151
|
Pääkkönen K, Annila A, Sorsa T, Pollesello P, Tilgmann C, Kilpeläinen I, Karisola P, Ulmanen I, Drakenberg T. Solution structure and main chain dynamics of the regulatory domain (Residues 1-91) of human cardiac troponin C. J Biol Chem 1998; 273:15633-8. [PMID: 9624156 DOI: 10.1074/jbc.273.25.15633] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of calcium-loaded regulatory, i.e. N-terminal, domain (1-91) of human cardiac troponin C (cNTnC) was determined by NMR in water/trifluoroethanol (91:9 v/v) solution. The single-calcium-loaded cardiac regulatory domain is in a "closed" conformation with comparatively little exposed hydrophobic surface. Difference distance matrices computed from the families of Ca2+-cNTnC, the apo and two-calcium forms of the skeletal TnC (sNTnC) structures reveal similar relative orientations for the N, A, and D helices. The B and C helices are closer to the NAD framework in Ca2+-cNTnC and in apo-sNTnC than in 2.Ca2+-sNTnC. However, there is an indication of a conformational exchange based on broad 15N resonances for several amino acids measured at several temperatures. A majority of the amides in the alpha-helices and in the calcium binding loop exhibit very fast motions with comparatively small amplitudes according to the Lipari-Szabo model. A few residues at the N and C termini are flexible. Data were recorded from nonlabeled and 15N-labeled samples, and backbone dynamics was investigated by 15N T1, T2, and heteronuclear nuclear Overhauser effect as well as by relaxation interference measurements.
Collapse
Affiliation(s)
- K Pääkkönen
- VTT, Chemical Technology, P. O. Box 1401 FIN-02044 VTT, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
|
153
|
Gagné SM, Tsuda S, Spyracopoulos L, Kay LE, Sykes BD. Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J Mol Biol 1998; 278:667-86. [PMID: 9600847 DOI: 10.1006/jmbi.1998.1723] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-terminal domain (residues 1 to 90) of chicken skeletal troponin C (NTnC) regulates muscle contraction upon the binding of a calcium ion to each of its two calcium binding loops. In order to characterize the backbone dynamics of NTnC in the apo state (NTnC-apo), we measured and carefully analyzed 15N NMR relaxation parameters T1, T2 and NOE at 1H NMR frequencies of 500 and 600 MHz. The overall rotational correlation time of NTnC-apo at 29.6 degrees C is 4.86 (+/-0.15) ns. The experimental data indicate that the rotational diffusion of NTnC-apo is anisotropic with a diffusion anisotropy, D parallel/D perpendicular, of 1.10. Additionally, the dynamic properties of side-chains having a methyl group were derived from 2H relaxation data of CH2D groups of a partially deuterated sample. Based on the dynamic characteristics of TnC, two different levels of "fine tuning" of the calcium affinity are presented. Significantly lower backbone order parameters (S2), were observed for calcium binding site I relative to site II and the contribution of the bond vector fluctuations to the conformational entropy of sites I and II was calculated. The conformational entropy loss due to calcium binding (DeltaDeltaSp) differs by 1 kcal/mol between sites I and II. This is consistent with the different dissociation constants previously measured for sites I and II of 16 microM and 1. 7 microM, respectively. In addition to the direct role of binding loop dynamics, the side-chain methyl group dynamics play an indirect role through the energetics of the calcium-induced structural change from a closed to an open state. Our results show that the side-chains which will be exposed upon calcium binding have reduced motion in the apo state, suggesting that conformational entropic contributions can be used to offset the free energy cost of exposing hydrophobic groups. It is clear from this work that a complete determination of their dynamic characteristics is necessary in order to fully understand how TnC and other proteins are fine tuned to appropriately carry out their function.
Collapse
Affiliation(s)
- S M Gagné
- Medical Research Council Group in Protein Structure and Function, University of Alberta, Edmonton, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
154
|
Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A 1998; 95:4847-52. [PMID: 9560191 PMCID: PMC20176 DOI: 10.1073/pnas.95.9.4847] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Troponin (Tn), the complex of three subunits (TnC, TnI, and TnT), plays a key role in Ca2+-dependent regulation of muscle contraction. To elucidate the interactions between the Tn subunits and the conformation of TnC in the Tn complex, we have determined the crystal structure of TnC (two Ca2+ bound state) in complex with the N-terminal fragment of TnI (TnI1-47). The structure was solved by the single isomorphous replacement method in combination with multiple wavelength anomalous dispersion data. The refinement converged to a crystallographic R factor of 22.2% (Rfree = 32.6%). The central, connecting alpha-helix observed in the structure of uncomplexed TnC (TnCfree) is unwound at the center (residues Ala-87, Lys-88, Gly-89, Lys-90, and Ser-91) and bent by 90 degrees. As a result, TnC in the complex has a compact globular shape with direct interactions between the N- and C-terminal lobes, in contrast to the elongated dumb-bell shaped molecule of uncomplexed TnC. The 31-residue long TnI1-47 alpha-helix stretches on the surface of TnC and stabilizes its compact conformation by multiple contacts with both TnC lobes. The amphiphilic C-end of the TnI1-47 alpha-helix is bound in the hydrophobic pocket of the TnC C-lobe through 38 van der Waals interactions. The results indicate the major difference between Ca2+ receptors integrated with the other proteins (TnC in Tn) and isolated in the cytosol (calmodulin). The TnC/TnI1-47 structure implies a mechanism of how Tn regulates the muscle contraction and suggests a unique alpha-helical regulatory TnI segment, which binds to the N-lobe of TnC in its Ca2+ bound conformation.
Collapse
Affiliation(s)
- D G Vassylyev
- International Institute for Advanced Research, Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3-4 Hikaridai, Seika, Kyoto, 619-02, Japan
| | | | | | | | | |
Collapse
|
155
|
Kleerekoper Q, Liu W, Choi D, Putkey JA. Identification of binding sites for bepridil and trifluoperazine on cardiac troponin C. J Biol Chem 1998; 273:8153-60. [PMID: 9525919 DOI: 10.1074/jbc.273.14.8153] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of cardiac troponin C (cTnC) (Sia, S., Li, M. X., Spyracopoulos, L., Gagne, S. M., Liu, W., Putkey, J. A. & Sykes, B. D. (1997) J. Biol. Chem. 272, 18216-18221) challenges existing structure/function models for this critical regulatory protein. For example, it is clear that the closed conformation of the regulatory N-terminal domain in Ca2+-bound cardiac troponin C (cTnC) presents a much different binding surface for Ca2+-sensitizing compounds than previously thought. We report here the use of Met methyl groups as site-specific structural markers to identify drug binding sites for trifluoperazine and bepridil on cTnC. Drug dependent changes in the NMR heteronuclear single-quantum coherence spectra of [methyl-13C]Met-labeled cTnC indicate that bepridil and trifluoperazine bind to similar sites but only in the presence of Ca2+. There are 3-4 drug binding sites in the N- and C-terminal domains of intact cTnC that exhibit fast exchange on the NMR time scale. Use of a novel spin-labeled phenothiazine and detection of isotope-filtered nuclear Overhauser effects allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain and on two hydrophobic surfaces on the N-terminal regulatory domain. The data presented here, coupled with our previous study using covalent blocking groups, support a model in which the Ca2+-sensitizing binding site includes Met-45 in helix B of site I, and Met-60 and -80 in helices B and C of the regulatory site II. This subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds.
Collapse
Affiliation(s)
- Q Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
156
|
Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins. Structure 1998; 6:223-31. [PMID: 9519412 DOI: 10.1016/s0969-2126(98)00023-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calcyclin is a member of the S100 subfamily of EF-hand Ca(2+)-binding proteins. This protein has implied roles in the regulation of cell growth and division, exhibits deregulated expression in association with cell transformation, and is found in high abundance in certain breast cancer cell lines. The novel homodimeric structural motif first identified for apo calcyclin raised the possibility that S100 proteins recognize their targets in a manner that is distinctly different from that of the prototypical EF-hand Ca2+ sensor, calmodulin. The NMR solution structure of Ca(2+)-bound calcyclin has been determined in order to identify Ca(2+)-induced structural changes and to obtain insights into the mechanism of Ca(2+)-triggered target protein recognition. RESULTS The three-dimensional structure of Ca(2+)-bound calcyclin was calculated with 1372 experimental constraints, and is represented by an ensemble of 20 structures that have a backbone root mean square deviation of 1.9 A for the eight helices. Ca(2+)-bound calcyclin has the same symmetric homodimeric fold as observed for the apo protein. The helical packing within the globular domains and the subunit interface also change little upon Ca2+ binding. A distinct homology was found between the Ca(2+)-bound states of the calcyclin subunit and the monomeric S100 protein calbindin D9k. CONCLUSIONS Only very modest Ca(2+)-induced changes are observed in the structure of calcyclin, in sharp contrast to the domain-opening that occurs in calmodulin and related Ca(2+)-sensor proteins. Thus, calcyclin, and by inference other members of the S100 family, must have a different mode for transducing Ca2+ signals and recognizing target proteins. This proposal raises significant questions concerning the purported roles of S100 proteins as Ca2+ sensors.
Collapse
Affiliation(s)
- M Sastry
- Department of Molecular Biology (MB-9), Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure 1998; 6:211-22. [PMID: 9519411 DOI: 10.1016/s0969-2126(98)00022-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND S100B is a homodimeric member of the EF-hand calcium-binding protein superfamily. The protein has been implicated in cellular processes such as cell differentiation and growth, plays a role in cytoskeletal structure and function, and may have a role in neuropathological diseases, such as Alzheimers. The effects of S100B are mediated via its interaction with target proteins. While several studies have suggested that this interaction is propagated through a calcium-induced conformational change, leading to the exposure of a hydrophobic region of S100B, the molecular details behind this structural alteration remain unclear. RESULTS The solution structure of calcium-saturated human S100B (Ca(2+)-S100B) has been determined by heteronuclear NMR spectroscopy. Ca(2+)-S100B forms a well defined globular structure comprising four EF-hand calcium-binding sites and an extensive hydrophobic dimer interface. A comparison of Ca(2+)-S100B with apo S100B and Ca(2+)-calbindin D9k indicates that while calcium-binding to S100B results in little change in the site I EF-hand, it induces a backbone reorientation of the N terminus of the site II EF-hand. This reorientation leads to a dramatic change in the position of helix III relative to the other helices. CONCLUSIONS The calcium-induced reorientation of calcium-binding site II results in the increased exposure of several hydrophobic residues in helix IV and the linker region. While following the general mechanism of calcium modulatory proteins, whereby a hydrophobic target site is exposed, the 'calcium switch' observed in S100B appears to be unique from that of other EF-hand proteins and may provide insights into target specificity among calcium modulatory proteins.
Collapse
Affiliation(s)
- S P Smith
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
158
|
Nelson MR, Chazin WJ. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci 1998; 7:270-82. [PMID: 9521102 PMCID: PMC2143906 DOI: 10.1002/pro.5560070206] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium sensor proteins translate transient increases in intracellular calcium levels into metabolic or mechanical responses, by undergoing dramatic conformational changes upon Ca2+ binding. A detailed analysis of the calcium binding-induced conformational changes in the representative calcium sensors calmodulin (CaM) and troponin C was performed to obtain insights into the underlying molecular basis for their response to the binding of calcium. Distance difference matrices, analysis of interresidue contacts, comparisons of interhelical angles, and inspection of structures using molecular graphics were used to make unbiased comparisons of the various structures. The calcium-induced conformational changes in these proteins are dominated by reorganization of the packing of the four helices within each domain. Comparison of the closed and open conformations confirms that calcium binding causes opening within each of the EF-hands. A secondary analysis of the conformation of the C-terminal domain of CaM (CaM-C) clearly shows that CaM-C occupies a closed conformation in the absence of calcium that is distinct from the semi-open conformation observed in the C-terminal EF-hand domains of myosin light chains. These studies provide insight into the structural basis for these changes and into the differential response to calcium binding of various members of the EF-hand calcium-binding protein family. Factors contributing to the stability of the Ca2+-loaded open conformation are discussed, including a new hypothesis that critical hydrophobic interactions stabilize the open conformation in Ca2+ sensors, but are absent in "non-sensor" proteins that remain closed upon Ca2+ binding. A role for methionine residues in stabilizing the open conformation is also proposed.
Collapse
Affiliation(s)
- M R Nelson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
159
|
|
160
|
The Crystal Structure of Troponin C in Complex with N-Terminal Fragment of Troponin I. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4684-6039-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
161
|
Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 1997; 5:1695-711. [PMID: 9438870 DOI: 10.1016/s0969-2126(97)00315-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In contrast to Ca2+4-bound calmodulin (CaM), which has evolved to bind to many target sequences and thus regulate the function of a variety of enzymes, troponin C (TnC) is a bistable switch which controls contraction in striated muscles. The specific target of TnC is troponin I (TnI), the inhibitory subunit of the troponin complex on the thin filaments of muscle. To date, only the crystal structure of Ca2+2-bound TnC (i.e. in the 'off' state) had been determined, which together with the structure of Ca2+4-bound CaM formed the basis for the so-called 'HMJ' model of the conformational changes in TnC upon Ca2+ binding. NMR spectroscopic studies of Ca2+4-bound TnC (i.e. in the 'on' state) have recently been carried out, but the detailed conformational changes that take place upon switching from the off to the on state have not yet been described. RESULTS We have determined the crystal structures of two forms of expressed rabbit Ca2+4-bound TnC to 2.0 A resolution. The structures show that the conformation of the N-terminal lobe (N lobe) is similar to that predicted by the HMJ model. Our results also reveal, in detail, the residues involved in binding of Ca2+ in the regulatory N lobe of the molecule. We show that the central helix, which links the N and C lobes of TnC, is better stabilized in the Ca2+2-bound than in the Ca2+4-bound state of the molecule. Comparison of the crystal structures of the off and on states of TnC reveals the specific linkages in the molecule that change in the transition from off to on state upon Ca2+-binding. Small sequence differences are also shown to account for large functional differences between CaM and TnC. CONCLUSIONS The two lobes of TnC are designed to respond to Ca2+-binding quite differently, although the structures with bound Ca2+ are very similar. A small number of differences in the sequences of these two lobes accounts for the fact that the C lobe is stabilized only in the open (Ca2+-bound) state, whereas the N lobe can switch between two stable states. This difference accounts for the Ca2+-dependent and Ca2+-independent interactions of the N and C lobe. The C lobe of TnC is always linked to TnI, whereas the N lobe can maintain its regulatory role - binding strongly to TnI at critical levels of Ca2+ - and in contrast, forming a stable closed conformation in the absence of Ca2+.
Collapse
Affiliation(s)
- A Houdusse
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | | | | | |
Collapse
|
162
|
McKay RT, Tripet BP, Hodges RS, Sykes BD. Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem 1997; 272:28494-500. [PMID: 9353310 DOI: 10.1074/jbc.272.45.28494] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two dimensional 1H,15N-heteronuclear single quantum correlation NMR was used to monitor the resonance frequency changes of the backbone amide groups belonging to the 15N-labeled regulatory domain of calcium saturated troponin C (N-TnC) upon addition of synthetic skeletal N-acetyl-troponin I 115-131-amide peptide (TnI115-131). Utilizing the change in amide chemical shifts, the dissociation constant for 1:1 binding of TnI115-131 to N-TnC in low salt and 100 mM KCl samples was determined to be 28 +/- 4 and 24 +/- 4 microM, respectively. The off rate of TnI115-131 was determined to be 300 s-1 from observed N-TnC backbone amide 1H,15N-heteronuclear single quantum correlation cross-peak line widths, which is on the order of the calcium off rates (Li, M. X., Gagné, S. M., Tsuda, S., Kay, C. M., Smillie, L. B., and Sykes, B. D. (1995) Biochemistry 34, 8330-8340), and agrees with kinetic expectations for biological regulation of muscle contraction. The TnI115-131 binding site on N-TnC was determined by mapping of chemical shift changes onto the N-TnC NMR structure and was demonstrated to be in the "hydrophobic pocket" (Gagné, S. M., Tsuda, S., Li, M. X., Smillie, L. B., and Sykes, B. D. (1995) Nat. Struct. Biol. 2, 784-789).
Collapse
Affiliation(s)
- R T McKay
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
163
|
Linse S, Thulin E, Gifford LK, Radzewsky D, Hagan J, Wilk RR, Akerfeldt KS. Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments. Protein Sci 1997; 6:2385-96. [PMID: 9385641 PMCID: PMC2143601 DOI: 10.1002/pro.5560061112] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calbindin D28k is an intracellular Ca(2+)-binding protein containing six subdomains of EF-hand type. The number and identity of the globular domains within this protein have been elucidated using six synthetic peptide fragments, each corresponding to one EF-hand subdomain. All six peptides were mixed in equimolar amounts in the presence of 10 mM Ca2+ to allow for the reconstitution of domains. The mixture was compared to native calbindin D28k and to the sum of the properties of the individual peptides using circular dichroism (CD), fluorescence, and 1H NMR spectroscopy, as well as gel filtration and ion-exchange chromatography. It was anticipated that if the peptides associate to form native-like domains, the properties would be similar to those of the intact protein, whereas if they did not interact, they would be the same as the properties of the isolated peptides. The results show that the peptides in the mixture interact with one another. For example, the CD and fluorescence spectra for the mixture are very similar to those of the intact calbindin D28k, suggesting that the mixed EF-hand fragments associate to form a native-like structure. To determine the number of domains and the subdomain composition of each domain in calbindin D28k, a variety of peptide combinations containing two to five EF-hand fragments were studied. The spectral and chromatographic properties of all the mixtures containing less than six peptides were closer to the sum of the properties of the relevant individual peptides than to the mixture of the six peptides. The results strongly suggest that all six EF-hands are packed into one globular domain. The association of the peptide fragments is observed to drive the folding of the individual subdomains. For example, one of the fragments, EF2, which is largely unstructured in isolation even in the presence of high concentrations of Ca2+, is considerably more structured in the presence of the other peptides, as judged by CD difference spectroscopy. The CD data also suggest that the packing between the individual subdomains is specific.
Collapse
Affiliation(s)
- S Linse
- Chemical Centre, University of Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
164
|
Rarick HM, Tu XH, Solaro RJ, Martin AF. The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils. J Biol Chem 1997; 272:26887-92. [PMID: 9341121 DOI: 10.1074/jbc.272.43.26887] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the C terminus of troponin I is known to be important in myofilament Ca2+ regulation in skeletal muscle, the regulatory function of this region of cardiac troponin I (cTnI) has not been defined. To address this question, the following recombinant proteins were expressed in Escherichia coli and purified: mouse wild-type cTnI (WT cTnI; 211 residues), cTnI-(1-199) (missing 12 residues), cTnI-(1-188) (missing 23 residues), and cTnI-(1-151) (missing 60 residues). The inhibitory activity of cTnI and the mutants was tested in myofibrils, from which cTnI.cTnC was extracted by exchanging endogenous cardiac troponin with exogenous cTnT causing the Ca2+ sensitivity of the myofibrils to be lost. Addition of increasing amounts of exogenous WT cTnI or cTnI-(1-199) to cTnT-treated myofibrils at pCa 8 caused a concentration-dependent inhibition of the maximum ATPase activity. However, cTnI-(1-188) and cTnI-(1-151) inhibited this activity to about 75% and 50% of that of the WT cTnI, respectively. We also formed a complex of either WT cTnI or each of the mutants with cTnC, reconstituted the complex into the cTnT-treated myofibrils, and measured the Mg2+-ATPase activity as a function of pCa. We found that the cTnI-(1-188).cTnC complex only partially restored Ca2+ sensitivity, whereas the cTnI-(1-151).cTnC complex did not restore any Ca2+ sensitivity. Each cTnI C-terminal deletion mutant was able to bind to cTnC, as shown by urea-polyacrylamide gel-shift analysis and size exclusion chromatography. Each mutant also co-sedimented with actin. Our results indicate that residues 152-199 (C-terminal to the inhibitory region) of cTnI are essential for full inhibitory activity and Ca2+ sensitivity of myofibrillar ATPase activity in the heart.
Collapse
Affiliation(s)
- H M Rarick
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612-7342, USA
| | | | | | | |
Collapse
|
165
|
Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, James MN. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol 1997; 273:238-55. [PMID: 9367759 DOI: 10.1006/jmbi.1997.1257] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have solved and refined the crystal and molecular structures of the calcium-saturated N-terminal domain of troponin C (TnC) to 1.75 A resolution. This has allowed for the first detailed analysis of the calcium binding sites of this molecular switch in the calcium-loaded state. The results provide support for the proposed binding order and qualitatively, for the affinity of calcium in the two regulatory calcium binding sites. Based on a comparison with the high-resolution apo-form of TnC we propose a possible mechanism for the calcium-mediated exposure of a large hydrophobic surface that is central to the initiation of muscle contraction within the cell.
Collapse
Affiliation(s)
- N C Strynadka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
166
|
Li MX, Gagné SM, Spyracopoulos L, Kloks CP, Audette G, Chandra M, Solaro RJ, Smillie LB, Sykes BD. NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 1997; 36:12519-25. [PMID: 9376356 DOI: 10.1021/bi971222l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ca2+ binding to the N-domain of skeletal muscle troponin C (sNTnC) induces an "opening" of the structure [Gagné, S. M., et al. (1995) Nat. Struct. Biol. 2, 784-789], which is typical of Ca2+-regulatory proteins. However, the recent structures of the E41A mutant of skeletal troponin C (E41A sNTnC) [Gagné, S. M., et al. (1997) Biochemistry 36, 4386-4392] and of cardiac muscle troponin C (cNTnC) [Sia, S. K., et al. (1997) J. Biol. Chem. 272, 18216-18221] reveal that both of these proteins remain essentially in the "closed" conformation in their Ca2+-saturated states. Both of these proteins are modified in Ca2+-binding site I, albeit differently, suggesting a critical role for this region in the coupling of Ca2+ binding to the induced structural change. To understand the mechanism and the energetics involved in the Ca2+-induced structural transition, Ca2+ binding to E41A sNTnC and to cNTnC have been investigated by using one-dimensional 1H and two-dimensional {1H,15N}-HSQC NMR spectroscopy. Monitoring the chemical shift changes during Ca2+ titration of E41A sNTnC permits us to assign the order of stepwise binding as site II followed by site I and reveals that the mutation reduced the Ca2+ binding affinity of the site I by approximately 100-fold [from KD2 = 16 microM [sNTnC; Li, M. X., et al. (1995) Biochemistry 34, 8330-8340] to 1.3 mM (E41A sNTnC)] and of the site II by approximately 10-fold [from KD1 = 1.7 microM (sNTnC) to 15 microM (E41A sNTnC)]. Ca2+ titration of cNTnC confirms that cNTnC binds only one Ca2+ with a determined dissociation constant KD of 2.6 microM. The Ca2+-induced chemical shift changes occur over the entire sequence in cNTnC, suggesting that the defunct site I is perturbed when site II binds Ca2+. These measurements allow us to dissect the mechanism and energetics of the Ca2+-induced structural changes.
Collapse
Affiliation(s)
- M X Li
- MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Tripet B, Van Eyk JE, Hodges RS. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol 1997; 271:728-50. [PMID: 9299323 DOI: 10.1006/jmbi.1997.1200] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the functional importance of the C-terminal residues 116 to 148 of troponin I (TnI) in the Ca2+-dependent regulation of vertebrate skeletal muscle contraction, we have prepared several synthetic TnI peptide analogs corresponding to various regions within residues 96 to 148 of rabbit skeletal TnI, and analyzed each of these peptides in reconstituted thin filament assays. Our results show that the TnI peptide 96 to 148 (TnI96-148) constitutes the minimal sequence of TnI capable of mediating an inhibitory activity similar to that of intact TnI protein. Truncation of residues 140 to 148 from this region (TnI96-139) or substitution of residues K141, K142 and K144 with alanine (TnI96-148A2) completely abolishes the enhanced inhibitory effect of this region when compared with TnI96-115. A synthetic peptide, residues 128 to 148 of TnI, containing residues 140 to 148, now termed the "second actin-tropomyosin (actin-Tm) binding site" is able to bind specifically to the actin-Tm filament and can induce a weak inhibitory activity on its own. Residues 116 to 131 of TnI do not appear to be important for inhibition, but are critical for interacting with troponin C (TnC). Specific investigations into this region have shown that residues 116 to 126, located directly adjacent to the "inhibitory region" (residues 96 to 115), are critical for allowing TnC to neutralize fully and rapidly the acto-S1-Tm inhibition caused by the various TnI peptides. Furthermore, residues 116 to 131 of TnI, now termed the "second TnC binding site", can significantly enhance the binding affinity of the inhibitory region, residues 96 to 115, for TnC in a Ca2+-dependent manner as determined by affinity chromatography analysis. The implication that TnI residues 116 to 131 bind to the N domain of TnC, and thus the inhibitory region (residues 96 to 115) binds to the C domain of TnC, has made us re-investigate the structural/functional role of the NH2-terminal region of TnI. Studies of competition between the N terminus of TnI (Rp1-40, residues 1 to 40) with the C-terminal peptides TnI96-115, TnI96-131 and TnI96-148 showed that only TnI96-115 could be easily displaced from TnC. These results thus suggest that Ca2+ binding to the regulatory sites of TnC (N domain) alters the binding affinity between the NH2 terminus and the C terminus of TnI for TnC, i.e. a Ca2+-dependent switch between these two sites of TnI for the C domain of TnC. These results have been incorporated into a general model describing the Ca2+-dependent regulation of muscle contraction.
Collapse
Affiliation(s)
- B Tripet
- Department of Biochemistry and the MRC Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | |
Collapse
|
168
|
Sia SK, Li MX, Spyracopoulos L, Gagné SM, Liu W, Putkey JA, Sykes BD. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 1997; 272:18216-21. [PMID: 9218458 DOI: 10.1074/jbc.272.29.18216] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardiac TnC in the Ca2+-saturated state has been determined by nuclear magnetic resonance spectroscopy. The regulatory domain exists in a "closed" conformation even in the Ca2+-bound (the "on") state, in contrast to all predicted models and differing significantly from the calcium-induced structure observed in skeletal TnC. This structure in the Ca2+-bound state, and its subsequent interaction with troponin I (TnI), are crucial in determining the specific regulatory mechanism for cardiac muscle contraction. Further, it will allow for an understanding of the action of calcium-sensitizing drugs, which bind to cardiac TnC and are known to enhance the ability of cardiac TnC to activate cardiac muscle contraction.
Collapse
Affiliation(s)
- S K Sia
- Department of Biochemistry, Medical Research Council Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
169
|
Takeda S, Kobayashi T, Taniguchi H, Hayashi H, Maéda Y. Structural and functional domains of the troponin complex revealed by limited digestion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:611-7. [PMID: 9219516 DOI: 10.1111/j.1432-1033.1997.00611.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Troponin (Tn), consisting of three subunits, TnT, TnC, and TnI, plays a crucial role in the calcium-dependent regulation of vertebrate striated muscle contraction. In the present study, we have applied limited proteolysis to the Tn complex in order to study domain structures and to detect conformational differences of Tn under different conditions. We found that both TnT and TnI were susceptible to chymotryptic digestion: while TnT was cleaved into TnT-(1-158)-peptide and TnT-(159-259)-peptide irrespective of Ca2+ concentration, the cleavage sites of TnI were dependent on the Ca2+ occupancy of TnC. In addition, we characterized the effects of depletion of the C-terminal part of TnI on acto-S1 ATPase activity. The TnT-(159-259)-peptide-TnC-TnICa-frag complex [TnICa-frag = (TnI-(1-134 and 1-140)-peptide], which was produced in the presence of CaCl2 and MgCl2, retains both the activating and inhibitory capabilities of whole Tn on the acto-S1 ATPase activity, while TnT-(159-259)-peptide-TnC-TnIMg-frag complex [TnIMg-frag = (TnI-(1-116)-peptide], which was obtained in the presence of MgCl2 and EGTA, lost its ability to activate acto-S1 ATPase activity. Our results indicate that residues 117-134 or 117-140 of TnI undergo structural changes upon Ca(2+)-binding to the regulatory sites of TnC and are necessary for the Ca(2+)-dependent inhibitory action of the Tn complex on acto-S1 ATPase activity. We also showed that residues 135-181 or 141-181 of TnI are involved in the interaction of Tn with the tropomyosin-actin filament.
Collapse
Affiliation(s)
- S Takeda
- International Institute for Advanced Research, Matsushita Electric Industrial Co., Kyoto, Japan
| | | | | | | | | |
Collapse
|
170
|
Gagné SM, Li MX, Sykes BD. Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 1997; 36:4386-92. [PMID: 9109645 DOI: 10.1021/bi963076+] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural transition in troponin C induced by the binding of two calcium ions involves an "opening" of the structure, an event that triggers skeletal muscle contraction. We have solved the solution structure of a mutant (E41A) of the regulatory domain of skeletal troponin C wherein one bidentate ligand to the calcium in site I is missing. This structure remains "closed" upon calcium binding, indicating that the linkage between calcium binding and the induced conformational change has been broken. This provides a snapshot of skeletal troponin C between the off and on state and thereby valuable insight into the mechanism of regulation within skeletal TnC. Although several factors contribute to the triggering mechanism, the opening of the troponin C structure is ultimately dependent on one amino acid, Glu41. Insights into the structure of cardiac troponin C can also be derived from this skeletal mutant.
Collapse
Affiliation(s)
- S M Gagné
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
171
|
Affiliation(s)
- W D Kohn
- Department of Biochemistry, MRC Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
172
|
Prêcheur B, Cox JA, Petrova T, Mispelter J, Craescu CT. Nereis sarcoplasmic Ca2+-binding protein has a highly unstructured apo state which is switched to the native state upon binding of the first Ca2+ ion. FEBS Lett 1996; 395:89-94. [PMID: 8849695 DOI: 10.1016/0014-5793(96)01007-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NSCP, a sarcoplasmic Ca2+/Mg2+-binding protein from Nereis diversicolor, shows an allosteric change during Ca2+ binding and a high positive cooperativity for Mg2+ binding. Here we report the results of CD and NMR experiments aiming to characterize the apo state and the Ca2+-induced conformational changes in this protein. Circular dichroism spectra of the apo form are indicative of a reduced helical structure. In contrast, NMR spectra show no element of regular secondary or tertiary structure. Addition of one Ca2+ determines large spectral changes bringing the molecule in a conformation which is very close to the native three Ca2+ state. Addition of the second and third Ca2+ shifts this equilibrium progressively towards the liganded conformation but affects only minimally the spectrum of the liganded species.
Collapse
Affiliation(s)
- B Prêcheur
- Institut National de la Santé et de la Recherche Médicale, Institut Curie, Orsay, France
| | | | | | | | | |
Collapse
|
173
|
Foguel D, Suarez MC, Barbosa C, Rodrigues JJ, Sorenson MM, Smillie LB, Silva JL. Mimicry of the calcium-induced conformational state of troponin C by low temperature under pressure. Proc Natl Acad Sci U S A 1996; 93:10642-6. [PMID: 8855232 PMCID: PMC38207 DOI: 10.1073/pnas.93.20.10642] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Calcium binding to the N-domain of troponin C initiates a series of conformational changes that lead to muscle contraction. Calcium binding provides the free energy for a hydrophobic region in the core of N-domain to assume a more open configuration. Fluorescence measurements on a tryptophan mutant (F29W) show that a similar conformational change occurs in the absence of Ca2+ when the temperature is lowered under pressure. The conformation induced by subzero temperatures binds the hydrophobic probe bis-aminonaphthalene sulfonate, and the tryptophan has the same fluorescence lifetime (7 ns) as in the Ca2+-bound form. The decrease in volume (delta V = -25.4 ml/mol) corresponds to an increase in surface area. Thermodynamic measurements suggest an enthalpy-driven conformational change that leads to an intermediate with an exposed N-domain core and a high affinity for Ca2+.
Collapse
Affiliation(s)
- D Foguel
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
174
|
Affiliation(s)
- T C Südhof
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
175
|
Essen LO, Perisic O, Cheung R, Katan M, Williams RL. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 1996; 380:595-602. [PMID: 8602259 DOI: 10.1038/380595a0] [Citation(s) in RCA: 410] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian phosphoinositide-specific phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The 2.4-A structure of phospholipase C delta 1 reveals a multidomain protein incorporating modules shared by many signalling proteins. The structure suggests a mechanism for membrane attachment and Ca2+-dependent hydrolysis of second-messenger precursors. The regulation and reversible membrane association of PI-PLC may serve as a model for understanding other multidomain enzymes involved in phospholipid signalling.
Collapse
Affiliation(s)
- L O Essen
- Center for Protein Engineering, MRC Centre, Cambridge, UK
| | | | | | | | | |
Collapse
|
176
|
Tan RY, Mabuchi Y, Grabarek Z. Blocking the Ca2+-induced conformational transitions in calmodulin with disulfide bonds. J Biol Chem 1996; 271:7479-83. [PMID: 8631777 DOI: 10.1074/jbc.271.13.7479] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Calcium-dependent regulation of intracellular processes is mediated by proteins that on binding Ca2+ assume a new conformation, which enables them to bind to their specific target proteins and to modulate their function. Calmodulin (CaM) and troponin C, the two best characterized Ca2+-regulatory proteins, are members of the family of Ca2+-binding proteins utilizing the helix-loop-helix structural motif (EF-hand). Herzberg, Moult, and James (Herzberg, O., Moult, J., and James, M.N.G. (1986) J. Biol. Chem. 261, 2638-2644) proposed that the Ca2+-induced conformational transition in troponin C involves opening of the interface between the alpha-helical segments in the N-terminal domain of this protein. Here we have tested the hypothesis that a similar transition is the key Ca2+-induced regulatory event in calmodulin. Using site-directed mutagenesis we have substituted cysteine residues for Gln41 and Lys75 (CaM41/75) or Ile85 and Leu112 (CaM85/112) in the N-terminal and C-terminal domains, respectively, of human liver calmodulin. Based on molecular modeling, cysteines at these positions were expected to form intramolecular disulfide bonds in the Ca2+-free conformation of the protein, thus blocking the putative Ca2+-induced transition. We found that intramolecular disulfide bonds are readily formed in both mutants causing a decrease in affinity for Ca2+ and the loss of ability to activate target enzymes, phosphodiesterase and calcineurin. The regulatory activity is fully recovered in CaM41/75 and partially recovered in CaM85/112 upon reduction of the disulfide bonds with dithiothreitol and blocking the Cys residues by carboxyamidomethylation or cyanylation. These results indicate that the Ca2+-induced opening of the interfaces between helical segments in both domains of CaM is critical for its regulatory properties consistent with the Herzberg-Moult-James model.
Collapse
Affiliation(s)
- R Y Tan
- Muscle Research Group, Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | |
Collapse
|
177
|
Lin X, Dotson DG, Putkey JA. Covalent binding of peptides to the N-terminal hydrophobic region of cardiac troponin C has limited effects on function. J Biol Chem 1996; 271:244-9. [PMID: 8550567 DOI: 10.1074/jbc.271.1.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Exposure of an N-terminal hydrophobic region in troponin C is thought to be important for the regulation of contraction in striated muscle. To test this hypothesis, single Cys residues were engineered at positions 45, 81, 84, or 85 in the N-terminal hydrophobic region of cardiac troponin C (cTnC) to provide specific sites for attachment of blocking groups. A synthetic peptide, Ac-Val-Arg-Ala-Ile-Gly-Lys-Leu-Ser-Ser, or biotin was coupled to these Cys residues, and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity (70-80% inhibited) resulted when the peptide was conjugated to Cys-81 in cTnC(C81), while a lesser degree of inhibition (10-25% inhibited) resulted from covalent modification of cTnC(C84) and cTnC(C85). Inhibition was not due to an altered affinity of the cTnC(C81)/peptide conjugate for the myofibrils, and the Ca2+ dependence of ATPase activity was essentially identical to the unmodified protein. Thus, a subregion of the N-terminal hydrophobic region in cTnC is sensitive to disruption, while other regions are less important or can adapt to rather bulky blocking groups. The data suggest that Ca(2+)-sensitizing drugs may bind to the N-terminal hydrophobic region on cTnC but not interfere with transmission of the Ca2+ signal.
Collapse
Affiliation(s)
- X Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
178
|
|
179
|
Abstract
The structure of the apo form of calcyclin, a member of the S100 family of calcium-binding proteins, reveals a novel dimer fold that may reflect the presence of a new interface for target protein recognition.
Collapse
|
180
|
Abstract
NMR structures of calmodulin, troponin C and related proteins are providing the atomic details of the conformational changes that transduce Ca2+ signals into mechanical or metabolic responses.
Collapse
|
181
|
Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. NATURE STRUCTURAL BIOLOGY 1995; 2:758-67. [PMID: 7552747 DOI: 10.1038/nsb0995-758] [Citation(s) in RCA: 524] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The solution structure of Ca(2+)-free calmodulin has been determined by NMR spectroscopy, and is compared to the previously reported structure of the Ca(2+)-saturated form. The removal of Ca2+ causes the interhelical angles of four EF-hand motifs to increase by 36 degrees-44 degrees. This leads to major changes in surface properties, including the closure of the deep hydrophobic cavity essential for target protein recognition. Concerted movements of helices A and D with respect to B and C, and of helices E and H with respect to F and G are likely responsible for the cooperative Ca(2+)-binding property observed between two adjacent EF-hand sites in the amino- and carboxy-terminal domains.
Collapse
Affiliation(s)
- M Zhang
- Division of Molecular and Structural Biology, Ontario Cancer Institute, University of Toronto, Canada
| | | | | |
Collapse
|