151
|
Yoon SJ, Baek S, Yu SE, Jo E, Lee D, Shim JK, Choi RJ, Park J, Moon JH, Kim EH, Chang JH, Lee JB, Park JS, Sung HJ, Kang SG. Tissue Niche Miniature of Glioblastoma Patient Treated with Nano-Awakeners to Induce Suicide of Cancer Stem Cells. Adv Healthc Mater 2022; 11:e2201586. [PMID: 36047642 DOI: 10.1002/adhm.202201586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/12/2022] [Indexed: 01/28/2023]
Abstract
Patient-specific cancer therapies can evolve by vitalizing the mother tissue-like cancer niche, cellular profile, genetic signature, and drug responsiveness. This evolution has enabled the elucidation of a key mechanism along with development of the mechanism-driven therapy. After surgical treatment, glioblastoma (GBM) patients require prompt therapy within 14 days in a patient-specific manner. Hence, this study approaches direct culture of GBM patient tissue (1 mm diameter) in a microchannel network chip. Cancer vasculature-mimetic perfusion can support the preservation of the mother tissue-like characteristic signatures and microenvironment. When temozolomide and radiation are administered within 1 day, the responsiveness of the tissue in the chip reflected the clinical outcomes, thereby overcoming the time-consuming process of cell and organoid culture. When the tissue chip culture is continued, the intact GBM signature gets lost, and the outward migration of stem cells from the tissue origin increases, indicating a leaving-home effect on the family dismantle. Nanovesicle production using GBM stem cells enables self-chasing of the cells that escape the temozolomide effect owing to quiescence. The anti-PTPRZ1 peptide display and temozolomide loading to nanovesicles awakes cancer stem cells from the quiescent stage to death. This study suggests a GBM clinic-driven avatar platform and mechanism-learned nanotherapy for translation.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science, Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Euna Jo
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dongkyu Lee
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women's University, 25, Cheongpa-ro 47ga-gil, Yongsan-gu, Seoul, 04314, Republic of Korea
| | - Joon-Sang Park
- Department of Computer Engineering, Hongik University, 94, Wausan-ro, Mapo-gu, Seoul, 04066, Republic of Korea
| | - Hak-Joon Sung
- Department of Brain Korea 21 FOUR Project for Medical Science, Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
| |
Collapse
|
152
|
Caballero D, Reis RL, Kundu SC. Boosting the Clinical Translation of Organ-on-a-Chip Technology. Bioengineering (Basel) 2022; 9:549. [PMID: 36290517 PMCID: PMC9598310 DOI: 10.3390/bioengineering9100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Organ-on-a-chip devices have become a viable option for investigating critical physiological events and responses; this technology has matured substantially, and many systems have been reported for disease modeling or drug screening over the last decade. Despite the wide acceptance in the academic community, their adoption by clinical end-users is still a non-accomplished promise. The reasons behind this difficulty can be very diverse but most likely are related to the lack of predictive power, physiological relevance, and reliability necessary for being utilized in the clinical area. In this Perspective, we briefly discuss the main attributes of organ-on-a-chip platforms in academia and how these characteristics impede their easy translation to the clinic. We also discuss how academia, in conjunction with the industry, can contribute to boosting their adoption by proposing novel design concepts, fabrication methods, processes, and manufacturing materials, improving their standardization and versatility, and simplifying their manipulation and reusability.
Collapse
Affiliation(s)
- David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| |
Collapse
|
153
|
Abstract
Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility. Microbots have attracted attention due to an ability to reach places and perform tasks which are not possible with conventional techniques in a wide range of applications. Here, the authors review the recent work in the field on the fabrication, application and actuation of 3D printed microbots offering a view of the direction of future microbot research.
Collapse
|
154
|
3D microengineered vascularized tumor spheroids for drug delivery and efficacy testing. Acta Biomater 2022:S1742-7061(22)00665-1. [DOI: 10.1016/j.actbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022]
|
155
|
Peng B, Hao S, Tong Z, Bai H, Pan S, Lim KL, Li L, Voelcker NH, Huang W. Blood-brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. LAB ON A CHIP 2022; 22:3579-3602. [PMID: 36004771 DOI: 10.1039/d2lc00305h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) represents a key challenge in developing brain-penetrating therapeutic molecules. BBB dysfunction is also associated with the onset and progression of various brain diseases. The BBB-on-a-chip (μBBB), an organ-on-chip technology, has emerged as a powerful in vitro platform that closely mimics the human BBB microenvironments. While the μBBB technology has seen wide application in the study of brain cancer, its utility in other brain disease models ("μBBB+") is less appreciated. Based on the advances of the μBBB technology and the evolution of in vitro models for brain diseases over the last decade, we propose the concept of a "μBBB+" system and summarize its major promising applications in pathological studies, personalized medical research, drug development, and multi-organ-on-chip approaches. We believe that such a sophisticated "μBBB+" system is a highly tunable and promising in vitro platform for further advancement of the understanding of brain diseases.
Collapse
Affiliation(s)
- Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Shiping Hao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Nicolas H Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
156
|
Jung M, Skhinas JN, Du EY, Tolentino MAK, Utama RH, Engel M, Volkerling A, Sexton A, O'Mahony AP, Ribeiro JCC, Gooding JJ, Kavallaris M. A high-throughput 3D bioprinted cancer cell migration and invasion model with versatile and broad biological applicability. Biomater Sci 2022; 10:5876-5887. [PMID: 36149407 DOI: 10.1039/d2bm00651k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the underlying mechanisms of migration and metastasis is a key focus of cancer research. There is an urgent need to develop in vitro 3D tumor models that can mimic physiological cell-cell and cell-extracellular matrix interactions, with high reproducibility and that are suitable for high throughput (HTP) drug screening. Here, we developed a HTP 3D bioprinted migration model using a bespoke drop-on-demand bioprinting platform. This HTP platform coupled with tunable hydrogel systems enables (i) the rapid encapsulation of cancer cells within in vivo tumor mimicking matrices, (ii) in situ and real-time measurement of cell movement, (iii) detailed molecular analysis for the study of mechanisms underlying cell migration and invasion, and (iv) the identification of novel therapeutic options. This work demonstrates that this HTP 3D bioprinted cell migration platform has broad applications across quantitative cell and cancer biology as well as drug screening.
Collapse
Affiliation(s)
- MoonSun Jung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Joanna N Skhinas
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Eric Y Du
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - M A Kristine Tolentino
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | | | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, NSW, Australia
| | | | - Andrew Sexton
- Inventia Life Science Pty Ltd, Sydney, NSW, Australia
| | | | | | - J Justin Gooding
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
157
|
Terrassoux L, Claux H, Bacari S, Meignan S, Furlan A. A Bloody Conspiracy. Blood Vessels and Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194581. [PMID: 36230504 PMCID: PMC9558972 DOI: 10.3390/cancers14194581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The tumor microenvironment has risen over the last years as a significant contributor to the failure of antitumoral strategies due to its numerous pro-tumorigenic activities. In this review, we focused on two features of this microenvironment, namely angiogenesis and immunity, which have been the targets of therapies to tackle tumors via its microenvironmental part over the last decade. Increasing our knowledge of the complex interactions within this ecosystem is mandatory to optimize these therapeutic approaches. The development of innovative experimental models is of great help in reaching this goal. Abstract Cancer progression occurs in concomitance with a profound remodeling of the cellular microenvironment. Far from being a mere passive event, the re-orchestration of interactions between the various cell types surrounding tumors highly contributes to the progression of the latter. Tumors notably recruit and stimulate the sprouting of new blood vessels through a process called neo-angiogenesis. Beyond helping the tumor cope with an increased metabolic demand associated with rapid growth, this also controls the metastatic dissemination of cancer cells and the infiltration of immune cells in the tumor microenvironment. To decipher this critical interplay for the clinical progression of tumors, the research community has developed several valuable models in the last decades. This review offers an overview of the various instrumental solutions currently available, including microfluidic chips, co-culture models, and the recent rise of organoids. We highlight the advantages of each technique and the specific questions they can address to better understand the tumor immuno-angiogenic ecosystem. Finally, we discuss this development field’s fundamental and applied perspectives.
Collapse
Affiliation(s)
- Lisa Terrassoux
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Hugo Claux
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Salimata Bacari
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Samuel Meignan
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Alessandro Furlan
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
158
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
159
|
Audoin M, Søgaard MT, Jauffred L. Tumor spheroids accelerate persistently invading cancer cells. Sci Rep 2022; 12:14713. [PMID: 36038698 PMCID: PMC9424244 DOI: 10.1038/s41598-022-18950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma brain tumors form in the brain’s white matter and remain one of the most lethal cancers despite intensive therapy and surgery. The complex morphology of these tumors includes infiltrative growth and gain of cell motility. Therefore, various brain-mimetic model systems have been developed to investigate invasion dynamics. Despite this, exactly how gradients of cell density, chemical signals and metabolites influence individual cells’ migratory behavior remains elusive. Here we show that the gradient field induced by the spheroid—accelerates cells’ invasion of the extracellular matrix. We show that cells are pushed away from the spheroid along a radial gradient, as predicted by a biased persistent random walk. Thus, our results grasp in a simple model the complex behavior of metastasizing cells. We anticipate that this well-defined and quantitative assay could be instrumental in the development of new anti-cancer strategies.
Collapse
Affiliation(s)
- Melanie Audoin
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark.,DTU Health Tech, Denmark's Technical University, Ørsteds Pl. 344, 108, 2800 Kgs., Lyngby, Denmark
| | - Maria Tangen Søgaard
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
| | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
160
|
Zhang J, Yang H, Wu J, Zhang D, Wang Y, Zhai J. Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Front Bioeng Biotechnol 2022; 10:953031. [PMID: 36061442 PMCID: PMC9428288 DOI: 10.3389/fbioe.2022.953031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) diseases have been a growing threat to the health of humanity, emphasizing the urgent need of exploring the pathogenesis and therapeutic approaches of various CNS diseases. Primary neurons are directly obtained from animals or humans, which have wide applications including disease modeling, mechanism exploration and drug development. However, traditional two-dimensional (2D) monoculture cannot resemble the native microenvironment of CNS. With the increasing understanding of the complexity of the CNS and the remarkable development of novel biomaterials, in vitro models have experienced great innovation from 2D monoculture toward three-dimensional (3D) multicellular culture. The scope of this review includes the progress of various in vitro models of primary neurons in recent years to provide a holistic view of the modalities and applications of primary neuron models and how they have been connected with the revolution of biofabrication techniques. Special attention has been paid to the interaction between primary neurons and biomaterials. First, a brief introduction on the history of CNS modeling and primary neuron culture was conducted. Next, detailed progress in novel in vitro models were discussed ranging from 2D culture, ex vivo model, spheroid, scaffold-based model, 3D bioprinting model, and microfluidic chip. Modalities, applications, advantages, and limitations of the aforementioned models were described separately. Finally, we explored future prospects, providing new insights into how basic science research methodologies have advanced our understanding of the CNS, and highlighted some future directions of primary neuron culture in the next few decades.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyu Yang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dingyue Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiliang Zhai
- Departments of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jiliang Zhai,
| |
Collapse
|
161
|
VandenHeuvel SN, Farris HA, Noltensmeyer DA, Roy S, Donehoo DA, Kopetz S, Haricharan S, Walsh AJ, Raghavan S. Decellularized organ biomatrices facilitate quantifiable in vitro 3D cancer metastasis models. SOFT MATTER 2022; 18:5791-5806. [PMID: 35894795 DOI: 10.1039/d1sm01796a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metastatic cancers are chemoresistant, involving complex interplay between disseminated cancer cell aggregates and the distant organ microenvironment (extracellular matrix and stromal cells). Conventional metastasis surrogates (scratch/wound healing, Transwell migration assays) lack 3D architecture and ECM presence. Metastasis studies can therefore significantly benefit from biomimetic 3D in vitro models recapitulating the complex cascade of distant organ invasion and colonization by collective clusters of cells. We aimed to engineer reproducible and quantifiable 3D models of highly therapy-resistant cancer processes: (i) colorectal cancer liver metastasis; and (ii) breast cancer lung metastasis. Metastatic seeds are engineered using 3D tumor spheroids to recapitulate the 3D aggregation of cancer cells both in the tumor and in circulation throughout the metastatic cascade of many cancers. Metastatic soil was engineered by decellularizing porcine livers and lungs to generate biomatrix scaffolds, followed by extensive materials characterization. HCT116 colorectal and MDA-MB-231 breast cancer spheroids were generated on hanging drop arrays to initiate clustered metastatic seeding into liver and lung biomatrix scaffolds, respectively. Between days 3-7, biomatrix cellular colonization was apparent with increased metabolic activity and the presence of cellular nests evaluated via multiphoton microscopy. HCT116 and MDA-MB-231 cells colonized liver and lung biomatrices, and at least 15% of the cells invaded more than 20 μm from the surface. Engineered metastases also expressed increased signatures of genes associated with the metastatic epithelial to mesenchymal transition (EMT). Importantly, inhibition of matrix metalloproteinase-9 inhibited metastatic invasion into the biomatrix. Furthermore, metastatic nests were significantly more chemoresistant (>3 times) to the anti-cancer drug oxaliplatin, compared to 3D spheroids. Together, our data indicated that HCT116 and MDA-MB-231 spheroids invade, colonize, and proliferate in livers and lungs establishing metastatic nests in 3D settings in vitro. The metastatic nature of these cells was confirmed with functional readouts regarding EMT and chemoresistance. Modeling the dynamic metastatic cascade in vitro has potential to identify therapeutic targets to treat or prevent metastatic progression in chemoresistant metastatic cancers.
Collapse
Affiliation(s)
| | - Heather A Farris
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Dillon A Noltensmeyer
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sanjana Roy
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Del A Donehoo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svasti Haricharan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alex J Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
162
|
Schwark K, Messinger D, Cummings JR, Bradin J, Kawakibi A, Babila CM, Lyons S, Ji S, Cartaxo RT, Kong S, Cantor E, Koschmann C, Yadav VN. Receptor tyrosine kinase (RTK) targeting in pediatric high-grade glioma and diffuse midline glioma: Pre-clinical models and precision medicine. Front Oncol 2022; 12:922928. [PMID: 35978801 PMCID: PMC9376238 DOI: 10.3389/fonc.2022.922928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric high-grade glioma (pHGG), including both diffuse midline glioma (DMG) and non-midline tumors, continues to be one of the deadliest oncologic diagnoses (both henceforth referred to as “pHGG”). Targeted therapy options aimed at key oncogenic receptor tyrosine kinase (RTK) drivers using small-molecule RTK inhibitors has been extensively studied, but the absence of proper in vivo modeling that recapitulate pHGG biology has historically been a research challenge. Thankfully, there have been many recent advances in animal modeling, including Cre-inducible transgenic models, as well as intra-uterine electroporation (IUE) models, which closely recapitulate the salient features of human pHGG tumors. Over 20% of pHGG have been found in sequencing studies to have alterations in platelet derived growth factor-alpha (PDGFRA), making growth factor modeling and inhibition via targeted tyrosine kinases a rich vein of interest. With commonly found alterations in other growth factors, including FGFR, EGFR, VEGFR as well as RET, MET, and ALK, it is necessary to model those receptors, as well. Here we review the recent advances in murine modeling and precision targeting of the most important RTKs in their clinical context. We additionally provide a review of current work in the field with several small molecule RTK inhibitors used in pre-clinical or clinical settings for treatment of pHGG.
Collapse
Affiliation(s)
- Kallen Schwark
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Dana Messinger
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Jessica R. Cummings
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Joshua Bradin
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Abed Kawakibi
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Clarissa M. Babila
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Samantha Lyons
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Sunjong Ji
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Rodrigo T. Cartaxo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Seongbae Kong
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Evan Cantor
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Viveka Nand Yadav
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
- Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas, MO, United States
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas, MO, United States
- *Correspondence: Viveka Nand Yadav,
| |
Collapse
|
163
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200244. [PMID: 35644929 PMCID: PMC9376856 DOI: 10.1002/advs.202200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Indexed: 05/04/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment. A gelatin methacryloyl (gelMA) bioink is used to create multi-channel cubic tumor analogues with high printing fidelity and mechanical tunability. Human-derived NB spheroids and human umbilical vein endothelial cells (HUVECs) are incorporated into the biomanufactured gelMA and cocultured under static versus dynamic conditions, demonstrating high levels of survival and growth. Quantification of NB-EC integration and tumor cell migration suggested an increased aggressive behavior of NB when cultured in bioprinted endothelialized models, when cocultured with HUVECs, and also as a result of dynamic culture. This model also allowed for the assessment of metabolic, cytokine, and gene expression profiles of NB spheroids under varying TME conditions. These results establish a high throughput research enabling platform to study the TME-mediated cellular-molecular mechanisms of tumor growth, aggression, and response to therapy.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Jenny Shim
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Rui Liu
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Riya Mehta
- Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Andrew Mingee
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Kelly C. Goldsmith
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
164
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
165
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
166
|
Badr-Eldin SM, Aldawsari HM, Kotta S, Deb PK, Venugopala KN. Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals (Basel) 2022; 15:926. [PMID: 36015074 PMCID: PMC9412659 DOI: 10.3390/ph15080926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite tremendous advancements in technologies and resources, drug discovery still remains a tedious and expensive process. Though most cells are cultured using 2D monolayer cultures, due to lack of specificity, biochemical incompatibility, and cell-to-cell/matrix communications, they often lag behind in the race of modern drug discovery. There exists compelling evidence that 3D cell culture models are quite promising and advantageous in mimicking in vivo conditions. It is anticipated that these 3D cell culture methods will bridge the translation of data from 2D cell culture to animal models. Although 3D technologies have been adopted widely these days, they still have certain challenges associated with them, such as the maintenance of a micro-tissue environment similar to in vivo models and a lack of reproducibility. However, newer 3D cell culture models are able to bypass these issues to a maximum extent. This review summarizes the basic principles of 3D cell culture approaches and emphasizes different 3D techniques such as hydrogels, spheroids, microfluidic devices, organoids, and 3D bioprinting methods. Besides the progress made so far in 3D cell culture systems, the article emphasizes the various challenges associated with these models and their potential role in drug repositioning, including perspectives from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.K.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.K.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.K.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
167
|
Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol 2022; 13:836480. [PMID: 35936888 PMCID: PMC9353320 DOI: 10.3389/fphys.2022.836480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, research is undergoing a drastic change in the application of the animal model as a unique investigation strategy, considering an alternative approach for the development of science for the future. Although conventional monolayer cell cultures represent an established and widely used in vitro method, the lack of tissue architecture and the complexity of such a model fails to inform true biological processes in vivo. Recent advances in cell culture techniques have revolutionized in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate cell heterogeneity, structure and functions of primary tissues. These models also bridge the gap between traditional two-dimensional (2D) single-layer cultures and animal models. 3D culture systems allow researchers to recreate human organs and diseases in one dish and thus holds great promise for many applications such as regenerative medicine, drug discovery, precision medicine, and cancer research, and gene expression studies. Bioengineering has made an important contribution in the context of 3D systems using scaffolds that help mimic the microenvironments in which cells naturally reside, supporting the mechanical, physical and biochemical requirements for cellular growth and function. We therefore speak of models based on organoids, bioreactors, organ-on-a-chip up to bioprinting and each of these systems provides its own advantages and applications. All of these techniques prove to be excellent candidates for the development of alternative methods for animal testing, as well as revolutionizing cell culture technology. 3D systems will therefore be able to provide new ideas for the study of cellular interactions both in basic and more specialized research, in compliance with the 3R principle. In this review, we provide a comparison of 2D cell culture with 3D cell culture, provide details of some of the different 3D culture techniques currently available by discussing their strengths as well as their potential applications.
Collapse
Affiliation(s)
| | | | - Silvia Dotti
- *Correspondence: Andrea Cacciamali, ; Silvia Dotti,
| |
Collapse
|
168
|
Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat Commun 2022; 13:4214. [PMID: 35864093 PMCID: PMC9304377 DOI: 10.1038/s41467-022-31799-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer with a poor prognosis and few treatment options. Here, building on the observation of elevated lactate (LA) in resected GBM, we develop biomimetic therapeutic nanoparticles (NPs) that deliver agents for LA metabolism-based synergistic therapy. Because our self-assembling NPs are encapsulated in membranes derived from glioma cells, they readily penetrate the blood-brain barrier and target GBM through homotypic recognition. After reaching the tumors, lactate oxidase in the NPs converts LA into pyruvic acid (PA) and hydrogen peroxide (H2O2). The PA inhibits cancer cell growth by blocking histones expression and inducing cell-cycle arrest. In parallel, the H2O2 reacts with the delivered bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate to release energy, which is used by the co-delivered photosensitizer chlorin e6 for the generation of cytotoxic singlet oxygen to kill glioma cells. Such a synergism ensures strong therapeutic effects against both glioma cell-line derived and patient-derived xenograft models. Targeting cancer-associated metabolism is evolving as a promising approach for cancer therapy. Here, the authors generate cancer cell-membrane encapsulated nanoparticles to induce cell cycle arrest and cytotoxicity in lactate-high cancer cells, reducing tumourigensis in glioblastoma cell-line and patient-derived models.
Collapse
|
169
|
Parameshwar PK, Sagrillo-Fagundes L, Azevedo Portilho N, Pastor WA, Vaillancourt C, Moraes C. Engineered models for placental toxicology: Emerging approaches based on tissue decellularization. Reprod Toxicol 2022; 112:148-159. [PMID: 35840119 DOI: 10.1016/j.reprotox.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Recent increases in prescriptions and illegal drug use as well as exposure to environmental contaminants during pregnancy have highlighted the critical importance of placental toxicology in understanding and identifying risks to both mother and fetus. Although advantageous for basic science, current in vitro models often fail to capture the complexity of placental response, likely due to their inability to recreate and monitor aspects of the microenvironment including physical properties, mechanical forces and stiffness, protein composition, cell-cell interactions, soluble and physicochemical factors, and other exogenous cues. Tissue engineering holds great promise in addressing these challenges and provides an avenue to better understand basic biology, effects of toxic compounds and potential therapeutics. The key to success lies in effectively recreating the microenvironment. One strategy to do this would be to recreate individual components and then combine them. However, this becomes challenging due to variables present according to conditions such as tissue location, age, health status and lifestyle. The extracellular matrix (ECM) is known to influence cellular fate by working as a storage of factors. Decellularized ECM (dECM) is a recent tool that allows usage of the original ECM in a refurbished form, providing a relatively reliable representation of the microenvironment. This review focuses on using dECM in modified forms such as whole organs, scaffold sheets, electrospun nanofibers, hydrogels, 3D printing, and combinations as building blocks to recreate aspects of the microenvironment to address general tissue engineering and toxicology challenges, thus illustrating their potential as tools for future placental toxicology studies.
Collapse
Affiliation(s)
| | | | - Nathalia Azevedo Portilho
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada; Department of Obstetrics and Gynecology, Université de Montréal, Montréal, Québec, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada; Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada; Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
170
|
Napoli GC, Figg WD, Chau CH. Functional Drug Screening in the Era of Precision Medicine. Front Med (Lausanne) 2022; 9:912641. [PMID: 35879922 PMCID: PMC9307928 DOI: 10.3389/fmed.2022.912641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of precision medicine is providing the right treatment to each unique patient. This scientific movement has incited monumental advances in oncology including the approval of effective, targeted agnostic therapies. Yet, precision oncology has focused largely on genomics in the treatment decision making process, and several recent clinical trials demonstrate that genomics is not the only variable to be considered. Drug screening in three dimensional (3D) models, including patient derived organoids, organs on a chip, xenografts, and 3D-bioprinted models provide a functional medicine perspective and necessary complement to genomic testing. In this review, we discuss the practicality of various 3D drug screening models and each model's ability to capture the patient's tumor microenvironment. We highlight the potential for enhancing precision medicine that personalized functional drug testing holds in combination with genomic testing and emerging mathematical models.
Collapse
Affiliation(s)
| | | | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
171
|
Adjei‐Sowah EA, O'Connor SA, Veldhuizen J, Lo Cascio C, Plaisier C, Mehta S, Nikkhah M. Investigating the Interactions of Glioma Stem Cells in the Perivascular Niche at Single-Cell Resolution using a Microfluidic Tumor Microenvironment Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201436. [PMID: 35619544 PMCID: PMC9313491 DOI: 10.1002/advs.202201436] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Indexed: 05/03/2023]
Abstract
The perivascular niche (PVN) is a glioblastoma tumor microenvironment (TME) that serves as a safe haven for glioma stem cells (GSCs), and acts as a reservoir that inevitably leads to tumor recurrence. Understanding cellular interactions in the PVN that drive GSC treatment resistance and stemness is crucial to develop lasting therapies for glioblastoma. The limitations of in vivo models and in vitro assays have led to critical knowledge gaps regarding the influence of various cell types in the PVN on GSCs behavior. This study developed an organotypic triculture microfluidic model as a means to recapitulate the PVN and study its impact on GSCs. This triculture platform, comprised of endothelial cells (ECs), astrocytes, and GSCs, is used to investigate GSC invasion, proliferation and stemness. Both ECs and astrocytes significantly increased invasiveness of GSCs. This study futher identified 15 ligand-receptor pairs using single-cell RNAseq with putative chemotactic mechanisms of GSCs, where the receptor is up-regulated in GSCs and the diffusible ligand is expressed in either astrocytes or ECs. Notably, the ligand-receptor pair SAA1-FPR1 is demonstrated to be involved in chemotactic invasion of GSCs toward PVN. The novel triculture platform presented herein can be used for therapeutic development and discovery of molecular mechanisms driving GSC biology.
Collapse
Affiliation(s)
| | - Samantha A. O'Connor
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287‐9709USA
| | - Jaimeson Veldhuizen
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287‐9709USA
| | - Costanza Lo Cascio
- Ivy Brain Tumor Center, Barrow Neurological InstituteSt. Joseph's Hospital and Medical Center350 W Thomas RdPhoenixAZ85013USA
| | - Christopher Plaisier
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287‐9709USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological InstituteSt. Joseph's Hospital and Medical Center350 W Thomas RdPhoenixAZ85013USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287‐9709USA
- Virginia G. Piper Biodesign Center for Personalized DiagnosticsArizona State UniversityTempeAZ85287‐9709USA
| |
Collapse
|
172
|
Patient-derived microphysiological model identifies the therapeutic potential of metformin for thoracic aortic aneurysm. EBioMedicine 2022; 81:104080. [PMID: 35636318 PMCID: PMC9156889 DOI: 10.1016/j.ebiom.2022.104080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Thoracic aortic aneurysm (TAA) is the permanent dilation of the thoracic aortic wall that predisposes patients to lethal events such as aortic dissection or rupture, for which effective medical therapy remains scarce. Human-relevant microphysiological models serve as a promising tool in drug screening and discovery. Methods We developed a dynamic, rhythmically stretching, three-dimensional microphysiological model. Using patient-derived human aortic smooth muscle cells (HAoSMCs), we tested the biological features of the model and compared them with native aortic tissues. Drug testing was performed on the individualized TAA models, and the potentially effective drug was further tested using β-aminopropionitrile-treated mice and retrospective clinical data. Findings The HAoSMCs on the model recapitulated the expressions of many TAA-related genes in tissue. Phenotypic switching and mitochondrial dysfunction, two disease hallmarks of TAA, were highlighted on the microphysiological model: the TAA-derived HAoSMCs exhibited lower alpha-smooth muscle actin expression, lower mitochondrial membrane potential, lower oxygen consumption rate and higher superoxide accumulation than control cells, while these differences were not evidently reflected in two-dimensional culture flasks. Model-based drug testing demonstrated that metformin partially recovered contractile phenotype and mitochondrial function in TAA patients’ cells. Mouse experiment and clinical investigations also demonstrated better preserved aortic microstructure, higher nicotinamide adenine dinucleotide level and lower aortic diameter with metformin treatment. Interpretation These findings support the application of this human-relevant microphysiological model in studying personalized disease characteristics and facilitating drug discovery for TAA. Metformin may regulate contractile phenotypes and metabolic dysfunctions in diseased HAoSMCs and limit aortic dilation. Funding This work was supported by grants from National Key R&D Program of China (2018YFC1005002), National Natural Science Foundation of China (82070482, 81771971, 81772007, 51927805, and 21734003), the Science and Technology Commission of Shanghai Municipality (20ZR1411700, 18ZR1407000, 17JC1400200, and 20YF1406900), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and Shanghai Municipal Education Commission (Innovation Program 2017-01-07-00-07-E00027). Y.S.Z. was not supported by any of these funds; instead, the Brigham Research Institute is acknowledged.
Collapse
|
173
|
Monteiro MV, Rocha M, Gaspar VM, Mano JF. Programmable Living Units for Emulating Pancreatic Tumor-Stroma Interplay. Adv Healthc Mater 2022; 11:e2102574. [PMID: 35426253 DOI: 10.1002/adhm.202102574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/02/2022] [Indexed: 12/19/2022]
Abstract
Bioengineering close-to-native in vitro models that emulate tumors bioarchitecture and microenvironment is highly appreciable for improving disease modeling toolboxes. Herein, pancreatic cancer living units-so termed cancer-on-a-bead models-are generated. Such user-programmable in vitro platforms exhibit biomimetic multicompartmentalization and tunable integration of cancer associated stromal elements. These stratified units can be rapidly assembled in-air, exhibit reproducible morphological features, tunable size, and recapitulate spatially resolved tumor-stroma extracellular matrix (ECM) niches. Compartmentalization of pancreatic cancer and stromal cells in well-defined ECM microenvironments stimulates the secretion of key biomolecular effectors including transforming growth factor β and Interleukin 1-β, closely emulating the signatures of human pancreatic tumors. Cancer-on-a-bead models also display increased drug resistance to chemotherapeutics when compared to their reductionistic counterparts, reinforcing the importance to differentially model ECM components inclusion and their spatial stratification as observed in vivo. Beyond providing a universal technology that enables spatial modularity in tumor-stroma elements bioengineering, a scalable, in-air fabrication of ECM-tunable 3D platforms that can be leveraged for recapitulating differential matrix composition occurring in other human neoplasias is provided here.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
174
|
Decellularized normal and cancer tissues as tools for cancer research. Cancer Gene Ther 2022; 29:879-888. [PMID: 34785762 DOI: 10.1038/s41417-021-00398-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Today it is widely accepted that molecular mechanisms triggering cancer initiate with a genetic modification. However, a genetic alteration providing the aberrant clone with a growing advantage over neighboring cells is not sufficient to develop cancer. Currently, tumors are considered a heterogeneous population of cells and an extracellular matrix (ECM) that make up a characteristic microenvironment. Interactions between tumor cells and cancer microenvironment define cancer progression and therapeutic response. To investigate and clarify the role of ECM in the regulation of cancer cell behavior and response to therapy, the decellularization of ECM, a widely used technique in tissue engineering, has been recently employed to develop 3D culture model of disease. In this review, we briefly explore the different components of healthy and pathological ECM and the methods to obtain and characterize the ECM from native bioptic tissue. Finally, we highlight the most relevant applications of ECM in translational cancer research strategies: decellularized ECM, ECM-hydrogel and 3D bioprinting.
Collapse
|
175
|
Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion. Cancers (Basel) 2022; 14:cancers14133126. [PMID: 35804898 PMCID: PMC9265021 DOI: 10.3390/cancers14133126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
In a living organism, cancer cells function in a specific microenvironment, where they exchange numerous physical and biochemical cues with other cells and the surrounding extracellular matrix (ECM). Immune evasion is a clinically relevant phenomenon, in which cancer cells are able to direct this interchange of signals against the immune effector cells and to generate an immunosuppressive environment favoring their own survival. A proper understanding of this phenomenon is substantial for generating more successful anticancer therapies. However, classical cell culture systems are unable to sufficiently recapture the dynamic nature and complexity of the tumor microenvironment (TME) to be of satisfactory use for comprehensive studies on mechanisms of tumor immune evasion. In turn, 3D-bioprinting is a rapidly evolving manufacture technique, in which it is possible to generate finely detailed structures comprised of multiple cell types and biomaterials serving as ECM-analogues. In this review, we focus on currently used 3D-bioprinting techniques, their applications in the TME research, and potential uses of 3D-bioprinting in modeling of tumor immune evasion and response to immunotherapies.
Collapse
Affiliation(s)
- Rafał Staros
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Agata Michalak
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Kinga Rusinek
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Krzysztof Mucha
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Radosław Zagożdżon
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-502-14-72; Fax: +48-22-502-21-59
| |
Collapse
|
176
|
Nieto D, Jiménez G, Moroni L, López-Ruiz E, Gálvez-Martín P, Marchal JA. Biofabrication approaches and regulatory framework of metastatic tumor-on-a-chip models for precision oncology. Med Res Rev 2022; 42:1978-2001. [PMID: 35707911 PMCID: PMC9545141 DOI: 10.1002/med.21914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor‐on‐chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan‐on‐a‐chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three‐dimensional bioprinting systems with the novel tumor/metastasis/multiorgan‐on‐a‐chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.
Collapse
Affiliation(s)
- Daniel Nieto
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Universiteitssingel, Maastricht, The Netherlands.,Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
| | - Gema Jiménez
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Universiteitssingel, Maastricht, The Netherlands
| | - Elena López-Ruiz
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | - Juan Antonio Marchal
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
177
|
Koh L, Novera W, Lim SW, Chong YK, Pang QY, Low D, Ang BT, Tang C. Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacol Res 2022; 182:106308. [PMID: 35714825 DOI: 10.1016/j.phrs.2022.106308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity. The use of single-cell technologies has advanced our understanding and assignation of functional subtypes revealing therapeutic vulnerabilities. Our team has developed stratification approaches in the past few years, and we have been able to identify patient cohorts enriched for various signaling pathways. Importantly, our Glioportal brain tumor resource has been established under the National Neuroscience Institute Tissue Bank in 2021. This resource offers preclinical capability to validate working hypotheses established from patient clinical datasets. This review highlights recent developments with the ultimate goal of assigning functional meaning to molecular subtypes, revealing therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lynnette Koh
- Department of Research, National Neuroscience Institute, Singapore.
| | - Wisna Novera
- Department of Research, National Neuroscience Institute, Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, Singapore
| | - Qing You Pang
- Department of Research, National Neuroscience Institute, Singapore
| | - David Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
178
|
Oh JM, Begum HM, Liu YL, Ren Y, Shen K. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model. ACS Biomater Sci Eng 2022; 8:3107-3121. [PMID: 35678715 DOI: 10.1021/acsbiomaterials.2c00207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In tumors, the metabolic demand of cancer cells often outpaces oxygen supply, resulting in a gradient of tumor hypoxia accompanied with heterogeneous resistance to cancer therapeutics. Models recapitulating tumor hypoxia are therefore essential for developing more effective cancer therapeutics. Existing in vitro models often fail to capture the spatial heterogeneity of tumor hypoxia or involve high-cost, complex fabrication/handling techniques. Here, we designed a highly tunable microfluidic device that induces hypoxia through natural cell metabolism and oxygen diffusion barriers. We adopted a cleanroom-free, micromilling-replica-molding strategy and a microfluidic liquid-pinning approach to streamline the fabrication and tumor model establishment. We also implemented a thin-film oxygen diffusion barrier design, which was optimized through COMSOL simulation, to support both two-dimensional (2-D) and three-dimensional (3-D) hypoxic models. We demonstrated that liquid-pinning enables an easy, injection-based micropatterning of cancer cells of a wide range of parameters, showing the high tunability of our design. Human breast cancer and prostate cancer cells were seeded and stained after 24 h of 2-D and 3-D culture to validate the natural induction of hypoxia. We further demonstrated the feasibility of the parallel microfluidic channel design to evaluate dual therapeutic conditions in the same device. Overall, our new microfluidic tumor model serves as a user-friendly, cost-effective, and highly scalable platform that provides spatiotemporal analysis of the hypoxic tumor microenvironments suitable for high-content biological studies and therapeutic discoveries.
Collapse
Affiliation(s)
- Jeong Min Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hydari Masuma Begum
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yao Lucia Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yuwei Ren
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, United States.,USC Stem Cell, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
179
|
Zhang J, Tavakoli H, Ma L, Li X, Han L, Li X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 2022; 187:114365. [PMID: 35667465 DOI: 10.1016/j.addr.2022.114365] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has achieved remarkable success over the past decade by modulating patients' own immune systems and unleashing pre-existing immunity. However, only a minority of cancer patients across different cancer types are able to benefit from immunotherapy treatment; moreover, among those small portions of patients with response, intrinsic and acquired resistance remains a persistent challenge. Because the tumor microenvironment (TME) is well recognized to play a critical role in tumor initiation, progression, metastasis, and the suppression of the immune system and responses to immunotherapy, understanding the interactions between the TME and the immune system is a pivotal step in developing novel and efficient cancer immunotherapies. With unique features such as low reagent consumption, dynamic and precise fluid control, versatile structures and function designs, and 3D cell co-culture, microfluidic tumor organoid-on-a-chip platforms that recapitulate key factors of the TME and the immune contexture have emerged as innovative reliable tools to investigate how tumors regulate their TME to counteract antitumor immunity and the mechanism of tumor resistance to immunotherapy. In this comprehensive review, we focus on recent advances in tumor organoid-on-a-chip platforms for studying the interaction between the TME and the immune system. We first review different factors of the TME that recent microfluidic in vitro systems reproduce to generate advanced tools to imitate the crosstalk between the TME and the immune system. Then, we discuss their applications in the assessment of different immunotherapies' efficacy using tumor organoid-on-a-chip platforms. Finally, we present an overview and the outlook of engineered microfluidic platforms in investigating the interactions between cancer and immune systems, and the adoption of patient-on-a-chip models in clinical applications toward personalized immunotherapy.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lichun Han
- Xi'an Daxing Hospital, Xi'an 710016, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA; Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA.
| |
Collapse
|
180
|
Silvani G, Bradbury P, Basirun C, Mehner C, Zalli D, Poole K, Chou J. Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research. NPJ Microgravity 2022; 8:19. [PMID: 35662260 PMCID: PMC9166742 DOI: 10.1038/s41526-022-00207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
Collapse
Affiliation(s)
- Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Detina Zalli
- Institute of Continuing Education, University of Cambridge, Camridge, UK
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
181
|
Ayuso JM, Virumbrales-Muñoz M, Lang JM, Beebe DJ. A role for microfluidic systems in precision medicine. Nat Commun 2022; 13:3086. [PMID: 35654785 PMCID: PMC9163169 DOI: 10.1038/s41467-022-30384-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Precision oncology continues to challenge the "one-size-fits-all" dogma. Under the precision oncology banner, cancer patients are screened for molecular tumor alterations that predict treatment response, ideally leading to optimal treatments. Functional assays that directly evaluate treatment efficacy on the patient's cells offer an alternative and complementary tool to improve the accuracy of precision oncology. Unfortunately, traditional Petri dish-based assays overlook much tumor complexity, limiting their potential as predictive functional biomarkers. Here, we review past applications of microfluidic systems for precision medicine and discuss the present and potential future role of functional microfluidic assays as treatment predictors.
Collapse
Affiliation(s)
- Jose M Ayuso
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Joshua M Lang
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
182
|
Poornima K, Francis AP, Hoda M, Eladl MA, Subramanian S, Veeraraghavan VP, El-Sherbiny M, Asseri SM, Hussamuldin ABA, Surapaneni KM, Mony U, Rajagopalan R. Implications of Three-Dimensional Cell Culture in Cancer Therapeutic Research. Front Oncol 2022; 12:891673. [PMID: 35646714 PMCID: PMC9133474 DOI: 10.3389/fonc.2022.891673] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Replicating the naturalistic biomechanical milieu of cells is a primary requisite to uncover the fundamental life processes. The native milieu is significantly not replicated in the two-dimensional (2D) cell cultures. Alternatively, the current three-dimensional (3D) culture techniques can replicate the properties of extracellular matrix (ECM), though the recreation of the original microenvironment is challenging. The organization of cells in a 3D manner contributes to better insight about the tumorigenesis mechanism of the in vitro cancer models. Gene expression studies are susceptible to alterations in their microenvironment. Physiological interactions among neighboring cells also contribute to gene expression, which is highly replicable with minor modifications in 3D cultures. 3D cell culture provides a useful platform for identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments and is of great importance for further research in tumor biology. The new imaging technology and the implementation of standard protocols can address the barriers interfering with the live cell observation in a natural 3D physiological environment.
Collapse
Affiliation(s)
- Kolluri Poornima
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Muddasarul Hoda
- Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saad Mohamed Asseri
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | | | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills, and Simulation, Panimalar Medical College Hospital and Research Institute, Chennai, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
183
|
Gomez-Florit M, Labrador-Rached CJ, Domingues RM, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev 2022; 185:114299. [PMID: 35436570 DOI: 10.1016/j.addr.2022.114299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a multi-faceted pathology characterized by alterations in tendon microstructure, cellularity and collagen composition. Challenged by the possibility of regenerating pathological or ruptured tendons, the healing mechanisms of this tissue have been widely researched over the past decades. However, so far, most of the cellular players and processes influencing tendon repair remain unknown, which emphasizes the need for developing relevant in vitro models enabling to study the complex multicellular crosstalk occurring in tendon microenvironments. In this review, we critically discuss the insights on the interaction between tenocytes and the other tendon resident cells that have been devised through different types of existing in vitro models. Building on the generated knowledge, we stress the need for advanced models able to mimic the hierarchical architecture, cellularity and physiological signaling of tendon niche under dynamic culture conditions, along with the recreation of the integrated gradients of its tissue interfaces. In a forward-looking vision of the field, we discuss how the convergence of multiple bioengineering technologies can be leveraged as potential platforms to develop the next generation of relevant in vitro models that can contribute for a deeper fundamental knowledge to develop more effective treatments.
Collapse
|
184
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
185
|
Chermat R, Ziaee M, Mak DY, Refet-Mollof E, Rodier F, Wong P, Carrier JF, Kamio Y, Gervais T. Radiotherapy on-chip: microfluidics for translational radiation oncology. LAB ON A CHIP 2022; 22:2065-2079. [PMID: 35477748 DOI: 10.1039/d2lc00177b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The clinical importance of radiotherapy in the treatment of cancer patients justifies the development and use of research tools at the fundamental, pre-clinical, and ultimately clinical levels, to investigate their toxicities and synergies with systemic agents on relevant biological samples. Although microfluidics has prompted a paradigm shift in drug discovery in the past two decades, it appears to have yet to translate to radiotherapy research. However, the materials, dimensions, design versatility and multiplexing capabilities of microfluidic devices make them well-suited to a variety of studies involving radiation physics, radiobiology and radiotherapy. This review will present the state-of-the-art applications of microfluidics in these fields and specifically highlight the perspectives offered by radiotherapy on-a-chip in the field of translational radiobiology and precision medicine. This body of knowledge can serve both the microfluidics and radiotherapy communities by identifying potential collaboration avenues to improve patient care.
Collapse
Affiliation(s)
- Rodin Chermat
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maryam Ziaee
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - David Y Mak
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Elena Refet-Mollof
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Francis Rodier
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Philip Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jean-François Carrier
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
- Département de Physique, Université de Montréal, Montréal, QC, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Yuji Kamio
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Thomas Gervais
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
186
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
187
|
Zhang CY, Fu CP, Li XY, Lu XC, Hu LG, Kankala RK, Wang SB, Chen AZ. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113442. [PMID: 35684380 PMCID: PMC9182049 DOI: 10.3390/molecules27113442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) bioprinting is one of the most promising additive manufacturing technologies for fabricating various biomimetic architectures of tissues and organs. In this context, the bioink, a critical element for biofabrication, is a mixture of biomaterials and living cells used in 3D printing to create cell-laden structures. Recently, decellularized extracellular matrix (dECM)-based bioinks derived from natural tissues have garnered enormous attention from researchers due to their unique and complex biochemical properties. This review initially presents the details of the natural ECM and its role in cell growth and metabolism. Further, we briefly emphasize the commonly used decellularization treatment procedures and subsequent evaluations for the quality control of the dECM. In addition, we summarize some of the common bioink preparation strategies, the 3D bioprinting approaches, and the applicability of 3D-printed dECM bioinks to tissue engineering. Finally, we present some of the challenges in this field and the prospects for future development.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Correspondence: (C.-P.F.); (A.-Z.C.)
| | - Xiong-Ya Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Xiao-Chang Lu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Long-Ge Hu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China; (C.-Y.Z.); (X.-Y.L.); (X.-C.L.); (L.-G.H.); (R.K.K.); (S.-B.W.)
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Correspondence: (C.-P.F.); (A.-Z.C.)
| |
Collapse
|
188
|
Combined Application of Patient-Derived Cells and Biomaterials as 3D In Vitro Tumor Models. Cancers (Basel) 2022; 14:cancers14102503. [PMID: 35626107 PMCID: PMC9139582 DOI: 10.3390/cancers14102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary For years, cancer has remained the second leading cause of death in U.S. and Europe even though cancer mortality has decreased, as new advances in medical treatment have made this decrease possible. Chemotherapy has remained the gold standard and “one-size-fits-all” treatment for cancer, yet this approach has lacked precision and, at times, failed. Recent studies attempt to mimic the spatial microenvironment of cancer tissue to better study chemotherapy agents by combining patient-derived cells and three-dimensional (3D) scaffold, bioprinting, spheroid, and hydrogel culturing. This commentary aims to collect and discuss recent findings concerning the combined application of biomaterials with patient-derived cancer cells to better study and test therapies in vitro, that will further personalize and facilitate the treatment of various cancers, and also address the limitation and challenges in developing these 3D models. Abstract Although advances have been made in cancer therapy, cancer remains the second leading cause of death in the U.S. and Europe, and thus efforts to continue to study and discover better treatment methods are ongoing. Three-dimensional (3D) tumor models have shown advantages over bi-dimensional (2D) cultures in evaluating the efficacy of chemotherapy. This commentary aims to highlight the potential of combined application of biomaterials with patient-derived cancer cells as a 3D in vitro model for the study and treatment of cancer patients. Five studies were discussed which demonstrate and provided early evidence to create 3D models with accurate microenvironments that are comparable to in vivo tumors. To date, the use of patient-derived cells for a more personalized approach to healthcare in combination with biomaterials to create a 3D tumor is still relatively new and uncommon for application in clinics. Although highly promising, it is important to acknowledge the current limitations and challenges of developing these innovative in vitro models, including the need for biologists and laboratory technicians to become familiar with biomaterial scaffolds, and the effort for bioengineers to create easy-to-handle scaffolds for routine assessment.
Collapse
|
189
|
Shuchat S, Yossifon G, Huleihel M. Perfusion in Organ-on-Chip Models and Its Applicability to the Replication of Spermatogenesis In Vitro. Int J Mol Sci 2022; 23:5402. [PMID: 35628214 PMCID: PMC9141186 DOI: 10.3390/ijms23105402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Organ/organoid-on-a-chip (OoC) technologies aim to replicate aspects of the in vivo environment in vitro, at the scale of microns. Mimicking the spatial in vivo structure is important and can provide a deeper understanding of the cell-cell interactions and the mechanisms that lead to normal/abnormal function of a given organ. It is also important for disease models and drug/toxin testing. Incorporating active fluid flow in chip models enables many more possibilities. Active flow can provide physical cues, improve intercellular communication, and allow for the dynamic control of the environment, by enabling the efficient introduction of biological factors, drugs, or toxins. All of this is in addition to the fundamental role of flow in supplying nutrition and removing waste metabolites. This review presents an overview of the different types of fluid flow and how they are incorporated in various OoC models. The review then describes various methods and techniques of incorporating perfusion networks into OoC models, including self-assembly, bioprinting techniques, and utilizing sacrificial gels. The second part of the review focuses on the replication of spermatogenesis in vitro; the complex process whereby spermatogonial stem cells differentiate into mature sperm. A general overview is given of the various approaches that have been used. The few studies that incorporated microfluidics or vasculature are also described. Finally, a future perspective is given on elements from perfusion-based models that are currently used in models of other organs and can be applied to the field of in vitro spermatogenesis. For example, adopting tubular blood vessel models to mimic the morphology of the seminiferous tubules and incorporating vasculature in testis-on-a-chip models. Improving these models would improve our understanding of the process of spermatogenesis. It may also potentially provide novel therapeutic strategies for pre-pubertal cancer patients who need aggressive chemotherapy that can render them sterile, as well asfor a subset of non-obstructive azoospermic patients with maturation arrest, whose testes do not produce sperm but still contain some of the progenitor cells.
Collapse
Affiliation(s)
- Sholom Shuchat
- Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel; (S.S.); (G.Y.)
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel; (S.S.); (G.Y.)
- School of Mechanical Engineering, University of Tel Aviv, Tel Aviv 6997801, Israel
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
190
|
Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics 2022; 14:pharmaceutics14050993. [PMID: 35631579 PMCID: PMC9144371 DOI: 10.3390/pharmaceutics14050993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
The intrinsic architecture and complexity of the brain restricts the capacity of therapeutic molecules to reach their potential targets, thereby limiting therapeutic possibilities concerning neurological ailments and brain malignancy. As conventional models fail to recapitulate the complexity of the brain, progress in the field of microfluidics has facilitated the development of advanced in vitro platforms that could imitate the in vivo microenvironments and pathological features of the blood–brain barrier (BBB). It is highly desirous that developed in vitro BBB-on-chip models serve as a platform to investigate cancer metastasis of the brain along with the possibility of efficiently screening chemotherapeutic agents against brain malignancies. In order to improve the proficiency of BBB-on-chip models, hydrogels have been widely explored due to their unique physical and chemical properties, which mimic the three-dimensional (3D) micro architecture of tissues. Hydrogel-based BBB-on-chip models serves as a stage which is conducive for cell growth and allows the exchange of gases and nutrients and the removal of metabolic wastes between cells and the cell/extra cellular matrix (ECM) interface. Here, we present recent advancements in BBB-on-chip models targeting brain malignancies and examine the utility of hydrogel-based BBB models that could further strengthen the future application of microfluidic devices in oncology research.
Collapse
|
191
|
Shukla P, Yeleswarapu S, Heinrich M, Prakash J, Pati F. Mimicking Tumor Microenvironment by 3D Bioprinting: 3D Cancer Modeling. Biofabrication 2022; 14. [PMID: 35512666 DOI: 10.1088/1758-5090/ac6d11] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
The tumor microenvironment typically comprises cancer cells, tumor vasculature, stromal components like fibroblasts, and host immune cells that assemble to support tumorigenesis. However, preexisting classic cancer models like 2D cell culture methods, 3D cancer spheroids, and tumor organoids seem to lack essential tumor microenvironment components. 3D bioprinting offers enormous advantages for developing in vitro tumor models by allowing user-controlled deposition of multiple biomaterials, cells, and biomolecules in a predefined architecture. This review highlights the recent developments in 3D cancer modeling using different bioprinting techniques to recreate the TME. 3D bioprinters enable fabrication of high-resolution microstructures to reproduce TME intricacies. Furthermore, 3D bioprinted models can be applied as a preclinical model for versatile research applications in the tumor biology and pharmaceutical industries. These models provide an opportunity to develop high-throughput drug screening platforms and can further be developed to suit individual patient requirements hence giving a boost to the field of personalized anti-cancer therapeutics. We underlined the various ways the existing studies have tried to mimic the TME, mimic the hallmark events of cancer growth and metastasis within the 3D bioprinted models and showcase the 3D drug-tumor interaction and further utilization of such models to develop personalized medicine.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Marcel Heinrich
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| |
Collapse
|
192
|
Yang J, Cheng Y, Gong X, Yi S, Li CW, Jiang L, Yi C. An integrative review on the applications of 3D printing in the field of in vitro diagnostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
193
|
Leong SW, Tan SC, Norhayati MN, Monif M, Lee SY. Effectiveness of Bioinks and the Clinical Value of 3D Bioprinted Glioblastoma Models: A Systematic Review. Cancers (Basel) 2022; 14:cancers14092149. [PMID: 35565282 PMCID: PMC9103189 DOI: 10.3390/cancers14092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Many medical applications have arisen from the technological advancement of three-dimensional (3D) bioprinting, including the printing of cancer models for better therapeutic practice whilst imitating the human system more accurately than animal and conventional in vitro systems. The objective of this systematic review is to comprehensively summarise information from existing studies on the effectiveness of bioinks in mimicking the tumour microenvironment of glioblastoma and their clinical value. Based on predetermined eligibility criteria, relevant studies were identified from PubMed, Medline Ovid, Web of Science, Scopus, and ScienceDirect databases. Nineteen articles fulfilled the inclusion criteria and were included in this study. Alginate hydrogels were the most widely used bioinks in bioprinting. The majority of research found that alginate bioinks had excellent biocompatibility and maintained high cell viability. Advanced structural design, as well as the use of multicomponent bioinks, recapitulated the native in vivo morphology more closely and resulted in bioprinted glioblastoma models with higher drug resistance. In addition, 3D cell cultures were superior to monolayer or two-dimensional (2D) cell cultures for the simulation of an optimal tumour microenvironment. To more precisely mimic the heterogenous niche of tumours, future research should focus on bioprinting multicellular and multicomponent tumour models that are suitable for drug screening.
Collapse
Affiliation(s)
- Shye Wei Leong
- Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Si-Yuen Lee
- Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia;
- Correspondence: or
| |
Collapse
|
194
|
García-Gareta E, Pérez MÁ, García-Aznar JM. Decellularization of tumours: A new frontier in tissue engineering. J Tissue Eng 2022; 13:20417314221091682. [PMID: 35495097 PMCID: PMC9044784 DOI: 10.1177/20417314221091682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. The tumour extracellular
matrix (ECM) has unique features in terms of composition and mechanical
properties, resulting in a structurally and chemically different ECM to that of
native, healthy tissues. This paper reviews to date the efforts into
decellularization of tumours, which in the authors’ view represents a new
frontier in the ever evolving field of tumour tissue engineering. An overview of
the ECM and its importance in cancer is given, ending with examples of research
using decellularized tumours, which has already indicated potential therapeutic
targets, unravelled malignancy mechanisms or response to chemotherapy agents.
The review highlights that more research is needed in this area, which can
answer important questions related to tumour formation and progression to
ultimately identify new and effective therapeutic targets. Within the
near-future of personalized medicine, this research can create patient-specific
tumour models and therapeutic regimes.
Collapse
Affiliation(s)
- Elena García-Gareta
- Aragonese Agency for R&D (ARAID) Foundation, Zaragoza, Aragón, Spain
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
195
|
Hauck M, Hellmold D, Kubelt C, Synowitz M, Adelung R, Schütt F, Held‐Feindt J. Localized Drug Delivery Systems in High‐Grade Glioma Therapy – From Construction to Application. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margarethe Hauck
- Functional Nanomaterials, Institute for Materials Science Kiel University Kiel 24143 Germany
| | - Dana Hellmold
- Department of Neurosurgery University Medical Center Schleswig‐Holstein UKSH Campus Kiel Kiel 24105 Germany
| | - Carolin Kubelt
- Department of Neurosurgery University Medical Center Schleswig‐Holstein UKSH Campus Kiel Kiel 24105 Germany
| | - Michael Synowitz
- Department of Neurosurgery University Medical Center Schleswig‐Holstein UKSH Campus Kiel Kiel 24105 Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science Kiel University Kiel 24143 Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science Kiel University Kiel 24143 Germany
| | - Janka Held‐Feindt
- Department of Neurosurgery University Medical Center Schleswig‐Holstein UKSH Campus Kiel Kiel 24105 Germany
| |
Collapse
|
196
|
Wu T, Liu Y, Cao Y, Liu Z. Engineering Macrophage Exosome Disguised Biodegradable Nanoplatform for Enhanced Sonodynamic Therapy of Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110364. [PMID: 35133042 DOI: 10.1002/adma.202110364] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Sonodynamic therapy (SDT) exhibits high tissue penetration and negligible radiation damage to normal tissues, and thus emerges as a promising cancer therapeutic modality for glioblastoma (GBM). However, the blood-brain barrier (BBB) and hypoxic microenvironment greatly limit the SDT efficiency. In this work, a biodegradable nanoplatform (termed as CSI) is fabricated by encapsulating catalase (CAT) into silica nanoparticles (CAT@SiO2 ) for tumor hypoxia relief, and then loaded with the sonosensitizer indocyanine green (ICG). Inspired by the ability of macrophages to cross the BBB, CSI is further coated with AS1411 aptamer-modified macrophage exosomes to form CSI@Ex-A, which possesses efficient BBB penetration and good cancer-cell-targeting capability. After tumor cell endocytosis, highly expressed glutathione (GSH) triggeres biodegradation of the nanoplatform and the released CAT catalyzes hydrogen peroxide (H2 O2 ) to produce O2 to relieve tumor hypoxia. The GSH depletion and O2 self-supplying effectively enhances the SDT efficiency both in vitro and in vivo. In addition, the resulting CSI@Ex-A exhibits good biocompatibility and long circulation time. These findings demonstrate that CSI@Ex-A may serve as a competent nanoplatform for GBM therapy, with potential for clinical translation.
Collapse
Affiliation(s)
- Tingting Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ying Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yu Cao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
197
|
Baek S, Yu SE, Deng Y, Lee Y, Lee DG, Kim S, Yoon S, Kim H, Park J, Lee CH, Lee JB, Kong HJ, Kang S, Shin YM, Sung H. Quenching Epigenetic Drug Resistance Using Antihypoxic Microparticles in Glioblastoma Patient-Derived Chips. Adv Healthc Mater 2022; 11:e2102226. [PMID: 34963195 PMCID: PMC11468717 DOI: 10.1002/adhm.202102226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Indexed: 11/06/2022]
Abstract
Glioblastoma (GBM) is one of the most intractable tumor types due to the progressive drug resistance upon tumor mass expansion. Incremental hypoxia inside the growing tumor mass drives epigenetic drug resistance by activating nongenetic repair of antiapoptotic DNA, which could be impaired by drug treatment. Hence, rescuing intertumor hypoxia by oxygen-generating microparticles may promote susceptibility to antitumor drugs. Moreover, a tumor-on-a-chip model enables user-specified alternation of clinic-derived samples. This study utilizes patient-derived glioblastoma tissue to generate cell spheroids with size variations in a 3D microchannel network chip (GBM chip). As the spheroid size increases, epigenetic drug resistance is promoted with inward hypoxia severance, as supported by the spheroid size-proportional expression of hypoxia-inducible factor-1a in the chip. Loading antihypoxia microparticles onto the spheroid surface significantly reduces drug resistance by silencing the expression of critical epigenetic factor, resulting in significantly decreased cell invasiveness. The results are confirmed in vitro using cell line and patient samples in the chip as well as chip implantation into a hypoxic hindlimb ischemia model in mice, which is an unprecedented approach in the field.
Collapse
Affiliation(s)
- Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical ScienceMedical Device Engineering and ManagementDepartment of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Seung Eun Yu
- Department of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yu‐Heng Deng
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Yong‐Jae Lee
- Department of Obstetrics and GynecologyYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Dong Gue Lee
- Department of NeurosurgeryYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Surim Kim
- Department of Bio‐convergenceYonsei University Underwood International College50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Seonjin Yoon
- Department of NeurosurgeryYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Hye‐Seon Kim
- Department of Brain Korea 21 FOUR Project for Medical ScienceMedical Device Engineering and ManagementDepartment of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Jeongeun Park
- Department of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Chan Hee Lee
- Department of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Jung Bok Lee
- Department of Biological ScienceSookmyung Women's University25, Cheongpa‐ro 47ga‐gil, Yongsan‐guSeoul04314Republic of Korea
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Seok‐Gu Kang
- Department of NeurosurgeryYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Young Min Shin
- Department of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of Medicine50‐1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|
198
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
199
|
Monteiro MV, Zhang YS, Gaspar VM, Mano JF. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol 2022; 40:432-447. [PMID: 34556340 PMCID: PMC8916962 DOI: 10.1016/j.tibtech.2021.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Combinatorial conjugation of organ-on-a-chip platforms with additive manufacturing technologies is rapidly emerging as a disruptive approach for upgrading cancer-on-a-chip systems towards anatomic-sized dynamic in vitro models. This valuable technological synergy has potential for giving rise to truly physiomimetic 3D models that better emulate tumor microenvironment elements, bioarchitecture, and response to multidimensional flow dynamics. Herein, we showcase the most recent advances in bioengineering 3D-bioprinted cancer-on-a-chip platforms and provide a comprehensive discussion on design guidelines and possibilities for high-throughput analysis. Such hybrid platforms represent a new generation of highly sophisticated 3D tumor models with improved biomimicry and predictability of therapeutics performance.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
200
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|