151
|
Sugeedha J, Gautam J, Tyagi S. SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics 2020; 16:469-487. [PMID: 32795105 PMCID: PMC8078731 DOI: 10.1080/15592294.2020.1809873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SET1 family of enzymes are well known for their involvement in the histone 3 lysine 4 (H3K4) methylation, a conserved trait of euchromatin associated with transcriptional activation. These methyltransferases are distinct, and involved in various biological functions in the cell. Impairment in the function of SET1 family members leads to a number of abnormalities such as skeletal and neurological defects, leukaemogenesis and even lethality. Tremendous progress has been made in understanding the unique biological roles and the mechanism of SET1 enzymes in context with H3K4 methylation/canonical functions. However, in recent years, several studies have indicated the novel role of SET1 family proteins, other than H3K4 methylation, which are equally important for cellular functions. In this review, we focus on these non-canonical function of SET1 family members.
Collapse
Affiliation(s)
- Jeyapal Sugeedha
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Jyoti Gautam
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
152
|
Structure and function of Pygo in organ development dependent and independent Wnt signalling. Biochem Soc Trans 2020; 48:1781-1794. [PMID: 32677664 DOI: 10.1042/bst20200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
Pygo is a nuclear protein containing two conserved domains, NHD and PHD, which play important roles in embryonic development and carcinogenesis. Pygo was first identified as a core component of the Wnt/β-catenin signalling pathway. However, it has also been reported that the function of Pygo is not always Wnt/β-catenin signalling dependent. In this review, we summarise the functions of both domains of Pygo and show that their functions are synergetic. The PHD domain mainly combines with transcription co-factors, including histone 3 and Bcl9/9l. The NHD domain mainly recruits histone methyltransferase/acetyltransferase (HMT/HAT) to modify lysine 4 of the histone 3 tail (H3K4) and interacts with Chip/LIM-domain DNA-binding proteins (ChiLS) to form enhanceosomes to regulate transcriptional activity. Furthermore, we summarised chromatin modification differences of Pygo in Drosophila (dPygo) and vertebrates, and found that Pygo displayes a chromatin silencing function in Drosophila, while in vertebates, Pygo has a chromatin-activating function due to the two substitution of two amino acid residues. Next, we confirmed the relationship between Pygo and Bcl9/9l and found that Pygo-Bcl/9l are specifically partnered both in the nucleus and in the cytoplasm. Finally, we discuss whether transcriptional activity of Pygo is Wnt/β-catenin dependent during embryonic development. Available information indications that the transcriptional activity of Pygo in embryonic development is either Wnt/β-catenin dependent or independent in both tissue-specific and cell-specific-modes.
Collapse
|
153
|
Aparicio Pelaz D, Yerkesh Z, Kirchgäßner S, Mahler H, Kharchenko V, Azhibek D, Jaremko M, Mootz HD, Jaremko Ł, Schwarzer D, Fischle W. Examining histone modification crosstalk using immobilized libraries established from ligation-ready nucleosomes. Chem Sci 2020; 11:9218-9225. [PMID: 34123170 PMCID: PMC8163371 DOI: 10.1039/d0sc03407j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chromatin signaling relies on a plethora of posttranslational modifications (PTM) of the histone proteins which package the long DNA molecules of our cells in reoccurring units of nucleosomes. Determining the biological function and molecular working mechanisms of different patterns of histone PTMs requires access to various chromatin substrates of defined modification status. Traditionally, these are achieved by individual reconstitution of single nucleosomes or arrays of nucleosomes in conjunction with modified histones produced by means of chemical biology. Here, we report an alternative strategy for establishing a library of differentially modified nucleosomes that bypasses the need for many individual syntheses, purification and assembly reactions by installing modified histone tails on ligation-ready, immobilized nucleosomes reconstituted in a single batch. Using the ligation-ready nucleosome strategy with sortase-mediated ligation for histone H3 and intein splicing for histone H2A, we generated libraries of up to 280 individually modified nucleosomes in 96-well plate format. Screening these libraries for the effects of patterns of PTMs onto the recruitment of a well-known chromatin factor, HP1 revealed a previously unknown long-range cross-talk between two modifications. H3S28 phosphorylation enhances recruitment of the HP1 protein to the H3K9 methylated H3-tail only in nucleosomal context. Detailed structural analysis by NMR measurements implies negative charges at position 28 to increase nucleosomal H3-tail dynamics and flexibility. Our work shows that ligation-ready nucleosomes enable unprecedented access to the ample space and complexity of histone modification patterns for the discovery and dissection of chromatin regulatory principles. 280 different patterns of histone modifications were installed in preassembled nucleosomes using PTS and SML enabling screening of readout crosstalk.![]()
Collapse
Affiliation(s)
- Diego Aparicio Pelaz
- Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Germany
| | - Zhadyra Yerkesh
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Sören Kirchgäßner
- Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Germany
| | - Henriette Mahler
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry 37077 Göttingen Germany
| | - Vladlena Kharchenko
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Dulat Azhibek
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster Corrensstr. 36 48149 Münster Germany
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Germany
| | - Wolfgang Fischle
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia .,Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry 37077 Göttingen Germany
| |
Collapse
|
154
|
Li J, Moumbock AFA, Günther S. Exploring Cocrystallized Aromatic Cage Binders to Target Histone Methylation Reader Proteins. J Chem Inf Model 2020; 60:5225-5233. [DOI: 10.1021/acs.jcim.0c00765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianyu Li
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Aurélien F. A. Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| |
Collapse
|
155
|
Wellaway CR, Bamborough P, Bernard SG, Chung CW, Craggs PD, Cutler L, Demont EH, Evans JP, Gordon L, Karamshi B, Lewis AJ, Lindon MJ, Mitchell DJ, Rioja I, Soden PE, Taylor S, Watson RJ, Willis R, Woolven JM, Wyspiańska BS, Kerr WJ, Prinjha RK. Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. J Med Chem 2020; 63:9020-9044. [DOI: 10.1021/acs.jmedchem.0c00566] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R. Wellaway
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Paul Bamborough
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Sharon G. Bernard
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Leanne Cutler
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Emmanuel H. Demont
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - John P. Evans
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Laurie Gordon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bhumika Karamshi
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Antonia J. Lewis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Matthew J. Lindon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Darren J. Mitchell
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Inmaculada Rioja
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter E. Soden
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Simon Taylor
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert J. Watson
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rob Willis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - James M. Woolven
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Beata S. Wyspiańska
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
156
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
157
|
Smits VAJ, Alonso-de Vega I, Warmerdam DO. Chromatin regulators and their impact on DNA repair and G2 checkpoint recovery. Cell Cycle 2020; 19:2083-2093. [PMID: 32730133 DOI: 10.1080/15384101.2020.1796037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chromatin plays a pivotal role in regulating the DNA damage response and during DNA double-strand break repair. Upon the generation of DNA breaks, the chromatin structure is altered by post-translational modifications of histones and chromatin remodeling. How the chromatin structure, and the epigenetic information that it carries, is reestablished after the completion of DNA break repair remains unclear though. Also, how these processes influence recovery of the cell cycle remains poorly understood. We recently performed a reverse genetic screen for novel chromatin regulators that control checkpoint recovery after DNA damage. Here we discuss the implications of PHD finger protein 6 (PHF6) and additional candidates from the NuA4 ATPase-dependent chromatin-remodeling complex and the Cohesin complex, required for sister chromatid cohesion, in DNA repair and checkpoint recovery in more detail. In addition, the potential role of this novel function of PHF6 in cancer development and treatment is reviewed.
Collapse
Affiliation(s)
- Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias , La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna , Tenerife, Spain.,Universidad Fernando Pessoa Canarias , Las Palmas de Gran Canaria, Spain
| | - Ignacio Alonso-de Vega
- Unidad de Investigación, Hospital Universitario de Canarias , La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna , Tenerife, Spain
| | - Daniël O Warmerdam
- CRISPR Platform, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
158
|
Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc Natl Acad Sci U S A 2020; 117:18439-18447. [PMID: 32675241 DOI: 10.1073/pnas.2009316117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.
Collapse
|
159
|
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab 2020; 20:1114-1131. [PMID: 31902353 DOI: 10.2174/1389200221666200103111539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual's genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.
Collapse
Affiliation(s)
- Kanisha Shah
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
160
|
Vahidi S, Norollahi SE, Agah S, Samadani AA. DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma. J Gastrointest Cancer 2020; 51:788-799. [PMID: 32617831 DOI: 10.1007/s12029-020-00427-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Epigenetic modification including of DNA methylation, histone acetylation, histone methylation, histon phosphorylation and non-coding RNA can impress the gene expression and genomic stability and cause different types of malignancies and also main human disorder. Conspicuously, the epigenetic alteration special DNA methylation controls telomere length, telomerase activity and also function of different genes particularly hTERT expression. Telomeres are important in increasing the lifespan, health, aging, and the development and progression of some diseases like cancer. METHODS This review provides an assessment of the epigenetic alterations of telomeres, telomerase and repression of its catalytic subunit, hTERT and function of long non-coding RNAs such as telomeric-repeat containing RNA (TERRA) in carcinogenesis and tumorgenesis of gastric cancer. RESULTS hTERT expression is essential and indispensable in telomerase activation through immortality and malignancies and also plays an important role in maintaining telomere length. Telomeres and telomerase have been implicated in regulating epigenetic factors influencing certain gene expression. Correspondingly, these changes in the sub telomere and telomere regions are affected by the shortening of telomere length and increased telomerase activity and hTERT gene expression have been observed in many cancers, remarkably in gastric cancer. CONCLUSION Epigenetic alteration and regulation of hTERT gene expression are critical in controlling telomerase activity and its expression. Graphical Abstract.
Collapse
Affiliation(s)
- Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
161
|
Zhang Y, Guo Y, Gough SM, Zhang J, Vann KR, Li K, Cai L, Shi X, Aplan PD, Wang GG, Kutateladze TG. Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nat Commun 2020; 11:3339. [PMID: 32620764 PMCID: PMC7335091 DOI: 10.1038/s41467-020-17098-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Chromosomal NUP98-PHF23 translocation is associated with an aggressive form of acute myeloid leukemia (AML) and poor survival rate. Here, we report the molecular mechanisms by which NUP98-PHF23 recognizes the histone mark H3K4me3 and is inhibited by small molecule compounds, including disulfiram that directly targets the PHD finger of PHF23 (PHF23PHD). Our data support a critical role for the PHD fingers of NUP98-PHF23, and related NUP98-KDM5A and NUP98-BPTF fusions in driving leukemogenesis, and demonstrate that blocking this interaction in NUP98-PHF23 expressing AML cells leads to cell death through necrotic and late apoptosis pathways. An overlap of NUP98-KDM5A oncoprotein binding sites and H3K4me3-positive loci at the Hoxa/b gene clusters and Meis1 in ChIP-seq, together with NMR analysis of the H3K4me3-binding sites of the PHD fingers from PHF23, KDM5A and BPTF, suggests a common PHD finger-dependent mechanism that promotes leukemogenesis by this type of NUP98 fusions. Our findings highlight the direct correlation between the abilities of NUP98-PHD finger fusion chimeras to associate with H3K4me3-enriched chromatin and leukemic transformation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yiran Guo
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jinyong Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kuai Li
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ling Cai
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
162
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
163
|
Bacon CW, Challa A, Hyder U, Shukla A, Borkar AN, Bayo J, Liu J, Wu SY, Chiang CM, Kutateladze TG, D'Orso I. KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Mol Cell 2020; 78:1133-1151.e14. [PMID: 32402252 PMCID: PMC7305985 DOI: 10.1016/j.molcel.2020.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023]
Abstract
Precise control of the RNA polymerase II (RNA Pol II) cycle, including pausing and pause release, maintains transcriptional homeostasis and organismal functions. Despite previous work to understand individual transcription steps, we reveal a mechanism that integrates RNA Pol II cycle transitions. Surprisingly, KAP1/TRIM28 uses a previously uncharacterized chromatin reader cassette to bind hypo-acetylated histone 4 tails at promoters, guaranteeing continuous progression of RNA Pol II entry to and exit from the pause state. Upon chromatin docking, KAP1 first associates with RNA Pol II and then recruits a pathway-specific transcription factor (SMAD2) in response to cognate ligands, enabling gene-selective CDK9-dependent pause release. This coupling mechanism is exploited by tumor cells to aberrantly sustain transcriptional programs commonly dysregulated in cancer patients. The discovery of a factor integrating transcription steps expands the functional repertoire by which chromatin readers operate and provides mechanistic understanding of transcription regulation, offering alternative therapeutic opportunities to target transcriptional dysregulation.
Collapse
Affiliation(s)
- Curtis W Bacon
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Biological Chemistry Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi N Borkar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Juan Bayo
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires 1629, Argentina
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
164
|
Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Commun Chem 2020; 3:69. [PMID: 36703460 PMCID: PMC9814790 DOI: 10.1038/s42004-020-0313-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 01/29/2023] Open
Abstract
The understanding of biomolecular recognition of posttranslationally modified histone proteins is centrally important to the histone code hypothesis. Despite extensive binding and structural studies on the readout of histones, the molecular language by which posttranslational modifications on histone proteins are read remains poorly understood. Here we report physical-organic chemistry studies on the recognition of the positively charged trimethyllysine by the electron-rich aromatic cage containing PHD3 finger of KDM5A. The aromatic character of two tryptophan residues that solely constitute the aromatic cage of KDM5A was fine-tuned by the incorporation of fluorine substituents. Our thermodynamic analyses reveal that the wild-type and fluorinated KDM5A PHD3 fingers associate equally well with trimethyllysine. This work demonstrates that the biomolecular recognition of trimethyllysine by fluorinated aromatic cages is associated with weaker cation-π interactions that are compensated by the energetically more favourable trimethyllysine-mediated release of high-energy water molecules that occupy the aromatic cage.
Collapse
|
165
|
Khan H, Belwal T, Efferth T, Farooqi AA, Sanches-Silva A, Vacca RA, Nabavi SF, Khan F, Prasad Devkota H, Barreca D, Sureda A, Tejada S, Dacrema M, Daglia M, Suntar İ, Xu S, Ullah H, Battino M, Giampieri F, Nabavi SM. Targeting epigenetics in cancer: therapeutic potential of flavonoids. Crit Rev Food Sci Nutr 2020; 61:1616-1639. [PMID: 32478608 DOI: 10.1080/10408398.2020.1763910] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irrespective of sex and age, cancer is the leading cause of mortality around the globe. Therapeutic incompliance, unwanted effects, and economic burdens imparted by cancer treatments, are primary health challenges. The heritable features in gene expression that are propagated through cell division and contribute to cellular identity without a change in DNA sequence are considered epigenetic characteristics and agents that could interfere with these features and are regarded as potential therapeutic targets. The genetic modification accounts for the recurrence and uncontrolled changes in the physiology of cancer cells. This review focuses on plant-derived flavonoids as a therapeutic tool for cancer, attributed to their ability for epigenetic regulation of cancer pathogenesis. The epigenetic mechanisms of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are discussed. The outstanding results of preclinical studies encourage researchers to design several clinical trials on various flavonoids to ascertain their clinical strength in the treatment of different cancers. The results of such studies will define the clinical fate of these agents in future.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Porto, Portugal.,Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department, Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - İpek Suntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
166
|
Khan KA, Ng MK, Cheung P. The Use of Mononucleosome Immunoprecipitation for Analysis of Combinatorial Histone Post-translational Modifications and Purification of Nucleosome-Interacting Proteins. Front Cell Dev Biol 2020; 8:331. [PMID: 32457909 PMCID: PMC7225312 DOI: 10.3389/fcell.2020.00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
The nucleosome is the principal structural unit of chromatin. Although many studies focus on individual histone post-translational modifications (PTMs) in isolation, it is important to recognize that multiple histone PTMs can function together or cross-regulate one another within the nucleosome context. In addition, different modifications or histone-binding surfaces can synergize to stabilize the binding of nuclear factors to nucleosomes. To facilitate these types of studies, we present here a step-by-step protocol for isolating high yields of mononucleosomes for biochemical analyses. Furthermore, we discuss differences and variations of the basic protocol used in different publications and characterize the relative abundance of selected histone PTMs and chromatin-binding proteins in the different chromatin fractions obtained by this method.
Collapse
Affiliation(s)
| | - Marlee K Ng
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter Cheung
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
167
|
Hintzen JCJ, Poater J, Kumar K, Al Temimi AHK, Pieters BJGE, Paton RS, Bickelhaupt FM, Mecinović J. Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. Molecules 2020; 25:molecules25081918. [PMID: 32326252 PMCID: PMC7221964 DOI: 10.3390/molecules25081918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/31/2023] Open
Abstract
Gaining a fundamental insight into the biomolecular recognition of posttranslationally modified histones by epigenetic reader proteins is of crucial importance to understanding the regulation of the activity of human genes. Here, we seek to establish whether trimethylthialysine, a simple trimethyllysine analogue generated through cysteine alkylation, is a good trimethyllysine mimic for studies on molecular recognition by reader proteins. Histone peptides bearing trimethylthialysine and trimethyllysine were examined for binding with five human reader proteins employing a combination of thermodynamic analyses, molecular dynamics simulations and quantum chemical analyses. Collectively, our experimental and computational findings reveal that trimethylthialysine and trimethyllysine exhibit very similar binding characteristics for the association with human reader proteins, thereby justifying the use of trimethylthialysine for studies aimed at dissecting the origin of biomolecular recognition in epigenetic processes that play important roles in human health and disease.
Collapse
Affiliation(s)
- Jordi C. J. Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi Poater
- ICREA and Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí I Franquès 1–11, 08028 Barcelona, Spain
| | - Kiran Kumar
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Abbas H. K. Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
| | - Bas J. G. E. Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
| | - Robert S. Paton
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| | - F. Matthias Bickelhaupt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6522 AJ Nijmegen, The Netherlands
- Correspondence: (R.S.P.); (F.M.B.); (J.M.); Tel.: +45-6550-3603 (J.M.)
| |
Collapse
|
168
|
Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. Protein J 2020; 39:232-239. [DOI: 10.1007/s10930-020-09895-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
169
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
170
|
Al Temimi AHK, White PB, Mulders MJM, van der Linden NGA, Blaauw RH, Wegert A, Rutjes FPJT, Mecinović J. Methylation of geometrically constrained lysine analogues by histone lysine methyltransferases. Chem Commun (Camb) 2020; 56:3039-3042. [PMID: 32048637 DOI: 10.1039/c9cc09098c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report synthesis and enzymatic assays on human histone lysine methyltransferase catalysed methylation of histones that possess lysine and its geometrically constrained analogues containing rigid (E)-alkene (KE), (Z)-alkene (KZ) and alkyne (Kyne) moieties. Methyltransferases G9a and GLP do have a capacity to catalyse methylation in the order K ≫ KE > KZ ∼ Kyne, whereas monomethyltransferase SETD8 catalyses only methylation of K and KE.
Collapse
Affiliation(s)
- Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | - Nicole G A van der Linden
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Richard H Blaauw
- Chiralix B.V., Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Anita Wegert
- Mercachem B.V., Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands.
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. and University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
171
|
Chen S, Zhang W, Min J, Liu K. Lesson from a Fab-enabled co-crystallization study of TDRD2 and PIWIL1. Methods 2020; 175:72-78. [PMID: 31288074 DOI: 10.1016/j.ymeth.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
The interaction of Tudor domain-containing proteins (TDRDs) with P-element-induced wimpy testis (PIWI) proteins plays critical roles in transposon silencing and spermatogenesis. Most human TDRDs recognize PIWI proteins in a methylarginine-dependent manner via their extended Tudor (eTudor) domains, except TDRD2, which prefers an unmethylated PIWI protein. In order to illustrate the recognition of unmethylated PIWI proteins by TDRD2, we extensively tried co-crystallization of the TDRD2 eTudor with different PIWIL1 peptides, but to no avail. Recombinant antigen-binding fragments (Fabs) have been used to crystallize some difficult proteins in the past, so we generated Fab against the TDRD2 eTudor protein using a phage-display antibody library, and one of these Fab fragments indeed facilitated the co-crystallization of TDRD2 and PIWIL1. Structural analysis of Fab, the TDRD2 eTudor domain in complex with an unmethylated PIWIL1-derived peptide revealed that the PIWIL1 residues G3 through R8 bound between the Tudor core and SN domain of TDRD2. The C-terminal residues of the PIWIL1 peptide were not resolved, presumably due to steric competition with the heavy chain of the Fab. We propose Fab-assisted crystallization as a tool not only for structural studies of single proteins, but also for analysis of interactions between proteins and their ligands in cases where co-crystallization of native protein complexes fails.
Collapse
Affiliation(s)
- Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weilian Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
172
|
Krone MW, Albanese KI, Leighton GO, He CQ, Lee GY, Garcia-Borràs M, Guseman AJ, Williams DC, Houk KN, Brustad EM, Waters ML. Thermodynamic consequences of Tyr to Trp mutations in the cation-π-mediated binding of trimethyllysine by the HP1 chromodomain. Chem Sci 2020; 11:3495-3500. [PMID: 34109021 PMCID: PMC8152637 DOI: 10.1039/d0sc00227e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Evolution has converged on cation–π interactions for recognition of quaternary alkyl ammonium groups such as trimethyllysine (Kme3). While computational modelling indicates that Trp provides the strongest cation–π interaction of the native aromatic amino acids, there is limited corroborative data from measurements within proteins. Herein we investigate a Tyr to Trp mutation in the binding pocket of the HP1 chromodomain, a reader protein that recognizes Kme3. Binding studies demonstrate that the Trp-mediated cation–π interaction is about −5 kcal mol−1 stronger, and the Y24W crystal structure shows that the mutation is not perturbing. Quantum mechanical calculations indicate that greater enthalpic binding is predominantly due to increased cation–π interactions. NMR studies indicate that differences in the unbound state of the Y24W mutation lead to enthalpy–entropy compensation. These results provide direct experimental quantification of Trp versus Tyr in a cation–π interaction and afford insight into the conservation of aromatic cage residues in Kme3 reader domains. In this work, we experimentally validate that tryptophan provides the strongest cation–π binding interaction among aromatic amino acids and also lend insight into the importance of residue identity in trimethyllysine recognition by reader proteins.![]()
Collapse
Affiliation(s)
- Mackenzie W Krone
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - Katherine I Albanese
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - Gage O Leighton
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 120 Mason Farm Rd, Campus Box 7260 Chapel Hill NC 27599 USA
| | - Cyndi Qixin He
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Alex J Guseman
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill Campus Box 7525, Brinkhous-Bullitt Building Chapel Hill NC 27599 USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 450 West Drive Chapel Hill NC 27599 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 USA
| | - Eric M Brustad
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| | - Marcey L Waters
- University of North Carolina at Chapel Hill 131 South Road, Campus Box 3290 Chapel Hill NC 27599 USA
| |
Collapse
|
173
|
ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol 2020; 38:728-736. [PMID: 32123383 PMCID: PMC7289633 DOI: 10.1038/s41587-020-0434-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023]
Abstract
Chromatin modifications regulate genome function by recruiting protein factors to the genome. However, the protein composition at distinct chromatin modifications remains to be fully characterized. Here, we use natural protein domains as modular building blocks to develop engineered chromatin readers (eCRs) selective for DNA methylation and histone tri-methylation at H3K4, H3K9 a H3K27 residues. We first demonstrate their utility as selective chromatin binders in living cells by stably expressing eCRs in mouse embryonic stem cells and measuring their subnuclear localisation, genomic distribution and histone modification–binding preference. By fusing eCRs to the biotin ligase BASU, we establish ChromID, a method for identifying the chromatin-dependent protein interactome based on proximity biotinylation, and apply it to distinct chromatin modifications in mouse stem cells. Using a synthetic dual-modification reader, we also uncover the protein composition at bivalent promoters marked by H3K4me3 and H3K27me3. These results highlight the ability of ChromID to obtain a detailed view of protein interaction networks on chromatin.
Collapse
|
174
|
The Eaf3 chromodomain acts as a pH sensor for gene expression by altering its binding affinity for histone methylated-lysine residues. Biosci Rep 2020; 40:222061. [PMID: 32031206 PMCID: PMC7033311 DOI: 10.1042/bsr20191958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 01/21/2023] Open
Abstract
During gene expression, histone acetylation by histone acetyltransferase (HAT) loosens the chromatin structure around the promoter to allow RNA polymerase II (Pol II) to initiate transcription, while de-acetylation by histone deacetylase (HDAC) tightens the structure in the transcribing region to repress false initiation. Histone acetylation is also regulated by intracellular pH (pHi) with global hypoacetylation observed at low pHi, and hyperacetylation, causing proliferation, observed at high pHi. However, the mechanism underlying the pHi-dependent regulation of gene expression remains elusive. Here, we have explored the role of the chromodomain (CD) of budding yeast Eaf3, a common subunit of both HAT and HDAC that is thought to recognize methylated lysine residues on histone H3. We found that Eaf3 CD interacts with histone H3 peptides methylated at Lys4 (H3K4me, a promoter epigenetic marker) and Lys36 (H3K36me, a coding region epigenetic marker), as well as with many dimethyl-lysine peptides and even arginine-asymmetrically dimethylated peptides, but not with unmethylated, phosphorylated or acetylated peptides. The Eaf3 CD structure revealed an unexpected histidine residue in the aromatic cage essential for binding H3K4me and H3K36me. pH titration experiments showed that protonation of the histidine residue around physiological pH controls the charge state of the aromatic cage to regulate binding to H3K4me and H3K36me. Histidine substitution and NMR experiments confirmed the correlation of histidine pKa with binding affinity. Collectively, our findings suggest that Eaf3 CD functions as a pHi sensor and a regulator of gene expression via its pHi-dependent interaction with methylated nucleosomes.
Collapse
|
175
|
Macromolecular Crowding Increases the Affinity of the PHD of ING4 for the Histone H3K4me3 Mark. Biomolecules 2020; 10:biom10020234. [PMID: 32033221 PMCID: PMC7072245 DOI: 10.3390/biom10020234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The five members of the family of tumor suppressors ING contain a Plant Homeodomain (PHD) that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3) with an affinity in the low micromolar range. Here, we use NMR to show that in the presence of 15% Ficoll 70, an inert macromolecular crowding agent, the mode of binding does not change but the affinity increases by one order of magnitude. The affinity increases also for unmethylated histone H3 tail, but the difference with H3K4me3 is larger in the presence of Ficoll. These results indicate that in the cellular milieu, the affinity of the ING proteins for their chromatin target is larger than previously thought.
Collapse
|
176
|
Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Molecules 2020; 25:molecules25030578. [PMID: 32013155 PMCID: PMC7037402 DOI: 10.3390/molecules25030578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications (or epigenetic tags) on DNA and histones not only alter the chromatin structure, but also provide a recognition platform for subsequent protein recruitment and enable them to acquire executive instructions to carry out specific intracellular biological processes. In cells, different epigenetic-tags on DNA and histones are often recognized by the specific domains in proteins (readers), such as bromodomain (BRD), chromodomain (CHD), plant homeodomain (PHD), Tudor domain, Pro-Trp-Trp-Pro (PWWP) domain and malignant brain tumor (MBT) domain. Recent accumulating data reveal that abnormal intracellular histone modifications (histone marks) caused by tumors can be modulated by small molecule-mediated changes in the activity of the above domains, suggesting that small molecules targeting histone-mark reader domains may be the trend of new anticancer drug development. Here, we summarize the protein domains involved in histone-mark recognition, and introduce recent research findings about small molecules targeting histone-mark readers in cancer therapy.
Collapse
|
177
|
Albanese KI, Krone MW, Petell CJ, Parker MM, Strahl BD, Brustad EM, Waters ML. Engineered Reader Proteins for Enhanced Detection of Methylated Lysine on Histones. ACS Chem Biol 2020; 15:103-111. [PMID: 31634430 PMCID: PMC7365037 DOI: 10.1021/acschembio.9b00651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone post-translational modifications (PTMs) are crucial for many cellular processes including mitosis, transcription, and DNA repair. The cellular readout of histone PTMs is dependent on both the chemical modification and histone site, and the array of histone PTMs on chromatin is dynamic throughout the eukaryotic life cycle. Accordingly, methods that report on the presence of PTMs are essential tools for resolving open questions about epigenetic processes and for developing therapeutic diagnostics. Reader domains that recognize histone PTMs have shown potential as advantageous substitutes for anti-PTM antibodies, and engineering efforts aimed at enhancing reader domain affinities would advance their efficacy as antibody alternatives. Here we describe engineered chromodomains from Drosophila melanogaster and humans that bind more tightly to H3K9 methylation (H3K9me) marks and result in the tightest reported reader-H3K9me interaction to date. Point mutations near the binding interface of the HP1 chromodomain were screened in a combinatorial fashion, and a triple mutant was found that binds 20-fold tighter than the native scaffold without any loss in PTM-site selectivity. The beneficial mutations were then translated to a human homologue, CBX1, resulting in an even tighter interaction with H3K9me3. Furthermore, we show that these engineered readers (eReaders) increase detection of H3K9me marks in several biochemical assays and outperform a commercial anti-H3K9me antibody in detecting H3K9me-containing nucleosomes in vitro, demonstrating the utility of eReaders to complement antibodies in epigenetics research.
Collapse
Affiliation(s)
- Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mackenzie W. Krone
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher J. Petell
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, USA 27599; USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, USA 27599; USA
| | - Madison M. Parker
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, USA 27599; USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, USA 27599; USA
| | - Eric M. Brustad
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
178
|
Abstract
The dynamic nature of histone post-translational modifications such as methylation or acetylation makes possible the alteration of disease associated epigenetic states through the manipulation of the associated epigenetic machinery. One approach is through small molecule perturbation. Chemical probes of epigenetic reader domains have been critical in improving our understanding of the biological consequences of modulating their targets, while also enabling the development of novel probe-based reagents. By appending a functional handle to a reader domain probe, a chemical toolbox of reagents can be created to facilitate chemiprecipitation of epigenetic complexes, evaluate probe selectivity, develop in vitro screening assays, visualize cellular target localization, enable target degradation and recruit epigenetic machinery to a site within the genome in a highly controlled fashion.
Collapse
|
179
|
Wellaway CR, Amans D, Bamborough P, Barnett H, Bit RA, Brown JA, Carlson NR, Chung CW, Cooper AWJ, Craggs PD, Davis RP, Dean TW, Evans JP, Gordon L, Harada IL, Hirst DJ, Humphreys PG, Jones KL, Lewis AJ, Lindon MJ, Lugo D, Mahmood M, McCleary S, Medeiros P, Mitchell DJ, O’Sullivan M, Le Gall A, Patel VK, Patten C, Poole DL, Shah RR, Smith JE, Stafford KAJ, Thomas PJ, Vimal M, Wall ID, Watson RJ, Wellaway N, Yao G, Prinjha RK. Discovery of a Bromodomain and Extraterminal Inhibitor with a Low Predicted Human Dose through Synergistic Use of Encoded Library Technology and Fragment Screening. J Med Chem 2020; 63:714-746. [DOI: 10.1021/acs.jmedchem.9b01670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Dominique Amans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather Barnett
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rino A. Bit
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jack A. Brown
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Neil R. Carlson
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Peter D. Craggs
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert P. Davis
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Tony W. Dean
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - John P. Evans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie Gordon
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - David J. Hirst
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | | | | | - Dave Lugo
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Mahnoor Mahmood
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Scott McCleary
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Patricia Medeiros
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | | | | | - Armelle Le Gall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Chris Patten
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren L. Poole
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R. Shah
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jane E. Smith
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Mythily Vimal
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Gang Yao
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Rab K. Prinjha
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
180
|
Yang T, Li X, Li XD. A bifunctional amino acid to study protein–protein interactions. RSC Adv 2020; 10:42076-42083. [PMID: 35516754 PMCID: PMC9057919 DOI: 10.1039/d0ra09110c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
dzANA is a novel bifunctional (photo-reactive and bioorthogonal) amino acid to study protein–protein interactions.
Collapse
Affiliation(s)
- Tangpo Yang
- Department of Chemistry
- The University of Hong Kong
- China
| | - Xin Li
- Department of Chemistry
- The University of Hong Kong
- China
| | | |
Collapse
|
181
|
Ueda M, Seki M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. PLANT PHYSIOLOGY 2020; 182:15-26. [PMID: 31685643 PMCID: PMC6945856 DOI: 10.1104/pp.19.00988] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 05/19/2023]
Abstract
Epigenetic modifiers such as erasers, readers, writers, and recruiters control abiotic stress response in flowering plants.
Collapse
Affiliation(s)
- Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| |
Collapse
|
182
|
Mezey N, Cho WCS, Biggar KK. Intriguing Origins of Protein Lysine Methylation: Influencing Cell Function Through Dynamic Methylation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:551-557. [PMID: 32194241 PMCID: PMC7212469 DOI: 10.1016/j.gpb.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Affiliation(s)
- Natalie Mezey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China.
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
183
|
Khan MA, Tania M, Fu J. Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today 2019; 24:2315-2322. [PMID: 31541714 DOI: 10.1016/j.drudis.2019.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
Thymoquinone is a natural product known for its anticancer activity. Preclinical studies indicated numerous mechanisms of action by which thymoquinone exerts its effects on cancer cells. Recent evidence has indicated that thymoquinone can modulate epigenetic machinery, like modifying histone acetylation and deacetylation, DNA methylation and demethylation, which are among the major epigenetic changes that can contribute to carcinogenesis. Moreover, thymoquinone can alter the genetic expression of various noncoding RNAs, such as miRNA and lncRNA, which are the key parts of cellular epigenetics. This review focuses on cellular epigenetic systems, epigenetic changes responsible for cancer and the counteraction of thymoquinone to target epigenetic challenges, which might be among the mechanisms of the thymoquinone effect in cancer cells.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mousumi Tania
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka 1205, Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
184
|
Weininger U, Modig K, Ishida H, Vogel HJ, Akke M. Rotamer Jumps, Proton Exchange, and Amine Inversion Dynamics of Dimethylated Lysine Residues in Proteins Resolved by pH-Dependent 1H and 13C NMR Relaxation Dispersion. J Phys Chem B 2019; 123:9742-9750. [PMID: 31580078 DOI: 10.1021/acs.jpcb.9b06408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational methylation of lysine side chains is of great importance for protein regulation, including epigenetic control. Here, we present specific 13CHD2 labeling of dimethylated lysines as a sensitive probe of the structure, interactions, and dynamics of these groups, and outline a theoretical and experimental framework for analyzing their conformational dynamics using 1H and 13C CPMG relaxation dispersion experiments. Dimethylated lysine side chains in calcium-loaded calmodulin show a marked pH dependence of their Carr-Purcell-Meiboom-Gill (CPMG) dispersion profiles, indicating complex exchange behavior. Combined analysis of 1H and 13C CPMG relaxation dispersions requires consideration of 12-state correlated exchange of the two methyl groups due to circular three-state rotamer jumps around the Cε-Nζ axis combined with proton exchange and amine inversion. Taking into account a number of fundamental constraints, the exchange model can be reduced to include only three fitted parameters, namely, the geometric average of the rotamer-jump rate constants, the rate constant of deprotonation of Nζ, and the chemical shift difference between the trans and gauge positions of the 13C or 1H nuclei. The pH dependence indicates that protonation of the end group dramatically slows down rotamer exchange for some lysine residues, whereas deprotonation leads to rapid amine inversion coupled with rotamer scrambling. The observed variation among residues in their exchange behavior appears to depend on the structural environment of the side chain. Understanding this type of exchange process is critical to correctly interpreting NMR spectra of methylated lysine side chains. The exchange model presented here forms the basis for studying the structure and dynamics of epigenetically modified lysine side chains and perturbations caused by changes in pH or interactions with target proteins.
Collapse
Affiliation(s)
- Ulrich Weininger
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Kristofer Modig
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Hiroaki Ishida
- Department of Biological Sciences, Biochemistry Research Group , University of Calgary , 2500 University Drive NW , Calgary , Alberta , T2N 1N4 Canada
| | - Hans J Vogel
- Department of Biological Sciences, Biochemistry Research Group , University of Calgary , 2500 University Drive NW , Calgary , Alberta , T2N 1N4 Canada
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
185
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
186
|
San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC Inhibitors in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111794. [PMID: 31739588 PMCID: PMC6896008 DOI: 10.3390/cancers11111794] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation, differentiation arrest, and accumulation of immature myeloid progenitors. Although clinical advances in AML have been made, especially in young patients, long-term disease-free survival remains poor, making this disease an unmet therapeutic challenge. Epigenetic alterations and mutations in epigenetic regulators contribute to the pathogenesis of AML, supporting the rationale for the use of epigenetic drugs in patients with AML. While hypomethylating agents have already been approved in AML, the use of other epigenetic inhibitors, such as histone deacetylases (HDAC) inhibitors (HDACi), is under clinical development. HDACi such as Panobinostat, Vorinostat, and Tricostatin A have been shown to promote cell death, autophagy, apoptosis, or growth arrest in preclinical AML models, yet these inhibitors do not seem to be effective as monotherapies, but rather in combination with other drugs. In this review, we discuss the rationale for the use of different HDACi in patients with AML, the results of preclinical studies, and the results obtained in clinical trials. Although so far the results with HDACi in clinical trials in AML have been modest, there are some encouraging data from treatment with the HDACi Pracinostat in combination with DNA demethylating agents.
Collapse
Affiliation(s)
- Edurne San José-Enériz
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Naroa Gimenez-Camino
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| |
Collapse
|
187
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Is an "Epigenetic Diet" for Migraines Justified? The Case of Folate and DNA Methylation. Nutrients 2019; 11:E2763. [PMID: 31739474 PMCID: PMC6893742 DOI: 10.3390/nu11112763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Migraines are a common disease with limited treatment options and some dietary factors are recognized to trigger headaches. Although migraine pathogenesis is not completely known, aberrant DNA methylation has been reported to be associated with its occurrence. Folate, an essential micronutrient involved in one-carbon metabolism and DNA methylation, was shown to have beneficial effects on migraines. Moreover, the variability of the methylenetetrahydrofolate reductase gene, important in both folate metabolism and migraine pathogenesis, modulates the beneficial effects of folate for migraines. Therefore, migraine could be targeted by a folate-rich, DNA methylation-directed diet, but there are no data showing that beneficial effects of folate consumption result from its epigenetic action. Furthermore, contrary to epigenetic drugs, epigenetic diets contain many compounds, some yet unidentified, with poorly known or completely unknown potential to interfere with the epigenetic action of the main dietary components. The application of epigenetic diets for migraines and other diseases requires its personalization to the epigenetic profile of a patient, which is largely unknown. Results obtained so far do not warrant the recommendation of any epigenetic diet as effective in migraine prevention and therapy. Further studies including a folate-rich diet fortified with valproic acid, another modifier of epigenetic profile effective in migraine prophylaxis, may help to clarify this issue.
Collapse
Affiliation(s)
- Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
188
|
Chen P, Guo Z, Chen C, Tian S, Bai X, Zhai G, Ma Z, Wu H, Zhang K. Identification of dual histone modification-binding protein interaction by combining mass spectrometry and isothermal titration calorimetric analysis. J Adv Res 2019; 22:35-46. [PMID: 31956440 PMCID: PMC6961217 DOI: 10.1016/j.jare.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
The interaction between combinatorial histone modifications and tandem-domain reader proteins was identified. Four tandem-domain proteins (BPTF-PB, CBP-BP, TRIM24-PB, TAF1-BB) could read the peptides with dual-modifications. The binding affinities were detected by isothermal titration calorimetry. The interaction between BPTF-PB and peptides with PTMs is the strongest. The binding proteins to the tandem-domains were quantified. 78 enriched proteins were further characterized. The molecule network of “histone modification-reader-binding proteins” was analyzed.
Histone posttranslational modifications (HPTMs) play important roles in eukaryotic transcriptional regulation. Recently, it has been suggested that combinatorial modification codes that comprise two or more HPTMs can recruit readers of HPTMs, performing complex regulation of gene expression. However, the characterization of the multiplex interactions remains challenging, especially for the molecular network of histone PTMs, readers and binding complexes. Here, we developed an integrated method that combines a peptide library, affinity enrichment, mass spectrometry (MS) and bioinformatics analysis for the identification of the interaction between HPTMs and their binding proteins. Five tandem-domain-reader proteins (BPTF, CBP, TAF1, TRIM24 and TRIM33) were designed and prepared as the enriched probes, and a group of histone peptides with multiple PTMs were synthesized as the target peptide library. First, the domain probes were used to pull down the PTM peptides from the library, and then the resulting product was characterized by MS. The binding interactions between PTM peptides and domains were further validated and measured by isothermal titration calorimetry analysis (ITC). Meanwhile, the binding proteins were enriched by domain probes and identified by HPLC-MS/MS. The interaction network of histone PTMs-readers-binding complexes was finally analyzed via informatics tools. Our results showed that the integrated approach combining MS analysis with ITC assay enables us to understand the interaction between the combinatorial HPTMs and reading domains. The identified network of “HPTMs-reader proteins-binding complexes” provided potential clues to reveal HPTM functions and their regulatory mechanisms.
Collapse
Affiliation(s)
- Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Cong Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyi Ma
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Huiyuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
189
|
Al Temimi AHK, Martin M, Meng Q, Lenstra DC, Qian P, Guo H, Weinhold E, Mecinović J. Lysine Ethylation by Histone Lysine Methyltransferases. Chembiochem 2019; 21:392-400. [PMID: 31287209 PMCID: PMC7064923 DOI: 10.1002/cbic.201900359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Biomedicinally important histone lysine methyltransferases (KMTs) catalyze the transfer of a methyl group from S‐adenosylmethionine (AdoMet) cosubstrate to lysine residues in histones and other proteins. Herein, experimental and computational investigations on human KMT‐catalyzed ethylation of histone peptides by using S‐adenosylethionine (AdoEth) and Se‐adenosylselenoethionine (AdoSeEth) cosubstrates are reported. MALDI‐TOF MS experiments reveal that, unlike monomethyltransferases SETD7 and SETD8, methyltransferases G9a and G9a‐like protein (GLP) do have the capacity to ethylate lysine residues in histone peptides, and that cosubstrates follow the efficiency trend AdoMet>AdoSeEth>AdoEth. G9a and GLP can also catalyze AdoSeEth‐mediated ethylation of ornithine and produce histone peptides bearing lysine residues with different alkyl groups, such as H3K9meet and H3K9me2et. Molecular dynamics and free energy simulations based on quantum mechanics/molecular mechanics potential supported the experimental findings by providing an insight into the geometry and energetics of the enzymatic methyl/ethyl transfer process.
Collapse
Affiliation(s)
- Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Michael Martin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Qingxi Meng
- Chemistry and Material Science Faculty, Shandong Agricultural University, Daizong Road No.61, Tai'an, 271018, P.R. China
| | - Danny C Lenstra
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Daizong Road No.61, Tai'an, 271018, P.R. China
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN, 37996, USA.,UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
190
|
CaM kinase II regulates cardiac hemoglobin expression through histone phosphorylation upon sympathetic activation. Proc Natl Acad Sci U S A 2019; 116:22282-22287. [PMID: 31619570 DOI: 10.1073/pnas.1816521116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sympathetic activation of β-adrenoreceptors (β-AR) represents a hallmark in the development of heart failure (HF). However, little is known about the underlying mechanisms of gene regulation. In human ventricular myocardium from patients with end-stage HF, we found high levels of phosphorylated histone 3 at serine-28 (H3S28p). H3S28p was increased by inhibition of the catecholamine-sensitive protein phosphatase 1 and decreased by β-blocker pretreatment. By a series of in vitro and in vivo experiments, we show that the β-AR downstream protein kinase CaM kinase II (CaMKII) directly binds and phosphorylates H3S28. Whereas, in CaMKII-deficient myocytes, acute catecholaminergic stimulation resulted in some degree of H3S28p, sustained catecholaminergic stimulation almost entirely failed to induce H3S28p. Genome-wide analysis of CaMKII-mediated H3S28p in response to chronic β-AR stress by chromatin immunoprecipitation followed by massive genomic sequencing led to the identification of CaMKII-dependent H3S28p target genes. Forty percent of differentially H3S28p-enriched genomic regions were associated with differential, mostly increased expression of the nearest genes, pointing to CaMKII-dependent H3S28p as an activating histone mark. Remarkably, the adult hemoglobin genes showed an H3S28p enrichment close to their transcriptional start or end sites, which was associated with increased messenger RNA and protein expression. In summary, we demonstrate that chronic β-AR activation leads to CaMKII-mediated H3S28p in cardiomyocytes. Thus, H3S28p-dependent changes may play an unexpected role for cardiac hemoglobin regulation in the context of sympathetic activation. These data also imply that CaMKII may be a yet unrecognized stress-responsive regulator of hematopoesis.
Collapse
|
191
|
Małecki PH, Rüger N, Roatsch M, Krylova O, Link A, Jung M, Heinemann U, Weiss MS. Structure-Based Screening of Tetrazolylhydrazide Inhibitors versus KDM4 Histone Demethylases. ChemMedChem 2019; 14:1828-1839. [PMID: 31475772 PMCID: PMC6899576 DOI: 10.1002/cmdc.201900441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Human histone demethylases are known to play an important role in the development of several tumor types. Consequently, they have emerged as important medical targets for the treatment of human cancer. Herein, structural studies on tetrazolylhydrazide inhibitors as a new scaffold for a certain class of histone demethylases, the JmjC proteins, are reported. A series of compounds are structurally described and their respective binding modes to the KDM4D protein, which serves as a high-resolution model to represent the KDM4 subfamily in crystallographic studies, are examined. Similar to previously reported inhibitors, the compounds described herein are competitors for the natural KDM4 cofactor, 2-oxoglutarate. The tetrazolylhydrazide scaffold fills an important gap in KDM4 inhibition and newly described, detailed interactions of inhibitor moieties pave the way to the development of compounds with high target-binding affinity and increased membrane permeability, at the same time.
Collapse
Affiliation(s)
- Piotr H Małecki
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.,Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Current address: International Institute of Molecular and Cell Biology, Ks. Trojdena Street 4, 02-109, Warsaw, Poland
| | - Nicole Rüger
- Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Martin Roatsch
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.,Current address: Københavns Universitet, Center for Biopharmaceuticals, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Oxana Krylova
- Department of Molecular Biophysics, Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Andreas Link
- Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
192
|
Popova VV, Workman JL. NSL complex acetylates Lamin A/C. Nat Cell Biol 2019; 21:1177-1178. [PMID: 31576059 DOI: 10.1038/s41556-019-0398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
193
|
Arrowsmith CH, Schapira M. Targeting non-bromodomain chromatin readers. Nat Struct Mol Biol 2019; 26:863-869. [DOI: 10.1038/s41594-019-0290-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
|
194
|
Arora S, Horne WS, Islam K. Engineering Methyllysine Writers and Readers for Allele-Specific Regulation of Protein-Protein Interactions. J Am Chem Soc 2019; 141:15466-15470. [PMID: 31518125 DOI: 10.1021/jacs.9b05725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein-protein interactions mediated by methyllysine are ubiquitous in biological systems. Specific perturbation of such interactions has remained a challenging endeavor. Herein, we describe an allele-specific strategy toward an engineered protein-protein interface orthogonal to the human proteome. We develop a methyltransferase (writer) variant that installs aryllysine moiety on histones that can only be recognized by an engineered chromodomain (reader). We establish biochemical integrity of the engineered interface, provide structural evidence for orthogonality and validate its applicability to identify transcriptional regulators. Our approach provides an unprecedented strategy for specific manipulation of the methyllysine interactome.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - W Seth Horne
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Kabirul Islam
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
195
|
Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 2019; 9:431-441. [PMID: 30059280 PMCID: PMC7000146 DOI: 10.1080/19491034.2018.1498707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant levels of histone modifications lead to chromatin malfunctioning and consequently to various developmental defects and human diseases. Therefore, the proteins bearing the ability to modify histones have been extensively studied and the molecular mechanisms of their action are now fairly well understood. However, little attention has been paid to naturally occurring alternative isoforms of chromatin modifying proteins and to their biological roles. In this review, we focus on mammalian KDM2A and KDM2B, the only two lysine demethylases whose genes have been described to produce also an alternative isoform lacking the N-terminal demethylase domain. These short KDM2A/B-SF isoforms arise through alternative promoter usage and seem to play important roles in development and disease. We hypothesise about the biological significance of these alternative isoforms, which might represent a more common evolutionarily conserved regulatory mechanism.
Collapse
Affiliation(s)
- Tomáš Vacík
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Dijana Lađinović
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| |
Collapse
|
196
|
Epigenetic Regulation of p21 cip1/waf1 in Human Cancer. Cancers (Basel) 2019; 11:cancers11091343. [PMID: 31514410 PMCID: PMC6769618 DOI: 10.3390/cancers11091343] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
p21cip1/waf1 is a central regulator of cell cycle control and survival. While mutations are rare, it is commonly dysregulated in several human cancers due to epigenetic mechanisms influencing its transcriptional control. These mechanisms include promoter hypermethylation as well as additional pathways such as histone acetylation or methylation. The epigenetic regulators include writers, such as DNA methyltransferases (DNMTs); histone acetyltransferases (HATs) and histone lysine methyltransferases; erasers, such as histone deacetylases (HDACs); histone lysine demethylases [e.g., the Lysine Demethylase (KDM) family]; DNA hydroxylases; readers, such as the methyl-CpG-binding proteins (MBPs); and bromodomain-containing proteins, including the bromo- and extraterminal domain (BET) family. We further discuss the roles that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play in the epigenetic control of p21cip1/waf1 expression and its function in human cancers.
Collapse
|
197
|
Serefidou M, Venkatasubramani AV, Imhof A. The Impact of One Carbon Metabolism on Histone Methylation. Front Genet 2019; 10:764. [PMID: 31555321 PMCID: PMC6722216 DOI: 10.3389/fgene.2019.00764] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The effect of one carbon metabolism on DNA methylation has been well described, bridging nutrition, metabolism, and epigenetics. This modification is mediated by the metabolite S-adenosyl methionine (SAM), which is also the methyl-donating substrate of histone methyltransferases. Therefore, SAM levels that are influenced by several nutrients, enzymes, and metabolic cofactors also have a potential impact on histone methylation. Although this modification plays a major role in chromatin accessibility and subsequently in gene expression in healthy or diseased states, its role in translating nutritional changes in chromatin structure has not been extensively studied. Here, we aim to review the literature of known mechanistic links between histone methylation and the central one carbon metabolism.
Collapse
Affiliation(s)
- Magdalini Serefidou
- Biomedical Center Munich, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Axel Imhof
- Biomedical Center Munich, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
198
|
Abstract
A complete inventory of the forces governing protein folding is critical for productive protein modeling, including structure prediction and de novo design, as well as understanding protein misfolding diseases of clinical significance. The dominant contributors to protein folding include the hydrophobic effect and conventional hydrogen bonding, along with Coulombic and van der Waals interactions. Over the past few decades, important additional contributors have been identified, including C-H···O hydrogen bonding, n→π* interactions, C5 hydrogen bonding, chalcogen bonding, and interactions involving aromatic rings (cation-π, X-H···π, π-π, anion-π, and sulfur-arene). These secondary contributions fall into two general classes: (1) weak but abundant interactions of the protein main chain and (2) strong but less frequent interactions involving protein side chains. Though interactions with high individual energies play important roles in specifying nonlocal molecular contacts and ligand binding, we estimate that weak but abundant interactions are likely to make greater overall contributions to protein folding, particularly at the level of secondary structure. Further research is likely to illuminate additional roles of these noncanonical interactions and could also reveal contributions yet unknown.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
199
|
Diering GH, Huganir RL. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2019; 100:314-329. [PMID: 30359599 DOI: 10.1016/j.neuron.2018.10.018] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
Changes in the properties and postsynaptic abundance of AMPA-type glutamate receptors (AMPARs) are major mechanisms underlying various forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic scaling. The function and the trafficking of AMPARs to and from synapses is modulated by specific AMPAR GluA1-GluA4 subunits, subunit-specific protein interactors, auxiliary subunits, and posttranslational modifications. Layers of regulation are added to AMPAR tetramers through these different interactions and modifications, increasing the computational power of synapses. Here we review the reliance of synaptic plasticity on AMPAR variants and propose "the AMPAR code" as a conceptual framework. The AMPAR code suggests that AMPAR variants will be predictive of the types and extent of synaptic plasticity that can occur and that a hierarchy exists such that certain AMPARs will be disproportionally recruited to synapses during LTP/homeostatic scaling up, or removed during LTD/homeostatic scaling down.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
200
|
Dilworth D, Barsyte-Lovejoy D. Targeting protein methylation: from chemical tools to precision medicines. Cell Mol Life Sci 2019; 76:2967-2985. [PMID: 31104094 PMCID: PMC11105543 DOI: 10.1007/s00018-019-03147-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
The methylation of proteins is integral to the execution of many important biological functions, including cell signalling and transcriptional regulation. Protein methyltransferases (PMTs) are a large class of enzymes that carry out the addition of methyl marks to a broad range of substrates. PMTs are critical for normal cellular physiology and their dysregulation is frequently observed in human disease. As such, PMTs have emerged as promising therapeutic targets with several inhibitors now in clinical trials for oncology indications. The discovery of chemical inhibitors and antagonists of protein methylation signalling has also profoundly impacted our general understanding of PMT biology and pharmacology. In this review, we present general principles for drugging protein methyltransferases or their downstream effectors containing methyl-binding modules, as well as best-in-class examples of the compounds discovered and their impact both at the bench and in the clinic.
Collapse
Affiliation(s)
- David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|