151
|
Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015; 6:8322. [PMID: 26415554 PMCID: PMC4667430 DOI: 10.1038/ncomms9322] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. Lactobacillus is a lactic acid bacteria and has a wide range of application from use in probiotic food production to biotherapeutics. Here, the authors sequence and compare the genomes of 213 different Lactobacillus strains and related genera, and provide new insight into phylogenomic organization and adaptive immunity elements in this bacteria family.
Collapse
Affiliation(s)
- Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hugh M B Harris
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Angela McCann
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Silvia Argimón
- College of Dentistry, New York University, New York City, New York 10010, USA
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ian B Jeffery
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Jakki C Cooney
- Department Life Sciences &MSSI, University of Limerick, V94 T9PX Limerick, Ireland
| | - Todd F Kagawa
- Department Life Sciences &MSSI, University of Limerick, V94 T9PX Limerick, Ireland
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Agnieszka Wrobel
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland
| | | | - Mary C Rea
- Department of Biotechnology, Teagasc, Moorepark, Fermoy Co. Cork P61 C996, Ireland
| | - Orla O'Sullivan
- Department of Biotechnology, Teagasc, Moorepark, Fermoy Co. Cork P61 C996, Ireland
| | - Jarmo Ritari
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - François P Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - R Paul Ross
- Department of Biotechnology, Teagasc, Moorepark, Fermoy Co. Cork P61 C996, Ireland
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Alexandra E Briner
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Willem M de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, 6703HB, The Netherlands
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Todd R Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Page W Caufield
- College of Dentistry, New York University, New York City, New York 10010, USA
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Paul W O'Toole
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| |
Collapse
|
152
|
Extraction of Peptidoglycan from L. paracasei subp. Paracasei X12 and Its Preliminary Mechanisms of Inducing Immunogenic Cell Death in HT-29 Cells. Int J Mol Sci 2015; 16:20033-49. [PMID: 26305246 PMCID: PMC4581339 DOI: 10.3390/ijms160820033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023] Open
Abstract
L. paracasei subp. paracaseiX12 was previously isolated from a Chinese traditional fermented cheese with anticancer activities and probiotic potential. Herein, the integral peptidoglycan (X12-PG) was extracted by a modified trichloroacetic acid (TCA) method. X12-PG contained the four representative amino acids Asp, Glu, Ala and Lys, and displayed the similar lysozyme sensitivity, UV-visible scanning spectrum and molecular weight as the peptidoglycan standard. X12-PG could induce the production of apoptotic bodies observed by transmission electron microscopy (TEM). X12-PG could significantly induced the translocation of calreticulin (CRT) and the release of high mobility group box 1 protein (HMGB1), the two notable hallmarks of immunogenic cell death (ICD), with the endoplastic reticulum (ER) damaged and subsequently intracellular [Ca2+] elevated. Our findings implied that X12-PG could induce the ICD of HT-29 cells through targeting at the ER. The present results may enlighten the prospect of probiotics in the prevention of colon cancer.
Collapse
|
153
|
Krishna G, Divyashri G, Prapulla SG, Muralidhara. A Combination Supplement of Fructo- and Xylo-Oligosaccharides Significantly Abrogates Oxidative Impairments and Neurotoxicity in Maternal/Fetal Milieu Following Gestational Exposure to Acrylamide in Rat. Neurochem Res 2015; 40:1904-18. [DOI: 10.1007/s11064-015-1687-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/26/2022]
|
154
|
Amar Y, Rizzello V, Cavaliere R, Campana S, De Pasquale C, Barberi C, Oliveri D, Pezzino G, Costa G, Meddah AT, Ferlazzo G, Bonaccorsi I. Divergent signaling pathways regulate IL-12 production induced by different species of Lactobacilli in human dendritic cells. Immunol Lett 2015; 166:6-12. [PMID: 25977118 DOI: 10.1016/j.imlet.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Recent studies have indicated that different strains of Lactobacilli differ in their ability to regulate IL-12 production by dendritic cells (DCs), as some strains are stronger inducer of IL-12 while other are not and can even inhibit IL-12 production stimulated by IL-12-inducer Lactobacilli. In this report we demonstrate that Lactobacillus reuteri 5289, as previously described for other strains of L. reuteri, can inhibit DC production of IL-12 induced by Lactobacilllus acidophilus NCFM. Remarkably, L. reuteri 5289 was able to inhibit IL-12 production induced not only by Lactobacilli, as so far reported, but also by bacteria of different genera, including pathogens. We investigated in human DCs the signal transduction pathways involved in the inhibition of IL-12 production induced by L. reuteri 5289, showing that this potential anti-inflammatory activity, which is also accompanied by an elevated IL-10 production, is associated to a prolonged phosphorilation of ERK1/2 MAP kinase pathway. Improved understanding of the immune regulatory mechanisms exerted by Lactobacilli is crucial for a more precise employment of these commensal bacteria as probiotics in human immune-mediated pathologies, such as allergies or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yacine Amar
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy; Laboratory of Bioconversion Engineering and Microbiological Food Safety, Department of Biology, University of Mascara, Mascara, Algeria
| | - Valeria Rizzello
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy; Cell Therapy Program, University Hospital-A.O.U. Policlinico G.Martino, Messina, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy
| | - Chiara Barberi
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy
| | - Daniela Oliveri
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy
| | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy
| | - Gregorio Costa
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy; Cell Therapy Program, University Hospital-A.O.U. Policlinico G.Martino, Messina, Italy
| | - Aicha Tirtouil Meddah
- Laboratory of Bioconversion Engineering and Microbiological Food Safety, Department of Biology, University of Mascara, Mascara, Algeria
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy; Cell Therapy Program, University Hospital-A.O.U. Policlinico G.Martino, Messina, Italy.
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Dept. Human Pathology, University of Messina, Messina, Italy; Cell Therapy Program, University Hospital-A.O.U. Policlinico G.Martino, Messina, Italy
| |
Collapse
|
155
|
Molina MA, Díaz AM, Hesse C, Ginter W, Gentilini MV, Nuñez GG, Canellada AM, Sparwasser T, Berod L, Castro MS, Manghi MA. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-Gamma Production. PLoS One 2015; 10:e0127262. [PMID: 25978357 PMCID: PMC4433276 DOI: 10.1371/journal.pone.0127262] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation.
Collapse
Affiliation(s)
- Matías Alejandro Molina
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Ailén Magalí Díaz
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Christina Hesse
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Wiebke Ginter
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - María Virginia Gentilini
- Instituto de Inmunología, Genética y Metabolismo, INIGEM (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Gabriel Nuñez
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Mercedes Canellada
- Laboratorio de Anticuerpos Asimétricos e Inmunología de la Reproducción, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marisa Silvia Castro
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Alejandra Manghi
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
156
|
Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats. Appl Environ Microbiol 2015; 81:3502-9. [PMID: 25769827 DOI: 10.1128/aem.00203-15] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/09/2015] [Indexed: 01/06/2023] Open
Abstract
Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen.
Collapse
|
157
|
Scott KP, Antoine JM, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:25877. [PMID: 25651995 PMCID: PMC4315778 DOI: 10.3402/mehd.v26.25877] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The intestinal microbiota composition varies between healthy and diseased individuals for numerous diseases. Although any cause or effect relationship between the alterations in the gut microbiota and disease is not always clear, targeting the intestinal microbiota might offer new possibilities for prevention and/or treatment of disease. OBJECTIVE Here we review some examples of manipulating the intestinal microbiota by prebiotics, probiotics, and fecal microbial transplants. RESULTS Prebiotics are best known for their ability to increase the number of bifidobacteria. However, specific prebiotics could potentially also stimulate other species they can also stimulate other species associated with health, like Akkermansia muciniphila, Ruminococcus bromii, the Roseburia/Enterococcus rectale group, and Faecalibacterium prausnitzii. Probiotics have beneficial health effects for different diseases and digestive symptoms. These effects can be due to the direct effect of the probiotic bacterium or its products itself, as well as effects of the probiotic on the resident microbiota. Probiotics can influence the microbiota composition as well as the activity of the resident microbiota. Fecal microbial transplants are a drastic intervention in the gut microbiota, aiming for total replacement of one microbiota by another. With numerous successful studies related to antibiotic-associated diarrhea and Clostridium difficile infection, the potential of fecal microbial transplants to treat other diseases like inflammatory bowel disease, irritable bowel syndrome, and metabolic and cardiovascular disorders is under investigation. CONCLUSIONS Improved knowledge on the specific role of gut microbiota in prevention and treatment of disease will help more targeted manipulation of the intestinal microbiota. Further studies are necessary to see the (long term) effects for health of these interventions.
Collapse
Affiliation(s)
- Karen P Scott
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | | | - Tore Midtvedt
- Department of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
158
|
Mao B, Li D, Zhao J, Liu X, Gu Z, Chen YQ, Zhang H, Chen W. In vitro fermentation of fructooligosaccharides with human gut bacteria. Food Funct 2015; 6:947-54. [DOI: 10.1039/c4fo01082e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fructooligosaccharides (FOS), one of the most studied prebiotics, selectively stimulate the growth of health-promoting bacteria in the host.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Dongyao Li
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| |
Collapse
|
159
|
Martínez-Augustin O, Rivero-Gutiérrez B, Mascaraque C, Sánchez de Medina F. Food derived bioactive peptides and intestinal barrier function. Int J Mol Sci 2014; 15:22857-73. [PMID: 25501338 PMCID: PMC4284742 DOI: 10.3390/ijms151222857] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.
Collapse
Affiliation(s)
- Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, CIBERehd, University of Granada, Instituto de Investigación Biosanitaria ibs, Granada 18071, Spain.
| | - Belén Rivero-Gutiérrez
- Department of Pharmacology, CIBERehd, University of Granada, Instituto de Investigación Biosanitaria ibs, Granada 18071, Spain.
| | - Cristina Mascaraque
- IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center, Milan 20089, Italy.
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, University of Granada, Instituto de Investigación Biosanitaria ibs, Granada 18071, Spain.
| |
Collapse
|
160
|
Pasquali C, Salami O, Taneja M, Gollwitzer ES, Trompette A, Pattaroni C, Yadava K, Bauer J, Marsland BJ. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract. Front Med (Lausanne) 2014; 1:41. [PMID: 25593914 PMCID: PMC4292070 DOI: 10.3389/fmed.2014.00041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/12/2014] [Indexed: 01/19/2023] Open
Abstract
Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae.
Collapse
Affiliation(s)
| | - Olawale Salami
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Manisha Taneja
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Aurelien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Céline Pattaroni
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Koshika Yadava
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | | | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| |
Collapse
|
161
|
Abstract
Gut microbiota has been recognized as an important environmental factor in health, as well as in metabolic and immunological diseases, in which perturbation of the host gut microbiota is often observed in the diseased state. However, little is known on the role of gut microbiota in systemic lupus erythematosus. We investigated the effects of host genetics, sex, age, and dietary intervention on the gut microbiome in a murine lupus model. In young, female lupus-prone mice resembling women at childbearing age, a population with the highest risk for lupus, we found marked depletion of lactobacilli, and increases in Lachnospiraceae and overall diversity compared to age-matched healthy controls. The predicted metagenomic profile in lupus-prone mice showed a significant enrichment of bacterial motility- and sporulation-related pathways. Retinoic acid as a dietary intervention restored lactobacilli that were downregulated in lupus-prone mice, and this correlated with improved symptoms. The predicted metagenomes also showed that retinoic acid reversed many lupus-associated changes in microbial functions that deviated from the control. In addition, gut microbiota of lupus-prone mice were different between sexes, and an overrepresentation of Lachnospiraceae in females was associated with an earlier onset of and/or more severe lupus symptoms. Clostridiaceae and Lachnospiraceae, both harboring butyrate-producing genera, were more abundant in the gut of lupus-prone mice at specific time points during lupus progression. Together, our results demonstrate the dynamics of gut microbiota in murine lupus and provide evidence to suggest the use of probiotic lactobacilli and retinoic acid as dietary supplements to relieve inflammatory flares in lupus patients.
Collapse
|
162
|
Host adaptive immunity alters gut microbiota. ISME JOURNAL 2014; 9:770-81. [PMID: 25216087 DOI: 10.1038/ismej.2014.165] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/06/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022]
Abstract
It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity.
Collapse
|
163
|
Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, Shigyo T, Oishi K. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci 2014; 111:47-52. [PMID: 25058921 DOI: 10.1016/j.lfs.2014.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 01/03/2023]
Abstract
AIMS We previously reported that heat-killed Lactobacillus brevis SBC8803 enhances appetite via changes in autonomic neurotransmission. Here we assessed whether a diet supplemented with heat-killed SBC8803 affects circadian locomotor rhythmicity and sleep architecture. MAIN METHODS AND KEY FINDINGS Daily total activity gradually increased in mice over 4 weeks and supplementation with heat-killed SBC8803 significantly intensified the increase, which reached saturation at 25 days. Electroencephalography revealed that SBC8803 supplementation significantly reduced the total amount of time spent in non-rapid eye movement (NREM) sleep and increased the amount of time spent being awake during the latter half of the nighttime, but tended to increase the total amount of time spent in NREM sleep during the daytime. Dietary supplementation with SBC8803 can extend the duration of activity during the nighttime and of sleep during the daytime. Daily voluntary wheel-running and sleep rhythmicity become intensified when heat-killed SBC8803 is added to the diet. SIGNIFICANCE Dietary heat-killed SBC8803 can modulate circadian locomotion and sleep rhythms, which might benefit individuals with circadian rhythms that have been disrupted by stress or ageing.
Collapse
Affiliation(s)
- Koyomi Miyazaki
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | - Nanako Itoh
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Saori Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yasukazu Nakakita
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu 325-0013, Japan
| | - Hirotaka Kaneda
- Corporate Planning Department, Sapporo Holdings Ltd., Tokyo 150-8522, Japan
| | - Tatsuro Shigyo
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu 325-0013, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
164
|
Johnson BR, Klaenhammer TR. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek 2014; 106:141-56. [PMID: 24748373 PMCID: PMC4064118 DOI: 10.1007/s10482-014-0171-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
For thousands of years, humans have safely consumed microorganisms through fermented foods. Many of these bacteria are considered probiotics, which act through diverse mechanisms to confer a health benefit to the host. However, it was not until the availability of whole-genome sequencing and the era of genomics that mechanisms of probiotic efficacy could be discovered. In this review, we explore the history of the probiotic concept and the current standard of integrated genomic techniques to discern the complex, beneficial relationships between probiotic microbes and their hosts.
Collapse
Affiliation(s)
- Brant R. Johnson
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
| | - Todd R. Klaenhammer
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
165
|
Stoyancheva G, Marzotto M, Dellaglio F, Torriani S. Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains. Arch Microbiol 2014; 196:645-53. [DOI: 10.1007/s00203-014-1003-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 12/17/2022]
|
166
|
Khan MT, van Dijl JM, Harmsen HJM. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One 2014; 9:e96097. [PMID: 24798051 PMCID: PMC4010535 DOI: 10.1371/journal.pone.0096097] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022] Open
Abstract
The beneficial human gut microbe Faecalibacterium prausnitzii is a ‘probiotic of the future’ since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precluded its clinical application in the treatment of patients with inflammatory bowel diseases. The present studies were therefore aimed at developing a strategy to keep F. prausnitzii alive at ambient air. Our previous research showed that F. prausnitzii can survive in moderately oxygenized environments like the gut mucosa by transfer of electrons to oxygen. For this purpose, the bacterium exploits extracellular antioxidants, such as riboflavin and cysteine, that are abundantly present in the gut. We therefore tested to what extent these antioxidants can sustain the viability of F. prausnitzii at ambient air. The present results show that cysteine can facilitate the survival of F. prausnitzii upon exposure to air, and that this effect is significantly enhanced the by addition of riboflavin and the cryoprotectant inulin. The highly oxygen-sensitive gut bacterium F. prausnitzii can be kept alive at ambient air for 24 h when formulated with the antioxidants cysteine and riboflavin plus the cryoprotectant inulin. Improved formulations were obtained by addition of the bulking agents corn starch and wheat bran. Our present findings pave the way towards the biomedical exploitation of F. prausnitzii in redox-based therapeutics for treatment of dysbiosis-related inflammatory disorders of the human gut.
Collapse
Affiliation(s)
- M. Tanweer Khan
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
167
|
Kramer MF, Heath MD. Probiotics in the treatment of chronic rhinoconjunctivitis and chronic rhinosinusitis. J Allergy (Cairo) 2014; 2014:983635. [PMID: 24872820 PMCID: PMC4020448 DOI: 10.1155/2014/983635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/24/2014] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinitis and rhinosinusitis (CRS) are relevant health conditions affecting significant percentages of the western population. They are frequently coexisting and aggravating diseases. Both are chronic, noninfectious, and inflammatory conditions sharing to a certain extent important pathophysiologic similarities. Beneficial effects of probiotics are long known to mankind. Research is beginning to unravel the true nature of the human microbiome and its interaction with the immune system. The growing prevalence of atopic diseases in the developed world led to the proposition of the "hygiene hypothesis." Dysbiosis is linked to atopic diseases; probiotic supplementation is able to alter the microbiome and certain probiotic strains have immunomodulatory effects in favour of a suppression of Th-2 and stimulation of a Th1 profile. This review focuses on randomized, double-blind, placebo-controlled trials investigating clinical parameters in the treatment of chronic rhinitis and CRS. An emerging number of publications demonstrate beneficial effects using probiotics in clinical double-blind placebo-controlled (dbpc) trials in allergic rhinitis (AR). Using probiotics as complementary treatment options in AR seems to be a promising concept although the evidence is of a preliminary nature to date and more convincing trials are needed. There are no current data to support the use of probiotics in non-AR or CRS.
Collapse
Affiliation(s)
- Matthias F. Kramer
- Allergy Therapeutics plc., Dominion Way, Worthing, West Sussex BN14 8SA, UK
| | - Matthew D. Heath
- Allergy Therapeutics plc., Dominion Way, Worthing, West Sussex BN14 8SA, UK
| |
Collapse
|
168
|
Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol 2014; 80:2546-54. [PMID: 24532064 DOI: 10.1128/aem.00003-14] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that perturbations in the intestinal microbiota composition of infants are implicated in the pathogenesis of food allergy (FA), while the actual structure and composition of the intestinal microbiota in human beings with FA remain unclear. Microbial diversity and composition were analyzed with parallel barcoded 454 pyrosequencing targeting the 16S rRNA gene hypervariable V1-V3 regions in the feces of 34 infants with FA (17 IgE mediated and 17 non-IgE mediated) and 45 healthy controls. Here, we showed that several key FA-associated bacterial phylotypes, but not the overall microbiota diversity, significantly changed in infancy fecal microbiota with FA and were associated with the development of FA. The proportion of abundant Bacteroidetes, Proteobacteria, and Actinobacteria phyla were significantly reduced, while the Firmicutes phylum was highly enriched in the FA group (P < 0.05). Abundant Clostridiaceae 1 organisms were prevalent in infants with FA at the family level (P = 0.016). FA-enriched phylotypes negatively correlated with interleukin-10, for example, the genera Enterococcus and Staphylococcus. Despite profound interindividual variability, levels of 20 predominant genera were significantly different between the FA and healthy control groups (P < 0.05). Infants with IgE-mediated FA had increased levels of Clostridium sensu stricto and Anaerobacter and decreased levels of Bacteroides and Clostridium XVIII (P < 0.05). A positive correlation was observed between Clostridium sensu stricto and serum-specific IgE (R = 0.655, P < 0.001). The specific microbiota signature could distinguish infants with IgE-mediated FA from non-IgE-mediated ones. Detailed microbiota analysis of a well-characterized cohort of infants with FA showed that dysbiosis of fecal microbiota with several FA-associated key phylotypes may play a pathogenic role in FA.
Collapse
|
169
|
Zagato E, Mileti E, Massimiliano L, Fasano F, Budelli A, Penna G, Rescigno M. Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have anti-inflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo. PLoS One 2014; 9:e87615. [PMID: 24520333 PMCID: PMC3919712 DOI: 10.1371/journal.pone.0087615] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/21/2013] [Indexed: 12/31/2022] Open
Abstract
The rapid expansion of commercially available fermented food products raises important safety issues particularly when infant food is concerned. In many cases, the activity of the microorganisms used for fermentation as well as what will be the immunological outcome of fermented food intake is not known. In this manuscript we used complex in vitro, ex-vivo and in vivo systems to study the immunomodulatory properties of probiotic-fermented products (culture supernatant and fermented milk without live bacteria to be used in infant formula). We found in vitro and ex-vivo that fermented products of Lactobacillus paracasei CBA L74 act via the inhibition of proinflammatory cytokine release leaving anti-inflammatory cytokines either unaffected or even increased in response to Salmonella typhimurium. These activities are not dependent on the inactivated bacteria but to metabolic products released during the fermentation process. We also show that our in vitro systems are predictive of an in vivo efficacy by the fermented products. Indeed CBA L74 fermented products (both culture medium and fermented milk) could protect against colitis and against an enteric pathogen infection (Salmonella typhimurium). Hence we found that fermented products can act via the inhibition of immune cell inflammation and can protect the host from pathobionts and enteric pathogens. These results open new perspectives in infant nutrition and suggest that L. paracasei CBA L74 fermented formula can provide immune benefits to formula-fed infants, without carrying live bacteria that may be potentially dangerous to an immature infant immune system.
Collapse
Affiliation(s)
- Elena Zagato
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Erika Mileti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Lucia Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | | - Giuseppe Penna
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- * E-mail: (GP); (MR)
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- * E-mail: (GP); (MR)
| |
Collapse
|
170
|
Bates J, Diehl L. Dendritic cells in IBD pathogenesis: an area of therapeutic opportunity? J Pathol 2014; 232:112-20. [PMID: 24122796 PMCID: PMC4285849 DOI: 10.1002/path.4277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/03/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022]
Abstract
Dysfunction of the mucosal immune system plays an important role in inflammatory bowel disease (IBD) pathogenesis. Dendritic cells are emerging as central players based on both our increasing understanding of how genetic susceptibility impacts the mucosal immune system and the key role of dendritic cells in regulating response to gut microflora. We discuss areas of therapeutic opportunity in this evolving landscape. © 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
|
171
|
In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. Int J Biol Macromol 2014; 63:181-7. [DOI: 10.1016/j.ijbiomac.2013.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/20/2013] [Accepted: 10/26/2013] [Indexed: 01/18/2023]
|
172
|
Konstantinov SR, Kuipers EJ, Peppelenbosch MP. Functional genomic analyses of the gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol 2013; 10:741-5. [PMID: 24042452 DOI: 10.1038/nrgastro.2013.178] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence for a strong correlation between the gut microbiota and colorectal carcinogenesis is quickly gathering pace. This correlation raises important questions, such as whether analysis of the microbiota can be used for screening purposes, and whether targeted intervention can influence the risk of development and progression of neoplasia. The recovery of several pathobionts-such as members of the different bacterial phyla Proteobacteria, Bacteroidetes and Fusobacteria-from the tumour microenvironment of patients with colorectal cancer (CRC) now provides a link between specific microbial colonization and cancer. However, other intestinal bacteria belonging to another major intestinal phylum, Firmicutes, might be effective in the treatment of pathogenic inflammation related to CRC. Future approaches based on the analysis of the gut microbiota of patients with CRC combined with large human cohort studies might open up new possibilities for further prophylactic, screening and treatment strategies.
Collapse
Affiliation(s)
- Sergey R Konstantinov
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Gravendijkwal 230, NL3015 CE Rotterdam, Netherlands
| | | | | |
Collapse
|
173
|
Arthur JC, Gharaibeh RZ, Uronis JM, Perez-Chanona E, Sha W, Tomkovich S, Mühlbauer M, Fodor AA, Jobin C. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep 2013; 3:2868. [PMID: 24100376 PMCID: PMC3792409 DOI: 10.1038/srep02868] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/18/2013] [Indexed: 02/07/2023] Open
Abstract
Although probiotics have shown success in preventing the development of experimental colitis-associated colorectal cancer (CRC), beneficial effects of interventional treatment are relatively unknown. Here we show that interventional treatment with VSL#3 probiotic alters the luminal and mucosally-adherent microbiota, but does not protect against inflammation or tumorigenesis in the azoxymethane (AOM)/Il10⁻/⁻ mouse model of colitis-associated CRC. VSL#3 (10⁹ CFU/animal/day) significantly enhanced tumor penetrance, multiplicity, histologic dysplasia scores, and adenocarcinoma invasion relative to VSL#3-untreated mice. Illumina 16S sequencing demonstrated that VSL#3 significantly decreased (16-fold) the abundance of a bacterial taxon assigned to genus Clostridium in the mucosally-adherent microbiota. Mediation analysis by linear models suggested that this taxon was a contributing factor to increased tumorigenesis in VSL#3-fed mice. We conclude that VSL#3 interventional therapy can alter microbial community composition and enhance tumorigenesis in the AOM/Il10⁻/⁻ model.
Collapse
Affiliation(s)
| | - Raad Z. Gharaibeh
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | | | | | - Wei Sha
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | - Sarah Tomkovich
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christian Jobin
- Department of Medicine, Chapel Hill, NC 27599, USA
- Pharmacology, Chapel Hill, NC 27599, USA
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Florida at Gainesville, Gainesville, FL32611, USA
- Department of Infectious Diseases and Pathology, University of Florida at Gainesville, Gainesville, FL32611, USA
| |
Collapse
|
174
|
Herbel SR, Vahjen W, Wieler LH, Guenther S. Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog 2013; 5:27. [PMID: 24063519 PMCID: PMC3848994 DOI: 10.1186/1757-4749-5-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/14/2013] [Indexed: 12/23/2022] Open
Abstract
Over the past decades the use of probiotics in food has increased largely due to the manufacturer’s interest in placing “healthy” food on the market based on the consumer’s ambitions to live healthy. Due to this trend, health benefits of products containing probiotic strains such as lactobacilli are promoted and probiotic strains have been established in many different products with their numbers increasing steadily. Probiotics are used as starter cultures in dairy products such as cheese or yoghurts and in addition they are also utilized in non-dairy products such as fermented vegetables, fermented meat and pharmaceuticals, thereby, covering a large variety of products. To assure quality management, several pheno-, physico- and genotyping methods have been established to unambiguously identify probiotic lactobacilli. These methods are often specific enough to identify the probiotic strains at genus and species levels. However, the probiotic ability is often strain dependent and it is impossible to distinguish strains by basic microbiological methods. Therefore, this review aims to critically summarize and evaluate conventional identification methods for the genus Lactobacillus, complemented by techniques that are currently being developed.
Collapse
Affiliation(s)
- Stefan R Herbel
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str, 7-13, Berlin, 14163, Germany.
| | | | | | | |
Collapse
|
175
|
Ingle AM, Verma AK, Tiwari R, Karthik K, Chakraborty S, Deb R, Rajagunalan S, Rathore R, Dhama K. Immunomodulators in day to day life: a review. Pak J Biol Sci 2013; 16:826-843. [PMID: 24498836 DOI: 10.3923/pjbs.2013.826.843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are ongoing trends of immunomodulation to combat a vast range of human and animal diseases including the incurable diseases like viral diseases, cancers, autoimmune diseases and inflammatory conditions. Animate as well as non-animate factors, surrounding us are interacting with our immune system. A balanced diet should contain all essential components from energy to vitamin and trace minerals. Each of these constituent has a very special effect on the immune system starting from their development to active role in immunity therefore, the outcome of their deficiency often ends in disease. Edible items which we consume like various vegetables, spices, herbs, fruits etc., are also equally responsible in manipulation of our system either in positive or negative way. Water has biggest share in our body and acts as the main medium to support the activities of the different system of body without exception of immune system. Proper environmental temperature is essential to maintain body's functions and experiments carried out regarding the effect of temperature suggest that extremes of the temperature are often cause immunosuppression directly by acting on the cells of immunity or indirectly through inducing stress and thereby increasing production of catecholamine which are potent anti-immune molecules. Various pathogenic as well as non-pathogenic bacteria cause immune suppression and immune potentiation, respectively. Proper exercise hold a prime position in the healthy life as it supports immunity and keeps disease away. The present review deals with all these immunomodulators having both positive and negative impact on the health status of an individual.
Collapse
Affiliation(s)
- Abhijeet M Ingle
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Amit Kumar Verma
- Department of Veterinary Epidemiology and Preventive Medicine, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Viswavidyalaya Evum Go-Anusandhan Sansthan, Mathura-281001, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Viswavidyalaya Evum Go-Anusandhan Sansthan, Mathura-281001, India
| | - K Karthik
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Sandip Chakraborty
- Deaprtment of Animal Resource Development, Pt. Nehru Complex, Agartala, Tripura-799001, India
| | - Rajib Deb
- Animal Genetics and Breeding, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, Meerut, (UP)-250001, India
| | - S Rajagunalan
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Rajesh Rathore
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| |
Collapse
|
176
|
Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C, Lähteinen T, Brouns SJJ, Satokari R, von Ossowski I, Reunanen J, Palva A, de Vos WM. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 2013; 9:e1003683. [PMID: 23966868 PMCID: PMC3744422 DOI: 10.1371/journal.pgen.1003683] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/15/2013] [Indexed: 01/20/2023] Open
Abstract
Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects. Some bacterial species are specialists and adapted to a single niche, while others are generalists and able to grow in various environmental conditions. Lactobacillus rhamnosus is a generalist and its members can often be found in different human cavities but also in various artisanal and industrial dairy products. To gain insights into the genetic complexity and ecological versatility of this species, we collected 100 L. rhamnosus strains from different niches. Genomic and functional analysis of these revealed a dichotomy within the species that reflected its adaptation to particular niches. The variable regions identified in the L. rhamnosus genome encode lifestyle traits that allowed us to demonstrate that some L. rhamnosus isolates possibly resided in multiple habitats. Our work brings valuable data on the ecological dynamics and adaptability of the species and provides a basis for a model explaining the ecology of L. rhamnosus in an anthropocentric perspective. Finally, we observed that a set of pheno-genomic markers, i.e. CRISPR oligotyping or carbohydrate metabolism, would be sufficient and among the best ways to differentiate the L. rhamnosus strains, providing a general approach to select the highest diversity in these and other bacterial species.
Collapse
Affiliation(s)
- François P Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Diet complexity and estrogen receptor β status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol 2013; 79:5763-73. [PMID: 23872567 DOI: 10.1128/aem.01182-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intestinal microbial dysbiosis contributes to the dysmetabolism of luminal factors, including steroid hormones (sterones) that affect the development of chronic gastrointestinal inflammation and the incidence of sterone-responsive cancers of the breast, prostate, and colon. Little is known, however, about the role of specific host sterone nucleoreceptors, including estrogen receptor β (ERβ), in microbiota maintenance. Herein, we test the hypothesis that ERβ status affects microbiota composition and determine if such compositionally distinct microbiota respond differently to changes in diet complexity that favor Proteobacteria enrichment. To this end, conventionally raised female ERβ(+/+) and ERβ(-/-) C57BL/6J mice (mean age of 27 weeks) were initially reared on 8604, a complex diet containing estrogenic isoflavones, and then fed AIN-76, an isoflavone-free semisynthetic diet, for 2 weeks. 16S rRNA gene surveys revealed that the fecal microbiota of 8604-fed mice and AIN-76-fed mice differed, as expected. The relative diversity of Proteobacteria, especially the Alphaproteobacteria and Gammaproteobacteria, increased significantly following the transition to AIN-76. Distinct patterns for beneficial Lactobacillales were exclusive to and highly abundant among 8604-fed mice, whereas several Proteobacteria were exclusive to AIN-76-fed mice. Interestingly, representative orders of the phyla Proteobacteria, Bacteroidetes, and Firmicutes, including the Lactobacillales, also differed as a function of murine ERβ status. Overall, these interactions suggest that sterone nucleoreceptor status and diet complexity may play important roles in microbiota maintenance. Furthermore, we envision that this model for gastrointestinal dysbiosis may be used to identify novel probiotics, prebiotics, nutritional strategies, and pharmaceuticals for the prevention and resolution of Proteobacteria-rich dysbiosis.
Collapse
|
178
|
Foligné B, Daniel C, Pot B. Probiotics from research to market: the possibilities, risks and challenges. Curr Opin Microbiol 2013; 16:284-92. [PMID: 23866974 DOI: 10.1016/j.mib.2013.06.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Probiotic foods can affect large parts of the population, while therapeutic applications have a less wide scope. While commercialization routes and regulatory requirements differ for both applications, both will need good scientific support. Today, probiotics are mainly used for gastrointestinal applications, their use can easily be extended to skin, oral and vaginal health. While most probiotics currently belong to food-grade species, the future may offer new functional microorganisms in food and pharma. This review discusses the crosstalk between probiotic producers, regulatory people, medical care and healthcare workers, and the scientific community.
Collapse
Affiliation(s)
- Benoit Foligné
- Institut Pasteur de Lille, Lactic acid Bacteria & Mucosal Immunity, Center for Infection and Immunity of Lille, 1, rue du Pr Calmette, BP 245, F-59019 Lille, France
| | | | | |
Collapse
|
179
|
Bron PA, Tomita S, Mercenier A, Kleerebezem M. Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Curr Opin Microbiol 2013; 16:262-9. [PMID: 23810459 DOI: 10.1016/j.mib.2013.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022]
Abstract
Probiotic lactobacilli can positively impact on the health status of targeted (diseased) populations but efficacy depends strongly on the strain employed and the molecular basis for this phenomenon is poorly understood. This review discusses the current state-of-the-art in the field of molecular probiotic-host interactions, focusing on subtle strain-specific differences in the biochemical characteristics of cell surface-associated probiotic ligands and the consequences thereof for the immune responses elicited. This research is bound to enhance our understanding of strain-specificity in relation to probiotic functionality and will allow molecular science-based design of screening and characterization assays targeted to improved selection of probiotic candidate strains. Moreover, identified bioactive effector molecules could be isolated or produced for administration in a more pharmacological regime.
Collapse
Affiliation(s)
- Peter A Bron
- TI Food and Nutrition, Nieuwe Kanaal 9A, 6709PA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
180
|
Menon R, Shields M, Duong T, Sturino JM. Development of a carbohydrate-supplemented semidefined medium for the semiselective cultivation of Lactobacillus spp. Lett Appl Microbiol 2013; 57:249-57. [PMID: 23691927 DOI: 10.1111/lam.12106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/17/2013] [Accepted: 05/17/2013] [Indexed: 11/26/2022]
Abstract
The macronutrient and micronutrient compositions of traditional media used to cultivate Lactic Acid Bacteria (LAB) are largely undefined, which precludes their use in many metabolic bioassays. In order to address this deficiency, we developed MS: a carbohydrate-supplemented semidefined medium with low-background coloration. MS was designed to support the semiselective cultivation of a wide range of fastidious species belonging to the Lactobacillus clade of the LAB. When supplemented with 100 mM D-glucose, the MS medium stimulated the proliferation of 21 strains of LAB, including Pediococcus spp. and Lactobacillus spp. The MS medium supported biomass accumulation comparable with MRS, an undefined medium routinely used for the cultivation of lactobacilli. Interestingly, however, the novel MS medium exhibited greater semiselectivity against non-LAB than MRS. Together, these results suggest that MS is an acceptable alternative to MRS for use in metabolic and phenotypic bioassays that use a colorimetric reporter system or would benefit from a semidefined nutrient composition.
Collapse
Affiliation(s)
- R Menon
- Nutrition and Food Science Department, Texas A&M University, College Station, TX 77843-2253, USA
| | | | | | | |
Collapse
|
181
|
Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol 2013; 62:1107-1123. [PMID: 23558140 DOI: 10.1099/jmm.0.048975-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer. Diverse therapies such as chemotherapy, immunotherapy and radiation have shown beneficial effects, but are limited because of their safety and toxicity. Probiotic formulations have shown great promise in CRC as preventive and early stage therapeutics. This review highlights the importance of a balanced intestinal microbiota and summarizes the recent developments in probiotics for treating CRC. Specifically, this report describes evidence of the role of probiotics in modulating the microbiota, in improving the physico-chemical conditions of the gut and in reducing oxidative stress. It also discusses the mechanisms of probiotics in inhibiting tumour progression, in producing anticancer compounds and in modulating the host immune response. Even though some of these effects were observed in several clinical trials, when probiotic formulations were used as a supplement to CRC therapies, the application of probiotics as biotherapeutics against CRC still needs further investigation.
Collapse
Affiliation(s)
- Imen Kahouli
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Room 101, Lady Meredith House, 1110 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada.,Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering, Physiology, and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Catherine Tomaro-Duchesneau
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering, Physiology, and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Satya Prakash
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Room 101, Lady Meredith House, 1110 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada.,Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering, Physiology, and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
182
|
Malmuthuge N, Li M, Goonewardene LA, Oba M, Guan LL. Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune responses and tight junctions in dairy calves during weaning transition. J Dairy Sci 2013; 96:3189-200. [PMID: 23498024 DOI: 10.3168/jds.2012-6200] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/23/2013] [Indexed: 12/29/2022]
Abstract
Calf starters are usually offered to dairy calves to facilitate the weaning process, however, the effect of solid feed consumption on gut health has not been well studied. This study aimed to investigate the effect of calf starter feeding on the gut bacterial community and mucosal immune functions in dairy calves during weaning transition. Mucosal tissue and digesta samples were collected from rumen, jejunum, ileum, cecum, and colon upon slaughtering of calves (n=8) after feeding the experimental diets [milk replacer (MR) or milk replacer + calf starter (MR+S)] for 6 wk. Expression of toll-like receptor (TLR) 10 was downregulated along the gut, whereas TLR2 in colon and TLR6 along the gut were upregulated in MR+S-fed calves compared with MR-fed calves. Ileal TLR9 and TLR10 showed higher expression compared with the other regions regardless of the diet. Peptidoglycan recognition protein 1 demonstrated a diet- and gut-regional dependent expression pattern, whereas β-defensin did not. The diet and gut region also affected the expression of tight junction-regulating genes claudin 4 and occludin. Bacterial diversity tended to be different between the 2 diets, whereas the bacterial density was different among gut regions and sample type. The present study revealed that changes in bacterial diversity, expression of genes encoding host mucosal immune responses, and barrier functions were associated with the MR+S diet, and suggests that solid feed consumption may alter gut microbiome and host mucosal functions during weaning transition.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
183
|
Canani RB, Di Costanzo M. Gut microbiota as potential therapeutic target for the treatment of cow's milk allergy. Nutrients 2013; 5:651-62. [PMID: 23455693 PMCID: PMC3705311 DOI: 10.3390/nu5030651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 12/26/2022] Open
Abstract
Cow's milk allergy (CMA) continues to be a growing health concern for infants living in Western countries. The long-term prognosis for the majority of affected infants is good, with about 80% naturally acquiring tolerance by the age of four years. However, recent studies suggest that the natural history of CMA is changing, with an increasing persistence until later ages. The pathogenesis of CMA, as well as oral tolerance, is complex and not completely known, although numerous studies implicate gut-associated immunity and enteric microflora, and it has been suggested that an altered composition of intestinal microflora results in an unbalanced local and systemic immune response to food allergens. In addition, there are qualitative and quantitative differences in the composition of gut microbiota between patients affected by CMA and healthy infants. These findings prompt the concept that specific beneficial bacteria from the human intestinal microflora, designated probiotics, could restore intestinal homeostasis and prevent or alleviate allergy, at least in part by interacting with the intestinal immune cells. The aim of this paper is to review what is currently known about the use of probiotics as dietary supplements in CMA.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Food Allergy Unit, Department of Translational Medicine, Pediatric Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mail:
- European Laboratory for the Investigation of Food Induced Diseases, University of Naples “Federico II”, Naples 80131, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-7462680; Fax: +39-081-5451278
| | - Margherita Di Costanzo
- Food Allergy Unit, Department of Translational Medicine, Pediatric Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mail:
| |
Collapse
|
184
|
van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 2013; 34:208-15. [PMID: 23485516 DOI: 10.1016/j.it.2013.01.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 02/07/2023]
Abstract
The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis.
Collapse
Affiliation(s)
- Peter van Baarlen
- Host Microbe Interactomics Group, Wageningen University, De Elst 1, 6708WD Wageningen, The Netherlands
| | | | | |
Collapse
|
185
|
Ceapa C, Wopereis H, Rezaïki L, Kleerebezem M, Knol J, Oozeer R. Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. Best Pract Res Clin Gastroenterol 2013; 27:139-55. [PMID: 23768559 DOI: 10.1016/j.bpg.2013.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 01/31/2023]
Abstract
The gut microbiota is a highly diverse and relative stabile ecosystem increasingly recognized for its impact on human health. The homeostasis of microbes and the host is also referred to as eubiosis. In contrast, deviation from the normal composition, defined as dysbiosis, is often associated with localized diseases such as inflammatory bowel disease or colonic cancer, but also with systemic diseases like metabolic syndrome and allergic diseases. Modulating a gut microbiota dysbiosis with nutritional concepts may contribute to improving health status, reducing diseases or disease symptoms or supporting already established treatments. The gut microbiota can be modulated by different nutritional concepts, varying from specific food ingredients to complex diets or by the ingestion of particular live microorganisms. To underpin the importance of bacteria in the gut, we describe molecular mechanisms involved in the crosstalk between gut bacteria and the human host, and review the impact of different nutritional concepts such as pre-, pro- and synbiotics on the gastrointestinal ecosystem and their potential health benefits. The aim of this review is to provide examples of potential nutritional concepts that target the gut microbiota to support human physiology and potentially health outcomes.
Collapse
Affiliation(s)
- Corina Ceapa
- Danone Research - Centre for Specialized Nutrition, Bosrandweg 20, 6704 PH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies.
Collapse
|
187
|
West NP, Cripps AW. Are vaccination models suitable to determine whether probiotics have beneficial health effects in the general population? Hum Vaccin Immunother 2013; 9:621-4. [PMID: 23292093 DOI: 10.4161/hv.23254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The European Food Safety Authority (EFSA) has indicated that stimulation of protective antibody titers from vaccination could be used to substantiate a supplement or food health claim on the function of the immune system related to defense against pathogens in healthy individuals. Vaccination allows exposure of the immune system to controlled quantities of antigen and also for assessment of median antibody responses and percentage of responders/non-responders, which provides indication of an integrated immune response to challenge. Probiotic vaccination studies have shown enhanced antibody titers, lower percentages of non-seroconverters and greater percentages reaching minimum cut-off titer values in healthy adults, elderly and children. These results indicate that probiotics are a good candidate to stimulate responses to vaccines and thus, according to EFSA, enhance the function of the immune system related to defense against infection. However, animal research has recently indicated that Foxp3+ T-regulatory cells, recognized suppressors of immune activity, were paradoxically associated with reduced respiratory viral morbidity without compromising viral clearance. These effects conflict with vaccine research findings, which suggest a depletion of Foxp3+ T-regs enhances the immune response. Many probiotics exert anti-inflammatory influence on the immune system and induce T-regs. Given this, caution regarding the applicability of the vaccination model as indicated by EFSA must be exercised. Induction of T-cell immune modulatory pathways may also explain the reduced duration of respiratory illness observed in probiotic clinical studies.
Collapse
Affiliation(s)
- Nicholas P West
- Griffith Health Institute; School of Medicine; Griffith University; Nathan, QLD Australia
| | | |
Collapse
|