151
|
Du X, Wu L, Yan H, Jiang Z, Li S, Li W, Bai Y, Wang H, Cheng Z, Kong D, Wang L, Zhu M. Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nat Commun 2021; 12:4733. [PMID: 34354068 PMCID: PMC8342549 DOI: 10.1038/s41467-021-24972-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Developing an anti-infective shape-memory hemostatic sponge able to guide in situ tissue regeneration for noncompressible hemorrhages in civilian and battlefield settings remains a challenge. Here we engineer hemostatic chitosan sponges with highly interconnective microchannels by combining 3D printed microfiber leaching, freeze-drying, and superficial active modification. We demonstrate that the microchannelled alkylated chitosan sponge (MACS) exhibits the capacity for water and blood absorption, as well as rapid shape recovery. We show that compared to clinically used gauze, gelatin sponge, CELOX™, and CELOX™-gauze, the MACS provides higher pro-coagulant and hemostatic capacities in lethally normal and heparinized rat and pig liver perforation wound models. We demonstrate its anti-infective activity against S. aureus and E. coli and its promotion of liver parenchymal cell infiltration, vascularization, and tissue integration in a rat liver defect model. Overall, the MACS demonstrates promising clinical translational potential in treating lethal noncompressible hemorrhage and facilitating wound healing.
Collapse
Affiliation(s)
- Xinchen Du
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Le Wu
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Hongyu Yan
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Zhuyan Jiang
- grid.412648.d0000 0004 1798 6160Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shilin Li
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Wen Li
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Yanli Bai
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Hongjun Wang
- grid.217309.e0000 0001 2180 0654Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ USA
| | - Zhaojun Cheng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Deling Kong
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Lianyong Wang
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| | - Meifeng Zhu
- grid.216938.70000 0000 9878 7032College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education),Tianjin Center Hospital of Obstetrics and Gynecology, State Key Laboratory of Medicine Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
152
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
153
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|
154
|
Mokhtari-Jafari F, Amoabediny G, Dehghan MM, Abbasi Ravasjani S, Jabbari Fakhr M, Zamani Y. Osteogenic and Angiogenic Synergy of Human Adipose Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured in a Modified Perfusion Bioreactor. Organogenesis 2021; 17:56-71. [PMID: 34323661 DOI: 10.1080/15476278.2021.1954769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synergistic promotion of angiogenesis and osteogenesis in bone tissue-engineered constructs remains a crucial clinical challenge, which might be overcome by simultaneous employment of superior techniques including coculture systems, differentiation-stimulated factors, combinatorial scaffolds and bioreactors.Current study investigated the effect of flow perfusion along with coculture of human adipose stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) on osteogenic and angiogenic differentiation.Pre-treated hASCs with 1,25-dihydroxyvitamin D3 were seeded onto poly(lactic-co-glycolic acid)/β-tricalcium phosphate/polycaprolactone (PLGA/β-TCP/PCL) scaffold with/without HUVECs, and cultured for 14 days within a flask or modified perfusion bioreactor. Analysis of osteogenic and angiogenic gene expression, alkaline phosphatase (ALP) activity and ALP staining indicates a synergistic effect of perfusion flow and coculture system on osteogenic and angiogenic differentiation. The advantage of modified perfusion bioreactor is its five-branch flow distributor which directly connect to the porous PCL hollow fibers embedded in the 3D scaffold to improve flow and flow-induced shear stress uniformity.Dynamic coculture increased VEGF165 by 6-fold, VEGF189 by 2-fold, and Endothelin-1 by 4-fold, relative to dynamic monoculture. Static coculture enhanced osteogenic and angiogenic differentiation, compared with static monoculture. Although dynamic coculture is in preference to static coculture due to significant increase in ALP activity and promoted angiogenic marker expression. Our finding is the first to indicate that the modified perfusion bioreactor combined with the beneficial cell-cell crosstalk in pre-treated hASC/HUVEC cocultures provides a synergy between osteogenic and angiogenic differentiation of the accumulation of cells, suggesting that it represents a promising approach for regeneration of critical-sized bone defects.
Collapse
Affiliation(s)
- Fatemeh Mokhtari-Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghasem Amoabediny
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Sonia Abbasi Ravasjani
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Massoumeh Jabbari Fakhr
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Yasaman Zamani
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
155
|
Jeong SH, Kim M, Kim TY, Choi H, Hahn SK. Biomimetic Supramolecular Drug Delivery Hydrogels for Accelerated Skin Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:4581-4590. [PMID: 34254791 DOI: 10.1021/acsbiomaterials.1c00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin tissue is regenerated by the combinational function of skin cells, extracellular matrix (ECM), and bioactive molecules. As an artificial ECM, supramolecular hydrogels exhibited outstanding capability to mimic the physical properties of ECM. However, the lack of biochemical function in supramolecular hydrogels has limited further tissue engineering applications. Here, we developed self-assembling supramolecular drug delivery hydrogels to mimic the skin tissue regeneration process. The supramolecular hydrogels were prepared to encapsulate fibroblasts by the host-guest interaction of cyclodextrin-modified gelatin (GE-CD) and adamantane-modified hyaluronate (Ad-HA) in conjugation with human growth hormone (hGH) for accelerated skin tissue regeneration. In vitro, GE-CD/Ad-HA-hGH hydrogels showed highly facilitated cell growth by the controlled hGH delivery. After a subcutaneous injection into the back of mice, IVIS imaging of bioengineered fibroblasts to express red fluorescence protein (RFP) revealed prolonged cell survival and proliferation in the supramolecular hydrogels for more than 21 days. We could also observe the improved skin tissue regeneration by the facilitated fibroblast proliferation with angiogenesis. Taken together, we could confirm the feasibility of biomimetic supramolecular drug delivery GE-CD/Ad-HA-hGH hydrogels for various tissue engineering applications.
Collapse
Affiliation(s)
- Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea.,PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyunsik Choi
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea.,PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| |
Collapse
|
156
|
Li W, Bai Y, Cao J, Gao S, Xu P, Feng G, Wang L, Wang H, Kong D, Fan M, Zhang J, Zhu M. Highly interconnected inverse opal extracellular matrix scaffolds enhance stem cell therapy in limb ischemia. Acta Biomater 2021; 128:209-221. [PMID: 33878473 DOI: 10.1016/j.actbio.2021.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
The therapeutic effectiveness of cell transplantation in treatment of diseases and injuries is often limited by low cell retention, survivability, and engraftment. Extracellular matrix (ECM)-derived scaffolds are capable of controlling cell responses, thereby offering potential solutions to current challenges associated with cell therapy. However, it remains a technical challenge to produce ECM scaffolds with highly interconnected porous structure specifically required for cell transplantation. Here, we developed inverse opal porous extracellular matrix (ioECM) scaffolds through subcutaneous implantation of sacrificial templates assembled from polymer microspheres, followed by removal of the microsphere template and cellular content. Such highly interconnected porous ioECM scaffolds supported the anchorage, survival, viability, anti-apoptotic and paracrine activities of rat bone marrow mesenchymal stem cells (BMSCs), which further promoted endothelial cell migration and tube formation and viability. Upon transplantation into nude mouse critical limb ischemic model, ioECM promoted the engraftment of laden BMSCs, facilitated interconnected vascular network formation with accelerated recovery of blood perfusion and inhibited muscle atrophy and fibrosis. Our study demonstrates a unique strategy to engineer highly porous yet well-interconnected ECM scaffolds specifically for cell transplantation with marked improvement of survivability and vascularization, which offers an essential step toward the success of cell therapy and regenerative medicine. STATEMENT OF SIGNIFICANCE: Cell-based therapy has a good developing foreground applied in a variety of tissue regeneration. Extracellular matrix (ECM) scaffolds is an optimal choice for cell delivery duo to its superior biocompatibility and favorable immune responses. However, the current ECM scaffolds lacking of the controllable pore structure restrict the cell delivery efficiency and therapeutic outcome. Here, we fabricated highly interconnected inverse opal extracellular matrix (ioECM) scaffolds, which can enhance the effect of stem cell therapy in limb ischemic model by improving the survival, viability, and paracrine activities of stem cells. Our study provides reference value for the design and fabrication of ECM based biomaterials for cell transplantation.
Collapse
Affiliation(s)
- Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yanli Bai
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jiasong Cao
- Tianjin key lab of human development and reproductive regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Pan Xu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Meng Fan
- Department of Orthopedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| | - Jun Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
157
|
Effects of Macro-/Micro-Channels on Vascularization and Immune Response of Tissue Engineering Scaffolds. Cells 2021; 10:cells10061514. [PMID: 34208449 PMCID: PMC8235743 DOI: 10.3390/cells10061514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
Although the use of porous scaffolds in tissue engineering has been relatively successful, there are still many limitations that need to be addressed, such as low vascularization, low oxygen and nutrient levels, and immune-induced inflammation. As a result, the current porous scaffolds are insufficient when treating large defects. This paper analyzed scientific research pertaining to the effects of macro-/micro-channels on the cell recruitment, vascularization, and immune response of tissue engineering scaffolds. Most of the studies contained either cell culturing experimentation or experimentation on small animals such as rats and mice. The sacrificial template method, template casting method, and 3D printing method were the most common methods in the fabrication of channeled scaffolds. Some studies combine the sacrificial and 3D printing methods to design and create their scaffold with channels. The overall results from these studies showed that the incorporation of channels within scaffolds greatly increased vascularization, reduced immune response, and was much more beneficial for cell and growth factor recruitment compared with control groups that contained no channels. More research on the effect of micro-/macro-channels on vascularization or immune response in animal models is necessary in the future in order to achieve clinical translation.
Collapse
|
158
|
Ning L, Zhu N, Smith A, Rajaram A, Hou H, Srinivasan S, Mohabatpour F, He L, Mclnnes A, Serpooshan V, Papagerakis P, Chen X. Noninvasive Three-Dimensional In Situ and In Vivo Characterization of Bioprinted Hydrogel Scaffolds Using the X-ray Propagation-Based Imaging Technique. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25611-25623. [PMID: 34038086 DOI: 10.1021/acsami.1c02297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogel-based three-dimensional (3D) bioprinting has been illustrated as promising to fabricate tissue scaffolds for regenerative medicine. Notably, bioprinting of hydrated and soft 3D hydrogel scaffolds with desired structural properties has not been fully achieved so far. Moreover, due to the limitations of current imaging techniques, assessment of bioprinted hydrogel scaffolds is still challenging, yet still essential for scaffold design, fabrication, and longitudinal studies. This paper presents our study on the bioprinting of hydrogel scaffolds and on the development of a novel noninvasive imaging method, based on synchrotron propagation-based imaging with computed tomography (SR-PBI-CT), to study the structural properties of hydrogel scaffolds and their responses to environmental stimuli both in situ and in vivo. Hydrogel scaffolds designed with varying structural patterns were successfully bioprinted through rigorous printing process regulations and then imaged by SR-PBI-CT within physiological environments. Subjective to controllable compressive loadings, the structural responses of scaffolds were visualized and characterized in terms of the structural deformation caused by the compressive loadings. Hydrogel scaffolds were later implanted in rats as nerve conduits for SR-PBI-CT imaging, and the obtained images illustrated their high phase contrast and were further processed for the 3D structure reconstruction and quantitative characterization. Our results show that the scaffold design and printing conditions play important roles in the printed scaffold structure and mechanical properties. More importantly, our obtained images from SR-PBI-CT allow us to visualize the details of hydrogel 3D structures with high imaging resolution. It demonstrates unique capability of this imaging technique for noninvasive, in situ characterization of 3D hydrogel structures pre- and post-implantation in diverse physiological milieus. The established imaging platform can therefore be utilized as a robust, high-precision tool for the design and longitudinal studies of hydrogel scaffold in tissue engineering.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Ning Zhu
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - An Smith
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ajay Rajaram
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Huishu Hou
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Subashree Srinivasan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Fatemeh Mohabatpour
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Lihong He
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Cell Biology, Medical College of Soochow University, Suzhou 215123, China
| | - Adam Mclnnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
159
|
Lomboni DJ, Steeves A, Schock S, Bonetti L, De Nardo L, Variola F. Compounded topographical and physicochemical cueing by micro-engineered chitosan substrates on rat dorsal root ganglion neurons and human mesenchymal stem cells. SOFT MATTER 2021; 17:5284-5302. [PMID: 34075927 DOI: 10.1039/d0sm02170a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the intertwined physicochemical effects exerted in vivo by both natural and synthetic (e.g., biomaterial) interfaces on adhering cells, the evaluation of structure-function relationships governing cellular response to micro-engineered surfaces for applications in neuronal tissue engineering requires the use of in vitro testing platforms which consist of a clinically translatable material with tunable physiochemical properties. In this work, we micro-engineered chitosan substrates with arrays of parallel channels with variable width (20 and 60 μm). A citric acid (CA)-based crosslinking approach was used to provide an additional level of synergistic cueing on adhering cells by regulating the chitosan substrate's stiffness. Morphological and physicochemical characterization was conducted to unveil the structure-function relationships which govern the activity of rat dorsal root ganglion neurons (DRGs) and human mesenchymal stem cells (hMSCs), ultimately singling out the key role of microtopography, roughness and substrate's stiffness. While substrate's stiffness predominantly affected hMSC spreading, the modulation of the channels' design affected the neuronal architecture's complexity and guided the morphological transition of hMSCs. Finally, the combined analysis of tubulin expression and cell morphology allowed us to cast new light on the predominant role of the microtopography over substrate's stiffness in the process of hMSCs neurogenic differentiation.
Collapse
Affiliation(s)
- David J Lomboni
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Alexander Steeves
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada and The Children's Hospital of Eastern Ontario (CHEO) Research Institute, Canada
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Italy
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, K1N 6N5 Canada. and Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada and Department of Cellular and Molecular Medicine, University of Ottawa, Canada and The Children's Hospital of Eastern Ontario (CHEO) Research Institute, Canada
| |
Collapse
|
160
|
Chiang C, Fang Y, Ho C, Assunção M, Lin S, Wang Y, Blocki A, Huang C. Bioactive Decellularized Extracellular Matrix Derived from 3D Stem Cell Spheroids under Macromolecular Crowding Serves as a Scaffold for Tissue Engineering. Adv Healthc Mater 2021; 10:e2100024. [PMID: 33890420 DOI: 10.1002/adhm.202100024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides physical support and biochemical signals to modulate multiple cell behaviors. However, the majority of currently used biomaterials are oversimplified and therefore fail to provide a niche required for the stimulation of tissue regeneration. In the present study, 3D decellularized ECM (dECM) scaffolds derived from mesenchymal stem cell (MSC) spheroids and with intricate matrix composition are developed. Specifically, application of macromolecular crowding (MMC) to MSC spheroid cultures facilitate ECM assembly in a 3D configuration, resulting in the accumulation of ECM and associated bioactive components. Decellularized 3D dECM constructs produced under MMC are able to adequately preserve the microarchitecture of structural ECM components and are characterized by higher retention of growth factors. This results in a stronger proangiogenic bioactivity as compared to constructs produced under uncrowded conditions. These dECM scaffolds can be homogenously populated by endothelial cells, which direct the macroassembly of the structures into larger cell-carrying constructs. Application of empty scaffolds enhances intrinsic revascularization in vivo, indicating that the 3D dECM scaffolds represent optimal proangiogenic bioactive blocks for the construction of larger engineered tissue constructs.
Collapse
Affiliation(s)
- Cheng‐En Chiang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yi‐Qiao Fang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chao‐Ting Ho
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Marisa Assunção
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Sheng‐Ju Lin
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yu‐Chieh Wang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
- Interdisciplinary Program of Life Science National Tsing Hua University Hsinchu 30013 Taiwan
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Chieh‐Cheng Huang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
161
|
Tao C, Wang D. Tissue Engineering for Mimics and Modulations of Immune Functions. Adv Healthc Mater 2021; 10:e2100146. [PMID: 33871178 DOI: 10.1002/adhm.202100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Indexed: 11/12/2022]
Abstract
In the field of regenerative medicine, advances in tissue engineering have surpassed the reconstruction of individual tissues or organs and begun to work towards engineering systemic factors such as immune objects and functions. The immune system plays a crucial role in protecting and regulating systemic functions in the human body. Engineered immune tissues and organs have shown potential in recovering dysfunctions and aplasia of the immune system and the evasion from immune-mediated inflammatory responses and rejection elicited by engineered implants from allogeneic or xenogeneic sources are also being pursued to facilitate clinical transplantation of tissue engineered grafts. Here, current progress in tissue engineering to mimic or modulate immune functions is reviewed and elaborated from two perspectives: 1) engineering of immune tissues and organs per se and 2) immune evasion of host immunoinflammatory rejection by tissue-engineered implants.
Collapse
Affiliation(s)
- Chao Tao
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Dong‐An Wang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
- Karolinska Institute Ming Wai Lau Centre for Reparative Medicine HKSTP Sha Tin Hong Kong SAR China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
| |
Collapse
|
162
|
Samandari M, Alipanah F, Majidzadeh-A K, Alvarez MM, Trujillo-de Santiago G, Tamayol A. Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. APPLIED PHYSICS REVIEWS 2021; 8:021404. [PMID: 34084254 PMCID: PMC8100992 DOI: 10.1063/5.0040732] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 04/14/2023]
Abstract
Controlling cellular organization is crucial in the biofabrication of tissue-engineered scaffolds, as it affects cell behavior as well as the functionality of mature tissue. Thus far, incorporation of physiochemical cues with cell-size resolution in three-dimensional (3D) scaffolds has proven to be a challenging strategy to direct the desired cellular organization. In this work, a rapid, simple, and cost-effective approach is developed for continuous printing of multicompartmental hydrogel fibers with intrinsic 3D microfilaments to control cellular orientation. A static mixer integrated into a coaxial microfluidic device is utilized to print alginate/gelatin-methacryloyl (GelMA) hydrogel fibers with patterned internal microtopographies. In the engineered microstructure, GelMA compartments provide a cell-favorable environment, while alginate compartments offer morphological and mechanical cues that direct the cellular orientation. It is demonstrated that the organization of the microtopographies, and consequently the cellular alignment, can be tailored by controlling flow parameters in the printing process. Despite the large diameter of the fibers, the precisely tuned internal microtopographies induce excellent cell spreading and alignment, which facilitate rapid cell proliferation and differentiation toward mature biofabricated constructs. This strategy can advance the engineering of functional tissues.
Collapse
Affiliation(s)
| | - Fatemeh Alipanah
- Applied Physiology Research Center, Department of Physiology, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Keivan Majidzadeh-A
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 15179/64311, Tehran, Iran
| | - Mario M. Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
- Author to whom correspondence should be addressed:
| |
Collapse
|
163
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
164
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
165
|
Zhang Q, Qiao Y, Li C, Lin J, Han H, Li X, Mao J, Wang F, Wang L. Chitosan/gelatin-tannic acid decorated porous tape suture with multifunctionality for tendon healing. Carbohydr Polym 2021; 268:118246. [PMID: 34127225 DOI: 10.1016/j.carbpol.2021.118246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022]
Abstract
The inferior tendon healing after surgery is inextricably linked to the surgical suture. Poor load transfer along the suture often results in a high tendon re-tear rate. Besides, the severe inflammation and infection induced by sutures even cause a second surgery. Herein, to alleviate the above-mentioned issues, a multifunctional suture was fabricated by decorating chitosan/gelatin-tannic acid (CS/GE-TA) on the porous tape suture. The porous tape suture ensured the required mechanical properties and sufficient space for tissue integration. Compared to the pristine suture, the CS/GE-TA decorated suture (TA100) presented a 332% increase in pull-out force from the tendon, indicating potentially decreased re-tear rates. Meanwhile, TA100 showed superior anti-inflammatory and antibacterial performances. In vivo experiments further proved that TA100 could not only reduce inflammatory action but also facilitate collagen deposition and blood vessel formation. These results indicate that the multifunctional sutures are promising candidates for accelerating tendon healing.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jing Lin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Hui Han
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoli Li
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Jifu Mao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
166
|
Meng C, Su W, Liu M, Yao S, Ding Q, Yu K, Xiong Z, Chen K, Guo X, Bo L, Sun T. Controlled delivery of bone morphogenic protein-2-related peptide from mineralised extracellular matrix-based scaffold induces bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112182. [PMID: 34082982 DOI: 10.1016/j.msec.2021.112182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Ideal bone tissue engineering scaffolds composed of extracellular matrix (ECM) require excellent osteoconductive ability to imitate the bone environment. We developed a mineralised tissue-derived ECM-modified true bone ceramic (TBC) scaffold for the delivery of aspartic acid-modified bone morphogenic protein-2 (BMP-2) peptide (P28) and assessed its osteogenic capacity. Decellularized ECM from porcine small intestinal submucosa (SIS) was coated onto the surface of TBC, followed by mineralisation modification (mSIS/TBC). P28 was subsequently immobilised onto the scaffolds in the absence of a crosslinker. The alkaline phosphatase activity and other osteogenic differentiation marker results showed that osteogenesis of the P28/mSIS/TBC scaffolds was significantly greater than that of the TBC and mSIS/TBC groups. In addition, to examine the osteoconductive capability of this system in vivo, we established a rat calvarial bone defect model and evaluated the new bone area and new blood vessel density. Histological observation showed that P28/mSIS/TBC exhibited favourable bone regeneration efficacy. This study proposes the use of mSIS/TBC loaded with P28 as a promising osteogenic scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chunqing Meng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Taikang Tongji Hospital, Wuhan 430050, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keda Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bo
- Department of Rheumatology, The second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
167
|
Jiang Z, Zhang K, Du L, Cheng Z, Zhang T, Ding J, Li W, Xu B, Zhu M. Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112178. [PMID: 34082978 DOI: 10.1016/j.msec.2021.112178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Microchannels are effective means of enabling the functional performance of tissue engineering scaffolds. Chitosan, a partial deacetylation derivative of chitin, exhibiting excellent biocompatibility, has been widely used in clinical practice. However, development of chitosan scaffolds with controllable microchannels architecture remains an engineering challenge. Here, we generated chitosan scaffolds with adjustable microchannel by combining a 3D printing microfiber templates-leaching method and a freeze-drying method. We can precisely control the arrangement, diameter and density of microchannel within chitosan scaffolds. Moreover, the integrated bilayer scaffolds with the desired structural parameters in each layer were fabricated and exhibited no delamination. The flow rate and volume of the simulated fluid can be modulated by diverse channels architecture. Additionally, the microchannel structure promoted cell survival, proliferation and distribution in vitro, and improved cell and tissue ingrowth and vascular formation in vivo. This study opens a new road for constructing chitosan scaffolds, and can further extend their application scope across tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhuyan Jiang
- The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300070, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Kaihui Zhang
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China.
| | - Zhaojun Cheng
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Ji Ding
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Baoshan Xu
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
168
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
169
|
Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021; 6:17. [PMID: 33772028 PMCID: PMC7997931 DOI: 10.1038/s41536-021-00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
One major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.
Collapse
Affiliation(s)
- Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
170
|
Hwangbo H, Kim W, Kim GH. Lotus-Root-Like Microchanneled Collagen Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12656-12667. [PMID: 33263976 DOI: 10.1021/acsami.0c14670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the human body, there are numerous microtubular tissue structures, such as muscles, vessels, nerves, and tendons. Tissue engineering scaffolds have been regarded as a high-potential candidate for providing such aligned instructive niches to facilitate cell-recruitment and differentiation, and eventually, successful tissue regeneration. Moreover, scaffolds derived from the extracellular matrix (ECM) can provide excellent biocompatibility. However, the fabrication of such microtubular hierarchical scaffolds using ECM has proven to be difficult, and thus, innovative fabrication approaches are required. Herein, we have developed a biofabrication system involving a sequential removal of supporting materials (polycaprolactone (PCL) and poly(vinyl alcohol) (PVA)) to fabricate a uniaxially aligned microtubular collagen scaffold, a lotus-like structure. To generate the unique morphological structures of the scaffold, we manipulated various material-related and processing factors, such as the molecular weight of PVA and the weight fraction of collagen coating. Physical and biological activities of the aligned hierarchical microtubular collagen scaffolds were compared with those of the controls (conventional collagen struts and microtubular collagen scaffolds void of a uniaxial topographical cue). In conclusion, the instructive niche on the aligned hierarchical microtubular collagen structure induced high degrees of myoblast alignment and efficient myogenic differentiation.
Collapse
Affiliation(s)
- Hanjun Hwangbo
- Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - WonJin Kim
- Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
171
|
Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 2021; 10:713. [PMID: 33807009 PMCID: PMC8005053 DOI: 10.3390/cells10030713] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.
Collapse
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Gry Ellman
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
172
|
Sheppard G, Tassenberg K, Nenchev B, Strickland J, Mesalam R, Shepherd J, Williams H. GAKTpore: Stereological Characterisation Methods for Porous Foams in Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1269. [PMID: 33800080 PMCID: PMC7962185 DOI: 10.3390/ma14051269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
In tissue engineering, scaffolds are a key component that possess a highly elaborate pore structure. Careful characterisation of such porous structures enables the prediction of a variety of large-scale biological responses. In this work, a rapid, efficient, and accurate methodology for 2D bulk porous structure analysis is proposed. The algorithm, "GAKTpore", creates a morphology map allowing quantification and visualisation of spatial feature variation. The software achieves 99.6% and 99.1% mean accuracy for pore diameter and shape factor identification, respectively. There are two main algorithm novelties within this work: (1) feature-dependant homogeneity map; (2) a new waviness function providing insights into the convexity/concavity of pores, important for understanding the influence on cell adhesion and proliferation. The algorithm is applied to foam structures, providing a full characterisation of a 10 mm diameter SEM micrograph (14,784 × 14,915 px) with 190,249 pores in ~9 min and has elucidated new insights into collagen scaffold formation by relating microstructural formation to the bulk formation environment. This novel porosity characterisation algorithm demonstrates its versatility, where accuracy, repeatability, and time are paramount. Thus, GAKTpore offers enormous potential to optimise and enhance scaffolds within tissue engineering.
Collapse
Affiliation(s)
- Gareth Sheppard
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (K.T.); (B.N.); (J.S.); (J.S.); (H.W.)
| | - Karl Tassenberg
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (K.T.); (B.N.); (J.S.); (J.S.); (H.W.)
| | - Bogdan Nenchev
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (K.T.); (B.N.); (J.S.); (J.S.); (H.W.)
| | - Joel Strickland
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (K.T.); (B.N.); (J.S.); (J.S.); (H.W.)
| | - Ramy Mesalam
- School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK;
| | - Jennifer Shepherd
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (K.T.); (B.N.); (J.S.); (J.S.); (H.W.)
| | - Hugo Williams
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (K.T.); (B.N.); (J.S.); (J.S.); (H.W.)
| |
Collapse
|
173
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
174
|
Gao J, Ding X, Yu X, Chen X, Zhang X, Cui S, Shi J, Chen J, Yu L, Chen S, Ding J. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink. Adv Healthc Mater 2021; 10:e2001404. [PMID: 33225617 DOI: 10.1002/adhm.202001404] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Cartilage is difficult to self-repair and it is more challenging to repair an osteochondral defects concerning both cartilage and subchondral bone. Herein, it is hypothesized that a bilayered porous scaffold composed of a biomimetic gelatin hydrogel may, despite no external seeding cells, induce osteochondral regeneration in vivo after being implanted into mammal joints. This idea is confirmed based on the successful continuous 3D-printing of the bilayered scaffolds combined with the sol-gel transition of the aqueous solution of a gelatin derivative (physical gelation) and photocrosslinking of the gelatin methacryloyl (gelMA) macromonomers (chemical gelation). At the direct printing step, a nascent physical hydrogel is extruded, taking advantage of non-Newtonian and thermoresponsive rheological properties of this 3D-printing ink. In particular, a series of crosslinked gelMA (GelMA) and GelMA-hydroxyapatite bilayered hydrogel scaffolds are fabricated to evaluate the influence of the spacing of 3D-printed filaments on osteochondral regeneration in a rabbit model. The moderately spaced scaffolds output excellent regeneration of cartilage with cartilaginous lacunae and formation of subchondral bone. Thus, tricky rheological behaviors of soft matter can be employed to improve 3D-printing, and the bilayered hybrid scaffold resulting from the continuous 3D-printing is promising as a biomaterial to regenerate articular cartilage.
Collapse
Affiliation(s)
- Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaoquan Ding
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xingyu Zhang
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jun Chen
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shiyi Chen
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
175
|
Chen SG, Ugwu F, Li WC, Caplice NM, Petcu E, Yip SP, Huang CL. Vascular Tissue Engineering: Advanced Techniques and Gene Editing in Stem Cells for Graft Generation. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:14-28. [DOI: 10.1089/ten.teb.2019.0264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sin-Guang Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Felix Ugwu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, China
| | - Noel M. Caplice
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Eugen Petcu
- Griffith University School of Medicine, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
176
|
Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021; 22:ijms22031195. [PMID: 33530487 PMCID: PMC7865724 DOI: 10.3390/ijms22031195] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
A hot topic in biomedical science is the implementation of more predictive in vitro models of human tissues to significantly improve the knowledge of physiological or pathological process, drugs discovery and screening. Bidimensional (2D) culture systems still represent good high-throughput options for basic research. Unfortunately, these systems are not able to recapitulate the in vivo three-dimensional (3D) environment of native tissues, resulting in a poor in vitro–in vivo translation. In addition, intra-species differences limited the use of animal data for predicting human responses, increasing in vivo preclinical failures and ethical concerns. Dealing with these challenges, in vitro 3D technological approaches were recently bioengineered as promising platforms able to closely capture the complexity of in vivo normal/pathological tissues. Potentially, such systems could resemble tissue-specific extracellular matrix (ECM), cell–cell and cell–ECM interactions and specific cell biological responses to mechanical and physical/chemical properties of the matrix. In this context, this review presents the state of the art of the most advanced progresses of the last years. A special attention to the emerging technologies for the development of human 3D disease-relevant and physiological models, varying from cell self-assembly (i.e., multicellular spheroids and organoids) to the use of biomaterials and microfluidic devices has been given.
Collapse
|
177
|
Liu J, Lu Y, Xing F, Liang J, Wang Q, Fan Y, Zhang X. Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects. J Mater Chem B 2021; 9:1686-1697. [PMID: 33491727 DOI: 10.1039/d0tb02616f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microfracture surgery remains the most popular treatment for articular cartilage lesions in the clinic, but often leads to the formation of inferior fibrocartilage tissue and damage to subchondral bone. To overcome these problems, extracellular matrix (ECM) scaffolds derived from decellularized natural cartilaginous tissues were introduced and showed excellent biological properties to direct the differentiation of bone marrow stem cells. However, besides the limited allogenic/allogenic supply and the risk of disease transfer from xenogeneic tissues, the effectiveness of ECM scaffolds always varied with a high variability of natural tissue quality. In this study, we developed composite scaffolds functionalized with a cell-derived ECM source, namely, bionic cartilage acellular matrix microspheres (BCAMMs), that support the chondrogenic differentiation of bone marrow cells released from microfracture. The scaffolds with BCAMMs at different developmental stages were investigated in articular cartilage regeneration and subchondral bone repair. Compared to microfracture, the addition of cell-free BCAMM scaffolds has demonstrated a great improvement of regenerated cartilage tissue quality in a rabbit model as characterized by a semi-quantitative analysis of cells, histology and biochemical assays as well as micro-CT images. Moreover, the variation in ECM properties was found to significantly affect the cartilage regeneration, highlighting the challenges of homogenous scaffolds in working with microfracture. Together, our results demonstrate that the biofunctionalized BCAMM scaffold with cell-derived ECM shows great potential to combine with microfracture for clinical translation to repair cartilage defects.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. and State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Lu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
178
|
Yeo M, Chae S, Kim G. An in vitro model using spheroids-laden nanofibrous structures for attaining high degree of myoblast alignment and differentiation. Am J Cancer Res 2021; 11:3331-3347. [PMID: 33537090 PMCID: PMC7847672 DOI: 10.7150/thno.53928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
A spheroid is an aggregation of single cells with structural and functional characteristics similar to those of 3D native tissues, and it has been utilized as one of the typical in vitro three-dimensional (3D) cell models. Scaffold-free spheroids provide outstanding reflection of tissue complexity in a 3D in vivo-like environment, but they can neither fabricate realistic macroscale 3D complex structures without avoiding necrosis nor receive direct external stimuli (i.e., stimuli from mechanical or topographical cues). Here, we propose a spheroid-laden electrospinning process to obtain in vitro model achieved using the synergistic effect of the unique bioactive components provided by the spheroids and stimulating effects provided by the aligned nanofibers. Methods: To show the functional activity of the spheroid-laden structures, we used myoblast-spheroids to obtain skeletal muscle, comprising highly aligned myotubes, utilizing an uniaxially arranged topographical cue. The spheroid-electrospinning was used to align spheroids directly by embedding them in aligned alginate nanofibers, which were controlled with various materials and processing parameters. Results: The spheroids laden in the alginate nanofibers showed high cell viability (>90%) and was compared with that of a cell-laden alginate nanofiber that was electrospun with single cells. Consequently, the spheroids laden in the aligned nanofibers showed a significantly higher degree of myotube formation and maturation. Conclusion: Results suggested that the in vitro model using electrospun spheroids could potentially be employed to understand myogenic responses for various in vitro drug tests.
Collapse
|
179
|
Simon-Yarza T, Labour MN, Aid R, Letourneur D. Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell arrangement in vessel-like structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111369. [DOI: 10.1016/j.msec.2020.111369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
180
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
181
|
Zhu T, Gu H, Zhang H, Wang H, Xia H, Mo X, Wu J. Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomater 2021; 119:211-224. [PMID: 33181359 DOI: 10.1016/j.actbio.2020.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Rapid endothelialization of small-diameter vascular grafts remains a significant challenge in clinical practice. In addition, compliance mismatch causes intimal hyperplasia and finally leads to graft failure. To achieve compliance match and rapid endothelialization, we synthesized low-initial-modulus poly(ester-urethane)urea (PEUU) elastomer and prepared it into electrospun tubular grafts and then functionalized the grafts with poly(ethylene glycol) (PEG) and heparin via covalent grafting. The PEG- and heparin-functionalized PEUU (PEUU@PEG-Hep) graft had comparable mechanical properties with the native blood vessel. In vitro data demonstrated that the grafts are of good cytocompatibility and blood compatibility. Covalent grafting of PEG and heparin significantly promoted the adhesion, spreading, and proliferation of human umbilical vein endothelial cells (HUVECs) and upregulated the expression of vascular endothelial cell-related genes, as well as increased the capability of grafts in preventing platelet deposition. In vivo assessments indicated good biocompatibility of the PEUU@PEG-Hep graft as it did not induce severe immune responses. Replacement of resected carotid artery with the PEUU@PEG-Hep graft in a rabbit model showed that the graft was capable of rapid endothelialization, initiated vascular remodeling, and maintained patency. This study demonstrates the PEUU@PEG-Hep vascular graft with compliance match and efficacious antithrombosis might find opportunities for bioactive blood vessel substitutes.
Collapse
|
182
|
Suku M, Laiva AL, O’Brien FJ, Keogh MB. Anti-Ageing Protein β-Klotho Rejuvenates Diabetic Stem Cells for Improved Gene-Activated Scaffold Based Wound Healing. J Pers Med 2020; 11:jpm11010004. [PMID: 33375065 PMCID: PMC7822036 DOI: 10.3390/jpm11010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Skin wounds can lead to serious morbidity complications in diabetic patients due to the reduced healing potential of autologous stem cells. One reason for the low functional potency of stem cells from diabetic patients (diabetic stem cells) is attributed to their senescent-like nature. Here, we investigated if an anti-ageing protein, β-klotho, could be used to rejuvenate diabetic stem cells and to promote pro-angiogenic gene-activated scaffold (GAS)-induced functional response for wound healing applications. Human stem cells derived from the adipose tissue (adipose-derived stem cells (ADSCs)) of normal and diabetic (type 2) donors were used for the study. We report that the β-klotho priming facilitated inflammatory signal pruning by reducing interleukin-8 release by more than half while concurrently doubling the release of monocyte chemoattractant protein-1. Additionally, β-klotho priming enhanced the pro-angiogenic response of diabetic ADSCs on GAS by dampening the release of anti-angiogenic factors (i.e., pigment epithelium-derived factor, tissue inhibitor of metalloproteinase-1 and thrombospondin-1) while simultaneously supporting the expression of pro-angiogenic factors (i.e., Vascular Endothelial Growth Factor (VEGF), angiopoietin-2 and angiogenin). Finally, we show that β-klotho pre-treatment expedites the cellular expression of matrix proteins such as collagen IV and collagen VI, which are implicated in tissue maturation. Taken together, our study provides evidence that the synergistic effect of the pro-angiogenic GAS and β-klotho activation effectively accelerates the functional development of diabetic ADSCs for wound healing applications.
Collapse
Affiliation(s)
- Meenakshi Suku
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Kingdom of Bahrain P.O. Box 15503, Ireland; (M.S.); (A.L.L.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland;
| | - Ashang Luwang Laiva
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Kingdom of Bahrain P.O. Box 15503, Ireland; (M.S.); (A.L.L.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland;
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland;
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michael B. Keogh
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Kingdom of Bahrain P.O. Box 15503, Ireland; (M.S.); (A.L.L.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland;
- Correspondence: ; Tel.: +97-316-660-128
| |
Collapse
|
183
|
Li M, Zhang A, Li J, Zhou J, Zheng Y, Zhang C, Xia D, Mao H, Zhao J. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact Mater 2020; 5:938-948. [PMID: 32637756 PMCID: PMC7330453 DOI: 10.1016/j.bioactmat.2020.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Extracellular matrix (ECM) with mimetic tissue niches was attractive to facilitate tissue regeneration in situ via recruitment of endogenous cells and stimulation of self-healing process. However, how to engineer the complicate tissue specific ECM with unique matrisome in vitro was a challenge of ECM-based biomaterials in tissue engineering and regenerative medicine. Here, we introduced coculture system to engineer bone mimetic ECM niche guided by cell-cell communication. In the cocultures, fibroblasts promoted osteogenic differentiation of osteoblasts via extracellular vesicles. The generated ECM (MN-ECM) displayed a unique appearance of morphology and biological components. The advantages of MN-ECM were demonstrated with promotion of multiple cellular behaviors (proliferation, adhesion and osteogenic mineralization) in vitro and bone regeneration in vivo. Moreover, proteomic analysis was used to clarify the molecular mechanism of MN-ECM, which revealed a specific matrisome signature. The present study provides a novel strategy to generate ECM with tissue mimetic niches via cell-cell communication in a coculture system, which forwards the development of tissue-bioactive ECM engineering along with deepening the understanding of ECM niches regulated by cells for bone tissue engineering.
Collapse
Affiliation(s)
- Mei Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
- Ningbo Institute of Medical Sciences, Ningbo, Zhejiang, PR China
| | - Anqi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Jiajing Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Jing Zhou
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Yanan Zheng
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Chi Zhang
- Orthopedic Department, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Dongdong Xia
- Orthopedic Department, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
184
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
185
|
Chen H, Cheng Y, Wang X, Wang J, Shi X, Li X, Tan W, Tan Z. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics 2020; 10:12127-12143. [PMID: 33204333 PMCID: PMC7667682 DOI: 10.7150/thno.52450] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: The tumor microenvironment (TME) determines tumor progression and affects clinical therapy. Its basic components include cancer-associated fibroblasts (CAFs) and tumor-associated endothelial cells (TECs), both of which constitute the tumor matrix and microvascular network. The ability to simulate interactions between cells and extracellular matrix in a TME in vitro can assist the elucidation of cancer growth and evaluate the efficiency of therapies. Methods: In the present study, an in vitro 3D model of tumor tissue that mimicked in vivo cell physiological function was developed using tumor-associated stromal cells. Colorectal cancer cells, CAFs, and TECs were co-cultured on 3D-printed scaffolds so as to constitute an extracellular matrix (ECM) that allowed cell processes such as adhesion, stemness, proliferation, and vascularization to take place. Normal stromal cells were activated and reprogrammed into tumor-related stromal cells to construct a TME of tumor tissues. Results: The activated stromal cells overexpressed a variety of tumor-related markers and remodeled the ECM. Furthermore, the metabolic signals and malignant transformation of the in vitro 3D tumor tissue was substantially similar to that observed in tumors in vivo. Conclusions: The 3D tumor tissue exhibited physiological activity with high drug resistance. The model is suitable for research studies of tumor biology and the development of personalized treatments for cancer.
Collapse
Affiliation(s)
- Haoxiang Chen
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| | - Yanxiang Cheng
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaocheng Wang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Jian Wang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| | - Xuelei Shi
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| | - Xinghuan Li
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
186
|
Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:553529. [PMID: 33178669 PMCID: PMC7594528 DOI: 10.3389/fbioe.2020.553529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022] Open
Abstract
Exploration for ideal bone regeneration materials still remains a hot research topic due to the unmet clinical challenge of large bone defect healing. Bone grafting materials have gradually evolved from single component to multiple-component composite, but their functions during bone healing still only regulate one or two biological processes. Therefore, there is an urgent need to develop novel materials with more complex composition, which convey multiple biological functions during bone regeneration. Here, we report an naturally nanostructured ECM based composite scaffold derived from fish air bladder and combined with dicalcium phosphate (DCP) microparticles to form a new type of bone grafting material. The DCP/acellular tissue matrix (DCP/ATM) scaffold demonstrated porous structure with porosity over 65% and great capability of absorbing water and other biologics. In vitro cell culture study showed that DCP/ATM scaffold could better support osteoblast proliferation and differentiation in comparison with DCP/ADC made from acid extracted fish collagen. Moreover, DCP/ATM also demonstrated more potent bone regenerative properties in a rat calvarial defect model, indicating incorporation of ECM based matrix in the scaffolds could better support bone formation. Taken together, this study demonstrates a new avenue toward the development of new type of bone regeneration biomaterial utilizing ECM as its key components.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jiayu Chen
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Qianhong He
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Tao Jiang
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Weixu Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
187
|
Gorgin Karaji Z, Jahanmard F, Mirzaei AH, van der Wal B, Amin Yavari S. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration. ACTA ACUST UNITED AC 2020; 15:065016. [PMID: 32640431 DOI: 10.1088/1748-605x/aba40b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous progress in the design and manufacturing of metallic implants, they do not outlive the patient. To illustrate, more than half of hip replacements will fail, mainly due to implant infection and loosening. Surface engineering approaches and, in particular, coatings can facilitate implant bio-functionality via the recruitment of more host cells for new bone formation and inhibition of bacterial colonization. Here, we used electrophoretic deposition to apply a silk fibroin solution consisting of tricalcium phosphate (TCP) and vancomycin as a coating on the surface of additively-manufactured porous titanium. Furthermore, the surface properties of the coatings developed and the release kinetics of the vancomycin were studied to evaluate the applied coating. The in vitro antibacterial behavior of the multifunctional coating, as well as the cell viability and osteogenic differentiation of the MC3T3-E1 cell line were extensively studied. The biomaterials developed exhibited an antibacterial behavior with a reduction of up to four orders of magnitude in both planktonic and adherent bacteria for 6 h and 1 d. A live-dead assay, the Alamar Blue activity, the DNA content, and cytoskeleton staining demonstrated a significant increase in the cell density of the coated groups versus the as-manufactured ones. The significantly enhanced calcium deposition and the increase in mineralization for the groups with TCP after 21 and 28 d, respectively, demonstrate upregulation of the MC3T3 cells' osteogenic differentiation. Our results collectively show that the multifunctional coating studied here can be potentially used to develop a new generation of orthopedic implants.
Collapse
Affiliation(s)
- Z Gorgin Karaji
- Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah 67156-85420, Iran. Department of Orthopedics, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | | | | | | | | |
Collapse
|
188
|
Reid G, Magarotto F, Marsano A, Pozzobon M. Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering (Basel) 2020; 7:E118. [PMID: 33007935 PMCID: PMC7711907 DOI: 10.3390/bioengineering7040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process.
Collapse
Affiliation(s)
- Gregory Reid
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| | - Anna Marsano
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
189
|
Porta M, Tonda-Turo C, Pierantozzi D, Ciardelli G, Mancuso E. Towards 3D Multi-Layer Scaffolds for Periodontal Tissue Engineering Applications: Addressing Manufacturing and Architectural Challenges. Polymers (Basel) 2020; 12:polym12102233. [PMID: 32998365 PMCID: PMC7599927 DOI: 10.3390/polym12102233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and functionality of the periodontal tissue represents still a great challenge. In this study, a porous poly(ε-caprolactone) (PCL) and Sr-doped nano hydroxyapatite (Sr-nHA) with a multi-layer structure was produced via a single-step additive manufacturing (AM) process, as a potential strategy for hard periodontal tissue regeneration. Physicochemical characterization was conducted in order to evaluate the overall scaffold architecture, topography, as well as porosity with respect to the original CAD model. Furthermore, compressive tests were performed to assess the mechanical properties of the resulting multi-layer structure. Finally, in vitro biological performance, in terms of biocompatibility and osteogenic potential, was evaluated by using human osteosarcoma cells. The manufacturing route used in this work revealed a highly versatile method to fabricate 3D multi-layer scaffolds with porosity levels as well as mechanical properties within the range of dentoalveolar bone tissue. Moreover, the single step process allowed the achievement of an excellent integrity among the different layers of the scaffold. In vitro tests suggested the promising role of the ceramic phase within the polymeric matrix towards bone mineralization processes. Overall, the results of this study demonstrate that the approach undertaken may serve as a platform for future advances in 3D multi-layer and patient-specific strategies that may better address complex periodontal tissue defects.
Collapse
Affiliation(s)
- Marta Porta
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Chiara Tonda-Turo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Daniele Pierantozzi
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Gianluca Ciardelli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
- Correspondence:
| |
Collapse
|
190
|
Dissecting the Effect of a 3D Microscaffold on the Transcriptome of Neural Stem Cells with Computational Approaches: A Focus on Mechanotransduction. Int J Mol Sci 2020; 21:ijms21186775. [PMID: 32942778 PMCID: PMC7555048 DOI: 10.3390/ijms21186775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D cell cultures are becoming more and more important in the field of regenerative medicine due to their ability to mimic the cellular physiological microenvironment. Among the different types of 3D scaffolds, we focus on the Nichoid, a miniaturized scaffold with a structure inspired by the natural staminal niche. The Nichoid can activate cellular responses simply by subjecting the cells to mechanical stimuli. This kind of influence results in different cellular morphology and organization, but the molecular bases of these changes remain largely unknown. Through RNA-Seq approach on murine neural precursors stem cells expanded inside the Nichoid, we investigated the deregulated genes and pathways showing that the Nichoid causes alteration in genes strongly connected to mechanobiological functions. Moreover, we fully dissected this mechanism highlighting how the changes start at a membrane level, with subsequent alterations in the cytoskeleton, signaling pathways, and metabolism, all leading to a final alteration in gene expression. The results shown here demonstrate that the Nichoid influences the biological and genetic response of stem cells thorough specific alterations of cellular signaling. The characterization of these pathways elucidates the role of mechanical manipulation on stem cells, with possible implications in regenerative medicine applications.
Collapse
|
191
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
192
|
Micropatterning Decellularized ECM as a Bioactive Surface to Guide Cell Alignment, Proliferation, and Migration. Bioengineering (Basel) 2020; 7:bioengineering7030102. [PMID: 32878055 PMCID: PMC7552701 DOI: 10.3390/bioengineering7030102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Bioactive surfaces and materials have displayed great potential in a variety of tissue engineering applications but often struggle to completely emulate complex bodily systems. The extracellular matrix (ECM) is a crucial, bioactive component in all tissues and has recently been identified as a potential solution to be utilized in combination with biomaterials. In tissue engineering, the ECM can be utilized in a variety of applications by employing the biochemical and biomechanical cues that are crucial to regenerative processes. However, viable solutions for maintaining the dimensionality, spatial orientation, and protein composition of a naturally cell-secreted ECM remain challenging in tissue engineering. Therefore, this work used soft lithography to create micropatterned polydimethylsiloxane (PDMS) substrates of a three-dimensional nature to control cell adhesion and alignment. Cells aligned on the micropatterned PDMS, secreted and assembled an ECM, and were decellularized to produce an aligned matrix biomaterial. The cells seeded onto the decellularized, patterned ECM showed a high degree of alignment and migration along the patterns compared to controls. This work begins to lay the groundwork for elucidating the immense potential of a natural, cell-secreted ECM for directing cell function and offers further guidance for the incorporation of natural, bioactive components for emerging tissue engineering technologies.
Collapse
|
193
|
Sun T, Shi Q, Liang Q, Yao Y, Wang H, Sun J, Huang Q, Fukuda T. Fabrication of vascular smooth muscle-like tissues based on self-organization of circumferentially aligned cells in microengineered hydrogels. LAB ON A CHIP 2020; 20:3120-3131. [PMID: 32756693 DOI: 10.1039/d0lc00544d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circumferential alignment of vascular smooth muscle cells (vSMCs) is critical to form an in vivo-like vascular smooth muscle layer in vitro. Although many techniques to elicit such an alignment on 3D substrates have been demonstrated, it remains a challenge to recapitulate the circumferential cellular alignment of vascular smooth muscle tissues in 3D hydrogels. Here, we propose a spring-like gelatin methacrylate (GelMA) structure formed by semi-automated reeling of a core-shell microfiber at the micro-scale. The resulting structures facilitate circumferential alignment and self-organization of encapsulated human mesenchymal stem cells (MSCs) into multilayer spring-like cellular structures. Based on the permeable tubular lumens of these structures, a perfusion culture micro-system is developed to further facilitate the vSMC differentiation of MSCs under the effect of TGF-β1. We also evaluated the MSC contraction-induced shrinkage of the resulting cellular structures. These results demonstrate the successful in vitro regeneration of vascular smooth muscle (vSM)-like tissues in 3D environments. Compared with the substrate surface, the porous structure in hydrogels is more similar to cell microenvironments in vivo. Thus, this approach may be used to develop an in vitro model for the study of vascular tissue regeneration and the mechanism of vascular remolding during hypertension.
Collapse
Affiliation(s)
- Tao Sun
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China.
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China. and Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Qian Liang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Yibing Yao
- Department of Geriatric Oncology, Fourth Medical Center of PLA General Hospital, 100048, People's Republic of China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Junzhong Sun
- Department of Geriatric Oncology, Fourth Medical Center of PLA General Hospital, 100048, People's Republic of China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China.
| |
Collapse
|
194
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
195
|
Serrano-Bello J, Cruz-Maya I, Suaste-Olmos F, González-Alva P, Altobelli R, Ambrosio L, Medina LA, Guarino V, Alvarez-Perez MA. In vivo Regeneration of Mineralized Bone Tissue in Anisotropic Biomimetic Sponges. Front Bioeng Biotechnol 2020; 8:587. [PMID: 32775319 PMCID: PMC7381345 DOI: 10.3389/fbioe.2020.00587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
In the last two decades, alginate scaffolds have been variously studied as extracellular matrix analogs for tissue engineering. However, relevant evidence is still lacking concerning their ability to mimic the microenvironment of hierarchical tissues such as bone. Hence, an increasing amount of attention has recently been devoted to the fabrication of macro/microporous sponges with pore anisotropy able to more accurately replicate the cell niche structure as a trigger for bioactive functionalities. This paper presents an in vivo study of alginate sponges with anisotropic microporous domains (MAS) formed by ionic crosslinking in the presence of different fractions (30 or 50% v) of hydroxyapatite (HA). In comparison with unloaded sponges (MAS0), we demonstrated that HA confers peculiar physical and biological properties to the sponge, depending upon the inorganic fraction used, enabling the sponge to bio-mimetically support the regeneration of newly formed bone. Scanning electron microscopy analysis showed a preferential orientation of pores, ascribable to the physical constraints exerted by HA particles during the pore network formation. Energy dispersive spectroscopy (EDS) and X-Ray diffraction (XRD) confirmed a chemical affinity of HA with the native mineral phase of the bone. In vitro studies via WST-1 assay showed good adhesion and proliferation of human Dental Pulp-Mesenchymal Stem Cells (hDP-MSC) that increased in the presence of the bioactive HA signals. Moreover, in vivo studies via micro-CT and histological analyses of a bone model (e.g., a rat calvaria defect) confirmed that the maximum osteogenic response after 90 days was achieved with MAS30, which supported good regeneration of the calvaria defect without any evidence of inflammatory reaction. Hence, all of the results suggested that MAS is a promising scaffold for supporting the regeneration of hard tissues in different body compartments.
Collapse
Affiliation(s)
- Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Iriczalli Cruz-Maya
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico.,Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Fernando Suaste-Olmos
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rosaria Altobelli
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luis Alberto Medina
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología/Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincenzo Guarino
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies and Research Division, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
196
|
Role of biomechanics in vascularization of tissue-engineered bones. J Biomech 2020; 110:109920. [PMID: 32827778 DOI: 10.1016/j.jbiomech.2020.109920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Biomaterial based reconstruction is still the most commonly employed method of small bone defect reconstruction. Bone tissue-engineered techniques are improving, and adjuncts such as vascularization technologies allow re-evaluation of traditional reconstructive methods for healingofcritical-sized bone defect. Slow infiltration rate of vasculogenesis after cell-seeded scaffold implantation limits the use of clinically relevant large-sized scaffolds. Hence, in vitro vascularization within the tissue-engineered bone before implantation is required to overcome the serious challenge of low cell survival rate after implantation which affects bone tissue regeneration and osseointegration. Mechanobiological interactions between cells and microvascular mechanics regulate biological processes regarding cell behavior. In addition, load-bearing scaffolds demand mechanical stability properties after vascularization to have adequate strength while implanted. With the advent of bioreactors, vascularization has been greatly improved by biomechanical regulation of stem cell differentiation through fluid-induced shear stress and synergizing osteogenic and angiogenic differentiation in multispecies coculture cells. The benefits of vascularization are clear: avoidance of mass transfer limitation and oxygen deprivation, a significant decrease in cell necrosis, and consequently bone development, regeneration and remodeling. Here, we discuss specific techniques to avoid pitfalls and optimize vascularization results of tissue-engineered bone. Cell source, scaffold modifications and bioreactor design, and technique specifics all play a critical role in this new, and rapidly growing method for bone defect reconstruction. Given the crucial importance of long-term survival of vascular network in physiological function of 3D engineered-bone constructs, greater knowledge of vascularization approaches may lead to the development of new strategies towards stabilization of formed vascular structure.
Collapse
|
197
|
Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020; 9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Indexed: 01/15/2023]
Abstract
Biodegradable polymers play a pivotal role in in situ tissue engineering. Utilizing various technologies, researchers have been able to fabricate 3D tissue engineering scaffolds using biodegradable polymers. They serve as temporary templates, providing physical and biochemical signals to the cells and determining the successful outcome of tissue remodeling. Furthermore, a biodegradable scaffold also presents the fourth dimension for tissue engineering, namely time. The properties of the biodegradable polymer change over time, presenting continuously changing features during the degradation process. These changes become more complicated when different materials are combined together to fabricate a composite or heterogeneous scaffold. This review undertakes a systematic analysis of the basic characteristics of biodegradable polymers and describe recent advances in making composite biodegradable scaffolds for in situ tissue engineering and regenerative medicine. The interaction between implanted biodegradable biomaterials and the in vivo environment are also discussed, including the properties and functional changes of the degradable scaffold, the local effect of degradation on the contiguous tissue and their evaluation using both in vitro and in vivo models.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
- College of TextilesDonghua University Songjiang District Shanghai 201620 China
| |
Collapse
|
198
|
Badileanu A, Mora-Navarro C, Gracioso Martins AM, Garcia ME, Sze D, Ozpinar EW, Gaffney L, Enders JR, Branski RC, Freytes DO. Fast Automated Approach for the Derivation of Acellular Extracellular Matrix Scaffolds from Porcine Soft Tissues. ACS Biomater Sci Eng 2020; 6:4200-4213. [PMID: 33463339 DOI: 10.1021/acsbiomaterials.0c00265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age. Although this variability could be minimized using established tissue sources, other sources arise from the decellularization process itself. Overall, current protocols require manual work and are poorly standardized with regard to the choice of reagents, the order by which they are added, and exposure times. The combination of these factors adds variability affecting the uniformity of the final product between batches. Furthermore, each protocol needs to be optimized for each tissue and tissue source making tissue-to-tissue comparisons difficult. Automation and standardization of ECM scaffold development constitute a significant improvement to current biomanufacturing techniques but remains poorly explored. This study aimed to develop a biofabrication method for fast and automated derivation of raw material for ECM hydrogel production while preserving ECM composition and controlling lot-to-lot variability. The main result was a closed semibatch bioreactor system with automated dosing of decellularization reagents capable of deriving ECM material from pretreated soft tissues. The ECM was further processed into hydrogels to demonstrate gelation and cytocompatibility. This work presents a versatile, scalable, and automated platform for the rapid production of ECM scaffolds.
Collapse
Affiliation(s)
- Andreea Badileanu
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Camilo Mora-Navarro
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ana M Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mario E Garcia
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
| | - Daphne Sze
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily W Ozpinar
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lewis Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States.,The Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ryan C Branski
- Departments of Rehabilitation Medicine, Otolaryngology-Head and Neck Surgery, and Pathology, New York University Grossman School of Medicine, New York, New York 10003, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
199
|
Dalton PD, Woodfield TBF, Mironov V, Groll J. Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902953. [PMID: 32537395 PMCID: PMC7284200 DOI: 10.1002/advs.201902953] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/17/2020] [Indexed: 05/05/2023]
Abstract
The diversity of manufacturing processes used to fabricate 3D implants, scaffolds, and tissue constructs is continuously increasing. This growing number of different applicable fabrication technologies include electrospinning, melt electrowriting, volumetric-, extrusion-, and laser-based bioprinting, the Kenzan method, and magnetic and acoustic levitational bioassembly, to name a few. Each of these fabrication technologies feature specific advantages and limitations, so that a combination of different approaches opens new and otherwise unreachable opportunities for the fabrication of hierarchical cell-material constructs. Ongoing challenges such as vascularization, limited volume, and repeatability of tissue constructs at the resolution required to mimic natural tissue is most likely greater than what one manufacturing technology can overcome. Therefore, the combination of at least two different manufacturing technologies is seen as a clear and necessary emerging trend, especially within biofabrication. This hybrid approach allows more complex mechanics and discrete biomimetic structures to address mechanotransduction and chemotactic/haptotactic cues. Pioneering milestone papers in hybrid fabrication for biomedical purposes are presented and recent trends toward future manufacturing platforms are analyzed.
Collapse
Affiliation(s)
- Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgWürzburg97070Germany
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of Otago ChristchurchChristchurch8011New Zealand
- New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE)Auckland0600‐2699New Zealand
| | - Vladimir Mironov
- 3D Bioprinting SolutionsMoscow115409Russia
- Institute for Regenerative MedicineSechenov Medical UniversityMoscow119992Russia
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgWürzburg97070Germany
| |
Collapse
|
200
|
Shanti A, Samara B, Abdullah A, Hallfors N, Accoto D, Sapudom J, Alatoom A, Teo J, Danti S, Stefanini C. Multi-Compartment 3D-Cultured Organ-on-a-Chip: Towards a Biomimetic Lymph Node for Drug Development. Pharmaceutics 2020; 12:E464. [PMID: 32438634 PMCID: PMC7284904 DOI: 10.3390/pharmaceutics12050464] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
The interaction of immune cells with drugs and/or with other cell types should be mechanistically investigated in order to reduce attrition of new drug development. However, they are currently only limited technologies that address this need. In our work, we developed initial but significant building blocks that enable such immune-drug studies. We developed a novel microfluidic platform replicating the Lymph Node (LN) microenvironment called LN-on-a-chip, starting from design all the way to microfabrication, characterization and validation in terms of architectural features, fluidics, cytocompatibility, and usability. To prove the biomimetics of this microenvironment, we inserted different immune cell types in a microfluidic device, which showed an in-vivo-like spatial distribution. We demonstrated that the developed LN-on-a-chip incorporates key features of the native human LN, namely, (i) similarity in extracellular matrix composition, morphology, porosity, stiffness, and permeability, (ii) compartmentalization of immune cells within distinct structural domains, (iii) replication of the lymphatic fluid flow pattern, (iv) viability of encapsulated cells in collagen over the typical timeframe of immunotoxicity experiments, and (v) interaction among different cell types across chamber boundaries. Further studies with this platform may assess the immune cell function as a step forward to disclose the effects of pharmaceutics to downstream immunology in more physiologically relevant microenvironments.
Collapse
Affiliation(s)
- Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE; (A.S.); (B.S.); (A.A.); (N.H.)
| | - Bisan Samara
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE; (A.S.); (B.S.); (A.A.); (N.H.)
| | - Amal Abdullah
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE; (A.S.); (B.S.); (A.A.); (N.H.)
| | - Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE; (A.S.); (B.S.); (A.A.); (N.H.)
| | - Dino Accoto
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Jiranuwat Sapudom
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE; (J.S.); (A.A.); (J.T.)
| | - Aseel Alatoom
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE; (J.S.); (A.A.); (J.T.)
| | - Jeremy Teo
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE; (J.S.); (A.A.); (J.T.)
- Department of Biomedical and Mechanical Engineering, New York University, P.O. Box 903, New York, NY 10276-0903, USA
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, UAE; (A.S.); (B.S.); (A.A.); (N.H.)
| |
Collapse
|