151
|
Zhao T, Huang H, Tan P, Li Y, Xuan X, Li F, Zhao Y, Cao Y, Wu Z, Jiang Y, Zhao Y, Yu A, Wang K, Xu J, Zhou L, Yang D. Enhancement of Solubility, Purification, and Inclusion Body Refolding of Active Human Mitochondrial Aldehyde Dehydrogenase 2. ACS OMEGA 2021; 6:12004-12013. [PMID: 34056354 PMCID: PMC8154035 DOI: 10.1021/acsomega.1c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is predominantly linked with acetaldehyde detoxification in the second stage of alcohol metabolism. To intensively study ALDH2 function, a higher purity and uniform composition of the protein is required. An efficient Escherichia coli system for ALDH2 expression was developed by using His and a small ubiquitin-related modifier fusion tag. Most of the recombinant ALDH2s were expressed in the form of inclusion bodies. The ALDH2-enriched inclusion bodies were denatured with 6 M guanidine hydrochloride, and then ALDH2 was ultrafitrated. Finally, ALDH2 was successfully purified through affinity and gel filtration chromatography. The purified ALDH2 was finally preserved by the vacuum freeze-drying method, and its purity was determined to be higher than 95%, with a final media yield of 33.89 mg/L. The specific activity of ALDH2 was 6.1 × 104 U/mg. This work was the first to report pET-SUMO-ALDH2 recombinant plasmid expression in Escherichia coli, and the inclusion bodies were isolated and refolded. Finally, the purified ALDH2 had relatively higher purity, yield, and biological activity.
Collapse
Affiliation(s)
- Tingting Zhao
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Hui Huang
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Peizhu Tan
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Yanze Li
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Xiuchen Xuan
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Fenglan Li
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
| | - Yuchen Zhao
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Yuwei Cao
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Zhaojing Wu
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Yu Jiang
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Yuanyuan Zhao
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Aimiao Yu
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Kuo Wang
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Jiaran Xu
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Lingyun Zhou
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
- Translational
Medicine Center of Northern China, Harbin 150081, China
| | - Dan Yang
- Department
of Biochemistry and Molecular Biology, Harbin
Medical University, Harbin 150081, China
| |
Collapse
|
152
|
Wang H, Shen YJ, Li XJ, Xia J, Sun L, Xu Y, Ma Y, Li D, Xiong YC. DNMT3b SUMOylation Mediated MMP-2 Upregulation Contribute to Paclitaxel Induced Neuropathic Pain. Neurochem Res 2021; 46:1214-1223. [PMID: 33550530 DOI: 10.1007/s11064-021-03260-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy (CIPN), which manifested as hyperalgesia and allodynia, and its mechanism remains largely unknown. The previous study has shown that matrix metalloproteinase-2 (MMP-2) plays a pivotal role in spinal nerve ligation (SNL) induced neuropathic pain, but its function in CIPN and exact molecular mechanisms underlying upregulation is not explored. Our present study revealed that MMP-2 is also upregulated in paclitaxel induced neuropathic pain (NP), and knockdown it by siRNA can ameliorate mechanical allodynia. Since DNA methylation is closely related to gene transcription, we explored the methylation status of the MMP-2 gene and demonstrated that MMP-2 upregulation is related to the reduced methylation level of its promoter. DNA methylation is mediated by DNA methyltransferases (DNMTs), and previous studies suggested that three main types of DNMTs can undergo SUMOylation. Our next study revealed that SUMO1 modification of DNMT3b is significantly enhanced. Intrathecal administration of SUMOylation inhibitor, ginkgolic acid (GA), could reverse enhanced SUMO1 modification of DNMT3b and upregulation of MMP-2 in the model rats. Further investigation suggested that DNMT3b binding activity to the promoter region of the MMP-2 gene is significantly decreased in paclitaxel treated rats, and the administration of GA can reverse these effects, which is also accompanied by changes in the promoter methylation status of the MMP-2 gene. Our study demonstrates that MMP-2 up-regulation mediated by DNMT3b SUMOylation is essential for paclitaxel induced NP development, which brings us new therapeutic options for CIPN.
Collapse
Affiliation(s)
- Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Yi-Jia Shen
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Xiu-Juan Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Jun Xia
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Li Sun
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Yehao Xu
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Yu Ma
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China
| | - Dai Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd.168, Shanghai, 200433, China.
| |
Collapse
|
153
|
Ryu H, Sun XX, Chen Y, Li Y, Wang X, Dai RS, Zhu HM, Klimek J, David L, Fedorov LM, Azuma Y, Sears RC, Dai MS. The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Rep 2021; 22:e50684. [PMID: 33852194 DOI: 10.15252/embr.202050684] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
SUMOylation plays a crucial role in regulating diverse cellular processes including ribosome biogenesis. Proteomic analyses and experimental evidence showed that a number of nucleolar proteins involved in ribosome biogenesis are modified by SUMO. However, how these proteins are SUMOylated in cells is less understood. Here, we report that USP36, a nucleolar deubiquitinating enzyme (DUB), promotes nucleolar SUMOylation. Overexpression of USP36 enhances nucleolar SUMOylation, whereas its knockdown or genetic deletion reduces the levels of SUMOylation. USP36 interacts with SUMO2 and Ubc9 and directly mediates SUMOylation in cells and in vitro. We show that USP36 promotes the SUMOylation of the small nucleolar ribonucleoprotein (snoRNP) components Nop58 and Nhp2 in cells and in vitro and their binding to snoRNAs. It also promotes the SUMOylation of snoRNP components Nop56 and DKC1. Functionally, we show that knockdown of USP36 markedly impairs rRNA processing and translation. Thus, USP36 promotes snoRNP group SUMOylation and is critical for ribosome biogenesis and protein translation.
Collapse
Affiliation(s)
- Hyunju Ryu
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Yingxiao Chen
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Xiaoyan Wang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Roselyn S Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Hong-Ming Zhu
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - John Klimek
- Department of Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Larry David
- Department of Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Rosalie C Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
154
|
Li J, Wu R, Yung MMH, Sun J, Li Z, Yang H, Zhang Y, Liu SS, Cheung ANY, Ngan HYS, Braisted JC, Zheng W, Wei H, Gao Y, Nemes P, Pei H, Chan DW, Li Y, Zhu W. SENP1-mediated deSUMOylation of JAK2 regulates its kinase activity and platinum drug resistance. Cell Death Dis 2021; 12:341. [PMID: 33795649 PMCID: PMC8016909 DOI: 10.1038/s41419-021-03635-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
The JAK2/STAT pathway is hyperactivated in many cancers, and such hyperactivation is associated with a poor clinical prognosis and drug resistance. The mechanism regulating JAK2 activity is complex. Although translocation of JAK2 between nucleus and cytoplasm is an important regulatory mechanism, how JAK2 translocation is regulated and what is the physiological function of this translocation remain largely unknown. Here, we found that protease SENP1 directly interacts with and deSUMOylates JAK2, and the deSUMOylation of JAK2 leads to its accumulation at cytoplasm, where JAK2 is activated. Significantly, this novel SENP1/JAK2 axis is activated in platinum-resistant ovarian cancer in a manner dependent on a transcription factor RUNX2 and activated RUNX2/SENP1/JAK2 is critical for platinum-resistance in ovarian cancer. To explore the application of anti-SENP1/JAK2 for treatment of platinum-resistant ovarian cancer, we found SENP1 deficiency or treatment by SENP1 inhibitor Momordin Ic significantly overcomes platinum-resistance of ovarian cancer. Thus, this study not only identifies a novel mechanism regulating JAK2 activity, but also provides with a potential approach to treat platinum-resistant ovarian cancer by targeting SENP1/JAK2 pathway.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Ruiqin Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Mingo M H Yung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Hai Yang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Stephanie S Liu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Annie N Y Cheung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John C Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huiqiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yingtang Gao
- Key Laboratory of Artificial Cell, Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - David W Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA.
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
155
|
Chen Y, Xu T, Li M, Li C, Ma Y, Chen G, Sun Y, Zheng H, Wu G, Liao W, Liao Y, Chen Y, Bin J. Inhibition of SENP2-mediated Akt deSUMOylation promotes cardiac regeneration via activating Akt pathway. Clin Sci (Lond) 2021; 135:811-828. [PMID: 33687053 DOI: 10.1042/cs20201408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Post-translational modification (PTM) by small ubiquitin-like modifier (SUMO) is a key regulator of cell proliferation and can be readily reversed by a family of SUMO-specific proteases (SENPs), making SUMOylation an ideal regulatory mechanism for developing novel therapeutic strategies for promoting a cardiac regenerative response. However, the role of SUMOylation in cardiac regeneration remains unknown. In the present study, we assessed whether targeting protein kinase B (Akt) SUMOylation can promote cardiac regeneration. Quantitative PCR and Western blotting results showed that small ubiquitin-like modifier-specific protease 2 (SENP2) is up-regulated during postnatal heart development. SENP2 deficiency promoted P7 and adult cardiomyocyte (CM) dedifferentiation and proliferation both in vitro and in vivo. Mice with SENP2 deficiency exhibited improved cardiac function after MI due to CM proliferation and angiogenesis. Mechanistically, the loss of SENP2 up-regulated Akt SUMOylation levels and increased Akt kinase activity, leading to a decrease in GSK3β levels and subsequently promoting CM proliferation and angiogenesis. In summary, inhibition of SENP2-mediated Akt deSUMOylation promotes CM differentiation and proliferation by activating the Akt pathway. Our results provide new insights into the role of SUMOylation in cardiac regeneration.
Collapse
Affiliation(s)
- Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yusheng Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangkai Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
156
|
Zhihao L, Jingyu N, Lan L, Michael S, Rui G, Xiyun B, Xiaozhi L, Guanwei F. SERCA2a: a key protein in the Ca 2+ cycle of the heart failure. Heart Fail Rev 2021; 25:523-535. [PMID: 31701344 DOI: 10.1007/s10741-019-09873-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Calcium ion (Ca2+) cycle plays a crucial role in the contraction and relaxation of cardiomyocytes. The sarcoplasmic reticulum (SR) acts as an organelle for storing Ca2+, which mediated the release and re-uptake of Ca2+ during contraction and relaxation. Disorders of SR function lead to the dysfunction of Ca2+ cycle and myocardial cell function. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) acts as a subtype of SERCA expressed in the heart, which mediates the contraction of cardiomyocytes and Ca2+ in the cytoplasm to re-enter into the SR. The rate of uptake of Ca2+ by the SR determines the rate of myocardial relaxation. The regulation of SERCA2a activity controls the contractility and relaxation of the heart, affecting cardiac function. The expression and activity of SERCA2a are reduced in failing hearts. Gene therapy by increasing the expression of SERCA2a in the heart has been proven effective. In addition, SERCA2a is regulated by a variety of factors, including transmembrane micropeptides, protein kinases, and post-translational modifications (PTMs). In this review, we discuss the regulatory factors of SERCA2a and provide new insights into future treatments and the direction of heart failure research. In addition, gene therapy for SERCA2a has recently emerged as therapeutic option and hence will be discussed in this review.
Collapse
Affiliation(s)
- Liu Zhihao
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Ni Jingyu
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Li Lan
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Sarhene Michael
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Guo Rui
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Bian Xiyun
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, 300450, People's Republic of China
| | - Liu Xiaozhi
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, 300450, People's Republic of China
| | - Fan Guanwei
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China. .,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
157
|
Lork M, Lieber G, Hale BG. Proteomic Approaches to Dissect Host SUMOylation during Innate Antiviral Immune Responses. Viruses 2021; 13:528. [PMID: 33806893 PMCID: PMC8004987 DOI: 10.3390/v13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
SUMOylation is a highly dynamic ubiquitin-like post-translational modification that is essential for cells to respond to and resolve various genotoxic and proteotoxic stresses. Virus infections also constitute a considerable stress scenario for cells, and recent research has started to uncover the diverse roles of SUMOylation in regulating virus replication, not least by impacting antiviral defenses. Here, we review some of the key findings of this virus-host interplay, and discuss the increasingly important contribution that large-scale, unbiased, proteomic methodologies are making to discoveries in this field. We highlight the latest proteomic technologies that have been specifically developed to understand SUMOylation dynamics in response to cellular stresses, and comment on how these techniques might be best applied to dissect the biology of SUMOylation during innate immunity. Furthermore, we showcase a selection of studies that have already used SUMO proteomics to reveal novel aspects of host innate defense against viruses, such as functional cross-talk between SUMO proteins and other ubiquitin-like modifiers, viral antagonism of SUMO-modified antiviral restriction factors, and an infection-triggered SUMO-switch that releases endogenous retroelement RNAs to stimulate antiviral interferon responses. Future research in this area has the potential to provide new and diverse mechanistic insights into host immune defenses.
Collapse
Affiliation(s)
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland; (M.L.); (G.L.)
| |
Collapse
|
158
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
159
|
Liu S, Wang L, Jiang D, Wei W, Nasir MF, Khan MS, Yousafi Q, Liu X, Fu X, Li X, Li J. Sumoylation as an Emerging Target in Therapeutics against Cancer. Curr Pharm Des 2021; 26:4764-4776. [PMID: 32568016 DOI: 10.2174/1381612826666200622124134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Sumoylation is the Post-translational modification gaining most of the research interest recently. Sumoylation is involved in various crucial functions of the cell such as regulation of cell cycle, DNA damage repair, apoptosis, etc. Oncology is advancing in radiotherapy, targeted chemotherapy, various forms of immunotherapy and targeted gene therapy. Researches are being conducted to prove its connotation with a variety of cancers and inhibitors are being developed to obstruct the fatal effect caused by misbalance of the SUMO-catalytic cycle. It has been shown that up-regulation of certain enzymes of Sumoylation correlates with cancer incidence in most of the cases. However, in some cases, down-regulation also associates with cancer invasion such as underexpression of UBC9 in initial stage breast cancer. This can aid in future study, treatment, and diagnosis of a variety of cancers including breast cancer, prostate cancer, lung adenocarcinoma, melanoma, multiple myeloma, etc. Various mechanistic assays are being developed and used to identify potential inhibitors against the dysregulated proteins of Sumoylation. This review summarizes the normal roles of the enzymes involved in the SUMOcatalytic cycle, their misbalanced regulation leading to tumorigenesis and nearly all the potent inhibitors identified to date, while after detailed studied it was observed that ML-792 could be a promising inhibitor in treating cancers by inhibiting Sumoylation enzymes.
Collapse
Affiliation(s)
- Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China,College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lichun Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Dongjun Jiang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China,Dental Hospital, Jilin University, Changchun 130021, China
| | - Mushyeda Fatima Nasir
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Xueqi Fu
- College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Jiang Li
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China,Dental Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
160
|
SUMOylation of vascular endothelial growth factor receptor 2 inhibits the proliferation, migration, and angiogenesis signaling pathway in non-small cell lung cancer. Anticancer Drugs 2021; 31:492-499. [PMID: 31922962 DOI: 10.1097/cad.0000000000000896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed in non-small cell lung cancer (NSCLC), and is the main target of antiangiogenesis therapy against this disease. However, there is limited evidence regarding its regulatory mechanism. Thus, elucidating the underlying mechanism of regulation of VEGFR2 is of great value to antiangiogenesis therapy. The colocalization of VEGFR2 and small ubiquitin-like modifier 1 (SUMO1) was detected through confocal microscopy. We examined the level of VEGFR2 SUMOylation in cells and rat tissues, and its effects on the angiogenesis signaling pathway (immunoprecipitation and western blotting), as well as the proliferation (Cell Counting Kit-8 assay) and migratory ability (cell scratch and Transwell assays) of NSCLC cells. Apoptosis was evaluated through Hoechst staining. VEGFR2 and SUMO1 are colocalized in the cytoplasm. VEGFR2 can be SUMOylated through combination with SUMO1 in cells and rat tissues, and the level of VEGFR2 SUMOylation in NSCLC is higher than that observed in healthy cells and tissues. Cell proliferation, migration, and the protein levels of phosphorylated-VEGFR2/phosphorylated-Akt/phosphorylated-extracellular signal-regulated kinase 1/2 (p-VEGFR2/p-Akt/p-ERK1/2) were significantly increased in NSCLC cells transfected with VEGFR2 K1270R versus those reported in cells transfected with VEGFR2 (wild-type). The levels of p-VEGFR2/p-Akt/p-ERK1/2 protein were significantly decreased in cells transfected with sentrin-specific protease 1-targeting small interfering RNA (siSENP1) versus those recorded in nontransfected controls. VEGFR2 SUMOylation may play an important role in antiangiogenesis therapy of NSCLC. The level of VEGFR2 SUMOylation may be a prognostic marker in patients with NSCLC.
Collapse
|
161
|
Hu Z, Teng XL, Zhang T, Yu X, Ding R, Yi J, Deng L, Wang Z, Zou Q. SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Mol Cell 2021; 81:940-952.e5. [PMID: 33434504 DOI: 10.1016/j.molcel.2020.12.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Accepted: 12/12/2020] [Indexed: 02/01/2023]
Abstract
STING-dependent cytosolic DNA sensing in dendritic cells (DCs) initiates antitumor immune responses, but how STING signaling is metabolically regulated in the tumor microenvironment remains unknown. Here, we show that oxidative stress is required for STING-induced DC antitumor function through a process that directs SUMO-specific protease 3 (SENP3) activity. DC-specific deletion of Senp3 drives tumor progression by blunting STING-dependent type-I interferon (IFN) signaling in DCs and dampening antitumor immune responses. DC-derived reactive oxygen species (ROS) trigger SENP3 accumulation and the SENP3-IFI204 interaction, thereby catalyzing IFI204 deSUMOylation and boosting STING signaling activation in mice. Consistently, SENP3 senses ROS to facilitate STING-dependent DC activity in tissue samples from colorectal cancer patients. Our results reveal that oxidative stress as a metabolic regulator promotes STING-mediated DC antitumor immune responses and highlights SENP3 as an overflow valve for STING signaling induction in the metabolically abnormal tumor microenvironment.
Collapse
Affiliation(s)
- Zhilin Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao-Lu Teng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Rui Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liufu Deng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
162
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
163
|
Karhausen J, Ulloa L, Yang W. SUMOylation Connects Cell Stress Responses and Inflammatory Control: Lessons From the Gut as a Model Organ. Front Immunol 2021; 12:646633. [PMID: 33679811 PMCID: PMC7933481 DOI: 10.3389/fimmu.2021.646633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key post-translational modification regulating the stability, activity, and subcellular localization of its target proteins. However, the vast numbers of identified SUMO substrates obscure a clear view on the function of SUMOylation in health and disease. This article presents a comprehensive review on the physiological relevance of SUMOylation by discussing how global SUMOylation levels—rather than specific protein SUMOylation—shapes the immune response. In particular, we highlight the growing body of work on SUMOylation in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory challenges of this organ. Recent studies show that global SUMOylation can help restrain detrimental inflammation while maintaining immune defenses and tissue integrity. These results warrant further efforts to develop new therapeutic tools and strategies to control SUMOylation in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Jörn Karhausen
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Wei Yang
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
164
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
165
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
166
|
Henley JM, Seager R, Nakamura Y, Talandyte K, Nair J, Wilkinson KA. SUMOylation of synaptic and synapse-associated proteins: An update. J Neurochem 2021; 156:145-161. [PMID: 32538470 PMCID: PMC8218484 DOI: 10.1111/jnc.15103] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.
Collapse
Affiliation(s)
- Jeremy M. Henley
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Richard Seager
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Yasuko Nakamura
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Karolina Talandyte
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Jithin Nair
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Kevin A. Wilkinson
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| |
Collapse
|
167
|
Srivastava M, Sadanandom A, Srivastava AK. Towards understanding the multifaceted role of SUMOylation in plant growth and development. PHYSIOLOGIA PLANTARUM 2021; 171:77-85. [PMID: 32880960 DOI: 10.1111/ppl.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) play a critical role in regulating plant growth and development through the modulation of protein functionality and its interaction with its partners. Analysis of the functional implication of PTMs on plant cellular signalling presents grand challenges in understanding their significance. Proteins decorated or modified with another chemical group or polypeptide play a significant role in regulating physiological processes as compared with non-decorated or non-modified proteins. In the past decade, SUMOylation has been emerging as a potent PTM influencing the adaptability of plants to growth, in response to various environmental cues. Deciphering the SUMO-mediated regulation of plant stress responses and its consequences is required to understand the mechanism underneath. Here, we will discuss the recent advances in the role and significance of SUMOylation in plant growth, development and stress response.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | |
Collapse
|
168
|
González-Prieto R, Eifler-Olivi K, Claessens LA, Willemstein E, Xiao Z, Talavera Ormeno CMP, Ovaa H, Ulrich HD, Vertegaal ACO. Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Rep 2021; 34:108691. [PMID: 33503430 DOI: 10.1016/j.celrep.2021.108691] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
In contrast to our extensive knowledge on covalent small ubiquitin-like modifier (SUMO) target proteins, we are limited in our understanding of non-covalent SUMO-binding proteins. We identify interactors of different SUMO isoforms-monomeric SUMO1, monomeric SUMO2, or linear trimeric SUMO2 chains-using a mass spectrometry-based proteomics approach. We identify 379 proteins that bind to different SUMO isoforms, mainly in a preferential manner. Interestingly, XRCC4 is the only DNA repair protein in our screen with a preference for SUMO2 trimers over mono-SUMO2, as well as the only protein in our screen that belongs to the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. A SUMO interaction motif (SIM) in XRCC4 regulates its recruitment to sites of DNA damage and phosphorylation of S320 by DNA-PKcs. Our data highlight the importance of non-covalent and covalent sumoylation for DNA double-strand break repair via the NHEJ pathway and provide a resource of SUMO isoform interactors.
Collapse
Affiliation(s)
- Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Karolin Eifler-Olivi
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Laura A Claessens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Edwin Willemstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Zhenyu Xiao
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Cami M P Talavera Ormeno
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Oncode Institute, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Oncode Institute, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
169
|
Ryu HY, Zhao D, Li J, Su D, Hochstrasser M. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res 2020; 48:12151-12168. [PMID: 33231641 PMCID: PMC7708062 DOI: 10.1093/nar/gkaa1093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Histones are substrates of the SUMO (small ubiquitin-like modifier) conjugation pathway. Several reports suggest histone sumoylation affects transcription negatively, but paradoxically, our genome-wide analysis shows the modification concentrated at many active genes. We find that trans-tail regulation of histone-H2B ubiquitylation and H3K4 di-methylation potentiates subsequent histone sumoylation. Consistent with the known control of the Set3 histone deacetylase complex (HDAC) by H3K4 di-methylation, histone sumoylation directly recruits the Set3 complex to both protein-coding and noncoding RNA (ncRNA) genes via a SUMO-interacting motif in the HDAC Cpr1 subunit. The altered gene expression profile caused by reducing histone sumoylation matches well to the profile in cells lacking Set3. Histone H2B sumoylation and the Set3 HDAC coordinately suppress cryptic ncRNA transcription initiation internal to mRNA genes. Our results reveal an elaborate co-transcriptional histone crosstalk pathway involving the consecutive ubiquitylation, methylation, sumoylation and deacetylation of histones, which maintains transcriptional fidelity by suppressing spurious transcription.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Correspondence may also be addressed to Hong-Yeoul Ryu. Tel: +82 53 950 6352;
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
170
|
Ge Q, Chen X, Zhao Y, Mu H, Zhang J. Modulatory mechanisms of NLRP3: Potential roles in inflammasome activation. Life Sci 2020; 267:118918. [PMID: 33352170 DOI: 10.1016/j.lfs.2020.118918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting pro-inflammatory cytokines such as IL-18 and IL-1β. NLRP3 is one of the main factors restricting the activation of the inflammasome, which is closely related to the abundance and localization of NLRP3. A substantial number of studies have focused on specifically targeting NLRP3 to develop inhibitors against NLRP3 inflammasome. Here, we succinctly review the regulation of NLRP3 expression at DNA/chromosome, transcriptional, post-transcriptional, and translation levels. These are critical for the fine regulation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xinnong Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yixuan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huaiyu Mu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
171
|
An Insight into the Factors Influencing Specificity of the SUMO System in Plants. PLANTS 2020; 9:plants9121788. [PMID: 33348543 PMCID: PMC7767294 DOI: 10.3390/plants9121788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
Abstract
Due to their sessile nature, plants are constantly subjected to various environmental stresses such as drought, salinity, and pathogen infections. Post-translational modifications (PTMs), like SUMOylation, play a vital role in the regulation of plant responses to their environment. The process of SUMOylation typically involves an enzymatic cascade containing the activation, (E1), conjugation (E2), and ligation (E3) of SUMO to a target protein. Additionally, it also requires a class of SUMO proteases that generate mature SUMO from its precursor and cleave it off the target protein, a process termed deSUMOylation. It is now clear that SUMOylation in plants is key to a plethora of adaptive responses. How this is achieved with an extremely limited set of machinery components is still unclear. One possibility is that novel SUMO components are yet to be discovered. However, current knowledge indicates that only a small set of enzymes seem to be responsible for the modification of a large number of SUMO substrates. It is yet unknown where the specificity lies within the SUMO system. Although this seems to be a crucial question in the field of SUMOylation studies, not much is known about the factors that provide specificity. In this review, we highlight the role of the localisation of SUMO components as an important factor that can play a vital role in contributing to the specificity within the process. This will introduce a new facet to our understanding of the mechanisms underlying such a dynamic process.
Collapse
|
172
|
Hotz PW, Wiesnet M, Tascher G, Braun T, Müller S, Mendler L. Profiling the Murine SUMO Proteome in Response to Cardiac Ischemia and Reperfusion Injury. Molecules 2020; 25:E5571. [PMID: 33260959 PMCID: PMC7731038 DOI: 10.3390/molecules25235571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
SUMOylation is a reversible posttranslational modification pathway catalyzing the conjugation of small ubiquitin-related modifier (SUMO) proteins to lysine residues of distinct target proteins. SUMOylation modifies a wide variety of cellular regulators thereby affecting a multitude of key processes in a highly dynamic manner. The SUMOylation pathway displays a hallmark in cellular stress-adaption, such as heat or redox stress. It has been proposed that enhanced cellular SUMOylation protects the brain during ischemia, however, little is known about the specific regulation of the SUMO system and the potential target proteins during cardiac ischemia and reperfusion injury (I/R). By applying left anterior descending (LAD) coronary artery ligation and reperfusion in mice, we detect dynamic changes in the overall cellular SUMOylation pattern correlating with decreased SUMO deconjugase activity during I/R injury. Further, unbiased system-wide quantitative SUMO-proteomics identified a sub-group of SUMO targets exhibiting significant alterations in response to cardiac I/R. Notably, transcription factors that control hypoxia- and angiogenesis-related gene expression programs, exhibit altered SUMOylation during ischemic stress adaptation. Moreover, several components of the ubiquitin proteasome system undergo dynamic changes in SUMO conjugation during cardiac I/R suggesting an involvement of SUMO signaling in protein quality control and proteostasis in the ischemic heart. Altogether, our study reveals regulated candidate SUMO target proteins in the mouse heart, which might be important in coping with hypoxic/proteotoxic stress during cardiac I/R injury.
Collapse
Affiliation(s)
- Paul W. Hotz
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| | - Marion Wiesnet
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; (M.W.); (T.B.)
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; (M.W.); (T.B.)
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| | - Luca Mendler
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (P.W.H.); (G.T.)
| |
Collapse
|
173
|
Li P, Jing H, Wang Y, Yuan L, Xiao H, Zheng Q. SUMO modification in apoptosis. J Mol Histol 2020; 52:1-10. [PMID: 33225418 PMCID: PMC7790789 DOI: 10.1007/s10735-020-09924-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Apoptosis and clearance of dead cells is highly evolutionarily conserved from nematode to humans, which is crucial to the growth and development of multicellular organism. Fail to remove apoptotic cells often lead to homeostasis imbalance, fatal autoimmune diseases, and neurodegenerative diseases. Small ubiquitin-related modifiers (SUMOs) modification is a post-translational modification of ubiquitin proteins mediated by the sentrin-specific proteases (SENPs) family. SUMO modification is widely involved in many cellular biological process, and abnormal SUMO modification is also closely related to many major human diseases. Recent researches have revealed that SUMO modification event occurs during apoptosis and clearance of apoptotic cells, and plays an important role in the regulation of apoptotic signaling pathways. This review summarizes some recent progress in the revelation of regulatory mechanisms of these pathways and provides some potential researching hotpots of the SUMO modification regulation to apoptosis.
Collapse
Affiliation(s)
- Peiyao Li
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Huiru Jing
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanzhe Wang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Yuan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian Zheng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
174
|
The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
|
175
|
Wang JQ, Lin ZC, Li LL, Zhang SF, Li WH, Liu W, Song BL, Luo J. SUMOylation of the ubiquitin ligase IDOL decreases LDL receptor levels and is reversed by SENP1. J Biol Chem 2020; 296:100032. [PMID: 33154164 PMCID: PMC7948399 DOI: 10.1074/jbc.ra120.015420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase mediating degradation of low-density lipoprotein (LDL) receptor (LDLR). IDOL also controls its own stability through autoubiquitination, primarily at lysine 293. Whether IDOL may undergo other forms of posttranslational modification is unknown. In this study, we show that IDOL can be modified by small ubiquitin-like modifier 1 at the K293 residue at least. The SUMOylation of IDOL counteracts its ubiquitination and augments IDOL protein levels. SUMOylation and the associated increase of IDOL protein are effectively reversed by SUMO-specific peptidase 1 (SENP1) in an activity-dependent manner. We further demonstrate that SENP1 affects LDLR protein levels by modulating IDOL. Overexpression of SENP1 increases LDLR protein levels and enhances LDL uptake in cultured cells. On the contrary, loss of SENP1 lowers LDLR levels in an IDOL-dependent manner and reduces LDL endocytosis. Collectively, our results reveal SUMOylation as a new regulatory posttranslational modification of IDOL and suggest that SENP1 positively regulates the LDLR pathway via deSUMOylation of IDOL and may therefore be exploited for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zi-Cun Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liang-Liang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shao-Fang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei-Hui Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
176
|
The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nat Commun 2020; 11:5643. [PMID: 33159083 PMCID: PMC7648084 DOI: 10.1038/s41467-020-19516-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclear Pore complexes (NPCs) act as docking sites to anchor particular DNA lesions facilitating DNA repair by elusive mechanisms. Using replication fork barriers in fission yeast, we report that relocation of arrested forks to NPCs occurred after Rad51 loading and its enzymatic activity. The E3 SUMO ligase Pli1 acts at arrested forks to safeguard integrity of nascent strands and generates poly-SUMOylation which promote relocation to NPCs but impede the resumption of DNA synthesis by homologous recombination (HR). Anchorage to NPCs allows SUMO removal by the SENP SUMO protease Ulp1 and the proteasome, promoting timely resumption of DNA synthesis. Preventing Pli1-mediated SUMO chains was sufficient to bypass the need for anchorage to NPCs and the inhibitory effect of poly-SUMOylation on HR-mediated DNA synthesis. Our work establishes a novel spatial control of Recombination-Dependent Replication (RDR) at a unique sequence that is distinct from mechanisms engaged at collapsed-forks and breaks within repeated sequences. In yeast, collapsed forks shift to the nuclear periphery to associate with two distinct perinuclear anchorage sites such as the nuclear pore complex. Here, the authors reveal the mechanisms engaged at nuclear pore complex facilitating fork integrity and restart via SUMO regulation.
Collapse
|
177
|
The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells 2020; 9:cells9112359. [PMID: 33114748 PMCID: PMC7693722 DOI: 10.3390/cells9112359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Sumoylation is the covalent attachment of the small ubiquitin-related modifier (SUMO) to a vast variety of proteins in order to modulate their function. Sumoylation has emerged as an important modification with a regulatory role in the cellular response to different types of stress including osmotic, hypoxic and oxidative stress. Hypoxia can occur under physiological or pathological conditions, such as ischemia and cancer, as a result of an oxygen imbalance caused by low supply and/or increased consumption. The hypoxia inducible factors (HIFs), and the proteins that regulate their fate, are critical molecular mediators of the response to hypoxia and modulate procedures such as glucose and lipid metabolism, angiogenesis, erythropoiesis and, in the case of cancer, tumor progression and metastasis. Here, we provide an overview of the sumoylation-dependent mechanisms that are activated under hypoxia and the way they influence key players of the hypoxic response pathway. As hypoxia is a hallmark of many diseases, understanding the interrelated connections between the SUMO and the hypoxic signaling pathways can open the way for future molecular therapeutic interventions.
Collapse
|
178
|
Neuronal Localization of SENP Proteins with Super Resolution Microscopy. Brain Sci 2020; 10:brainsci10110778. [PMID: 33113832 PMCID: PMC7693135 DOI: 10.3390/brainsci10110778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/03/2023] Open
Abstract
SUMOylation of proteins plays a key role in modulating neuronal function. For this reason, the balance between protein SUMOylation and deSUMOylation requires fine regulation to guarantee the homeostasis of neural tissue. While extensive research has been carried out on the localization and function of small ubiquitin-related modifier (SUMO) variants in neurons, less attention has been paid to the SUMO-specific isopeptidases that constitute the human SUMO-specific isopeptidase (SENP)/Ubiquitin-Specific Protease (ULP) cysteine protease family (SENP1-3 and SENP5-7). Here, for the first time, we studied the localization of SENP1, SENP6, and SENP7 in cultured hippocampal primary neurons at a super resolution detail level, with structured illumination microscopy (SIM). We found that the deSUMOylases partially colocalize with pre- and post-synaptic markers such as synaptophysin and drebrin. Thus, further confirming the presence with synaptic markers of the negative regulators of the SUMOylation machinery.
Collapse
|
179
|
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
180
|
Liu F, Fu J, Wang L, Nie Q, Luo Z, Hou M, Yang Y, Gong X, Wang Y, Xiao Y, Xiang J, Hu X, Zhang L, Wu M, Chen W, Cheng B, Luo L, Zhang X, Liu X, Zheng D, Huang S, Liu Y, Li DW. Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. Aging Cell 2020; 19:e13222. [PMID: 32827359 PMCID: PMC7576240 DOI: 10.1111/acel.13222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022] Open
Abstract
Sumoylation is one of the key regulatory mechanisms in eukaryotes. Our previous studies reveal that sumoylation plays indispensable roles during lens differentiation (Yan et al. 2010. Proc Natl Acad Sci USA. 107:21034-21039; Gong et al. 2014. Proc Natl Acad Sci USA. 111:5574-5579). Whether sumoylation is implicated in cataractogenesis, a disease largely derived from aging, remains elusive. In the present study, we have examined the changing patterns of the sumoylation ligases and de-sumoylation enzymes (SENPs) and their substrates including Pax6 and other proteins in cataractous lenses of different age groups from 50 to 90 years old. It is found that compared with normal lenses, sumoylation ligases 1 and 3, de-sumoylation enzymes SENP3/7/8, and p46 Pax6 are clearly increased. In contrast, Ubc9 is significantly decreased. Among different cataract patients from 50s to 70s, male patients express more sumoylation enzymes and p46 Pax6. Ubc9 and SENP6 display age-dependent increase. The p46 Pax6 displays age-dependent decrease in normal lens, remains relatively stable in senile cataracts but becomes di-sumoylated in complicated cataracts. In contrast, sumoylation of p32 Pax6 is observed in senile cataracts and increases its stability. Treatment of rat lenses with oxidative stress increases Pax6 expression without sumoylation but promotes apoptosis. Thus, our results show that the changing patterns in Ubc9, SENP6, and Pax6 levels can act as molecular markers for senile cataract and the di-sumoylated p46 Pax6 for complicated cataract. Together, our results reveal the presence of molecular signature for both senile and complicated cataracts. Moreover, our study indicates that sumoylation is implicated in control of aging and cataractogenesis.
Collapse
Affiliation(s)
- Fang‐Yuan Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jia‐Ling Fu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Ling Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Qian Nie
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Min Hou
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Yang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xiao‐Dong Gong
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yan Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jiawen Xiang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Bing Cheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - David Wan‐Cheng Li
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| |
Collapse
|
181
|
Jansen NS, Vertegaal ACO. A Chain of Events: Regulating Target Proteins by SUMO Polymers. Trends Biochem Sci 2020; 46:113-123. [PMID: 33008689 DOI: 10.1016/j.tibs.2020.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) regulate virtually all nuclear processes. The fate of the target protein is determined by the architecture of the attached SUMO protein, which can be of polymeric nature. Here, we highlight the multifunctional aspects of dynamic signal transduction by SUMO polymers. The SUMO-targeted ubiquitin ligases (STUbLs) RING-finger protein 4 (RNF4) and RNF111 recognize SUMO polymers in a chain-architecture-dependent manner, leading to the formation of hybrid chains, which could enable proteasomal destruction of proteins. Recent publications have highlighted essential roles for SUMO chain disassembly by the mammalian SUMO proteases SENP6 and SENP7 and the yeast SUMO protease Ulp2. SENP6 is particularly important for centromere assembly. These recent findings demonstrate the diversity of SUMO polymer signal transduction for proteolytic and nonproteolytic purposes.
Collapse
Affiliation(s)
- Nicolette S Jansen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
182
|
Guanosine modulates SUMO2/3-ylation in neurons and astrocytes via adenosine receptors. Purinergic Signal 2020; 16:439-450. [PMID: 32892251 PMCID: PMC7524998 DOI: 10.1007/s11302-020-09723-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO) family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with guanosine at 1, 10, 100, 300, or 500 μM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/3-ylation in neurons and astrocytes at 1 h at concentrations above 10 μM. The molecular mechanisms involved in this effect were evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect. Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation. The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.
Collapse
|
183
|
Majumder M, Johnson RH, Palanisamy V. Fragile X-related protein family: a double-edged sword in neurodevelopmental disorders and cancer. Crit Rev Biochem Mol Biol 2020; 55:409-424. [PMID: 32878499 DOI: 10.1080/10409238.2020.1810621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fragile X-related (FXR) family proteins FMRP, FXR1, and FXR2 are RNA binding proteins that play a critical role in RNA metabolism, neuronal plasticity, and muscle development. These proteins share significant homology in their protein domains, which are functionally and structurally similar to each other. FXR family members are known to play an essential role in causing fragile X mental retardation syndrome (FXS), the most common genetic form of autism spectrum disorder. Recent advances in our understanding of this family of proteins have occurred in tandem with discoveries of great importance to neurological disorders and cancer biology via the identification of their novel RNA and protein targets. Herein, we review the FXR family of proteins as they pertain to FXS, other mental illnesses, and cancer. We emphasize recent findings and analyses that suggest contrasting functions of this protein family in FXS and tumorigenesis based on their expression patterns in human tissues. Finally, we discuss current gaps in our knowledge regarding the FXR protein family and their role in FXS and cancer and suggest future studies to facilitate bench to bedside translation of the findings.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Roger H Johnson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
184
|
Lin YL, Chung CL, Huang PJ, Chen CH, Fang SC. Revised annotation and extended characterizations of components of the Chlamydomonas reinhardtii SUMOylation system. PLANT DIRECT 2020; 4:e00266. [PMID: 33015534 PMCID: PMC7522501 DOI: 10.1002/pld3.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 05/16/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation, or SUMOylation, is a reversible post-translational modification that is important for regulation of many cellular processes including cell division cycle in the eukaryotic kingdom. However, only a portion of the components of the Chlamydomonas SUMOylation system are known and their functions and regulation investigated. The present studies are aimed at extending discovery and characterization of new components and improving the annotation and nomenclature of all known proteins and genes involved in the system. Even though only one copy of the heterodimerized SUMO-activating enzyme, SAE1 and SAE2, was identified, the number of SUMO-conjugating enzymes (SCEs) and SUMO proteases/isopeptidase was expanded in Chlamydomonas. Using the reconstituted SUMOylation system, we showed that SCE1, SCE2, and SCE3 have SUMO-conjugating activity. In addition to SUMOylation, components required for other post-translational modifications such as NEDDylation, URMylation, and UFMylation, were confirmed to be present in Chlamydomonas. Our data also showed that besides isopeptidase activity, the SUMO protease domain of SUPPRESSOR OF MAT3 7/SENTRIN-SPECIFIC PROTEASE 1 (SMT7/SENP1) has endopeptidase activity that is capable of processing SUMO precursors. Moreover, the key cell cycle regulators of Chlamydomonas E2F1, DP1, CDKG1, CYCD2, and CYCD3 were SUMOylated in vitro, suggesting SUMOylation may be part of regulatory pathway modulating cell cycle regulators.
Collapse
Affiliation(s)
- Yen-Ling Lin
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
- Ph.D. Program in Microbial Genomics National Chung Hsing University and Academia Sinica Taichung Taiwan
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Pin-Jui Huang
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
- Ph.D. Program in Microbial Genomics National Chung Hsing University and Academia Sinica Taichung Taiwan
- Institute of Tropical Plant Sciences and Microbiology National Cheng Kung University Tainan Taiwan
- National Cheng Kung University-Academia Sinica Graduate Program in Translational Agricultural Sciences Tainan Taiwan
| |
Collapse
|
185
|
Chauhan KM, Chen Y, Chen Y, Liu AT, Sun XX, Dai MS. The SUMO-specific protease SENP1 deSUMOylates p53 and regulates its activity. J Cell Biochem 2020; 122:189-197. [PMID: 32786121 DOI: 10.1002/jcb.29838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
The stability and activity of the p53 tumor suppressor protein are tightly regulated by various posttranslational modifications, including SUMOylation. p53 can be modified by both SUMO1 and SUMO2, although how SUMOylation regulates p53 activity is still obscure. Whether p53 activity is directly regulated by deSUMOylation is also unclear. Here, we show that SENP1, a SUMO-specific protease implicated in pro-oncogenic roles, is a p53 deSUMOylating enzyme. SENP1 interacts with p53 and deSUMOylates p53 in cells and in vitro. Knockdown of SENP1 markedly induced p53 transactivation activity. We further show that SENP1 depletion synergizes with DNA damage-inducing agent etoposide to induce p53 activation and the expression of p21, leading to synergistic growth inhibition of cancer cells. Our results reveal that SENP1 is a critical p53 deSUMOylating enzyme and a promising therapeutic target in wild-type p53 containing cancer cells.
Collapse
Affiliation(s)
- Krishna M Chauhan
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Yingxiao Chen
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Yiyi Chen
- Biostatistics Program, School of Public Health, Oregon Health & Science University, Portland, Oregon.,The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Andrew T Liu
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon.,The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, Oregon.,The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
186
|
Huang X, Zhang X, Xu J, Wang X, Zhang G, Tang T, Shen X, Liang T, Bai X. Deubiquitinating Enzyme: A Potential Secondary Checkpoint of Cancer Immunity. Front Oncol 2020; 10:1289. [PMID: 32850399 PMCID: PMC7426525 DOI: 10.3389/fonc.2020.01289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of cancer immunotherapy depends on the fine interplay between tumoral immune checkpoints and host immune system. However, the up-to-date clinical performance of checkpoint blockers in cancer therapy revealed that higher-level regulation should be further investigated for better therapeutic outcomes. It is becoming increasingly evident that the expression of immune checkpoints is largely associated to the immunotherapeutic response and consequent prognosis. Deubiquitinating enzymes (DUBs) with their role of cleaving ubiquitin from proteins and other molecules, thus reversing ubiquitination-mediated protein degradation, modulate multiple cellular processes, including, but not limited to, transcriptional regulation, cell cycle progression, tissue development, and antiviral response. Accumulating evidence indicates that DUBs also have the critical influence on anticancer immunity, simply by stabilizing pivotal checkpoints or key regulators of T-cell functions. Therefore, this review summarizes the current knowledge about DUBs, highlights the secondary checkpoint-like role of DUBs in cancer immunity, in particular their direct effects on the stability control of pivotal checkpoints and key regulators of T-cell functions, and suggests the therapeutic potential of DUBs-based strategy in targeted immunotherapy for cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaochao Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
187
|
He J, Cheng J, Wang T. SUMOylation-Mediated Response to Mitochondrial Stress. Int J Mol Sci 2020; 21:ijms21165657. [PMID: 32781782 PMCID: PMC7460625 DOI: 10.3390/ijms21165657] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial stress is considered as a factor that reprograms the mitochondrial biogenesis and metabolism. As known, SUMOylation occurs through a series of stress-induced biochemical reactions. During the process of SUMOylation, the small ubiquitin-like modifier (SUMO) and its specific proteases (SENPs) are key signal molecules. Furthermore, they are considered as novel mitochondrial stress sensors that respond to the signals produced by various stresses. The responses are critical for mitochondrial homeostasis. The scope of this review is to provide an overview of the function of SUMOylation in the mitochondrial stress response, to delineate a SUMOylation-involved signal network diagram, and to highlight a number of key questions that remain answered.
Collapse
Affiliation(s)
- Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (J.C.); (T.W.); Tel.: +86-(21)-6384-6590-776327 (J.C.); +86-(21)-6384-6590-778026 (T.W.)
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (J.C.); (T.W.); Tel.: +86-(21)-6384-6590-776327 (J.C.); +86-(21)-6384-6590-778026 (T.W.)
| |
Collapse
|
188
|
Lin D, Fu Z, Yang G, Gao D, Wang T, Liu Z, Li G, Wang Y. Exportin-5 SUMOylation promotes hepatocellular carcinoma progression. Exp Cell Res 2020; 395:112219. [PMID: 32763246 DOI: 10.1016/j.yexcr.2020.112219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 11/28/2022]
Abstract
Increasing evidence has shown that abnormal expression of XPO5 is found in many human cancers and acts as an oncoprotein in certain cancers. However, its functional role in hepatocellular carcinoma (HCC) remains unexplored. In our study, we found that XPO5 was highly expressed in HCC, which was associated with SUMO modification. Moreover, we found that XPO5 was SUMOylated by SUMO2 at K125. Functional experiments revealed that XPO5 SUMOylation could promote MHCC97H cell proliferation, migration and invasion. In addition, we found that the nuclear export of pre-miR-3184 was suppressed by SUMOylated XPO5. Moreover, PLCB1 was identified as the common target of miR-3184-5p and miR-3184-3p. The suppressed phenotype induced by miR-3184-5p and miR-3184-3p could be rescued by overexpression of PLCB1. Bioinformatics analysis showed that PLCB1 expression had a negative relationship with HCC patient survival. The inhibitory effects of MHCC97H cells resulted from abnormal XPO5 SUMO modification could be blocked by miR-3184 inhibitor or PLCB1 overexpression. In conclusion, our findings demonstrate a novel mechanism of XPO5 in HCC, that is, the SUMOylated XPO5 acts as an "oncogenic" role in MHCC97H cells proliferation, migration and invasion by controlling the nuclear-cytoplasm transportation of miR-3184, thus up-regulating PLCB1 expression.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Zhi Fu
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Guang Yang
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Daming Gao
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Tiezheng Wang
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhaobo Liu
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Guangming Li
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yadong Wang
- Genex Health Co., Ltd, Beijing, 100195, China.
| |
Collapse
|
189
|
Lim KH, Joo JY, Baek KH. The potential roles of deubiquitinating enzymes in brain diseases. Ageing Res Rev 2020; 61:101088. [PMID: 32470641 DOI: 10.1016/j.arr.2020.101088] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Most proteins undergo posttranslational modification such as acetylation, methylation, phosphorylation, biotinylation, and ubiquitination to regulate various cellular processes. Ubiquitin-targeted proteins from the ubiquitin-proteasome system (UPS) are degraded by 26S proteasome, along with this, deubiquitinating enzymes (DUBs) have specific activity against the UPS through detaching of ubiquitin on ubiquitin-targeted proteins. Balancing between protein expression and degradation through interplay between the UPS and DUBs is important to maintain cell homeostasis, and abnormal expression and elongation of proteins lead to diverse diseases such as cancer, diabetes, and autoimmune response. Therefore, development of DUB inhibitors as therapeutic targets has been challenging. In addition, understanding of the roles of DUBs in neurodegeneration, specifically brain diseases, has emerged gradually. This review highlights recent studies on the molecular mechanisms for DUBs, and discusses potential therapeutic targets for DUBs in cases of brain diseases.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea.
| | - Jae-Yeol Joo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| |
Collapse
|
190
|
le Roux MSL, Burger NFV, Vlok M, Kunert KJ, Cullis CA, Botha AM. Wheat Line "RYNO3936" Is Associated With Delayed Water Stress-Induced Leaf Senescence and Rapid Water-Deficit Stress Recovery. FRONTIERS IN PLANT SCIENCE 2020; 11:1053. [PMID: 32760414 PMCID: PMC7372113 DOI: 10.3389/fpls.2020.01053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Random mutagenesis was applied to produce a new wheat mutant (RYNO3926) with superior characteristics regarding tolerance to water deficit stress induced at late booting stage. The mutant also displays rapid recovery from water stress conditions. Under water stress conditions mutant plants reached maturity faster and produced more seeds than its wild type wheat progenitor. Wild-type Tugela DN plants died within 7 days after induction of water stress induced at late booting stage, while mutant plants survived by maintaining a higher relative moisture content (RMC), increased total chlorophyll, and a higher photosynthesis rate and stomatal conductance. Analysis of the proteome of mutant plants revealed that they better regulate post-translational modification (SUMOylation) and have increased expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) proteins. Mutant plants also expressed unique proteins associated with dehydration tolerance including abscisic stress-ripening protein, cold induced protein, cold-responsive protein, dehydrin, Group 3 late embryogenesis, and a lipoprotein (LAlv9) belonging to the family of lipocalins. Overall, our results suggest that our new mutant RYNO3936 has a potential for inclusion in future breeding programs to improve drought tolerance under dryland conditions.
Collapse
Affiliation(s)
| | | | - Maré Vlok
- Proteomics Unit, Central Analytical Facilities, University of Stellenbosch, Stellenbosch, South Africa
| | - Karl J. Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Christopher A. Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
191
|
Ryu HY, Ahn SH, Hochstrasser M. SUMO and cellular adaptive mechanisms. Exp Mol Med 2020; 52:931-939. [PMID: 32591648 PMCID: PMC7338444 DOI: 10.1038/s12276-020-0457-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin family member SUMO is a covalent regulator of proteins that functions in response to various stresses, and defects in SUMO-protein conjugation or deconjugation have been implicated in multiple diseases. The loss of the Ulp2 SUMO protease, which reverses SUMO-protein modifications, in the model eukaryote Saccharomyces cerevisiae is severely detrimental to cell fitness and has emerged as a useful model for studying how cells adapt to SUMO system dysfunction. Both short-term and long-term adaptive mechanisms are triggered depending on the length of time cells spend without this SUMO chain-cleaving enzyme. Such short-term adaptations include a highly specific multichromosome aneuploidy and large changes in ribosomal gene transcription. While aneuploid ulp2Δ cells survive, they suffer severe defects in growth and stress resistance. Over many generations, euploidy is restored, transcriptional programs are adjusted, and specific genetic changes that compensate for the loss of the SUMO protease are observed. These long-term adapted cells grow at normal rates with no detectable defects in stress resistance. In this review, we examine the connections between SUMO and cellular adaptive mechanisms more broadly. Cellular stress caused by disrupting attachment of the ubiquitous small ubiquitin-like modifier (SUMO) proteins, which are present in most organisms and regulate numerous DNA processes and stress responses by attaching to key proteins, results in some remarkable adaptations. Mark Hochstrasser at Yale University, New Haven, USA, and co-workers review how this “sumoylation” is reversed by protease enzymes, and how imbalances between sumoylation and desumoylation may be linked to diseases including cancer. When certain SUMO proteases are deliberately disrupted, the cells quickly become aneuploid, i.e., carry an abnormal number of chromosomes. These cells show severe growth defects, but over many generations they regain the normal number of chromosomes. They also undergo genetic changes that promote alternative mechanisms that compensate for losing the SUMO protease and facilitate the same efficient stress responses as the original cells.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
192
|
Savyon M, Engelender S. SUMOylation in α-Synuclein Homeostasis and Pathology. Front Aging Neurosci 2020; 12:167. [PMID: 32670048 PMCID: PMC7330056 DOI: 10.3389/fnagi.2020.00167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The accumulation and aggregation of α-synuclein are central to Parkinson’s disease (PD), yet the molecular mechanisms responsible for these events are not fully understood. Post-translational modifications of α-synuclein regulate several of its properties, including degradation, interaction with proteins and membranes, aggregation and toxicity. SUMOylation is a post-translational modification involved in various nuclear and extranuclear processes, such as subcellular protein targeting, mitochondrial fission and synaptic plasticity. Protein SUMOylation increases in response to several stressful situations, from viral infections to trauma. In this framework, an increasing amount of evidence has implicated SUMOylation in several neurodegenerative diseases, including PD. This review will discuss recent findings in the role of SUMOylation as a regulator of α-synuclein accumulation, aggregation and toxicity, and its possible implication in neurodegeneration that underlies PD.
Collapse
Affiliation(s)
- Mor Savyon
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| | - Simone Engelender
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
193
|
Velazhahan V, Glaza P, Herrera AI, Prakash O, Zolkiewski M, Geisbrecht BV, Schrick K. Dietary flavonoid fisetin binds human SUMO1 and blocks sumoylation of p53. PLoS One 2020; 15:e0234468. [PMID: 32530958 PMCID: PMC7292393 DOI: 10.1371/journal.pone.0234468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are plant-derived compounds that occur abundantly in fruits and vegetables and have been shown to possess potent anti-cancer, antioxidant, and anti-inflammatory properties. However, their direct targets and molecular mechanism of action are not well characterized, hampering exploitation of the beneficial properties of flavonoids for drug development. Small ubiquitin-related modifier 1 (SUMO1) is attached to target proteins as part of a post-translational modification system implicated in a myriad of cellular processes from nuclear trafficking to transcriptional regulation. Using a combination of surface plasmon resonance, differential scanning fluorimetry and fluorescence quenching studies, we provide evidence for direct binding of the dietary flavonoid fisetin to human SUMO1. Our NMR chemical shift perturbation analyses reveal that binding to fisetin involves four conserved amino acid residues (L65, F66, E67, M82) previously shown to be important for conjugation of SUMO1 to target proteins. In vitro sumoylation experiments indicate that fisetin blocks sumoylation of tumor suppressor p53, consistent with fisetin negatively affecting post-translational modification and thus the biological activity of p53. A series of differential scanning fluorimetry experiments suggest that high concentrations of fisetin result in destabilization and unfolding of SUMO1, presenting a molecular mechanism by which flavonoid binding affects its activity. Overall, our data establish a novel direct interaction between fisetin and SUMO1, providing a mechanistic explanation for the ability of fisetin to modulate multiple key signaling pathways inside cells.
Collapse
Affiliation(s)
- Vaithish Velazhahan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Alvaro I. Herrera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
194
|
Keiten-Schmitz J, Wagner K, Piller T, Kaulich M, Alberti S, Müller S. The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. Mol Cell 2020; 79:54-67.e7. [PMID: 32521226 DOI: 10.1016/j.molcel.2020.05.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023]
Abstract
Exposure of cells to heat or oxidative stress causes misfolding of proteins. To avoid toxic protein aggregation, cells have evolved nuclear and cytosolic protein quality control (PQC) systems. In response to proteotoxic stress, cells also limit protein synthesis by triggering transient storage of mRNAs and RNA-binding proteins (RBPs) in cytosolic stress granules (SGs). We demonstrate that the SUMO-targeted ubiquitin ligase (StUbL) pathway, which is part of the nuclear proteostasis network, regulates SG dynamics. We provide evidence that inactivation of SUMO deconjugases under proteotoxic stress initiates SUMO-primed, RNF4-dependent ubiquitylation of RBPs that typically condense into SGs. Impairment of SUMO-primed ubiquitylation drastically delays SG resolution upon stress release. Importantly, the StUbL system regulates compartmentalization of an amyotrophic lateral sclerosis (ALS)-associated FUS mutant in SGs. We propose that the StUbL system functions as surveillance pathway for aggregation-prone RBPs in the nucleus, thereby linking the nuclear and cytosolic axis of proteotoxic stress response.
Collapse
Affiliation(s)
- Jan Keiten-Schmitz
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany
| | - Simon Alberti
- CMCB/BIOTEC, Technical University Dresden, Dresden, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
195
|
Li G, Liu X, Yang M, Zhang G, Wang Z, Guo K, Gao Y, Jiao P, Sun J, Chen C, Wang H, Deng W, Xiao H, Li S, Wu H, Wang Y, Cao L, Jia Z, Shang L, Yang C, Guo Y, Rao Z. Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. J Virol 2020; 94:e02125-19. [PMID: 32075933 PMCID: PMC7199414 DOI: 10.1128/jvi.02125-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.
Collapse
Affiliation(s)
- Guobang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Xiaoxia Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Mengyuan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Guangshun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Zhengyang Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Kun Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yuxue Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Peng Jiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Weilong Deng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Huihe Xiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Sizheng Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoru Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Ying Wang
- Tianjin Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, People's Republic of China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- College of Life Science, Nankai University, Tianjin, People's Republic of China
| | - Zihan Jia
- College of Life Science, Nankai University, Tianjin, People's Republic of China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
- College of Life Science, Nankai University, Tianjin, People's Republic of China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
196
|
Cuomo O, Casamassa A, Brancaccio P, Laudati G, Valsecchi V, Anzilotti S, Vinciguerra A, Pignataro G, Annunziato L. Sumoylation of sodium/calcium exchanger in brain ischemia and ischemic preconditioning. Cell Calcium 2020; 87:102195. [DOI: 10.1016/j.ceca.2020.102195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
|
197
|
Molecular mechanisms in SUMO conjugation. Biochem Soc Trans 2020; 48:123-135. [PMID: 31872228 DOI: 10.1042/bst20190357] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
The small ubiquitin-like modifier (SUMO) is a post-translational modifier that can regulate the function of hundreds of proteins inside the cell. SUMO belongs to the ubiquitin-like family of proteins that can be attached to target proteins by a dedicated enzymatic cascade pathway formed by E1, E2 and E3 enzymes. SUMOylation is involved in many cellular pathways, having in most instances essential roles for their correct function. In this review, we want to highlight the latest research on the molecular mechanisms that lead to the formation of the isopeptidic bond between the lysine substrate and the C-terminus of SUMO. In particular, we will focus on the recent discoveries on the catalytic function of the SUMO E3 ligases revealed by structural and biochemical approaches. Also, we will discuss important questions regarding specificity in SUMO conjugation, which it still remains as a major issue due to the small number of SUMO E3 ligases discovered so far, in contrast with the large number of SUMO conjugated proteins in the cell.
Collapse
|
198
|
Liebelt F, Schimmel J, Verlaan-de Vries M, Klemann E, van Royen ME, van der Weegen Y, Luijsterburg MS, Mullenders LH, Pines A, Vermeulen W, Vertegaal ACO. Transcription-coupled nucleotide excision repair is coordinated by ubiquitin and SUMO in response to ultraviolet irradiation. Nucleic Acids Res 2020; 48:231-248. [PMID: 31722399 PMCID: PMC7145520 DOI: 10.1093/nar/gkz977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/04/2022] Open
Abstract
Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Joost Schimmel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Esra Klemann
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Cancer Treatment Screening Facility (CTSF), Erasmus Optical Imaging Centre (OIC), Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Leon H Mullenders
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Japan
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
199
|
Liu Y, Ma X, Chen X, Chen J, Yuan L, Li L, Bai Y, Liu X. Expression of SUMO associated proteins in the mouse endometrium is regulated by ovarian hormones throughout the estrous cycle. Exp Ther Med 2020; 19:1855-1863. [PMID: 32104241 PMCID: PMC7027160 DOI: 10.3892/etm.2020.8416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
The modification of proteins by small ubiquitin-like modifier (SUMO), known as SUMOylation, regulates biological function by changing protein transcription and translation. During the estrous cycle the endometrium undergoes continual change to processes including cell proliferation, secretion and exfoliation and these changes are regulated by the levels of ovarian hormones. Increasing the expression of SUMO family members has previously been shown to promote proliferation and invasion of endometrial cancer cells. However, limited research has been carried out into the expression and function of SUMO in the mammalian endometrium. In the present study, the level and localization of SUMO-associated proteins throughout the natural estrous cycle in the mouse uterus was determined using immunohistochemical staining and western blot analysis. The association between the spatiotemporal expression of these SUMO modified proteins and SENPs in endometrium and the concentration of ovarian hormones during estrous cycle was revealed. The present study clarified the role of SUMOylation in maintenance of normal estrous cycling and may have important significance in the study of hormone-dependent endometrial diseases.
Collapse
Affiliation(s)
- Yi Liu
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China.,Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xuhong Chen
- Department of Gynecology and Obstetrics, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jinsheng Chen
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China.,Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Li Yuan
- Department of Gynecology and Obstetrics, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Lili Li
- Key Laboratory of Cancer Prevention and Therapy, Department of Bone and Soft Tissue Tumors, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yaowu Bai
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China.,Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
200
|
Srivastava M, Srivastava AK, Orosa-Puente B, Campanaro A, Zhang C, Sadanandom A. SUMO Conjugation to BZR1 Enables Brassinosteroid Signaling to Integrate Environmental Cues to Shape Plant Growth. Curr Biol 2020; 30:1410-1423.e3. [PMID: 32109396 PMCID: PMC7181186 DOI: 10.1016/j.cub.2020.01.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 01/21/2023]
Abstract
Brassinosteroids (BRs) play crucial roles in plant development, but little is known of mechanisms that integrate environmental cues into BR signaling. Conjugation to the small ubiquitin-like modifier (SUMO) is emerging as an important mechanism to transduce environmental cues into cellular signaling. In this study, we show that SUMOylation of BZR1, a key transcription factor of BR signaling, provides a conduit for environmental influence to modulate growth during stress. SUMOylation stabilizes BZR1 in the nucleus by inhibiting its interaction with BIN2 kinase. During salt stress, Arabidopsis plants arrest growth through deSUMOylation of BZR1 in the cytoplasm by promoting the accumulation of the BZR1 targeting SUMO protease, ULP1a. ULP1a mutants are salt tolerant and insensitive to the BR inhibitor, brassinazole. BR treatment stimulates ULP1a degradation, allowing SUMOylated BZR1 to accumulate and promote growth. This study uncovers a mechanism for integrating environmental cues into BR signaling to shape growth. BZR1 SUMOylation allows brassinosteroids to shape plant growth to its environment SUMOylation stabilizes BZR1 by inhibiting BIN2 interaction, promoting plant growth Salinity stimulates BZR1 deSUMOylation via ULP1a SUMO protease to suppress growth BRs destabilize ULP1a, allowing SUMOylated BZR1 to accumulate and promote growth
Collapse
Affiliation(s)
- Moumita Srivastava
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Anjil K Srivastava
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | | | - Alberto Campanaro
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Cunjin Zhang
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|