151
|
Pourfarjam Y, Ventura J, Kurinov I, Cho A, Moss J, Kim IK. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. J Biol Chem 2018; 293:12350-12359. [PMID: 29907568 PMCID: PMC6093245 DOI: 10.1074/jbc.ra118.003586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
ADP-ribosyl-acceptor hydrolase 3 (ARH3) plays important roles in regulation of poly(ADP-ribosyl)ation, a reversible post-translational modification, and in maintenance of genomic integrity. ARH3 degrades poly(ADP-ribose) to protect cells from poly(ADP-ribose)-dependent cell death, reverses serine mono(ADP-ribosyl)ation, and hydrolyzes O-acetyl-ADP-ribose, a product of Sirtuin-catalyzed histone deacetylation. ARH3 preferentially hydrolyzes O-linkages attached to the anomeric C1″ of ADP-ribose; however, how ARH3 specifically recognizes and cleaves structurally diverse substrates remains unknown. Here, structures of full-length human ARH3 bound to ADP-ribose and Mg2+, coupled with computational modeling, reveal a dramatic conformational switch from closed to open states that enables specific substrate recognition. The glutamate flap, which blocks substrate entrance to Mg2+ in the unliganded closed state, is ejected from the active site when substrate is bound. This closed-to-open transition significantly widens the substrate-binding channel and precisely positions the scissile 1″-O-linkage for cleavage while securing tightly 2″- and 3″-hydroxyls of ADP-ribose. Our collective data uncover an unprecedented structural plasticity of ARH3 that supports its specificity for the 1″-O-linkage in substrates and Mg2+-dependent catalysis.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Jessica Ventura
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team Advanced Photon Source (NE-CAT APS), Argonne, Illinois 60439, and
| | - Ahra Cho
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Joel Moss
- Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - In-Kwon Kim
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, , Supported by the University of Cincinnati startup fund. To whom correspondence should be addressed:
Dept. of Chemistry, University of Cincinnati, 301 Clifton Ct., Cincinnati, OH 45221. Tel.:
513-556-1909; Fax:
513-556-9239; E-mail:
| |
Collapse
|
152
|
Sakthianandeswaren A, Parsons MJ, Mouradov D, MacKinnon RN, Catimel B, Liu S, Palmieri M, Love C, Jorissen RN, Li S, Whitehead L, Putoczki TL, Preaudet A, Tsui C, Nowell CJ, Ward RL, Hawkins NJ, Desai J, Gibbs P, Ernst M, Street I, Buchert M, Sieber OM. MACROD2 Haploinsufficiency Impairs Catalytic Activity of PARP1 and Promotes Chromosome Instability and Growth of Intestinal Tumors. Cancer Discov 2018; 8:988-1005. [PMID: 29880585 DOI: 10.1158/2159-8290.cd-17-0909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/16/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022]
Abstract
ADP-ribosylation is an important posttranslational protein modification that regulates diverse biological processes, controlled by dedicated transferases and hydrolases. Here, we show that frequent deletions (∼30%) of the MACROD2 mono-ADP-ribosylhydrolase locus in human colorectal cancer cause impaired PARP1 transferase activity in a gene dosage-dependent manner. MACROD2 haploinsufficiency alters DNA repair and sensitivity to DNA damage and results in chromosome instability. Heterozygous and homozygous depletion of Macrod2 enhances intestinal tumorigenesis in ApcMin/+ mice and the growth of human colorectal cancer xenografts. MACROD2 deletion in sporadic colorectal cancer is associated with the extent of chromosome instability, independent of clinical parameters and other known genetic drivers. We conclude that MACROD2 acts as a haploinsufficient tumor suppressor, with loss of function promoting chromosome instability, thereby driving cancer evolution.Significance: Chromosome instability (CIN) is a hallmark of cancer. We identify MACROD2 deletion as a cause of CIN in human colorectal cancer. MACROD2 loss causes repression of PARP1 activity, impairing DNA repair. MACROD2 haploinsufficiency promotes CIN and intestinal tumor growth. Our results reveal MACROD2 as a major caretaker tumor suppressor gene. Cancer Discov; 8(8); 988-1005. ©2018 AACR.See related commentary by Jin and Burkard, p. 921This article is highlighted in the In This Issue feature, p. 899.
Collapse
Affiliation(s)
- Anuratha Sakthianandeswaren
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marie J Parsons
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruth N MacKinnon
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne (St Vincent's Hospital), Fitzroy, Victoria, Australia
| | - Bruno Catimel
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheng Liu
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Palmieri
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Love
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Robert N Jorissen
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shan Li
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Lachlan Whitehead
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Putoczki
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Adele Preaudet
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Cary Tsui
- Histology Facility, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, The Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Robyn L Ward
- Office of the Deputy Vice-Chancellor (Research), The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas J Hawkins
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jayesh Desai
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Peter Gibbs
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, Victoria, Australia
- School of Cancer Medicine, LaTrobe University, Heidelberg, Victoria, Australia
| | - Ian Street
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics Cooperative Research Centre, Parkville, Victoria, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, Victoria, Australia
- School of Cancer Medicine, LaTrobe University, Heidelberg, Victoria, Australia
| | - Oliver M Sieber
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
153
|
Fehr AR, Jankevicius G, Ahel I, Perlman S. Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol 2018; 26:598-610. [PMID: 29268982 PMCID: PMC6003825 DOI: 10.1016/j.tim.2017.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Viruses from the Coronaviridae, Togaviridae, and Hepeviridae families all contain genes that encode a conserved protein domain, called a macrodomain; however, the role of this domain during infection has remained enigmatic. The recent discovery that mammalian macrodomain proteins enzymatically remove ADP-ribose, a common post-translation modification, from proteins has led to an outburst of studies describing both the enzymatic activity and function of viral macrodomains. These new studies have defined these domains as de-ADP-ribosylating enzymes, which indicates that these viruses have evolved to counteract antiviral ADP-ribosylation, likely mediated by poly-ADP-ribose polymerases (PARPs). Here, we comprehensively review this rapidly expanding field, describing the structures and enzymatic activities of viral macrodomains, and discussing their roles in viral replication and pathogenesis.
Collapse
Affiliation(s)
- Anthony R Fehr
- University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA; These authors contributed equally to this manuscript.
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; These authors contributed equally to this manuscript
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Stanley Perlman
- University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA.
| |
Collapse
|
154
|
Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, Gómez-Macias GS, Fajardo-Ramírez OR, Treviño V, Barrera-Saldaña HA, Garza-Rodríguez ML. Understanding the HPV integration and its progression to cervical cancer. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29518579 DOI: 10.1016/j.meegid.2018.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
155
|
van den Broek E, den Uil SH, Coupé VMH, Delis-van Diemen PM, Bolijn AS, Bril H, Stockmann HBAC, van Grieken NCT, Meijer GA, Fijneman RJA. MACROD2 expression predicts response to 5-FU-based chemotherapy in stage III colon cancer. Oncotarget 2018; 9:29445-29452. [PMID: 30034629 PMCID: PMC6047676 DOI: 10.18632/oncotarget.25655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is caused by genetic aberrations. MACROD2 is commonly involved in somatic focal DNA copy number losses, in more than one-third of CRCs. In this study, we aimed to investigate the association of MACROD2 protein expression with clinical outcome in stage II and stage III colon cancer. Methods Tissue microarrays (TMA) containing formalin-fixed paraffin-embedded tissue cores from 386 clinically well-annotated primary stage II and III colon cancers were stained by immunohistochemistry and evaluated for MACROD2 protein expression. Disease-free survival (DFS) analysis was performed to estimate association with clinical outcome. Results Loss of nuclear MACROD2 protein expression in epithelial neoplastic cells of stage III microsatellite stable (MSS) colon cancers was associated with poor DFS within the subgroup of 59 patients who received 5-fluorouracil (5-FU)-based adjuvant chemotherapy (p=0.005; HR=3.8, 95% CI 1.4-10.0). Conclusion These data indicate that low nuclear expression of MACROD2 is associated with poor prognosis of patients with stage III MSS primary colon cancer who were treated with 5-FU-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Evert van den Broek
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd H den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pien M Delis-van Diemen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne S Bolijn
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Herman Bril
- Department of Pathology, Spaarne Gasthuis, Haarlem, The Netherlands
| | | | | | - Gerrit A Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
156
|
Bütepage M, Preisinger C, von Kriegsheim A, Scheufen A, Lausberg E, Li J, Kappes F, Feederle R, Ernst S, Eckei L, Krieg S, Müller-Newen G, Rossetti G, Feijs KLH, Verheugd P, Lüscher B. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Sci Rep 2018; 8:6748. [PMID: 29712969 PMCID: PMC5928194 DOI: 10.1038/s41598-018-25137-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.
Collapse
Affiliation(s)
- Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alexander von Kriegsheim
- Systems Biology Ireland, Conway Institute, University College Dublin, Dublin 4, Ireland.,Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Eva Lausberg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Institute of Human Genetics, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jinyu Li
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | - Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany.,Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
157
|
Singh A, Kumar A, Yadav R, Uversky VN, Giri R. Deciphering the dark proteome of Chikungunya virus. Sci Rep 2018; 8:5822. [PMID: 29643398 PMCID: PMC5895634 DOI: 10.1038/s41598-018-23969-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. The outbreak of CHIKV infection has been seen in many tropical and subtropical regions of the biosphere. Current reports evidenced that after outbreaks in 2005-06, the fitness of this virus propagating in Aedes albopictus enhanced due to the epistatic mutational changes in its envelope protein. In our study, we evaluated the prevalence of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) in CHIKV proteome. IDPs/IDPRs are known as members of a 'Dark Proteome' that defined as a set of polypeptide segments or whole protein without unique three-dimensional structure within the cellular milieu but with significant biological functions, such as cell cycle regulation, control of signaling pathways, and maintenance of viral proteomes. However, the intrinsically disordered aspects of CHIKV proteome and roles of IDPs/IDPRs in the pathogenic mechanism of this important virus have not been evaluated as of yet. There are no existing reports on the analysis of intrinsic disorder status of CHIKV. To fulfil this goal, we have analyzed the abundance and functionality of IDPs/IDPRs in CHIKV proteins, involved in the replication and maturation. It is likely that these IDPs/IDPRs can serve as novel targets for disorder based drug design.
Collapse
Affiliation(s)
- Ankur Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Ankur Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Rakhi Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India.
- BioX Centre, Indian Institute of Technology Mandi, VPO Kamand, 175005, India.
| |
Collapse
|
158
|
Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography-Tandem Mass Spectrometry. Methods Mol Biol 2018; 1608:137-148. [PMID: 28695508 DOI: 10.1007/978-1-4939-6993-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein ADP-ribosylation is a covalent, reversible posttranslational modification (PTM) catalyzed by ADP-ribosyltransferases (ARTs). Proteins can be either mono- or poly-ADP-ribosylated under a variety of physiological and pathological conditions. To understand the functional contribution of protein ADP-ribosylation to normal and disease/stress states, modified protein and corresponding ADP-ribose acceptor site identification is crucial. Since ADP-ribosylation is a transient and relatively low abundant PTM, systematic and accurate identification of ADP-ribose acceptor sites has only recently become feasible. This is due to the development of specific ADP-ribosylated protein/peptide enrichment methodologies, as well as technical advances in high-accuracy liquid chromatography-tandem mass spectrometry (LC-MS/MS). The standardized protocol described here allows the identification of ADP-ribose acceptor sites in in vitro ADP-ribosylated proteins and will, thus, contribute to the functional characterization of this important PTM.
Collapse
|
159
|
Grunewald ME, Fehr AR, Athmer J, Perlman S. The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 2018; 517:62-68. [PMID: 29199039 PMCID: PMC5871557 DOI: 10.1016/j.virol.2017.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
ADP-ribosylation is a common post-translational modification, although how it modulates RNA virus infection is not well understood. While screening for ADP-ribosylated proteins during coronavirus (CoV) infection, we detected a ~55kDa ADP-ribosylated protein in mouse hepatitis virus (MHV)-infected cells and in virions, which we identified as the viral nucleocapsid (N) protein. The N proteins of porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV were also ADP-ribosylated. ADP-ribosylation of N protein was also observed in cells exogenously expressing N protein by transduction using Venezuelan equine encephalitis virus replicon particles (VRPs). However, plasmid-derived N protein was not ADP-ribosylated following transient transfection but was ADP-ribosylated after MHV infection, indicating that this modification requires virus infection. In conclusion, we have identified a novel post-translation modification of the CoV N protein that may play a regulatory role for this important structural protein.
Collapse
Affiliation(s)
- Matthew E Grunewald
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States
| | - Anthony R Fehr
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States
| | - Jeremiah Athmer
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States
| | - Stanley Perlman
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States.
| |
Collapse
|
160
|
Leung AKL, McPherson RL, Griffin DE. Macrodomain ADP-ribosylhydrolase and the pathogenesis of infectious diseases. PLoS Pathog 2018; 14:e1006864. [PMID: 29566066 PMCID: PMC5864081 DOI: 10.1371/journal.ppat.1006864] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (AKLL); (DEG)
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (AKLL); (DEG)
| |
Collapse
|
161
|
Zhang Y, Jumppanen M, Maksimainen MM, Auno S, Awol Z, Ghemtio L, Venkannagari H, Lehtiö L, Yli-Kauhaluoma J, Xhaard H, Boije Af Gennäs G. Adenosine analogs bearing phosphate isosteres as human MDO1 ligands. Bioorg Med Chem 2018; 26:1588-1597. [PMID: 29501416 DOI: 10.1016/j.bmc.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
The human O-acetyl-ADP-ribose deacetylase MDO1 is a mono-ADP-ribosylhydrolase involved in the reversal of post-translational modifications. Until now MDO1 has been poorly characterized, partly since no ligand is known besides adenosine nucleotides. Here, we synthesized thirteen compounds retaining the adenosine moiety and bearing bioisosteric replacements of the phosphate at the ribose 5'-oxygen. These compounds are composed of either a squaryldiamide or an amide group as the bioisosteric replacement and/or as a linker. To these groups a variety of substituents were attached such as phenyl, benzyl, pyridyl, carboxyl, hydroxy and tetrazolyl. Biochemical evaluation showed that two compounds, one from both series, inhibited ADP-ribosyl hydrolysis mediated by MDO1 in high concentrations.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Mikael Jumppanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Mirko M Maksimainen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, FI-90014 University of Oulu, Finland
| | - Samuli Auno
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Zulfa Awol
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Léo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Harikanth Venkannagari
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, FI-90014 University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, FI-90014 University of Oulu, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Gustav Boije Af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
162
|
Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit Rev Biochem Mol Biol 2018; 53:64-82. [PMID: 29098880 DOI: 10.1080/10409238.2017.1394265] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.
Collapse
Affiliation(s)
- Kerryanne Crawford
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| | | | - Andreja Mikoč
- c Division of Molecular Biology , Ruđer Bošković Institute , Zagreb , Croatia
| | - Ivan Matic
- b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Ivan Ahel
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| |
Collapse
|
163
|
Agnew T, Munnur D, Crawford K, Palazzo L, Mikoč A, Ahel I. MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria. Front Microbiol 2018; 9:20. [PMID: 29410655 PMCID: PMC5787345 DOI: 10.3389/fmicb.2018.00020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022] Open
Abstract
MacroD1 is a macrodomain containing protein that has mono-ADP-ribose hydrolase enzymatic activity toward several ADP-ribose adducts. Dysregulation of MacroD1 expression has been shown to be associated with the pathogenesis of several forms of cancer. To date, the physiological functions and sub-cellular localization of MacroD1 are unclear. Previous studies have described nuclear and cytosolic functions of MacroD1. However, in this study we show that endogenous MacroD1 protein is highly enriched within mitochondria. We also show that MacroD1 is highly expressed in human and mouse skeletal muscle. Furthermore, we show that MacroD1 can efficiently remove ADP-ribose from 5' and 3'-phosphorylated double stranded DNA adducts in vitro. Overall, we have shown that MacroD1 is a mitochondrial protein with promiscuous enzymatic activity that can target the ester bonds of ADP-ribosylated phosphorylated double-stranded DNA ends. These findings have exciting implications for MacroD1 and ADP-ribosylation within the regulation of mitochondrial function and DNA-damage in vivo.
Collapse
Affiliation(s)
- Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kerryanne Crawford
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
164
|
Zapata-Pérez R, Gil-Ortiz F, Martínez-Moñino AB, García-Saura AG, Juanhuix J, Sánchez-Ferrer Á. Structural and functional analysis of Oceanobacillus iheyensis macrodomain reveals a network of waters involved in substrate binding and catalysis. Open Biol 2018; 7:rsob.160327. [PMID: 28446708 PMCID: PMC5413906 DOI: 10.1098/rsob.160327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity. Here, we present a functional and structural characterization of a macrodomain from the extremely halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiMacroD), related to hMacroD1/hMacroD2, shedding light on substrate binding and catalysis. The crystal structures of D40A, N30A and G37V mutants, and those with MES, ADPr and ADP bound, allowed us to identify five fixed water molecules that play a significant role in substrate binding. Closure of the β6–α4 loop is revealed as essential not only for pyrophosphate recognition, but also for distal ribose orientation. In addition, a novel structural role for residue D40 is identified. Furthermore, it is revealed that OiMacroD not only catalyses the hydrolysis of O-acetyl-ADP-ribose but also reverses protein mono-ADP-ribosylation. Finally, mutant G37V supports the participation of a substrate-coordinated water molecule in catalysis that helps to select the proper substrate conformation.
Collapse
Affiliation(s)
- Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | | | - Ana Belén Martínez-Moñino
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Antonio Ginés García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Jordi Juanhuix
- CELLS-ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain .,Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
165
|
Zhen Y, Yu Y. Proteomic Analysis of the Downstream Signaling Network of PARP1. Biochemistry 2018; 57:429-440. [PMID: 29327913 DOI: 10.1021/acs.biochem.7b01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.
Collapse
Affiliation(s)
- Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
166
|
Ekblad T, Verheugd P, Lindgren AE, Nyman T, Elofsson M, Schüler H. Identification of Poly(ADP-Ribose) Polymerase Macrodomain Inhibitors Using an AlphaScreen Protocol. SLAS DISCOVERY 2018; 23:353-362. [PMID: 29316839 DOI: 10.1177/2472555217750870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrodomains recognize intracellular adenosine diphosphate (ADP)-ribosylation resulting in either removal of the modification or a protein interaction event. Research into compounds that modulate macrodomain functions could make important contributions. We investigated the interactions of all seven individual macrodomains of the human poly(ADP-ribose) polymerase (PARP) family members PARP9, PARP14, and PARP15 with five mono-ADP-ribosylated (automodified) ADP-ribosyltransferase domains using an AlphaScreen assay. Several mono-ADP-ribosylation-dependent interactions were identified, and they were found to be in the micromolar affinity range using surface plasmon resonance (SPR). We then focused on the interaction between PARP14 macrodomain-2 and the mono-ADP-ribosylated PARP10 catalytic domain, and probed a ~1500-compound diverse library for inhibitors of this interaction using AlphaScreen. Initial hit compounds were verified by concentration-response experiments using AlphaScreen and SPR, and they were tested against PARP14 macrodomain-2 and -3. Two initial hit compounds and one chemical analog each were further characterized using SPR and microscale thermophoresis. In conclusion, our results reveal novel macrodomain interactions and establish protocols for identification of inhibitors of such interactions.
Collapse
Affiliation(s)
- Torun Ekblad
- 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Present addresses: For TE, Mabtech AB, 131 52 Nacka Strand, Sweden; for PV, Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Patricia Verheugd
- 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Present addresses: For TE, Mabtech AB, 131 52 Nacka Strand, Sweden; for PV, Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | | | - Tomas Nyman
- 3 Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | | | - Herwig Schüler
- 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
167
|
Quénet D. Histone Variants and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:1-39. [DOI: 10.1016/bs.ircmb.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
168
|
Posavec Marjanovic M, Jankevicius G, Ahel I. Hydrolysis of ADP-Ribosylation by Macrodomains. Methods Mol Biol 2018; 1813:215-223. [PMID: 30097870 DOI: 10.1007/978-1-4939-8588-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ADP-ribosylation is the process of transferring the ADP-ribose moiety from NAD+ to a substrate. While a number of proteins represent well described substrates accepting ADP-ribose modification, a recent report demonstrated biological role for DNA ADP-ribosylation as well. The conserved macrodomain fold of several known hydrolyses was found to possess de-ADP-ribosylating activity and the ability to hydrolyze (reverse) ADP-ribosylation. Here we summarize the methods that can be employed to study mono-ADP-ribosylation hydrolysis by macrodomains.
Collapse
Affiliation(s)
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
169
|
A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene. Mol Cell 2017; 68:860-871.e7. [PMID: 29220653 DOI: 10.1016/j.molcel.2017.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 11/24/2022]
Abstract
DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.
Collapse
|
170
|
Chen J, Lam AT, Zhang Y. A macrodomain-linked immunosorbent assay (MLISA) for mono-ADP-ribosyltransferases. Anal Biochem 2017; 543:132-139. [PMID: 29247608 DOI: 10.1016/j.ab.2017.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
ADP-ribosyltransferases (ARTs) catalyze reversible additions of mono- and poly-ADP-ribose onto diverse types of proteins by using nicotinamide adenine dinucleotide (NAD+) as a cosubstrate. In the human ART superfamily, 14 out of 20 members are shown to catalyze endogenous protein mono-ADP-ribosylation and play important roles in regulating various physiological and pathophysiological processes. Identification of new modulators of mono-ARTs can thus potentially lead to discovery of novel therapeutics. In this study, we developed a macrodomain-linked immunosorbent assay (MLISA) for characterizing mono-ARTs. Recombinant macrodomain 2 from poly-ADP-ribose polymerase 14 (PARP14) was generated with a C-terminal human influenza hemagglutinin (HA) tag for detecting mono-ADP-ribosylated proteins. Coupled with an anti-HA secondary antibody, the generated HA-tagged macrodomain 2 reveals high specificity for mono-ADP-ribosylation catalyzed by distinct mono-ARTs. Kinetic parameters of PARP15-catalyzed automodification were determined by MLISA and are in good agreement with previous studies. Eight commonly used chemical tools for PARPs were examined by MLISA with PARP15 and PARP14 in 96-well plates and exhibited moderate inhibitory activities for PARP15, consistent with published reports. These results demonstrate that MLISA provides a new and convenient method for quantitative characterization of mono-ART enzymes and may allow identification of potent mono-ART inhibitors in a high-throughput-compatible manner.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
171
|
Abplanalp J, Leutert M, Frugier E, Nowak K, Feurer R, Kato J, Kistemaker HVA, Filippov DV, Moss J, Caflisch A, Hottiger MO. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat Commun 2017; 8:2055. [PMID: 29234005 PMCID: PMC5727137 DOI: 10.1038/s41467-017-02253-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation is a posttranslational modification that exists in monomeric and polymeric forms. Whereas the writers (e.g. ARTD1/PARP1) and erasers (e.g. PARG, ARH3) of poly-ADP-ribosylation (PARylation) are relatively well described, the enzymes involved in mono-ADP-ribosylation (MARylation) have been less well investigated. While erasers for the MARylation of glutamate/aspartate and arginine have been identified, the respective enzymes with specificity for serine were missing. Here we report that, in vitro, ARH3 specifically binds and demodifies proteins and peptides that are MARylated. Molecular modeling and site-directed mutagenesis of ARH3 revealed that numerous residues are critical for both the mono- and the poly-ADP-ribosylhydrolase activity of ARH3. Notably, a mass spectrometric approach showed that ARH3-deficient mouse embryonic fibroblasts are characterized by a specific increase in serine-ADP-ribosylation in vivo under untreated conditions as well as following hydrogen peroxide stress. Together, our results establish ARH3 as a serine mono-ADP-ribosylhydrolase and as an important regulator of the basal and stress-induced ADP-ribosylome.
Collapse
Affiliation(s)
- Jeannette Abplanalp
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Emilie Frugier
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Roxane Feurer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jiro Kato
- Laboratory of Translational Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892-1590, USA
| | - Hans V A Kistemaker
- Leiden Institute of Chemistry, Department of Bio-organic Synthesis, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Department of Bio-organic Synthesis, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Joel Moss
- Laboratory of Translational Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892-1590, USA
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
172
|
Gibson BA, Conrad LB, Huang D, Kraus WL. Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. Biochemistry 2017; 56:6305-6316. [PMID: 29053245 PMCID: PMC6465537 DOI: 10.1021/acs.biochem.7b00670] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ADP-ribosylation is an enzyme-catalyzed post-translational modification of proteins in which the ADP-ribose (ADPR) moiety of NAD+ is transferred to a specific amino acid in a substrate protein. The biological functions of ADP-ribosylation are numerous and diverse, ranging from normal physiology to pathological conditions. Biochemical and cellular studies of the diverse forms and functions of ADPR require immunological reagents that can be used for detection and enrichment. The lack of a complete set of tools that recognize all forms of ADPR [i.e., mono-, oligo-, and poly(ADP-ribose)] has hampered progress. Herein, we describe the generation and characterization of a set of recombinant antibody-like ADP-ribose binding proteins, in which naturally occurring ADPR binding domains, including macrodomains and WWE domains, have been functionalized by fusion to the Fc region of rabbit immunoglobulin. These reagents, which collectively recognize all forms of ADPR with different specificities, are useful in a broad array of antibody-based assays, such as immunoblotting, immunofluorescent staining of cells, and immunoprecipitation. Observations from these assays suggest that the biology of ADPR is more diverse, rich, and complex than previously thought. The ARBD-Fc fusion proteins described herein will be useful tools for future exploration of the chemistry, biochemistry, and biology of ADP-ribose.
Collapse
Affiliation(s)
- Bryan A. Gibson
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
| | - Lesley B. Conrad
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- The Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9032
- These authors contributed equally to this work
| | - Dan Huang
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- Department of Cardiovascular Diseases, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
- These authors contributed equally to this work
| | - W. Lee Kraus
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
- The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8511
| |
Collapse
|
173
|
Munnur D, Ahel I. Reversible mono-ADP-ribosylation of DNA breaks. FEBS J 2017; 284:4002-4016. [PMID: 29054115 PMCID: PMC5725667 DOI: 10.1111/febs.14297] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
Adenosine diphosphate (ADP)-ribosylation is a chemical modification of macromolecules that plays an important role in regulation of quintessential biological processes such as DNA repair, transcription, chromatin remodelling, stress response, apoptosis, bacterial metabolism and many others. ADP-ribosylation is carried out by ADP-ribosyltransferase proteins, such as poly (ADP-ribose) polymerases (PARPs) that transfer either monomer or polymers of ADP-ribose onto the molecular targets by using nicotinamide adenine dinucleotide (NAD+ ) as a cofactor. Traditionally, proteins have been described as primary targets of ADP-ribosylation; however, there has been growing evidence that DNA may be a common target as well. Here, we show using biochemical studies that PARP3, a DNA damage-activated ADP-ribosyltransferase, can mono-ADP-ribosylate double-stranded DNA ends. ADP-ribosylation of DNA mediated by PARP3 attaches a single mono-ADP-ribose moiety to the phosphate group at the terminal ends of DNA. We further show that mono ADP-ribosylation at DNA ends can be efficiently reversed by several cellular hydrolases (PARG, MACROD2, TARG1 and ARH3). This suggests that mono ADP-ribosylated DNA adducts can be efficiently removed in cells by several mechanisms.
Collapse
Affiliation(s)
- Deeksha Munnur
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordUK
| |
Collapse
|
174
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
175
|
An ELISA method to estimate the mono ADP-ribosyltransferase activities: e.g in pertussis toxin and vaccines. Anal Biochem 2017; 540-541:15-19. [PMID: 29108883 DOI: 10.1016/j.ab.2017.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
ADP-ribosyltransferase activities have been observed in many prokaryotic and eukaryotic species and viruses and are involved in many cellular processes, including cell signalling, DNA repair, gene regulation and apoptosis. In a number of bacterial toxins, mono ADP-ribosyltransferase is the main cause of host cell cytotoxicity. Several approaches have been used to analyse this biological system from measuring its enzyme products to its functions. By using a mono ADP-ribose binding protein we have now developed an ELISA method to estimate native pertussis toxin mono ADP-ribosyltransferase activity and its residual activities in pertussis vaccines as an example. This new approach is easy to perform and adaptable in most laboratories. In theory, this assay system is also very versatile and could measure the enzyme activity in other bacteria such as Cholera, Clostridium, E. coli, Diphtheria, Pertussis, Pseudomonas, Salmonella and Staphylococcus by just switching to their respective peptide substrates. Furthermore, this mono ADP-ribose binding protein could also be used for staining mono ADP-ribosyl products resolved on gels or membranes.
Collapse
|
176
|
Li J, Bonkowski MS, Moniot S, Zhang D, Hubbard BP, Ling AJY, Rajman LA, Qin B, Lou Z, Gorbunova V, Aravind L, Steegborn C, Sinclair DA. A conserved NAD + binding pocket that regulates protein-protein interactions during aging. Science 2017; 355:1312-1317. [PMID: 28336669 DOI: 10.1126/science.aad8242] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 08/15/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022]
Abstract
DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD+ (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD+ to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD+ concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD+ Thus, NAD+ directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Bonkowski
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Sébastien Moniot
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Basil P Hubbard
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Alvin J Y Ling
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Luis A Rajman
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Qin
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Vera Gorbunova
- Division of Biology, 434 Hutchinson Hall, River Campus, University of Rochester, Rochester, NY 14627, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA. .,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
177
|
Posavec Marjanović M, Hurtado-Bagès S, Lassi M, Valero V, Malinverni R, Delage H, Navarro M, Corujo D, Guberovic I, Douet J, Gama-Perez P, Garcia-Roves PM, Ahel I, Ladurner AG, Yanes O, Bouvet P, Suelves M, Teperino R, Pospisilik JA, Buschbeck M. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD + consumption. Nat Struct Mol Biol 2017; 24:902-910. [PMID: 28991266 PMCID: PMC5791885 DOI: 10.1038/nsmb.3481] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A1.1 contains a macrodomain capable of binding NAD+-derived metabolites. Here we report that macroH2A1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing, and that myotubes that lack macroH2A1.1 have a defect in mitochondrial respiratory capacity. We found that the metabolite-binding macrodomain was essential for sustained optimal mitochondrial function but dispensable for gene regulation. Through direct binding, macroH2A1.1 inhibits basal poly-ADP ribose polymerase 1 (PARP-1) activity and thus reduces nuclear NAD+ consumption. The resultant accumulation of the NAD+ precursor NMN allows for maintenance of mitochondrial NAD+ pools that are critical for respiration. Our data indicate that macroH2A1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD+ consumption and establishing a buffer of NAD+ precursors in differentiated cells.
Collapse
Affiliation(s)
- Melanija Posavec Marjanović
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
- PhD Program in Biomedicine, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sarah Hurtado-Bagès
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- PhD Program in Biomedicine, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maximilian Lassi
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Vanesa Valero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roberto Malinverni
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Hélène Delage
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Miriam Navarro
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain
- Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - David Corujo
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Iva Guberovic
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julien Douet
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences II, Faculty of Medicine - University of Barcelona, Spain
| | - Pablo M. Garcia-Roves
- Department of Physiological Sciences II, Faculty of Medicine - University of Barcelona, Spain
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreas G. Ladurner
- Biomedical Center Munich (BMC) - Physiological Chemistry, Center for Integrated Protein Science Munich, Munich Cluster for Systems Neurology, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain
- Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Philippe Bouvet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Mònica Suelves
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Marcus Buschbeck
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
178
|
Haikarainen T, Maksimainen MM, Obaji E, Lehtiö L. Development of an Inhibitor Screening Assay for Mono-ADP-Ribosyl Hydrolyzing Macrodomains Using AlphaScreen Technology. SLAS DISCOVERY 2017; 23:255-263. [PMID: 29028410 DOI: 10.1177/2472555217737006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein mono-ADP-ribosylation is a posttranslational modification involved in the regulation of several cellular signaling pathways. Cellular ADP-ribosylation is regulated by ADP-ribose hydrolases via a hydrolysis of the protein-linked ADP-ribose. Most of the ADP-ribose hydrolases share a macrodomain fold. Macrodomains have been linked to several diseases, such as cancer, but their cellular roles are mostly unknown. Currently, there are no inhibitors available targeting the mono-ADP-ribose hydrolyzing macrodomains. We have developed a robust AlphaScreen assay for the screening of inhibitors against macrodomains having mono-ADP-ribose hydrolysis activity. We utilized this assay for validatory screening against human MacroD1 and identified five compounds inhibiting the macrodomain. Dose-response measurements and an orthogonal assay further validated four of these compounds as MacroD1 inhibitors. The developed assay is homogenous, easy to execute, and suitable for the screening of large compound libraries. The assay principle can also be adapted for other ADP-ribose hydrolyzing macrodomains, which can utilize a biotin-mono-ADP-ribosylated protein as a substrate.
Collapse
Affiliation(s)
- Teemu Haikarainen
- 1 Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mirko M Maksimainen
- 1 Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ezeogo Obaji
- 1 Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- 1 Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
179
|
Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:82-91. [PMID: 31395352 DOI: 10.1016/j.mrrev.2017.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribosyl)ation (aka PARylation) is a unique protein post-translational modification (PTM) first described over 50 years ago. PARylation regulates a number of biological processes including chromatin remodeling, the DNA damage response (DDR), transcription, apoptosis, and mitosis. The subsequent discovery of poly(ADP-ribose) polymerase-1 (PARP-1) catalyzing DNA-dependent PARylation spearheaded the field of DDR. The expanding knowledge about the poly ADP-ribose (PAR) recognition domains prompted the discovery of novel DDR factors and revealed crosstalk with other protein PTMs including phosphorylation, ubiquitination, methylation and acetylation. In this review, we highlight the current knowledge on PAR-regulated DDR, PAR recognition domain, and PARP inhibition in cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsien Hou
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
180
|
Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, Chatterjee M, Kuśmider B, Reon B, Parlak M, Gorbunova V, Abbas T, Jeffery E, Sherman NE, Paschal BM. Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Mol Cell 2017; 66:503-516.e5. [PMID: 28525742 DOI: 10.1016/j.molcel.2017.04.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Adam Spencer
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Natalia Dworak
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Li Ni
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Luke T Oostdyk
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA
| | - Mandovi Chatterjee
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Beata Kuśmider
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA
| | - Brian Reon
- Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA
| | - Mahmut Parlak
- Department of Radiation Oncology, University of Virginia, PO Box 800383, Charlottesville, VA 22908, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, 434 Hutchison Hall, Rochester, NY 14627, USA
| | - Tarek Abbas
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA; Department of Radiation Oncology, University of Virginia, PO Box 800383, Charlottesville, VA 22908, USA
| | - Erin Jeffery
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Pinn Hall, Room 1034, Charlottesville, VA 22908, USA
| | - Nicholas E Sherman
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Pinn Hall, Room 1034, Charlottesville, VA 22908, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, West Complex, 1335 Lee Street, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, PO Box 800733, Charlottesville, VA 22908, USA.
| |
Collapse
|
181
|
Palazzo L, Mikoč A, Ahel I. ADP-ribosylation: new facets of an ancient modification. FEBS J 2017; 284:2932-2946. [PMID: 28383827 PMCID: PMC7163968 DOI: 10.1111/febs.14078] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
Rapid response to environmental changes is achieved by uni- and multicellular organisms through a series of molecular events, often involving modification of macromolecules, including proteins, nucleic acids and lipids. Amongst these, ADP-ribosylation is of emerging interest because of its ability to modify different macromolecules in the cells, and its association with many key biological processes, such as DNA-damage repair, DNA replication, transcription, cell division, signal transduction, stress and infection responses, microbial pathogenicity and aging. In this review, we provide an update on novel pathways and mechanisms regulated by ADP-ribosylation in organisms coming from all kingdoms of life.
Collapse
Affiliation(s)
- Luca Palazzo
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Andreja Mikoč
- Division of Molecular BiologyRuđer Bošković InstituteZagrebCroatia
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordUK
| |
Collapse
|
182
|
Liu C, Vyas A, Kassab MA, Singh AK, Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res 2017; 45:8129-8141. [PMID: 28854736 PMCID: PMC5737498 DOI: 10.1093/nar/gkx565] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/11/2023] Open
Abstract
Poly ADP-ribose polymerases (PARPs) catalyze massive protein poly ADP-ribosylation (PARylation) within seconds after the induction of DNA single- or double-strand breaks. PARylation occurs at or near the sites of DNA damage and promotes the recruitment of DNA repair factors via their poly ADP-ribose (PAR) binding domains. Several novel PAR-binding domains have been recently identified. Here, we summarize these and other recent findings suggesting that PARylation may be the critical event that mediates the first wave of the DNA damage response. We also discuss the potential for functional crosstalk with other DNA damage-induced post-translational modifications.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Aditi Vyas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Muzaffer A. Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Anup K. Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
183
|
Gupte R, Liu Z, Kraus WL. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 2017; 31:101-126. [PMID: 28202539 PMCID: PMC5322727 DOI: 10.1101/gad.291518.116] [Citation(s) in RCA: 507] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, Gupte et al. discuss new findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair as well as recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. The discovery of poly(ADP-ribose) >50 years ago opened a new field, leading the way for the discovery of the poly(ADP-ribose) polymerase (PARP) family of enzymes and the ADP-ribosylation reactions that they catalyze. Although the field was initially focused primarily on the biochemistry and molecular biology of PARP-1 in DNA damage detection and repair, the mechanistic and functional understanding of the role of PARPs in different biological processes has grown considerably of late. This has been accompanied by a shift of focus from enzymology to a search for substrates as well as the first attempts to determine the functional consequences of site-specific ADP-ribosylation on those substrates. Supporting these advances is a host of methodological approaches from chemical biology, proteomics, genomics, cell biology, and genetics that have propelled new discoveries in the field. New findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair have been complemented by recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. These studies have begun to reveal the promising ways in which PARPs may be targeted therapeutically for the treatment of disease. In this review, we discuss these topics and relate them to the future directions of the field.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ziying Liu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
184
|
Abstract
Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.
Collapse
|
185
|
Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. Serine ADP-ribosylation reversal by the hydrolase ARH3. eLife 2017; 6:e28533. [PMID: 28650317 PMCID: PMC5552275 DOI: 10.7554/elife.28533] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
ADP-ribosylation (ADPr) is a posttranslational modification (PTM) of proteins that controls many cellular processes, including DNA repair, transcription, chromatin regulation and mitosis. A number of proteins catalyse the transfer and hydrolysis of ADPr, and also specify how and when the modification is conjugated to the targets. We recently discovered a new form of ADPr that is attached to serine residues in target proteins (Ser-ADPr) and showed that this PTM is specifically made by PARP1/HPF1 and PARP2/HPF1 complexes. In this work, we found by quantitative proteomics that histone Ser-ADPr is reversible in cells during response to DNA damage. By screening for the hydrolase that is responsible for the reversal of Ser-ADPr, we identified ARH3/ADPRHL2 as capable of efficiently and specifically removing Ser-ADPr of histones and other proteins. We further showed that Ser-ADPr is a major PTM in cells after DNA damage and that this signalling is dependent on ARH3.
Collapse
Affiliation(s)
- Pietro Fontana
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
186
|
Abbotts R, Wilson DM. Coordination of DNA single strand break repair. Free Radic Biol Med 2017; 107:228-244. [PMID: 27890643 PMCID: PMC5443707 DOI: 10.1016/j.freeradbiomed.2016.11.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
The genetic material of all organisms is susceptible to modification. In some instances, these changes are programmed, such as the formation of DNA double strand breaks during meiotic recombination to generate gamete variety or class switch recombination to create antibody diversity. However, in most cases, genomic damage is potentially harmful to the health of the organism, contributing to disease and aging by promoting deleterious cellular outcomes. A proportion of DNA modifications are caused by exogenous agents, both physical (namely ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, platinum compounds and psoralens), which can produce numerous forms of DNA damage, including a range of "simple" and helix-distorting base lesions, abasic sites, crosslinks and various types of phosphodiester strand breaks. More significant in terms of frequency are endogenous mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, attack by reactive oxygen species and other byproducts of normal cellular metabolism, or incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, either produced directly or generated as intermediates of DNA repair. This review will focus upon the creation, consequences and resolution of single strand breaks, with a particular focus on two major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair cross-complementing protein 1 (XRCC1).
Collapse
Affiliation(s)
- Rachel Abbotts
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
187
|
Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation. Biochem Biophys Res Commun 2017; 486:626-631. [DOI: 10.1016/j.bbrc.2017.03.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
|
188
|
Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks. Sci Rep 2017; 7:43750. [PMID: 28252050 PMCID: PMC5333086 DOI: 10.1038/srep43750] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair.
Collapse
|
189
|
Jubin T, Kadam A, Gani AR, Singh M, Dwivedi M, Begum R. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Semin Cell Dev Biol 2017; 63:167-179. [PMID: 27476447 DOI: 10.1016/j.semcdb.2016.07.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Gene regulation mediates the processes of cellular development and differentiation leading to the origin of different cell types each having their own signature gene expression profile. However, the compact chromatin structure and the timely recruitment of molecules involved in various signaling pathways are of prime importance for temporal and spatial gene regulation that eventually contribute towards cell type and specificity. Poly (ADP-ribose) polymerase-1 (PARP-1), a 116-kDa nuclear multitasking protein is involved in modulation of chromatin condensation leading to altered gene expression. In response to activation signals, it adds ADP-ribose units to various target proteins including itself, thus regulating various key cellular processes like DNA repair, cell death, transcription, mRNA splicing etc. This review provides insights into the role of PARP-1 in gene regulation, cell differentiation and multicellular morphogenesis. In addition, the review also explores involvement of PARP-1 in immune cells development and therapeutic possibilities to treat various human diseases.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Amina Rafath Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, Gujarat 394350, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
190
|
Posavec Marjanović M, Crawford K, Ahel I. PARP, transcription and chromatin modeling. Semin Cell Dev Biol 2017; 63:102-113. [PMID: 27677453 DOI: 10.1016/j.semcdb.2016.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Compaction mode of chromatin and chromatin highly organised structures regulate gene expression. Posttranslational modifications, histone variants and chromatin remodelers modulate the compaction, structure and therefore function of specific regions of chromatin. The generation of poly(ADP-ribose) (PAR) is emerging as one of the key signalling events on sites undergoing chromatin structure modulation. PAR is generated locally in response to stresses. These include genotoxic stress but also differentiation signals, metabolic and hormonal cues. A pictures emerges in which transient PAR formation is essential to orchestrate chromatin remodelling and transcription factors allowing the cell to adapt to alteration in its environment. This review summarizes the diverse factors of ADP-ribosylation in the adaptive regulation of chromatin structure and transcription.
Collapse
Affiliation(s)
| | - Kerryanne Crawford
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, UK,.
| |
Collapse
|
191
|
Robert I, Gaudot L, Yélamos J, Noll A, Wong HK, Dantzer F, Schreiber V, Reina-San-Martin B. Robust immunoglobulin class switch recombination and end joining in Parp9-deficient mice. Eur J Immunol 2017; 47:665-676. [PMID: 28105679 DOI: 10.1002/eji.201646757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
To mount highly specific and adapted immune responses, B lymphocytes assemble and diversify their antibody repertoire through mechanisms involving the formation of programmed DNA damage. Immunoglobulin class switch recombination (CSR) is triggered by DNA lesions induced by activation-induced cytidine deaminase, which are processed to double-stranded DNA break (DSB) intermediates. These DSBs activate the cellular DNA damage response and enroll numerous DNA repair factors, involving poly(ADP-ribose) polymerases Parp1, Parp2, and Parp3 to promote appropriate DNA repair and efficient long-range recombination. The macroParp Parp9, which is overexpressed in certain lymphomas, has been recently implicated in DSB repair, acting together with Parp1. Here, we examine the contribution of Parp9 to the resolution of physiological DSBs incurred during V(D)J recombination and CSR by generating Parp9-/- mice. We find that Parp9-deficient mice are viable, fertile, and do not show any overt phenotype. Moreover, we find that Parp9 is dispensable for B-cell development. Finally, we show that CSR and DNA end-joining are robust in the absence of Parp9, indicating that Parp9 is not essential in vivo to achieve physiological DSB repair, or that strong compensatory mechanisms exist.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Léa Gaudot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Immunology, Hospital del Mar, Barcelona, Spain.,Network Center for Biomedical Research on Hepatic and Digestive Diseases, Madrid, Spain
| | - Aurélia Noll
- Centre National de Recherche Scientifique, UMR7242, Illkirch, France.,Laboratoire d'Excellence Medalis, Université de Strasbourg, Illkirch, France.,Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Illkirch, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Heng-Kuan Wong
- Centre National de Recherche Scientifique, UMR7242, Illkirch, France.,Laboratoire d'Excellence Medalis, Université de Strasbourg, Illkirch, France.,Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Illkirch, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Françoise Dantzer
- Centre National de Recherche Scientifique, UMR7242, Illkirch, France.,Laboratoire d'Excellence Medalis, Université de Strasbourg, Illkirch, France.,Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Illkirch, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Valérie Schreiber
- Centre National de Recherche Scientifique, UMR7242, Illkirch, France.,Laboratoire d'Excellence Medalis, Université de Strasbourg, Illkirch, France.,Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Illkirch, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
192
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed protein kinase that sits at the nexus of multiple signaling pathways. Its deep integration into cellular control circuits is consummate to its implication in diseases ranging from mood disorders to diabetes to neurodegenerative diseases and cancers. The selectivity and insulation of such a promiscuous kinase from unwanted crosstalk between pathways, while orchestrating a multifaceted response to cellular stimuli, offer key insights into more general mechanisms of cell regulation. Here, we review recent advances that have contributed to the understanding of GSK-3 and its role in driving appreciation of intracellular signal coordination.
Collapse
Affiliation(s)
- Kevin W Cormier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| |
Collapse
|
193
|
Eckei L, Krieg S, Bütepage M, Lehmann A, Gross A, Lippok B, Grimm AR, Kümmerer BM, Rossetti G, Lüscher B, Verheugd P. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep 2017; 7:41746. [PMID: 28150709 PMCID: PMC5288732 DOI: 10.1038/srep41746] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023] Open
Abstract
Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.
Collapse
Affiliation(s)
- Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Anne Lehmann
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Annika Gross
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Barbara Lippok
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Alexander R Grimm
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Beate M Kümmerer
- Institute of Virology, University of Bonn Medical Centre, 53127 Bonn, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany.,Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| |
Collapse
|
194
|
|
195
|
ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc Natl Acad Sci U S A 2017; 114:1666-1671. [PMID: 28143925 DOI: 10.1073/pnas.1621485114] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus (CHIKV), an Old World alphavirus, is transmitted to humans by infected mosquitoes and causes acute rash and arthritis, occasionally complicated by neurologic disease and chronic arthritis. One determinant of alphavirus virulence is nonstructural protein 3 (nsP3) that contains a highly conserved MacroD-type macrodomain at the N terminus, but the roles of nsP3 and the macrodomain in virulence have not been defined. Macrodomain is a conserved protein fold found in several plus-strand RNA viruses that binds to the small molecule ADP-ribose. Prototype MacroD-type macrodomains also hydrolyze derivative linkages on the distal ribose ring. Here, we demonstrated that the CHIKV nsP3 macrodomain is able to hydrolyze ADP-ribose groups from mono(ADP-ribosyl)ated proteins. Using mass spectrometry, we unambiguously defined its substrate specificity as mono(ADP-ribosyl)ated aspartate and glutamate but not lysine residues. Mutant viruses lacking hydrolase activity were unable to replicate in mammalian BHK-21 cells or mosquito Aedes albopictus cells and rapidly reverted catalytically inactivating mutations. Mutants with reduced enzymatic activity had slower replication in mammalian neuronal cells and reduced virulence in 2-day-old mice. Therefore, nsP3 mono(ADP-ribosyl)hydrolase activity is critical for CHIKV replication in both vertebrate hosts and insect vectors, and for virulence in mice.
Collapse
|
196
|
Golia B, Moeller GK, Jankevicius G, Schmidt A, Hegele A, Preißer J, Tran ML, Imhof A, Timinszky G. ATM induces MacroD2 nuclear export upon DNA damage. Nucleic Acids Res 2017; 45:244-254. [PMID: 28069995 PMCID: PMC5224513 DOI: 10.1093/nar/gkw904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/08/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
ADP-ribosylation is a dynamic post-translation modification that regulates the early phase of various DNA repair pathways by recruiting repair factors to chromatin. ADP-ribosylation levels are defined by the activities of specific transferases and hydrolases. However, except for the transferase PARP1/ARDT1 little is known about regulation of these enzymes. We found that MacroD2, a mono-ADP-ribosylhydrolase, is exported from the nucleus upon DNA damage, and that this nuclear export is induced by ATM activity. We show that the export is dependent on the phosphorylation of two SQ/TQ motifs, suggesting a novel direct interaction between ATM and ADP-ribosylation. Lastly, we show that MacroD2 nuclear export temporally restricts its recruitment to DNA lesions, which may decrease the net ADP-ribosylhydrolase activity at the site of DNA damage. Together, our results identify a novel feedback regulation between two crucial DNA damage-induced signaling pathways: ADP-ribosylation and ATM activation.
Collapse
Affiliation(s)
- Barbara Golia
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Giuliana Katharina Moeller
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Gytis Jankevicius
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Andreas Schmidt
- Zentrallabor für Proteinanalytik (Protein Analysis Unit), Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Anna Hegele
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Julia Preißer
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Mai Ly Tran
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Axel Imhof
- Zentrallabor für Proteinanalytik (Protein Analysis Unit), Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Gyula Timinszky
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
197
|
Abstract
Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD+) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.
Collapse
Affiliation(s)
- Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Dominic I James
- Cancer Research UK Manchester Institute Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Ian D Waddell
- Cancer Research UK Manchester Institute Drug Discovery Unit, University of Manchester, Manchester, M20 4BX, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
198
|
The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 2016; 7:mBio.01721-16. [PMID: 27965448 PMCID: PMC5156301 DOI: 10.1128/mbio.01721-16] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosylation is a common posttranslational modification that may have antiviral properties and impact innate immunity. To regulate this activity, macrodomain proteins enzymatically remove covalently attached ADP-ribose from protein targets. All members of the Coronavirinae, a subfamily of positive-sense RNA viruses, contain a highly conserved macrodomain within nonstructural protein 3 (nsp3). However, its function or targets during infection remain unknown. We identified several macrodomain mutations that greatly reduced nsp3’s de-ADP-ribosylation activity in vitro. Next, we created recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) strains with these mutations. These mutations led to virus attenuation and a modest reduction of viral loads in infected mice, despite normal replication in cell culture. Further, macrodomain mutant virus elicited an early, enhanced interferon (IFN), interferon-stimulated gene (ISG), and proinflammatory cytokine response in mice and in a human bronchial epithelial cell line. Using a coinfection assay, we found that inclusion of mutant virus in the inoculum protected mice from an otherwise lethal SARS-CoV infection without reducing virus loads, indicating that the changes in innate immune response were physiologically significant. In conclusion, we have established a novel function for the SARS-CoV macrodomain that implicates ADP-ribose in the regulation of the innate immune response and helps to demonstrate why this domain is conserved in CoVs. The macrodomain is a ubiquitous structural domain that removes ADP-ribose from proteins, reversing the activity of ADP-ribosyltransferases. All coronaviruses contain a macrodomain, suggesting that ADP-ribosylation impacts coronavirus infection. However, its function during infection remains unknown. Here, we found that the macrodomain is an important virulence factor for a highly pathogenic human CoV, SARS-CoV. Viruses with macrodomain mutations that abrogate its ability to remove ADP-ribose from protein were unable to cause lethal disease in mice. Importantly, the SARS-CoV macrodomain suppressed the innate immune response during infection. Our data suggest that an early innate immune response can protect mice from lethal disease. Understanding the mechanism used by this enzyme to promote disease will open up novel avenues for coronavirus therapies and give further insight into the role of macrodomains in viral pathogenesis.
Collapse
|
199
|
Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. eLife 2016; 5. [PMID: 27874829 PMCID: PMC5127640 DOI: 10.7554/elife.21475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress. DOI:http://dx.doi.org/10.7554/eLife.21475.001
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
200
|
Lalić J, Posavec Marjanović M, Palazzo L, Perina D, Sabljić I, Žaja R, Colby T, Pleše B, Halasz M, Jankevicius G, Bucca G, Ahel M, Matić I, Ćetković H, Luić M, Mikoč A, Ahel I. Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor. J Biol Chem 2016; 291:23175-23187. [PMID: 27634042 PMCID: PMC5087735 DOI: 10.1074/jbc.m116.721894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is a post-translational modification that can alter the physical and chemical properties of target proteins and that controls many important cellular processes. Macrodomains are evolutionarily conserved structural domains that bind ADP-ribose derivatives and are found in proteins with diverse cellular functions. Some proteins from the macrodomain family can hydrolyze ADP-ribosylated substrates and therefore reverse this post-translational modification. Bacteria and Streptomyces, in particular, are known to utilize protein ADP-ribosylation, yet very little is known about their enzymes that synthesize and remove this modification. We have determined the crystal structure and characterized, both biochemically and functionally, the macrodomain protein SCO6735 from Streptomyces coelicolor This protein is a member of an uncharacterized subfamily of macrodomain proteins. Its crystal structure revealed a highly conserved macrodomain fold. We showed that SCO6735 possesses the ability to hydrolyze PARP-dependent protein ADP-ribosylation. Furthermore, we showed that expression of this protein is induced upon DNA damage and that deletion of this protein in S. coelicolor increases antibiotic production. Our results provide the first insights into the molecular basis of its action and impact on Streptomyces metabolism.
Collapse
Affiliation(s)
| | | | - Luca Palazzo
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | - Roko Žaja
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- the Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10002, Croatia
| | - Thomas Colby
- the Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany, and
| | | | | | - Gytis Jankevicius
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Giselda Bucca
- the School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
| | - Marijan Ahel
- the Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10002, Croatia
| | - Ivan Matić
- the Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany, and
| | | | | | | | - Ivan Ahel
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom,
| |
Collapse
|