It is not clear whether environmental toxins, such as mycotoxins, will affect coronavirus infection. Given that pigs are among the animals most affected by coronavirus and highly homologous to humans, weaned piglets and IPEC-J2 cells were respectively chosen as in vivo and in vitro model to explore the impacts of deoxynivalenol (DON), the most abundant trichothecene mycotoxin in feed, on porcine epidemic diarrhea virus (PEDV) infection and the mechanisms involved. In vivo, twenty-seven piglets infected naturally with PEDV were randomly divided into three groups, receiving the basal diet containing 0, 750 and 1500 μg/kg DON, respectively. Significant increases in the diarrhea rates, gut barrier injury and PEDV proliferation of piglets' small intestine were observed in experimental groups compared with the control. Additionally, the autophagosome-like vesicles and the autophagy-related proteins expression were also increased in experimental groups. In vitro, we observed that 0.1, 0.5 and 1.0 μM DON significantly promoted the entry and replication of PEDV in IPEC-J2 cells, along with the induction of a complete autophagy. CRISPR-Cas9-mediated knockout of LC3B indicated a vital role of autophagy in the promotion. Pretreatment with p38 signaling inhibitor could significantly block the induction of autophagy, indicating that DON could promote the PEDV infection by triggering p38-mediated autophagy. Our findings suggest that mycotoxin could influence the prevalence of coronavirus and provide new ideas for the prevention and control of coronavirus.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Qing Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jiarui Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
157
|
la Mora ZVD, Macías-Rodríguez ME, Arratia-Quijada J, Gonzalez-Torres YS, Nuño K, Villarruel-López A. Clostridium perfringens as Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals (Basel) 2020; 10:E1718. [PMID: 32972009 PMCID: PMC7552638 DOI: 10.3390/ani10091718] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Clostridium perfringens (Cp.) is the cause of human foodborne desease. Meat and poultry products are identified as the main source of infection for humans. Cp. can be found in poultry litter, feces, soil, dust, and healthy birds' intestinal contents. Cp. strains are known to secrete over 20 identified toxins and enzymes that could potentially be the principal virulence factors, capable of degrading mucin, affecting enterocytes, and the small intestine epithelium, involved in necrotic enteritis (NE) pathophysiology, also leading to immunological responses, microbiota modification and anatomical changes. Different environmental and dietary factors can determine the colonization of this microorganism. It has been observed that the incidence of Cp-associated to NE in broilers has increased in countries that have stopped using antibiotic growth promoters. Since the banning of such antibiotic growth promoters, several strategies for Cp. control have been proposed, including dietary modifications, probiotics, prebiotics, synbiotics, phytogenics, organic acids, and vaccines. However, there are aspects of the pathology that still need to be clarified to establish better actions to control and prevention. This paper reviews the current knowledge about Cp. as foodborne pathogen, the pathophysiology of NE, and recent findings on potential strategies for its control.
Collapse
Affiliation(s)
- Zuamí Villagrán-de la Mora
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico; (Z.V.-d.l.M.); (Y.S.G.-T.)
| | - María Esther Macías-Rodríguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica 44430, Guadalajara, Mexico;
| | - Jenny Arratia-Quijada
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco 45425, Tonalá, Mexico;
| | - Yesica Sughey Gonzalez-Torres
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico; (Z.V.-d.l.M.); (Y.S.G.-T.)
| | - Karla Nuño
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco 45425, Tonalá, Mexico;
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica 44430, Guadalajara, Mexico;
| |
Collapse
|
158
|
Woodhouse C, Singanayagam A, Patel VC. Modulating the gut-liver axis and the pivotal role of the faecal microbiome in cirrhosis. Clin Med (Lond) 2020; 20:493-500. [PMID: 32934044 DOI: 10.7861/clinmed.2020-0676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cirrhosis is associated with intestinal dysbiosis, with specific alterations in the gut microbiota linked to particular aetiologies and manifestations of the disease. We review the role of the gut microbiome and the importance of the intestinal barrier in cirrhosis, provide an overview of the terminology and techniques relevant to this emerging area, and discuss the latest developments in therapies targeting the gut-liver axis.
Collapse
Affiliation(s)
- Charlotte Woodhouse
- King's College London, London, UK and King's College Hospital NHS Foundation Trust, London, UK
| | - Arjuna Singanayagam
- St George's University Hospitals NHS Foundation Trust, London, UK and senior clinical lecturer, St George's University of London, London, UK
| | - Vishal C Patel
- King's College Hospital NHS Foundation Trust, London, UK, honorary senior lecturer, King's College London, London, UK and principal investigator, Institute of Hepatology, Foundation for Liver Research, London, UK
| |
Collapse
|
159
|
Wang J, Han C, Lu Z, Ge P, Cui Y, Zhao D, Yang X, Wu B, Qiang L, Zhang Y, Chai Q, Lei Z, Li L, Hua Liu C, Zhang L. Simulated microgravity suppresses MAPK pathway-mediated innate immune response to bacterial infection and induces gut microbiota dysbiosis. FASEB J 2020; 34:14631-14644. [PMID: 32918764 DOI: 10.1096/fj.202001428r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
During spaceflight, astronauts are subjected to various physical stressors including microgravity, which could cause immune dysfunction and thus potentially predispose astronauts to infections and illness. However, the mechanisms by which microgravity affects innate immunity remain largely unclear. In this study, we conducted RNA-sequencing analysis to show that simulated microgravity (SMG) suppresses the production of inflammatory cytokines including tumor necrosis factor (TNF) and interleukin-6 (IL-6) as well as the activation of the innate immune signaling pathways including the p38 mitogen-activated protein kinase (MAPK) and the Erk1/2 MAPK pathways in the Enteropathogenic escherichia coli (EPEC)-infected macrophage cells. We then adopted hindlimb-unloading (HU) mice, a model mimicking the microgravity of a spaceflight environment, to demonstrate that microgravity suppresses proinflammatory cytokine-mediated intestinal immunity to Citrobacter rodentium infection and induces the disturbance of gut microbiota, both of which phenotypes could be largely corrected by the introduction of VSL#3, a high-concentration probiotic preparation of eight live freeze-dried bacterial species. Taken together, our study provides new insights into microgravity-mediated innate immune suppression and intestinal microbiota disturbance, and suggests that probiotic VSL#3 has great potential as a dietary supplement in protecting individuals from spaceflight mission-associated infections and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Conghui Han
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Cui
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Li
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
160
|
Shang J, Wan F, Zhao L, Meng X, Li B. Potential Immunomodulatory Activity of a Selected Strain Bifidobacterium bifidum H3-R2 as Evidenced in vitro and in Immunosuppressed Mice. Front Microbiol 2020; 11:2089. [PMID: 32983062 PMCID: PMC7491056 DOI: 10.3389/fmicb.2020.02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/08/2020] [Indexed: 12/30/2022] Open
Abstract
The microbiota is directly involved in the development and modulation of the intestinal immune system. In particular, members of the genus Bifidobacterium play a primary role in immune regulation. In the present study, Bifidobacterium bifidum H3-R2 was screened from 15 bifidobacterium strains by in vitro experiment, showing a positive tolerance to digestive tract conditions, adhesion ability to intestinal epithelial cells and a regulatory effect on immune cell activity. Immunostimulatory activity of B. bifidum H3-R2 was also elucidated in vivo in cytoxan (CTX)-treated mice. The results showed that the administration of B. bifidum H3-R2 ameliorated the CTX-induced bodyweight loss and imbalanced expression of inflammatory cytokines, enhanced the production of secretory immunoglobulin A (SIgA), and promoted splenic lymphocyte proliferation, natural killer (NK) cell activity and phagocytosis of macrophages in immunosuppressed mice. In addition, B. bifidum H3-R2 restored injured intestinal mucosal, and increased the villus length and crypt depth in CTX-treated mice. The results could be helpful for understanding the functions of B. bifidum H3-R2, supporting its potential as a novel probiotic for immunoregulation.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Feng Wan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
161
|
Song J, Zhao L, Song M. A Lactococcus lactis-vectored oral vaccine induces protective immunity of mice against enterotoxigenic Escherichia coli lethal challenge. Immunol Lett 2020; 225:57-63. [PMID: 32569608 DOI: 10.1016/j.imlet.2020.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a global primary pathogenic bacterium causing diarrhoea in human and a wide variety of neonatal animals. Lactococcus lactis as non-pathogenic and food-grade lactic acid bacteria has already been explored as a vector for mucosal vaccine. Here, the current study was undertaken to evaluate the live recombinant L. lactis (rL. lactis) vaccine expressing the trivalent enterotoxin protein STa-LTB-STb and the F5 fimbrial antigen (SLS-F5) with OmpH of Yersinia enterocolitica in protection against ETEC. Western blot confirmed the expression of fusion protein SLS-F5-OmpH in nisin-controlled expression (NICE) system. Mice orally immunized with rL. lactis-SLS-F5-OmpH were observed to produce high levels of mucosal SIgA and serum IgG antibodies, while also inducing increases in the production of CD4+ and CD8+ T cells, lymphocyte proliferation, and secretion of cytokines. Moreover, orally immunized mice produced complete protection after ETEC challenge. The above results suggested that rL. lactis-SLS-F5-OmpH has the potential as a candidate for oral vaccine against ETEC.
Collapse
Affiliation(s)
- Jijun Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Harbin Weike Biotechnology Co. Ltd., Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangyou Zhao
- Drug Safety Evaluation Center of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
162
|
Chen YM, Helm ET, Gabler N, Hostetter JM, Burrough ER. Alterations in Intestinal Innate Mucosal Immunity of Weaned Pigs During Porcine Epidemic Diarrhea Virus Infection. Vet Pathol 2020; 57:642-652. [PMID: 32880235 DOI: 10.1177/0300985820932140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the small intestine, localized innate mucosal immunity is critical for intestinal homeostasis. Porcine epidemic diarrhea virus (PEDV) infection induces villus injury and impairs digestive function. Moreover, the infection might comprise localized innate mucosal immunity. This study investigated specific enterocyte subtypes and innate immune components of weaned pigs during PEDV infection. Four-week-old pigs were orally inoculated with PEDV IN19338 strain (n = 40) or sham-inoculated (n = 24). At day post inoculation (DPI) 2, 4, and 6, lysozyme expression in Paneth cells, cellular density of villous and Peyer's patch microfold (M) cells, and the expression of polymeric immunoglobulin receptor (pIgR) were assessed in the jejunum and ileum by immunohistochemistry, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α were measured in the jejunum by ELISA. PEDV infection led to a decrease in the ratios of villus height to crypt depth (VH-CD) in jejunum at DPI 2, 4, and 6 and in ileum at DPI 4. The number of villous M cells was reduced in jejunum at DPI 4 and 6 and in ileum at DPI 6, while the number of Peyer's patch M cells in ileum increased at DPI 2 and then decreased at DPI 6. PEDV-infected pigs also had reduced lysozyme expression in ileal Paneth cells at DPI 2 and increased ileal pIgR expression at DPI 4. There were no significant changes in IL-1β and TNF-α expression in PEDV-infected pigs compared to controls. In conclusion, PEDV infection affected innate mucosal immunity of weaned pigs through alterations in Paneth cells, villous and Peyer's patch M cells, and pIgR expression.
Collapse
|
163
|
Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H. Dietary supplementation with polysaccharides from Ziziphus Jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 2020; 11:5992-6006. [PMID: 32697211 DOI: 10.1039/d0fo00008f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented. This study aimed to evaluate the effect of oral administration of JP on cyclophosphamide-induced ICR mice for 28 days. The results showed that oral administration of JP could significantly improve the lymphocyte proliferation in the spleen and decrease the proportion of CD3+ and CD4+ and the ratio of CD4+/CD8+ in cyclophosphamide-induced mice in a dose-dependent manner. JP treatment also increased the levels of IL-2, IL-4, IL-10, IFN-γ, and TNF-α in serum and the intestine, and the improvement effects were proportional to the dose of JP. Similarly, JP significantly increased the levels of IgA and SIgA, as well as the expressions of Claudin-1 and Occludin in the intestine. Particularly, the expressions of Claudin-1 and Occludin were the best in the M-JP group. Furthermore, JP positively regulated the gut microbiota as indicated by the enriched microbiota diversity. At the phylum level, the relative abundance of Firmicutes was significantly decreased by JP, while that of Bacteroidetes was increased by JP treatment. More importantly, the ratio of Firmicutes/Bacteroidetes was significantly increased. And a high dose of JP is the most effective. At the genus level, the abundances of the Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes and Bacteroides were increased by JP treatment. These results provided evidence for the regulating effect of JP on the peripheral immunity and intestinal barrier function in cyclophosphamide-induced hypoimmune mice.
Collapse
Affiliation(s)
- Xue Han
- Department of Nutritional and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Bai X, Chi X, Qiao Q, Xie S, Wan S, Ni L, Wang P, Jin W, Dong C. T Follicular Helper Cells Regulate Humoral Response for Host Protection against Intestinal Citrobacter rodentium Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:2754-2761. [PMID: 32269096 DOI: 10.4049/jimmunol.2000046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
Citrobacter rodentium colonizes at the colon and causes mucosal inflammation in mice. Previous studies have revealed the importance of the innate and adaptive immune response for controlling C. rodentium infection. In the present study, we examined the role of T follicular helper (Tfh) cells in intestinal C. rodentium infection using mice with Bcl6 deficiency in T cells. Tfh cells were absolutely required at the late, but not the early, phase to control infection. Compared with control mice, we observed systemic pathogen dissemination and more severe colitis in Tfh-deficient mice. Furthermore, the susceptibility of Tfh-deficient mice correlated with an impaired serum IgG1 response to infection, and serum Abs from infected wild-type mice protected Tfh-deficient mice from infection. The transfer of wild-type Tfh cells also restored the levels of IgG1 and led to effective clearance of the pathogens in Tfh-deficient mice. Moreover, during C. rodentium infection, IL-21- and IL-4-producing Tfh cells were increased obviously in wild-type mice, correlating with IgG1 as the major isotype in germinal center B cells. Taken together, our work highlights the requirement and the function of Tfh cells in regulating humoral response for the host protection against C. rodentium infection.
Collapse
Affiliation(s)
- Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Xinxin Chi
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Qin Qiao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Shan Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Siyuan Wan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Lu Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Pengzhi Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Wei Jin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; and .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
165
|
Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G, Xiong W, Zeng Z. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Front Immunol 2020; 11:575. [PMID: 32318067 PMCID: PMC7147503 DOI: 10.3389/fimmu.2020.00575] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal tract is the largest digestive organ in the human body. It is colonized by, and consistently exposed to, a myriad of microorganisms, including bifidobacteria, lactobacillus, Escherichia coli, enterococcus, clostridium perfringens, and pseudomonas. To protect the body from potential pathogens, the intestinal tract has evolved regional immune characteristics. These characteristics are defined by its unique structure, function, and microenvironment, which differ drastically from those of the common central and peripheral immune organs. The intestinal microenvironment created by the intestinal flora and its products significantly affects the immune function of the region. In turn, specific diseases regulate and influence the composition of the intestinal flora. A constant interplay occurs between the intestinal flora and immune system. Further, the intestinal microenvironment can be reconstructed by probiotic use or microbiota transplantation, functioning to recalibrate the immune homeostasis, while also contributing to the treatment or amelioration of diseases. In this review, we summarize the relationship between the intestinal flora and the occurrence and development of diseases as an in-turn effect on intestinal immunity. We also discuss improved immune function as it relates to non-specific and specific immunity. Further, we discuss the proliferation, differentiation and secretion of immune cells, within the intestinal region following remodeling of the microenvironment as a means to ameliorate and treat diseases. Finally, we suggest strategies for improved utilization of intestinal flora.
Collapse
Affiliation(s)
- Bolun Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yutong Yuan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
166
|
Effects of a Diet Supplemented with Exogenous Catalase from Penicillium notatum on Intestinal Development and Microbiota in Weaned Piglets. Microorganisms 2020; 8:microorganisms8030391. [PMID: 32168962 PMCID: PMC7143822 DOI: 10.3390/microorganisms8030391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
This study aims to investigate the effects of exogenous catalase (CAT), an antioxidative enzyme from microbial cultures, on intestinal development and microbiota in weaned piglets. Seventy-two weaned piglets were allotted to two groups and fed a basal diet or a basal diet containing 2.0 g/kg exogenous CAT. Results showed that exogenous CAT increased (p < 0.05) jejunal villus height/crypt depth ratio and intestinal factors (diamine oxidase and transforming growth factor-α) concentration. Moreover, dietary CAT supplementation enhanced the antioxidative capacity, and decreased the concentration of pro-inflammatory cytokine in the jejunum mucosa. Exogenous CAT did not affect the concentration of short-chain fatty acids, but decreased the pH value in colonic digesta (p < 0.05). Interestingly, the relative abundance of Bifidobacterium and Dialister were increased (p < 0.05), while Streptococcus and Escherichia-Shigella were decreased (p < 0.05) in colonic digesta by exogenous CAT. Accordingly, decreased (p < 0.05) predicted functions related to aerobic respiration were observed in the piglets fed the CAT diet. Our study suggests a synergic response of intestinal development and microbiota to the exogenous CAT, and provides support for the application of CAT purified from microbial cultures in the feed industry.
Collapse
|
167
|
The Effects of Secretory IgA in the Mucosal Immune System. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2032057. [PMID: 31998782 PMCID: PMC6970489 DOI: 10.1155/2020/2032057] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype in the mucosal immune system. Structurally, IgA in the mucosal surface is a polymeric structure, while serum IgA is monomeric. Secretory IgA (sIgA) is one of the polymeric IgAs composed of dimeric IgA, J chain, and secretory component (SC). Most of sIgAs were generated by gut and have effects in situ. Besides the function of “immune exclusion,” a nonspecific immune role, recent studies found it also played an important role in the specific immunity and immunoregulation. Thanks to the critical role of sIgA during the mucosal immune system homeostasis between commensal microorganisms and pathogens; it has been an important field exploring the relationship between sIgA and commensal microorganisms.
Collapse
|
168
|
Prawiro SR, Poeranto S, Amalia A, Widyani EL, Indraswari G, Soraya M, Dwi Pradipto SR, Prasetya A, Hidayat GR, Alitha Putri SN. Generating mucosal and systemic immune response following vaccination of vibrio cholerae adhesion molecule against shigella flexneri infection. Indian J Med Microbiol 2020; 38:37-45. [PMID: 32719207 DOI: 10.4103/ijmm.ijmm_19_411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction Previous studies have shown 37.8 kDa pili subunit protein of Vibrio cholerae and 49.8 kDa pili subunit protein of Shigella flexneri can act as an adhesion molecule to initiate infection. These molecules also have the ability to agglutinate blood. The present study assessed mucosal and systemic immunity following vaccination using 37.8 kDa V. cholerae and protection against S. flexneri. Subjects and Methods Haemagglutination test was performed after purification of V. cholerae protein, followed by an anti-haemagglutination test. The intestinal weight and colony count were used to validate the protective effect on balb/c mice which were divided into the naive group, Shigella-positive control group, Vibrio-positive control group, V. cholerae infected-Vibrio-vaccinated group and S. flexneri-infected-Vibrio-vaccinated group. Th17, Treg, interleukin (IL) IL-17A, β-defensin and secretory-immunoglobulin A (s-IgA) were also measured to determine the systemic and mucosal immunity after vaccination. Results The haemagglutination and anti-haemagglutination tests showed that the 37.8 kDa protein could inhibit 49.8 kDa of the S. flexneri pili subunit. Decreased intestinal weight and colony count of vaccinated group compared to naive group also support cross reaction findings. Vaccination also generates higher level of Th17, Treg, IL-17A, β-defensin and s-IgA significantly. Conclusions 37.8 kDa subunit pili can act as a homologous vaccine candidate to prevent V. cholerae and S. flexneri infection.
Collapse
Affiliation(s)
- Sumarno Reto Prawiro
- Department of Clinical Microbiology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Sri Poeranto
- Department of Clinical Parasitology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Aisyah Amalia
- Master Program in Biomedical Sciences, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Elsa Larissa Widyani
- Master Program in Biomedical Sciences, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Genitri Indraswari
- Master Program in Biomedical Sciences, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Merika Soraya
- Master Program in Biomedical Sciences, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Septha Rully Dwi Pradipto
- Master Program in Biomedical Sciences, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Adrian Prasetya
- Master Program in Biomedical Sciences, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | - Guntur Rizal Hidayat
- Bachelor Medical Program, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
169
|
|
170
|
Interplay between the Adaptive Immune System and Insulin Resistance in Weight Loss Induced by Bariatric Surgery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3940739. [PMID: 31885787 PMCID: PMC6925764 DOI: 10.1155/2019/3940739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Low-grade chronic inflammation plays a pivotal role among other pathophysiological mechanisms involved in obesity. Innate and adaptive immune cells undergo systemic proinflammatory polarization that gives rise to an increased secretion of proinflammatory cytokines, which in turn leads to insulin resistance. Bariatric surgery is currently the most effective treatment for obesity, as it brings on significant weight loss, glucose metabolism improvement, and a decrease in systemic inflammation biomarkers. After bariatric surgery, several changes have been reported to occur in adaptive immunity, including reduction in CD4+ and CD8+ T cell counts, a decrease in the Th1/Th2 ratio, an increase in B regulatory cells, and reduction in proinflammatory cytokine secretion. Overall, there seems to be a major shift in several lymphocyte populations from a proinflammatory to an anti-inflammatory phenotype. Furthermore, increased antioxidant activity and reduced lipid and DNA oxidation products have been reported after bariatric surgery in circulating mononuclear cells. This paper highlights the shift in the adaptive immune system in response to weight loss and improved insulin sensitivity, as well as the interplay between immunological and metabolic adaptations as a result of bariatric surgery. Finally, based on data from research, we propose several mechanisms such as changes in adaptive immune cell phenotypes and their by-products, recruitment in adipose tissue, reduced oxidative stress, and modification in metabolic substrate availability as drivers to reduce low-grade chronic inflammation after bariatric surgery in severe obesity.
Collapse
|
171
|
Yue B, Luo X, Yu Z, Mani S, Wang Z, Dou W. Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms 2019; 7:microorganisms7100440. [PMID: 31614539 PMCID: PMC6843348 DOI: 10.3390/microorganisms7100440] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| |
Collapse
|
172
|
Kanauchi O, Andoh A, AbuBakar S, Yamamoto N. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems. Curr Pharm Des 2019; 24:710-717. [PMID: 29345577 PMCID: PMC6006794 DOI: 10.2174/1381612824666180116163411] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Recently, the risk of viral infection has dramatically increased owing to changes in human ecology such as global warming and an increased geographical movement of people and goods. However, the efficacy of vaccines and remedies for infectious diseases is limited by the high mutation rates of viruses, especially, RNA viruses. Here, we comprehensively review the effectiveness of several probiotics and paraprobiotics (sterilized probiotics) for the prevention or treatment of virally-induced infectious diseases. We discuss the unique roles of these agents in modulating the cross-talk between commensal bacteria and the mucosal immune system. In addition, we provide an overview of the unique mechanism by which viruses are eliminated through the stimulation of type 1 interferon production by probiotics and paraprobiotics via the activation of dendritic cells. Although further detailed research is necessary in the future, probiotics and/or paraprobiotics are expected to be among the rational adjunctive options for the treatment of various viral diseases.
Collapse
Affiliation(s)
- Osamu Kanauchi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan.,Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Level 4, Block N & O, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,WHO Collaborating Centre for Arbovirus Reference and Research (Dengue/Severe Dengue), Level 4, Block N & O, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Naoki Yamamoto
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
173
|
Cornick S, Kumar M, Moreau F, Gaisano H, Chadee K. VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nat Commun 2019; 10:4306. [PMID: 31541089 PMCID: PMC6754373 DOI: 10.1038/s41467-019-11811-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
The mucus layer is the first line of innate host defense in the gut that protects the epithelium by spatially separating commensal bacteria. MUC2 mucin is produced and stored by goblet cells that is constitutively exocytosed or hyper secreted upon sensing a threat. How coordinated mucus exocytosis maintains homeostasis in the intestinal epithelium and modulates the immunological landscape remains elusive. Here we describe how the vesicle SNARE protein VAMP8 coordinates mucin exocytosis from goblet cells. Vamp8-/- exhibit a mild pro-inflammatory state basally due to an altered mucus layer and increased encounters with microbial antigens. Microbial diversity shifts to a detrimental microbiota with an increase abundance of pathogenic and mucolytic bacteria. To alleviate the heavy microbial burden and inflammatory state basally, Vamp8-/- skews towards tolerance. Despite this, Vamp8-/- is highly susceptible to both chemical and infectious colitis demonstrating the fragility of the intestinal mucosa without proper mucus exocytosis mechanisms.
Collapse
Affiliation(s)
- Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Herbert Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
174
|
Capo F, Wilson A, Di Cara F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans. Microorganisms 2019; 7:microorganisms7090336. [PMID: 31505811 PMCID: PMC6780840 DOI: 10.3390/microorganisms7090336] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.
Collapse
Affiliation(s)
- Florence Capo
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Alexa Wilson
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
175
|
Kufer TA, Creagh EM, Bryant CE. Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends Immunol 2019; 40:939-951. [PMID: 31500957 DOI: 10.1016/j.it.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The mammalian innate immune system deals with invading pathogens and stress by activating pattern-recognition receptors (PRRs) in the host. Initially proposed to be triggered by the discrimination of defined molecular signatures from pathogens rather than from self, it is now clear that PRRs can also be activated by endogenous ligands, bacterial metabolites and, following pathogen-induced alterations of cellular processes, changes in the F-actin cytoskeleton. These processes are collectively referred to as effector-triggered immunity (ETI). Here, we summarize the molecular and conceptual advances in our understanding of cell autonomous innate immune responses against bacterial pathogens, and discuss how classical activation of PRRs and ETI interplay to drive inflammatory responses.
Collapse
Affiliation(s)
- Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Stuttgart, Germany.
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
176
|
Abstract
Enterohemorrhagic E. coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis, which can progress to hemolytic uremic syndrome. These complications represent a serious global public health problem that requires laborious public health interventions and safety control measures to combat recurrent outbreaks worldwide. Today, there are no effective interventions for the control of EHEC infections, and, in fact, the use of antibiotics is counterindicated for EHEC disease. Therefore, a viable alternative for the prevention of human infections is the development of vaccines; however, no such vaccines are approved for human use. In this study, we developed a novel gold nanoparticle platform which acts as a scaffold for the delivery of various antigens, representing a nanovaccine technology which can be applied to several disease models. Here we exploit the natural properties of a synthetic nanoparticle (NP) scaffold as a subunit vaccine against enterohemorrhagic Escherichiacoli (EHEC). Two EHEC-specific immunogenic antigens, namely, LomW and EscC, either alone or in combination, were covalently linked on the surface of gold nanoparticles (AuNPs) and used to immunize mice prior to challenge with EHEC O157:H7 strain 86-24. LomW is a putative outer membrane protein encoded in bacteriophage BP-933W, while EscC is a structural type III secretion system protein which forms a ring in the outer membrane. The resulting AuNP preparations, AuNP-LomW and AuNP-EscC, showed that the nanoparticles were able to incorporate the antigens, forming stable formulations that retained robust immunogenicity in vivo after subcutaneous immunization. When administered subcutaneously, AuNP-LomW or AuNP-EscC or a combination containing equivalent amounts of both candidates resulted in higher IgG titers in serum and secretory IgA titers in feces. The serum IgG titers correlated with a significant reduction in EHEC intestinal colonization after 3 days postinoculation. In addition, we showed that serum from antigen-coated AuNP-immunized mice resulted in a reduction of adherence to human intestinal epithelial cells for EHEC, as well as for two other E. coli pathotypes (enteropathogenic E. coli [EPEC], encoding EscC, and enteroaggregative E. coli [EAEC], encoding LomW). Further, the serum had antigen-specific bactericidal properties, engaging the classical complement pathway. Overall, our results demonstrate the immunogenicity and stability of a novel nanovaccine against EHEC. These results also strengthen the prospect of development of a synthetic nanoparticle vaccine conjugated to E. coli antigens as a promising platform against other enteric pathogens.
Collapse
|
177
|
Perez-Lopez A, Nuccio SP, Ushach I, Edwards RA, Pahu R, Silva S, Zlotnik A, Raffatellu M. CRTAM Shapes the Gut Microbiota and Enhances the Severity of Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:532-543. [PMID: 31142601 PMCID: PMC6615957 DOI: 10.4049/jimmunol.1800890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Gut lymphocytes and the microbiota establish a reciprocal relationship that impacts the host immune response. Class I-restricted T cell-associated molecule (CRTAM) is a cell adhesion molecule expressed by intraepithelial T cells and is required for their retention in the gut. In this study, we show that CRTAM expression affects gut microbiota composition under homeostatic conditions. Moreover, Crtam-/- mice infected with the intestinal pathogen Salmonella exhibit reduced Th17 responses, lower levels of inflammation, and reduced Salmonella burden, which is accompanied by expansion of other microbial taxa. Thus, CRTAM enhances susceptibility to Salmonella, likely by promoting the inflammatory response that promotes the pathogen's growth. We also found that the gut microbiota from wild-type mice, but not from Crtam-/- mice, induces CRTAM expression and Th17 responses in ex-germ-free mice during Salmonella infection. Our study demonstrates a reciprocal relationship between CRTAM expression and the gut microbiota, which ultimately impacts the host response to enteric pathogens.
Collapse
Affiliation(s)
- Araceli Perez-Lopez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Irina Ushach
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697
| | - Rachna Pahu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697
| | - Steven Silva
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Albert Zlotnik
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093;
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, CA 92093; and
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
178
|
Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 2019; 12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Bile acids are cholesterol-derived surfactants that circulate actively between the liver and ileum and that are classically recognized for emulsifying dietary lipids to facilitate absorption. More recent studies, however, have revealed new functions of bile acids; as pleotropic signaling metabolites that regulate diverse metabolic and inflammatory pathways in multiple cell types and tissues through dynamic interactions with both germline-encoded host receptors and the microbiota. Accordingly, perturbed bile acid circulation and/or metabolism is now implicated in the pathogenesis of cholestatic liver diseases, metabolic syndrome, colon cancer, and inflammatory bowel diseases (IBDs). Here, we discuss the three-dimensional interplay between bile acids, the microbiota, and the mucosal immune system, focusing on the mechanisms that regulate intestinal homeostasis and inflammation. Although the functions of bile acids in mucosal immune regulation are only beginning to be appreciated, targeting bile acids and their cellular receptors has already proven an important area of new drug discovery.
Collapse
|
179
|
Zhou P, Li Z, Xu D, Wang Y, Bai Q, Feng Y, Su G, Chen P, Wang Y, Liu H, Wang X, Zhang R, Wang Y. Cepharanthine Hydrochloride Improves Cisplatin Chemotherapy and Enhances Immunity by Regulating Intestinal Microbes in Mice. Front Cell Infect Microbiol 2019; 9:225. [PMID: 31293986 PMCID: PMC6606789 DOI: 10.3389/fcimb.2019.00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy is one of the major treatment strategies for esophageal squamous cell carcinoma (ESCC). Unfortunately, most chemotherapeutic drugs have significant impacts on the intestinal microbes, resulting in side effects and reduced efficiency. Therefore, new strategies capable of overcoming these disadvantages of current chemotherapies are in urgent need. The natural product, Cepharanthine hydrochloride (CEH), is known for its anticancer and immunoregulatory properties. By sequencing the V4 region of 16S rDNA, we characterized the microbes of tumor-bearing mice treated with different chemotherapy strategies, including with CEH. We found that CEH improved the therapeutic effect of CDDP by manipulating the gut microbiota. Through metagenomic analyses of the microbes community, we identified a severe compositional and functional imbalance in the gut microbes community after CDDP treatment. However, CEH improved the effect of chemotherapy and ameliorated CDDP treatment-induced imbalance in the intestinal microbes. Mechanically, CEH activated TLR4 and MYD88 innate immune signaling, which is advantageous for the activation of the host's innate immunity to exert a balanced intestinal environment as well as to trigger a better chemotherapeutic response to esophageal cancer. In addition, TNFR death receptors were activated to induce apoptosis. In summary, our findings suggest that chemotherapy of CDDP combined with CEH increased the effect of chemotherapy and reduced the side effects on the microbes and intestinal mucosal immunity. We believe that these findings provide a theoretical basis for new clinical treatment strategies.
Collapse
Affiliation(s)
- Pengjun Zhou
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziyao Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dandan Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Ying Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qi Bai
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yue Feng
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guifeng Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengxiao Chen
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Huizhong Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaogang Wang
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yifei Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
180
|
Udgata A, Dolasia K, Ghosh S, Mukhopadhyay S. Dribbling through the host defence: targeting the TLRs by pathogens. Crit Rev Microbiol 2019; 45:354-368. [DOI: 10.1080/1040841x.2019.1608904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atul Udgata
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Komal Dolasia
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
181
|
Sai K, Parsons C, House JS, Kathariou S, Ninomiya-Tsuji J. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J Cell Biol 2019; 218:1994-2005. [PMID: 30975711 PMCID: PMC6548127 DOI: 10.1083/jcb.201810014] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
RIPK3, a key mediator of necroptosis, has been implicated in the host defense against viral infection primary in immune cells. However, gene expression analysis revealed that RIPK3 is abundantly expressed not only in immune organs but also in the gastrointestinal tract, particularly in the small intestine. We found that orally inoculated Listeria monocytogenes, a bacterial foodborne pathogen, efficiently spread and caused systemic infection in Ripk3-deficient mice while almost no dissemination was observed in wild-type mice. Listeria infection activated the RIPK3-MLKL pathway in cultured cells, which resulted in suppression of intracellular replication of Listeria Surprisingly, Listeria infection-induced phosphorylation of MLKL did not result in host cell killing. We found that MLKL directly binds to Listeria and inhibits their replication in the cytosol. Our findings have revealed a novel functional role of the RIPK3-MLKL pathway in nonimmune cell-derived host defense against Listeria invasion, which is mediated through cell death-independent mechanisms.
Collapse
Affiliation(s)
- Kazuhito Sai
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - Jun Ninomiya-Tsuji
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| |
Collapse
|
182
|
Molina-Tijeras JA, Gálvez J, Rodríguez-Cabezas ME. The Immunomodulatory Properties of Extracellular Vesicles Derived from Probiotics: A Novel Approach for the Management of Gastrointestinal Diseases. Nutrients 2019; 11:E1038. [PMID: 31075872 PMCID: PMC6567093 DOI: 10.3390/nu11051038] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Probiotics, included in functional foods, nutritional supplements, or nutraceuticals, exhibit different beneficial effects on gut function. They are extensively used to improve the digestive processes as well as reduce the symptoms and progression of different diseases. Probiotics have shown to improve dysbiosis and modulate the immune response of the host by interacting with different cell types. Probiotics and the host can interact in a direct way, but it is becoming apparent that communication occurs also through extracellular vesicles (EVs) derived from probiotics. EVs are key for bacteria-bacteria and bacteria-host interactions, since they carry a wide variety of components that can modulate different signaling pathways, including those involved in the immune response. Interestingly, EVs are recently starting to be considered as an alternative to probiotics in those cases for which the use of live bacteria could be dangerous, such as immunocompromised individuals or situations where the intestinal barrier is impaired. EVs can spread through the mucus layer and interact with the host, avoiding the risk of sepsis. This review summarizes the existing knowledge about EVs from different probiotic strains, their properties, and their potential use for the prevention or treatment of different gastrointestinal diseases.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18071-Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18012, Spain.
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18071-Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18012, Spain.
| | - Maria Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18071-Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18012, Spain.
| |
Collapse
|
183
|
The Unique Lifestyle of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. J Mol Biol 2019; 431:2970-2981. [PMID: 31029703 DOI: 10.1016/j.jmb.2019.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Escherichia coli is one of the most genetically and phenotypically diverse species of bacteria. This remarkable diversity produces a plethora of clinical outcomes following infection and has informed much of what we currently know about host-pathogen interactions for a wide range of bacteria-host relationships. In studying the role of microbes in disease, adherent-invasive E. coli (AIEC) has emerged as having a strong association with Crohn's disease (CD). Thus, there has been an equally strong effort to uncover the root origins of AIEC, to appreciate how AIEC differs from other well-known pathogenic E. coli variants, and to understand its connection to disease. Emerging from a growing body of research on AIEC is the understanding that AIEC itself is remarkably diverse, both in phylogenetic origins, genetic makeup, and behavior in the host setting. Here, we describe the unique lifestyle of CD-associated AIEC and review recent research that is uncovering the inextricable link between AIEC and its host in the context of CD.
Collapse
|
184
|
Wang Z, Lin L, Chen W, Zheng X, Zhang Y, Liu Q, Yang D. Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 87:565-572. [PMID: 30742890 DOI: 10.1016/j.fsi.2019.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Edwardsiella piscicida is a facultative intracellular pathogen that causes hemorrhagic septicemia and haemolytic ascites disease in aquaculture fish. During bacterial infection, macrophages and neutrophils are the first line of host innate immune system. However, the role of neutrophils in response to E. piscicida infection in vivo remains poorly understood. Here, through developing an immersion infection model in the 5 day-post fertilization (dpf) zebrafish larvae, we found that E. piscicida was mainly colonized in intestine, and resulted into significant pathological changes in paraffin sections. Moreover, a dynamic up-regulation of inflammatory cytokines (TNF-α, IL-1β, GCSFb, CXCL8 and MMP9) was detected in zebrafish larvae during E. piscicida infection. Furthermore, a significant recruitment of neutrophils was observed during the E. piscicida infection in Tg(mpx:eGFP) zebrafish larvae. Thus, we utilized the CRISPR/Cas9 system to generate the neutrophil-knockdown (gcsfr-/- crispants) larvae, and found a comparative higher mortality and bacterial colonization in gcsfr-/- crispants, which reveals the critical role of fish neutrophils in bacterial clearance. Taken together, our results developed an effective E. piscicida immersion challenge model in zebrafish larvae to clarify the dynamic of bacterial infection in vivo, which would provide a better understanding of the action about innate immune cells during infection.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyun Lin
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
185
|
Pal RR, Baidya AK, Mamou G, Bhattacharya S, Socol Y, Kobi S, Katsowich N, Ben-Yehuda S, Rosenshine I. Pathogenic E. coli Extracts Nutrients from Infected Host Cells Utilizing Injectisome Components. Cell 2019; 177:683-696.e18. [DOI: 10.1016/j.cell.2019.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/21/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
|
186
|
Ramirez VT, Godinez DR, Brust-Mascher I, Nonnecke EB, Castillo PA, Gardner MB, Tu D, Sladek JA, Miller EN, Lebrilla CB, Bevins CL, Gareau MG, Reardon C. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog 2019; 15:e1007719. [PMID: 30973939 PMCID: PMC6478367 DOI: 10.1371/journal.ppat.1007719] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/23/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.
Collapse
Affiliation(s)
- Valerie T. Ramirez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Dayn R. Godinez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Eric B. Nonnecke
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Patricia A. Castillo
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Mariana Barboza Gardner
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Diane Tu
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Jessica A. Sladek
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Elaine N. Miller
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Melanie G. Gareau
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
187
|
Falony G, Vandeputte D, Caenepeel C, Vieira-Silva S, Daryoush T, Vermeire S, Raes J. The human microbiome in health and disease: hype or hope. Acta Clin Belg 2019; 74:53-64. [PMID: 30810508 DOI: 10.1080/17843286.2019.1583782] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The prognostic, diagnostic, and therapeutic potential of the human gut microbiota is widely recognised. However, translation of microbiome findings to clinical practice is challenging. Here, we discuss current knowledge and applications in the field. METHODS We revisit some recent advances in the field of faecal microbiome analyses with a focus on covariate analyses and ecological interpretation. RESULTS Population-level characterization of gut microbiota variation among healthy volunteers has allowed identifying microbiome covariates required for clinical studies. Currently, microbiome research is moving from relative to quantitative approaches that will shed a new light on microbiota-host interactions in health and disease. CONCLUSIONS Covariate characterization and technical advances increase reproducibility of microbiome research. Targeted in vitro/in vivo intervention studies will accelerate clinical implementation of microbiota findings.
Collapse
Affiliation(s)
- Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Doris Vandeputte
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Tanine Daryoush
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
188
|
Ramendra R, Isnard S, Mehraj V, Chen J, Zhang Y, Finkelman M, Routy JP. Circulating LPS and (1→3)-β-D-Glucan: A Folie à Deux Contributing to HIV-Associated Immune Activation. Front Immunol 2019; 10:465. [PMID: 30967860 PMCID: PMC6430738 DOI: 10.3389/fimmu.2019.00465] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the driving force behind the occurrence of AIDS and non-AIDS events, and is only partially reduced by antiretroviral therapy (ART). Soon after HIV infection, intestinal CD4+ T cells are depleted leading to epithelial gut damage and subsequent translocation of microbes and/or their products into systemic circulation. Bacteria and fungi are the two most abundant populations of the gut microbiome. Circulating lipopolysaccharide (LPS) and (1→3)-β-D-Glucan (βDG), major components of bacterial and fungal cell walls respectively, are measured as markers of microbial translocation in the context of compromised gut barriers. While LPS is a well-known inducer of innate immune activation, βDG is emerging as a significant source of monocyte and NK cell activation that contributes to immune dysfunction. Herein, we critically evaluated recent literature to untangle the respective roles of LPS and βDG in HIV-associated immune dysfunction. Furthermore, we appraised the relevance of LPS and βDG as biomarkers of disease progression and immune activation on ART. Understanding the consequences of elevated LPS and βDG on immune activation will provide insight into novel therapeutic strategies against the occurrence of AIDS and non-AIDS events.
Collapse
Affiliation(s)
- Rayoun Ramendra
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Vikram Mehraj
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jun Chen
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Yonglong Zhang
- Associates of Cape Cod Inc., Falmouth, MA, United States
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
189
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|
190
|
Alagón Fernández Del Campo P, De Orta Pando A, Straface JI, López Vega JR, Toledo Plata D, Niezen Lugo SF, Alvarez Hernández D, Barrientos Fortes T, Gutiérrez-Kobeh L, Solano-Gálvez SG, Vázquez-López R. The Use of Probiotic Therapy to Modulate the Gut Microbiota and Dendritic Cell Responses in Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2019; 7:medsci7020033. [PMID: 30813381 PMCID: PMC6410300 DOI: 10.3390/medsci7020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Recent investigations have shown that different conditions such as diet, the overuse of antibiotics or the colonization of pathogenic microorganisms can alter the population status of the intestinal microbiota. This modification can produce a change from homeostasis to a condition known as imbalance or dysbiosis; however, the role-played by dysbiosis and the development of inflammatory bowel diseases (IBD) has been poorly understood. It was actually not until a few years ago that studies started to develop regarding the role that dendritic cells (DC) of intestinal mucosa play in the sensing of the gut microbiota population. The latest studies have focused on describing the DC modulation, specifically on tolerance response involving T regulatory cells or on the inflammatory response involving reactive oxygen species and tissue damage. Furthermore, the latest studies have also focused on the protective and restorative effect of the population of the gut microbiota given by probiotic therapy, targeting IBD and other intestinal pathologies. In the present work, the authors propose and summarize a recently studied complex axis of interaction between the population of the gut microbiota, the sensing of the DC and its modulation towards tolerance and inflammation, the development of IBD and the protective and restorative effect of probiotics on other intestinal pathologies.
Collapse
Affiliation(s)
- Pablo Alagón Fernández Del Campo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Alejandro De Orta Pando
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Juan Ignacio Straface
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - José Ricardo López Vega
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Toledo Plata
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Sebastian Felipe Niezen Lugo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Alvarez Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Tomás Barrientos Fortes
- Director Facultad de Ciencias de la Salud, Universidad Anáhuac México, 52786 Cuidad de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez," Mexico City 14080, Mexico.
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| |
Collapse
|
191
|
Monteiro CRAV, do Carmo MS, Melo BO, Alves MS, Dos Santos CI, Monteiro SG, Bomfim MRQ, Fernandes ES, Monteiro-Neto V. In Vitro Antimicrobial Activity and Probiotic Potential of Bifidobacterium and Lactobacillus against Species of Clostridium. Nutrients 2019; 11:nu11020448. [PMID: 30795551 PMCID: PMC6412307 DOI: 10.3390/nu11020448] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Many Clostridium species are found as commensal members of the intestinal microbiota. However, imbalances of the microbiota may lead to certain infections caused by these microorganisms, mainly Clostridium butyricum, Clostridium difficile, and Clostridium perfringens. In many cases, infection recurrence can occur after antibiotics, indicating the need for novel therapeutic options that act on the pathogens and also restore the microbiota. Herein, the in vitro antimicrobial activity and probiotic potential of clinical and reference strains of Bifidobacterium and Lactobacillus were investigated against Clostridium species. Antimicrobial activity was evaluated by the agar spot test and inhibition of gas production. Then, the probiotic potential of selected strains was assessed by analyzing their coaggregation ability, adhesive properties to host cells and mucin, tolerance to acidic pH and bile salts, and antimicrobial susceptibility profiles. Lactobacillus plantarum ATCC 8014 was the most promising strain based on its inhibitory activity against Clostridium spp. Also, this strain met criteria to be considered a probiotic based on its coaggregation ability, adhesive properties, and tolerance to harsh pH and bile acid salt conditions. The results indicate that among the studied strains, L. plantarum ATCC 8014 presents probiotic potential for controlling infections induced by the studied Clostridium species and should be further evaluated in in vivo animal models.
Collapse
Affiliation(s)
- Cinara R A V Monteiro
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão, Av. dos Portugueses, campus do Bacanga, São Luís 65065545, MA, Brazil.
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Monique S do Carmo
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão, Av. dos Portugueses, campus do Bacanga, São Luís 65065545, MA, Brazil.
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Bruna O Melo
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Matheus S Alves
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Camilla I Dos Santos
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Sílvio G Monteiro
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
- Departamento de Biologia, Universidade Federal do Maranhão, Av. dos Portugueses, campus do Bacanga, São Luís 65065545, MA, Brazil.
| | - Maria Rosa Q Bomfim
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Elizabeth S Fernandes
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| | - Valério Monteiro-Neto
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão, Av. dos Portugueses, campus do Bacanga, São Luís 65065545, MA, Brazil.
- Programa de Pós-graduação, Universidade Ceuma, Rua dos Castanheiros No. 1, jardim Renascença II, São Luís 65075120, MA, Brazil.
| |
Collapse
|
192
|
Xie SZ, Liu B, Ye HY, Li QM, Pan LH, Zha XQ, Liu J, Duan J, Luo JP. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice. Carbohydr Polym 2019; 206:149-162. [DOI: 10.1016/j.carbpol.2018.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
|
193
|
Iacob S, Iacob DG, Luminos LM. Intestinal Microbiota as a Host Defense Mechanism to Infectious Threats. Front Microbiol 2019; 9:3328. [PMID: 30761120 PMCID: PMC6362409 DOI: 10.3389/fmicb.2018.03328] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is a complex microbial community, with diverse and stable populations hosted by the gastrointestinal tract since birth. This ecosystem holds multiple anti-infectious, anti-inflammatory, and immune modulating roles decisive for intestinal homeostasis. Among these, colonization resistance refers to the dynamic antagonistic interactions between commensals and pathogenic flora. Hence, gut bacteria compete for the same intestinal niches and substrates, while also releasing antimicrobial substances such as bacteriocines and changing the environmental conditions. Short chain fatty acids (SCFAs) generated in anaerobic conditions prompt epigenetic regulatory mechanisms that favor a tolerogenic immune response. In addition, the commensal flora is involved in the synthesis of bactericidal products, namely secondary biliary acids or antimicrobial peptides (AMPs) such as cathellicidin-LL37, an immunomodulatory, antimicrobial, and wound healing peptide. Gut microbiota is protected through symbiotic relations with the hosting organism and by quorum sensing, a specific cell-to-cell communication system. Any alterations of these relationships favor the uncontrollable multiplication of the resident pathobionts or external entero-pathogens, prompting systemic translocations, inflammatory reactions, or exacerbations of bacterial virulence mechanisms (T6SS, T3SS) and ultimately lead to gastrointestinal or systemic infections. The article describes the metabolic and immunological mechanisms through which the intestinal microbiota is both an ally of the organism against enteric pathogens and an enemy that favors the development of infections.
Collapse
Affiliation(s)
- Simona Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
| | - Diana Gabriela Iacob
- National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
| | - Luminita Monica Luminos
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
| |
Collapse
|
194
|
20-Hydroxy-3-Oxolupan-28-Oic Acid Attenuates Inflammatory Responses by Regulating PI3K⁻Akt and MAPKs Signaling Pathways in LPS-Stimulated RAW264.7 Macrophages. Molecules 2019; 24:molecules24030386. [PMID: 30678231 PMCID: PMC6385096 DOI: 10.3390/molecules24030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
20-Hydroxy-3-oxolupan-28-oic acid (HOA), a lupane-type triterpene, was obtained from the leaves of Mahonia bealei, which is described in the Chinese Pharmacopeia as a remedy for inflammation and related diseases. The anti-inflammatory mechanisms of HOA, however, have not yet been fully elucidated. Therefore, the objective of this study was to characterize the molecular mechanisms of HOA in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. HOA suppressed the release of nitric oxide (NO), pro-inflammatory cytokine tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 macrophages without affecting cell viability. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis indicated that HOA also suppressed the gene expression of inducible NO synthase (iNOS), TNF-α, and IL-6. Further analyses demonstrated that HOA inhibited the phosphorylation of upstream signaling molecules, including p85, PDK1, Akt, IκBα, ERK, and JNK, as well as the nuclear translocation of nuclear factor κB (NF-κB) p65. Interestingly, HOA had no effect on the LPS-induced nuclear translocation of activator protein 1 (AP-1). Taken together, these results suggest that HOA inhibits the production of cytokine by downregulating iNOS, TNF-α, and IL-6 gene expression via the downregulation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs), and the inhibition of NF-κB activation. Our findings indicate that HOA could potentially be used as an anti-inflammatory agent for medical use.
Collapse
|
195
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2019; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
196
|
Yang Y, Zhang L, Jiang G, Lei A, Yu Q, Xie J, Chen Y. Evaluation of the protective effects of Ganoderma atrum polysaccharide on acrylamide-induced injury in small intestine tissue of rats. Food Funct 2019; 10:5863-5872. [DOI: 10.1039/c9fo01452g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This research confirmed the protective effects of Ganoderma atrum polysaccharide (PSG-1) on acrylamide (AA) induced intestinal injury in rats.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Lulu Zhang
- Hefei Taksong Biotech Co
- Ltd
- Hefei 230022
- China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Aitong Lei
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
197
|
Otsubo R, Mimuro H, Ashida H, Hamazaki J, Murata S, Sasakawa C. Shigella effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol 2018; 21:e12974. [PMID: 30414351 DOI: 10.1111/cmi.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Subversion of antigen-specific immune responses by intracellular pathogens is pivotal for successful colonisation. Bacterial pathogens, including Shigella, deliver effectors into host cells via the type III secretion system (T3SS) in order to manipulate host innate and adaptive immune responses, thereby promoting infection. However, the strategy for subverting antigen-specific immunity is not well understood. Here, we show that Shigella flexneri invasion plasmid antigen H (IpaH) 4.5, a member of the E3 ubiquitin ligase effector family, targets the proteasome regulatory particle non-ATPase 13 (RPN13) and induces its degradation via the ubiquitin-proteasome system (UPS). IpaH4.5-mediated RPN13 degradation causes dysfunction of the 19S regulatory particle (RP) in the 26S proteasome, inhibiting guidance of ubiquitinated proteins to the proteolytically active 20S core particle (CP) of 26S proteasome and thereby suppressing proteasome-catalysed peptide splicing. This, in turn, reduces antigen cross-presentation to CD8+ T cells via major histocompatibility complex (MHC) class I in vitro. In RPN13 knockout mouse embryonic fibroblasts (MEFs), loss of RPN13 suppressed CD8+ T cell priming during Shigella infection. Our results uncover the unique tactics employed by Shigella to dampen the antigen-specific cytotoxic T lymphocyte (CTL) response.
Collapse
Affiliation(s)
- Ryota Otsubo
- Department of infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Hitomi Mimuro
- Department of infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan.,Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial pathogenesis, Infection and Host Response, Graduate of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Sasakawa
- Research Department, Nippon Institute for Biological Science, Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
198
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
199
|
Liu YW, Liong MT, Tsai YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J Microbiol 2018; 56:601-613. [DOI: 10.1007/s12275-018-8079-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
|
200
|
Xia Y, Wu J, Du Y, Miao C, Su Z, Ma G. Bridging Systemic Immunity with Gastrointestinal Immune Responses via Oil-in-Polymer Capsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801067. [PMID: 29896795 DOI: 10.1002/adma.201801067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/16/2018] [Indexed: 06/08/2023]
Abstract
As peripheral lymphocytes are typically excluded from the gastrointestinal lymph tissues, current parenteral vaccinations fail to simultaneously induce systemic and mucosal responses. To break the natural barrier, "immunoticket" capsules are developed and heralded, which are designed with positive charged shells and oily core to spatiotemporally deliver antigens and all-trans retinoic acid (RA). After intramuscular vaccinations, these capsules function as an immunoticket to cultivate peripheral dendritic cells (DCs) with gut-homing receptors (CCR9). By hitchhiking on the concentration gradient of the CC-motif chemokine ligand 25 (CCL25), the primed DCs would home to the gut associated lymphoid tissues (GALTs) and induce antigen-specific IgA secretion and T cell engagements. Compared with the currently employed RA-involving formulations, the immunoticket capsules stimulate enhanced RA-mediated gut-tropism by mounting the inflammatory innate immunity. Through controlling the RA payload, the potential regulatory T cell engagement is circumvented. In ovalbumin (OVA) and EV71 vaccinations, the immunoticket capsules induce potent serum IgG titer and antigen-specific cytotoxic T cells in the peripheral lymph tissues, as well as robust IgA secretion and T cell engagements on gastrointestinal sites. The data suggest the potential of the immunotickets to serve as a facile, effective, and safe strategy to provide comprehensive immune responses against gastrointestinal infections and diseases.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiqun Du
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|