151
|
Johnston AC, Alicea GM, Lee CC, Patel PV, Hanna EA, Vaz E, Forjaz A, Wan Z, Nair PR, Lim Y, Chen T, Du W, Kim D, Nichakawade TD, Rebecca VW, Bonifant CL, Fan R, Kiemen AL, Wu PH, Wirtz D. Engineering self-propelled tumor-infiltrating CAR T cells using synthetic velocity receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571595. [PMID: 38168186 PMCID: PMC10760159 DOI: 10.1101/2023.12.13.571595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to "lock-in" a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines' cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.
Collapse
Affiliation(s)
- Adrian C Johnston
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | | | - Cameron C Lee
- Department of Biomedical Engineering, Johns Hopkins University
| | - Payal V Patel
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eban A Hanna
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Eduarda Vaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Zeqi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Praful R Nair
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Yeongseo Lim
- Department of Biomedical Engineering, Johns Hopkins University
| | - Tina Chen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Wenxuan Du
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University
| | - Tushar D Nichakawade
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University
| | - Challice L Bonifant
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Rong Fan
- Department of Biomedical Engineering, Yale University
| | - Ashley L Kiemen
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University
- Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University
| |
Collapse
|
152
|
Lin X, Guan T, Xu Y, Li Y, Lin Y, Chen S, Chen Y, Wei X, Li D, Cui Y, Lin Y, Sun P, Guo J, Li C, Gu J, Yang W, Zeng H, Ma C. Efficacy of the induced pluripotent stem cell derived and engineered CD276-targeted CAR-NK cells against human esophageal squamous cell carcinoma. Front Immunol 2024; 15:1337489. [PMID: 38566988 PMCID: PMC10985341 DOI: 10.3389/fimmu.2024.1337489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.
Collapse
Affiliation(s)
- Xiaolan Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tian Guan
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
| | - Yien Xu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
| | - Yanchun Lin
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
| | - Shaobin Chen
- Department of Thoracic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dongsheng Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Lin
- Department of Medical Imaging, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Pingnan Sun
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
- Department of Stem Cell Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianmin Guo
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Congzhu Li
- Department of Gynecological Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Yang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong, China
| | - Haoyu Zeng
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changchun Ma
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
153
|
Pandit S, Smith BE, Birnbaum ME, Brudno Y. A biomaterial platform for T cell-specific gene delivery. Acta Biomater 2024; 177:157-164. [PMID: 38364929 PMCID: PMC10948289 DOI: 10.1016/j.actbio.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Efficient T cell engineering is central to the success of CAR T cell therapy but involves multiple time-consuming manipulations, including T cell isolation, activation, and transduction. These steps add complexity and delay CAR T cell manufacturing, which takes a mean time of 4 weeks. To streamline T cell engineering, we strategically combine two critical engineering solutions - T cell-specific lentiviral vectors and macroporous scaffolds - that enable T cell activation and transduction in a simple, single step. The T cell-specific lentiviral vectors (referred to as STAT virus) target T cells through the display of an anti-CD3 antibody and the CD80 extracellular domain on their surface and provide robust T cell activation. Biocompatible macroporous scaffolds (referred to as Drydux) mediate robust transduction by providing effective interaction between naïve T cells and viral vectors. We show that when unstimulated peripheral blood mononuclear cells (PBMCs) are seeded together with STAT lentivirus on Drydux scaffolds, T cells are activated, selectively transduced, and reprogrammed in a single step. Further, we show that the Drydux platform seeded with PBMCs and STAT lentivirus generates tumor-specific functional CAR T cells. This potent combination of engineered lentivirus and biomaterial scaffold holds promise for an effective, simple, and safe avenue for in vitro and in vivo T cell engineering. STATEMENT OF SIGNIFICANCE: Manufacturing T cell therapies involves lengthy and labor-intensive steps, including T cell selection, activation, and transduction. These steps add complexity to current CAR T cell manufacturing protocols and limit widespread patient access to this revolutionary therapy. In this work, we demonstrate the combination of engineered virus and biomaterial platform that, together, enables selective T cell activation and transduction in a single step, eliminating multistep T cell engineering protocols and significantly simplifying the manufacturing process.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
154
|
Yang N, Zhang C, Zhang Y, Fan Y, Zhang J, Lin X, Guo T, Gu Y, Wu J, Gao J, Zhao X, He Z. CD19/CD20 dual-targeted chimeric antigen receptor-engineered natural killer cells exhibit improved cytotoxicity against acute lymphoblastic leukemia. J Transl Med 2024; 22:274. [PMID: 38475814 PMCID: PMC10935961 DOI: 10.1186/s12967-024-04990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.
Collapse
Affiliation(s)
- Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Caili Zhang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Guo
- Department of Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yangzuo Gu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Jieheng Wu
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China.
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Zhixu He
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China.
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences), Guiyang, China.
- Department of Pediatrics, the Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
155
|
Ito Y, Inoue S, Kagoya Y. Gene editing technology to improve antitumor T-cell functions in adoptive immunotherapy. Inflamm Regen 2024; 44:13. [PMID: 38468282 PMCID: PMC10926667 DOI: 10.1186/s41232-024-00324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Adoptive immunotherapy, in which tumor-reactive T cells are prepared in vitro for adoptive transfer to the patient, can induce an objective clinical response in specific types of cancer. In particular, chimeric antigen receptor (CAR)-redirected T-cell therapy has shown robust responses in hematologic malignancies. However, its efficacy against most of the other tumors is still insufficient, which remains an unmet medical need. Accumulating evidence suggests that modifying specific genes can enhance antitumor T-cell properties. Epigenetic factors have been particularly implicated in the remodeling of T-cell functions, including changes to dysfunctional states such as terminal differentiation and exhaustion. Genetic ablation of key epigenetic molecules prevents the dysfunctional reprogramming of T cells and preserves their functional properties.Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based gene editing is a valuable tool to enable efficient and specific gene editing in cultured T cells. A number of studies have already identified promising targets to improve the therapeutic efficacy of CAR-T cells using genome-wide or focused CRISPR screening. In this review, we will present recent representative findings on molecular insights into T-cell dysfunction and how genetic modification contributes to overcoming it. We will also discuss several technical advances to achieve efficient gene modification using the CRISPR and other novel platforms.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
156
|
Roselle C, Horikawa I, Chen L, Kelly AR, Gonzales D, Da T, Wellhausen N, Rommel PC, Baker D, Suhoski M, Scholler J, O'Connor RS, Young RM, Harris CC, June CH. Enhancing chimeric antigen receptor T cell therapy by modulating the p53 signaling network with Δ133p53α. Proc Natl Acad Sci U S A 2024; 121:e2317735121. [PMID: 38408246 DOI: 10.1073/pnas.2317735121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Antigens, CD19
- Cell- and Tissue-Based Therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Christopher Roselle
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Donna Gonzales
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Megan Suhoski
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
157
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joana R Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
158
|
Zhou H, Abudureheman T, Zheng W, Yang L, Zhu J, Liang A, Duan C, Chen K. CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305566. [PMID: 38148412 PMCID: PMC10933668 DOI: 10.1002/advs.202305566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jian‐Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ai‐Bin Liang
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFuzhouFujian350122China
| | - Kaiming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| |
Collapse
|
159
|
Zhu C, Wu Q, Sheng T, Shi J, Shen X, Yu J, Du Y, Sun J, Liang T, He K, Ding Y, Li H, Gu Z, Wang W. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioact Mater 2024; 33:377-395. [PMID: 38059121 PMCID: PMC10696433 DOI: 10.1016/j.bioactmat.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.
Collapse
Affiliation(s)
- Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tao Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
160
|
Abdalla AME, Miao Y, Ahmed AIM, Meng N, Ouyang C. CAR-T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochem Funct 2024; 42:e3955. [PMID: 38379220 DOI: 10.1002/cbf.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Heart diseases remain the primary cause of human mortality in the world. Although conventional therapeutic opportunities fail to halt or recover cardiac fibrosis, the promising clinical results and therapeutic efficacy of engineered chimeric antigen receptor (CAR) T cell therapy show several advancements. However, the current models of CAR-T cells need further improvement since the T cells are associated with the triggering of excessive inflammatory cytokines that directly affect cardiac functions. Thus, the current study highlights the critical function of heart immune cells in tissue fibrosis and repair. The study also confirms CAR-T cell as an emerging therapeutic for treating cardiac fibrosis, explores the current roadblocks to CAR-T cell therapy, and considers future outlooks for research development.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ahmed I M Ahmed
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Ning Meng
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
161
|
Wang Y, Cho JW, Kastrunes G, Buck A, Razimbaud C, Culhane AC, Sun J, Braun DA, Choueiri TK, Wu CJ, Jones K, Nguyen QD, Zhu Z, Wei K, Zhu Q, Signoretti S, Freeman GJ, Hemberg M, Marasco WA. Immune-restoring CAR-T cells display antitumor activity and reverse immunosuppressive TME in a humanized ccRCC mouse model. iScience 2024; 27:108879. [PMID: 38327771 PMCID: PMC10847687 DOI: 10.1016/j.isci.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Jae-Won Cho
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cecile Razimbaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aedin C. Culhane
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Braun
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhu Zhu
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA 02215, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Hemberg
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
162
|
Lin Y, Chen Y, Luo Z, Wu YL. Recent advances in biomaterial designs for assisting CAR-T cell therapy towards potential solid tumor treatment. NANOSCALE 2024; 16:3226-3242. [PMID: 38284230 DOI: 10.1039/d3nr05768b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells have shown promising outcomes in the treatment of hematologic malignancies. However, CAR-T cell therapy in solid tumor treatment has been significantly hindered, due to the complex manufacturing process, difficulties in proliferation and infiltration, lack of precision, or poor visualization ability. Fortunately, recent reports have shown that functional biomaterial designs such as nanoparticles, polymers, hydrogels, or implantable scaffolds might have potential to address the above challenges. In this review, we aim to summarize the recent advances in the designs of functional biomaterials for assisting CAR-T cell therapy for potential solid tumor treatments. Firstly, by enabling efficient CAR gene delivery in vivo and in vitro, functional biomaterials can streamline the difficult process of CAR-T cell therapy manufacturing. Secondly, they might also serve as carriers for drugs and bioactive molecules, promoting the proliferation and infiltration of CAR-T cells. Furthermore, a number of functional biomaterial designs with immunomodulatory properties might modulate the tumor microenvironment, which could provide a platform for combination therapies or improve the efficacy of CAR-T cell therapy through synergistic therapeutic effects. Last but not least, the current challenges with biomaterials-based CAR-T therapies will also be discussed, which might be helpful for the future design of CAR-T therapy in solid tumor treatment.
Collapse
Affiliation(s)
- Yuting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
163
|
Abstract
Cell therapy holds great promise for regenerative treatment of disease. Despite recent breakthroughs in clinical research, applications of cell therapies to the injured brain have not yielded the desired results. We pinpoint current limitations and suggest five principles to advance stem cell therapies for brain regeneration. While we focus on cell therapy for stroke, all principles also apply for other brain diseases.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
164
|
Garcia J, Daniels J, Lee Y, Zhu I, Cheng K, Liu Q, Goodman D, Burnett C, Law C, Thienpont C, Alavi J, Azimi C, Montgomery G, Roybal KT, Choi J. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 2024; 626:626-634. [PMID: 38326614 DOI: 10.1038/s41586-024-07018-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.
Collapse
MESH Headings
- Humans
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/biosynthesis
- Cytokines/immunology
- Cytokines/metabolism
- Evolution, Molecular
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Immunotherapy, Adoptive/methods
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/therapy
- Mutation
- Phosphatidylinositol 3-Kinases
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Julie Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Moonlight Bio, Seattle, WA, USA
| | - Jay Daniels
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Moonlight Bio, Seattle, WA, USA
| | - Yujin Lee
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Goodman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Cassandra Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chloë Thienpont
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Camillia Azimi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Garrett Montgomery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA, USA.
- UCSF Cell Design Institute, San Francisco, CA, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
165
|
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T-cell therapy in hematologic malignancies: Successes, challenges, and opportunities. Eur J Haematol 2024; 112:197-210. [PMID: 37545132 DOI: 10.1111/ejh.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies has realized a longstanding effort toward harnessing the immune system to fight cancer in a truly personalized fashion. Second generation chimeric antigen receptors (CAR) incorporating co-stimulatory molecules like 4-1BB or CD28 were able to overcome some of the hindrances with initial CAR constructs resulting in efficacious products. Many second-generation CAR-T products have been approved in the treatment of relapsed/refractory hematologic malignancies including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute lymphoblastic leukemia. However, challenges remain in optimizing the manufacturing, timely access, limiting the toxicity from CAR-T infusions and improving sustainability of responses derived with CAR-T therapy. Here, we summarize the clinical trial data leading to approval CAR-T therapies in MM and NHL, discuss the limitations with current CAR-T therapy strategies and review emerging strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Matthew Ho
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonas Paludo
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
166
|
Singh R, Kim YH, Lee SJ, Eom HS, Choi BK. 4-1BB immunotherapy: advances and hurdles. Exp Mol Med 2024; 56:32-39. [PMID: 38172595 PMCID: PMC10834507 DOI: 10.1038/s12276-023-01136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Since its initial description 35 years ago as an inducible molecule expressed in cytotoxic and helper T cells, 4-1BB has emerged as a crucial receptor in T-cell-mediated immune functions. Numerous studies have demonstrated the involvement of 4-1BB in infection and tumor immunity. However, the clinical development of 4-1BB agonist antibodies has been impeded by the occurrence of strong adverse events, notably hepatotoxicity, even though these antibodies have exhibited tremendous promise in in vivo tumor models. Efforts are currently underway to develop a new generation of agonist antibodies and recombinant proteins with modified effector functions that can harness the potent T-cell modulation properties of 4-1BB while mitigating adverse effects. In this review, we briefly examine the role of 4-1BB in T-cell biology, explore its clinical applications, and discuss future prospects in the field of 4-1BB agonist immunotherapy.
Collapse
Affiliation(s)
- Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ho Kim
- Diagnostics and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Seok Eom
- Hematological Malignancy Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Beom K Choi
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea.
- Innobationbio, Co., Ltd., Mapo-gu, Seoul, 03929, Republic of Korea.
| |
Collapse
|
167
|
Agrawal V, Murphy L, Pourhassan H, Pullarkat V, Aldoss I. Optimizing CAR-T cell therapy in adults with B-cell acute lymphoblastic leukemia. Eur J Haematol 2024; 112:236-247. [PMID: 37772976 DOI: 10.1111/ejh.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated unprecedented success in the treatment of various hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). Currently, there are two FDA-approved CD19-directed CAR-T cell products for the treatment of adults with R/R B-ALL. Despite high remission rates following CD19 CAR-T cell therapy in R/R B-ALL, remission durability remains limited in most adult patients, with relapse observed frequently in the absence of additional consolidation therapy. Furthermore, the burden of CAR-T cell toxicity remains significant in adults with R/R B-ALL and further limits the wide utilization of this effective therapy. In this review, we discuss patient and disease factors that are linked to CAR-T cell therapy outcomes in R/R B-ALL and strategies to optimize durability of response to reduce relapse and mitigate toxicity in the adult population. We additionally discuss future approaches being explored to maximize the benefit of CAR-T in adults with B-ALL.
Collapse
Affiliation(s)
- Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
168
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
169
|
Pievani A, Biondi M, Tettamanti S, Biondi A, Dotti G, Serafini M. CARs are sharpening their weapons. J Immunother Cancer 2024; 12:e008275. [PMID: 38296592 PMCID: PMC10831441 DOI: 10.1136/jitc-2023-008275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Alice Pievani
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy
| | - Sarah Tettamanti
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marta Serafini
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy
| |
Collapse
|
170
|
Derraz B, Breda G, Kaempf C, Baenke F, Cotte F, Reiche K, Köhl U, Kather JN, Eskenazy D, Gilbert S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis Oncol 2024; 8:23. [PMID: 38291217 PMCID: PMC10828509 DOI: 10.1038/s41698-024-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
Until recently the application of artificial intelligence (AI) in precision oncology was confined to activities in drug development and had limited impact on the personalisation of therapy. Now, a number of approaches have been proposed for the personalisation of drug and cell therapies with AI applied to therapy design, planning and delivery at the patient's bedside. Some drug and cell-based therapies are already tuneable to the individual to optimise efficacy, to reduce toxicity, to adapt the dosing regime, to design combination therapy approaches and, preclinically, even to personalise the receptor design of cell therapies. Developments in AI-based healthcare are accelerating through the adoption of foundation models, and generalist medical AI models have been proposed. The application of these approaches in therapy design is already being explored and realistic short-term advances include the application to the personalised design and delivery of drugs and cell therapies. With this pace of development, the limiting step to adoption will likely be the capacity and appropriateness of regulatory frameworks. This article explores emerging concepts and new ideas for the regulation of AI-enabled personalised cancer therapies in the context of existing and in development governance frameworks.
Collapse
Affiliation(s)
- Bouchra Derraz
- ProductLife Group, Paris, France
- Groupe de recherche et d'accueil en droit et économie de la santé (GRADES), Faculty of Pharmacy, University Paris-Saclay, Paris, France
| | | | - Christoph Kaempf
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Franziska Baenke
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany
| | - Fabienne Cotte
- Department of Emergency Medicine, University Clinic Marburg, Philipps-University, Marburg, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
- Institute of Clinical Immunology, University Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University Leipzig, Leipzig, Germany
| | - Jakob Nikolas Kather
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany
| | - Deborah Eskenazy
- Groupe de recherche et d'accueil en droit et économie de la santé (GRADES), Faculty of Pharmacy, University Paris-Saclay, Paris, France
| | - Stephen Gilbert
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany.
- Else Kröner Fresenius Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
171
|
Li C, Guo H, Zhai P, Yan M, Liu C, Wang X, Shi C, Li J, Tong T, Zhang Z, Ma H, Zhang J. Spatial and Single-Cell Transcriptomics Reveal a Cancer-Associated Fibroblast Subset in HNSCC That Restricts Infiltration and Antitumor Activity of CD8+ T Cells. Cancer Res 2024; 84:258-275. [PMID: 37930937 PMCID: PMC10790129 DOI: 10.1158/0008-5472.can-23-1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Although immunotherapy can prolong survival in some patients with head and neck squamous cell carcinoma (HNSCC), the response rate remains low. Clarification of the critical mechanisms regulating CD8+ T-cell infiltration and dysfunction in the tumor microenvironment could help maximize the benefit of immunotherapy for treating HNSCC. Here, we performed spatial transcriptomic analysis of HNSCC specimens with differing immune infiltration and single-cell RNA sequencing of five pairs of tumor and adjacent tissues, revealing specific cancer-associated fibroblast (CAF) subsets related to CD8+ T-cell infiltration restriction and dysfunction. These CAFs exhibited high expression of CXCLs (CXCL9, CXCL10, and CXCL12) and MHC-I and enrichment of galectin-9 (Gal9). The proportion of MHC-IhiGal9+ CAFs was inversely correlated with abundance of a TCF1+GZMK+ subset of CD8+ T cells. Gal9 on CAFs induced CD8+ T-cell dysfunction and decreased the proportion of tumor-infiltrating TCF1+CD8+ T cells. Collectively, the identification of MHC-IhiGal9+ CAFs advances the understanding of the precise role of CAFs in cancer immune evasion and paves the way for more effective immunotherapy for HNSCC. SIGNIFICANCE Spatial analysis identifies IFN-induced MHC-IhiGal9+ CAFs that form a trap for CD8+ T cells, providing insights into the complex networks in the tumor microenvironment that regulate T-cell infiltration and function.
Collapse
Affiliation(s)
- Chuwen Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Xiaoning Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chaoji Shi
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tong Tong
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Hailong Ma
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| |
Collapse
|
172
|
Foley CR, Swan SL, Swartz MA. Engineering Challenges and Opportunities in Autologous Cellular Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:188-198. [PMID: 38166251 PMCID: PMC11155266 DOI: 10.4049/jimmunol.2300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2024]
Abstract
The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance. In contrast, whole tumor cell vaccines and tumor lysate-loaded dendritic cell vaccines target the patient's unique tumor antigenic repertoire without prior neoantigen selection; however, efficacy can be weak when lower-affinity clones dominate the T cell pool. Chimeric Ag receptor T cell and tumor-infiltrating lymphocyte therapies additionally face challenges related to genetic modification, T cell exhaustion, and immunotoxicity. In this review, we highlight some engineering approaches and opportunities to these challenges among four classes of autologous cell therapies.
Collapse
Affiliation(s)
- Colleen R. Foley
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Sheridan L. Swan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
173
|
Negishi S, Girsch JH, Siegler EL, Bezerra ED, Miyao K, Sakemura RL. Treatment strategies for relapse after CAR T-cell therapy in B cell lymphoma. Front Pediatr 2024; 11:1305657. [PMID: 38283399 PMCID: PMC10811220 DOI: 10.3389/fped.2023.1305657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Clinical trials of anti-CD19 chimeric antigen receptor T (CART19) cell therapy have shown high overall response rates in patients with relapsed/refractory B-cell malignancies. CART19 cell therapy has been approved by the US Food and Drug Administration for patients who relapsed less than 12 months after initial therapy or who are refractory to first-line therapy. However, durable remission of CART19 cell therapy is still lacking, and 30%-60% of patients will eventually relapse after CART19 infusion. In general, the prognosis of patients who relapse after CART19 cell therapy is poor, and various strategies to treat this patient population have been investigated extensively. CART19 failures can be broadly categorized by the emergence of either CD19-positive or CD19-negative lymphoma cells. If CD19 expression is preserved on the lymphoma cells, a second infusion of CART19 cells or reactivation of previously infused CART19 cells with immune checkpoint inhibitors can be considered. When patients develop CD19-negative relapse, targeting different antigens (e.g., CD20 or CD22) with CAR T cells, investigational chemotherapies, or hematopoietic stem cell transplantation are potential treatment options. However, salvage therapies for relapsed large B-cell lymphoma after CART19 cell therapy have not been fully explored and are conducted based on clinicians' case-by-case decisions. In this review, we will focus on salvage therapies reported to date and discuss the management of relapsed/refractory large B-cell lymphomas after CART19 cell therapy.
Collapse
Affiliation(s)
- Shuto Negishi
- Department of Hematology and Oncology, Konan Kosei Hospital, Konan, Japan
| | - James H. Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth L. Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Evandro D. Bezerra
- Department of Hematology and Oncology, Ohio State University, Columbus, OH, United States
| | - Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
174
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
175
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
176
|
Lei W, Zhao A, Liu H, Yang C, Wei C, Guo S, Chen Z, Guo Q, Li L, Zhao M, Wu G, Ouyang G, Liu M, Zhang J, Gao J, Qian W. Safety and feasibility of anti-CD19 CAR T cells expressing inducible IL-7 and CCL19 in patients with relapsed or refractory large B-cell lymphoma. Cell Discov 2024; 10:5. [PMID: 38191529 PMCID: PMC10774422 DOI: 10.1038/s41421-023-00625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024] Open
Abstract
Although CD19-specific chimeric antigen receptor (CAR) T cells are curative for patients with relapsed or refractory large B-cell lymphoma (R/R LBCL), disease relapse with tumor antigen-positive remains a challenge. Cytokine/chemokine-expressing CAR-T cells could overcome a suppressive milieu, but the clinical safety and efficacy of this CAR-T therapy remain unclear. Here we report the preclinical development of CD19-specific CAR-T cells capable of expressing interleukin (IL)-7 and chemokine (C-C motif) ligand (CCL)-19 upon CD19 engagement (referred to as 7 × 19 CAR-T cells) and results from a phase 1 and expansion phase trial of 7 × 19 CAR-T cell therapy in patients with R/R LBCL (NCT03258047). In dose-escalation phase, there were no dose-limiting toxicities observed. 39 patients with R/R LBCL received 7 × 19 CAR-T with doses ranged from 0.5 × 106-4.0 × 106 cells per kg body weight. Grade 3 cytokine release syndrome occurred in 5 (12.8%) patients and ≥ grade 3 neurotoxicity in 4 (10.3%) patients. The overall response rate at 3 months post-single infusion was 79.5% (complete remission, 56.4%; partial response, 23.1%). With a median follow-up of 32 months, the median progression-free survival was 13 months, and median overall survival was not reached, with an estimated rate of 53.8% (95% CI, 40.3% to 72.0%) at two years. Together, these long-term follow-up data from the multicenter clinical study suggest that 7 × 19 CAR-T cells can induce durable responses with a median overall survival of greater than 2 years, and have a manageable safety profile in patients with R/R LBCL.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ai Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmei Yang
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhilu Chen
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qunyi Guo
- Department of Hematology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Linjie Li
- Department of Hematology, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Mingzhe Zhao
- Department of Hematology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Gongqiang Wu
- Department of Hematology, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Guifang Ouyang
- Ningbo Clinical Research Center for Hematological Tumor Diseases, Department of hematology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ming Liu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyi Zhang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Hangzhou Qilan Biomedical Technology Co., Ltd, Hangzhou, Zhejiang, China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
177
|
VanderBurgh JA, Corso GT, Levy SL, Craighead HG. A multiplexed microfluidic continuous-flow electroporation system for efficient cell transfection. Biomed Microdevices 2024; 26:10. [PMID: 38194117 DOI: 10.1007/s10544-023-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cellular therapies have the potential to advance treatment for a broad array of diseases but rely on viruses for genetic reprogramming. The time and cost required to produce viruses has created a bottleneck that constricts development of and access to cellular therapies. Electroporation is a non-viral alternative for genetic reprogramming that bypasses these bottlenecks, but current electroporation technology suffers from low throughput, tedious optimization, and difficulty scaling to large-scale cell manufacturing. Here, we present an adaptable microfluidic electroporation platform with the capability for rapid, multiplexed optimization with 96-well plates. Once parameters are optimized using small volumes of cells, transfection can be seamlessly scaled to high-volume cell manufacturing without re-optimization. We demonstrate optimizing transfection of plasmid DNA to Jurkat cells, screening hundreds of different electrical waveforms of varying shapes at a speed of ~3 s per waveform using ~20 µL of cells per waveform. We selected an optimal set of transfection parameters using a low-volume flow cell. These parameters were then used in a separate high-volume flow cell where we obtained similar transfection performance by design. This demonstrates an alternative non-viral and economical transfection method for scaling to the volume required for producing a cell therapy without sacrificing performance. Importantly, this transfection method is disease-agnostic with broad applications beyond cell therapy.
Collapse
Affiliation(s)
| | - Grant T Corso
- CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA
| | - Stephen L Levy
- CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA
| | | |
Collapse
|
178
|
Lacouture C, Chaves B, Guipouy D, Houmadi R, Duplan-Eche V, Allart S, Destainville N, Dupré L. LFA-1 nanoclusters integrate TCR stimulation strength to tune T-cell cytotoxic activity. Nat Commun 2024; 15:407. [PMID: 38195629 PMCID: PMC10776856 DOI: 10.1038/s41467-024-44688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.
Collapse
Affiliation(s)
- Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Beatriz Chaves
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Delphine Guipouy
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Valérie Duplan-Eche
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
179
|
Kruglova N, Shepelev M. Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells. Biomedicines 2024; 12:119. [PMID: 38255224 PMCID: PMC10813735 DOI: 10.3390/biomedicines12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
T lymphocytes represent a promising target for genome editing. They are primarily modified to recognize and kill tumor cells or to withstand HIV infection. In most studies, T cell genome editing is performed using the CRISPR/Cas technology. Although this technology is easily programmable and widely accessible, its efficiency of T cell genome editing was initially low. Several crucial improvements were made in the components of the CRISPR/Cas technology and their delivery methods, as well as in the culturing conditions of T cells, before a reasonable editing level suitable for clinical applications was achieved. In this review, we summarize and describe the aforementioned parameters that affect human T cell editing efficiency using the CRISPR/Cas technology, with a special focus on gene knock-in.
Collapse
Affiliation(s)
- Natalia Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| | | |
Collapse
|
180
|
Zhou J, Shi F, Luo X, Lei B, Shi Z, Huang C, Zhang Y, Li X, Wang H, Li XY, He X. The persistence and antitumor efficacy of CAR-T cells are modulated by tonic signaling within the CDR. Int Immunopharmacol 2024; 126:111239. [PMID: 37979453 DOI: 10.1016/j.intimp.2023.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable clinical efficacy, but challenges related to relapse and CAR-T cell exhaustion persist. One contributing factor to this exhaustion is CAR tonic signaling, where CAR-T cells self-activate without antigen stimulation, leading to reduced persistence and impaired antitumor activity. To address this issue, we conducted a preclinical study evaluating tonic signaling using nanobody-derived CAR-T cells. Our investigation revealed that specific characteristics of the complementary determining regions (CDRs), including low solubility, polarity, positive charge, energy, and area of ionic and positive CDR patches of amino acids, were associated with low antigen-independent tonic signaling. Significantly, we observed that stronger tonic signaling directly impacted CAR-T cell proliferation in vitro, consequently leading to CAR-T cell exhaustion and diminished persistence and effectiveness in vivo. Our findings provide compelling preclinical evidence and lay the foundation for the clinical assessment of CAR-T cells with distinct tonic signaling patterns. Understanding the role of CDRs in modulating tonic signaling holds promise for advancing the development of more efficient and durable CAR-T cell therapies, thereby enhancing the treatment of cancer and addressing the challenges of relapse in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jincai Zhou
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China.
| | - Feifei Shi
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Xinran Luo
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Bixia Lei
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Zhongjun Shi
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Chenyu Huang
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Yuting Zhang
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Xiaopei Li
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Huajing Wang
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Xian-Yang Li
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China.
| | - Xiaowen He
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
181
|
Shaw TI, Wagner J, Tian L, Wickman E, Poudel S, Wang J, Paul R, Koo SC, Lu M, Sheppard H, Fan Y, O’Neil F, Lau CC, Zhou X, Zhang J, Gottschalk S. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. RESEARCH SQUARE 2024:rs.3.rs-3821632. [PMID: 38260279 PMCID: PMC10802740 DOI: 10.21203/rs.3.rs-3821632/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunotherapy with CAR T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons (CSE) present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify CSE targets, we analyzed 1,532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We found 2,933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n=148) or the alternatively spliced (AS) isoform (n=9) level. Expression of selected AS targets, including the EDB domain of FN1 (EDB), and gene targets, such as COL11A1, were validated in pediatric PDX tumors. We generated CAR T cells specific to EDB or COL11A1 and demonstrated that COL11A1-CAR T-cells have potent antitumor activity. The full target list, explorable via an interactive web portal (https://cseminer.stjude.org/), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francis O’Neil
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Ching C. Lau
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
182
|
Taheri FH, Hassani M, Sharifzadeh Z, Behdani M, Abdoli S, Sayadi M, Bagherzadeh K, Arashkia A, Abolhassani M. Tuning spacer length improves the functionality of the nanobody-based VEGFR2 CAR T cell. BMC Biotechnol 2024; 24:1. [PMID: 38178096 PMCID: PMC10768260 DOI: 10.1186/s12896-023-00827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The chimeric antigen receptor-expressing T (CAR-T) cells for cancer immunotherapy have obtained considerable clinical importance. CAR T cells need an optimized intracellular signaling domain to get appropriately activated and also for the proper antigen recognition, the length and composition of the extracellular spacer are critical factors. RESULTS We constructed two third-generation nanobody-based VEGFR2-CARs containing either IgG1 hinge-CH2-CH3 region or hinge-only as long or short extracellular spacers, respectively. Both CARs also contained intracellular activating domains of CD28, OX40, and CD3ζ. The T cells from healthy individuals were transduced efficiently with the two CARs, and showed increased secretion of IL-2 and IFN-γ cytokines, and also CD69 and CD25 activation markers along with cytolytic activity after encountering VEGFR2+ cells. The VEGFR2-CAR T cells harboring the long spacer showed higher cytokine release and CD69 and CD25 expression in addition to a more efficient cytolytic effect on VEGFR2+ target cells. CONCLUSIONS The results demonstrated that the third-generation anti-VEGFR2 nanobody-based CAR T cell with a long spacer had a superior function and potentially could be a better candidate for solid tumor treatment.
Collapse
Affiliation(s)
- Fatemeh Hajari Taheri
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Mahmoud Hassani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sharifzadeh
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shahryar Abdoli
- Department of Medical Biotechnology, Golestan University of Medical Science, Gorgān, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohsen Abolhassani
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
183
|
Khodke P, Kumbhar BV. Engineered CAR-T cells: An immunotherapeutic approach for cancer treatment and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:157-198. [PMID: 38762269 DOI: 10.1016/bs.apcsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a type of adoptive immunotherapy that offers a promising avenue for enhancing cancer treatment since traditional cancer treatments like chemotherapy, surgery, and radiation therapy have proven insufficient in completely eradicating tumors, despite the relatively positive outcomes. It has been observed that CAR-T cell therapy has shown promising results in treating the majority of hematological malignancies but also have a wide scope for other cancer types. CAR is an extra receptor on the T-cell that helps to increase and accelerate tumor destruction by efficiently activating the immune system. It is made up of three domains, the ectodomain, transmembrane, and the endodomain. The ectodomain is essential for antigen recognition and binding, whereas the co-stimulatory signal is transduced by the endodomain. To date, the Food and Drug Administration (FDA) has granted approval for six CAR-T cell therapies. However, despite its remarkable success, CAR-T therapy is associated with numerous adverse events and has certain limitations. This chapter focuses on the structure and function of the CAR domain, various generations of CAR, and the process of CAR-T cell development, adverse effects, and challenges in CAR-T therapy. CAR-T cell therapy also has scopes in other disease conditions which include systemic lupus erythematosus, multiple sclerosis, and myocardial fibrosis, etc.
Collapse
Affiliation(s)
- Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India.
| |
Collapse
|
184
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
185
|
Kalim M, Jing R, Li X, Jiang Z, Zheng N, Wang Z, Wei G, Lu Y. Essentials of CAR-T Therapy and Associated Microbial Challenges in Long Run Immunotherapy. JOURNAL OF CELLULAR IMMUNOLOGY 2024; 6:22-50. [PMID: 38883270 PMCID: PMC11172397 DOI: 10.33696/immunology.6.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown potential in improving outcomes for individuals with hematological malignancies. However, achieving long-term full remission for blood cancer remains challenging due to severe life-threatening toxicities such as limited anti-tumor efficacy, antigen escape, trafficking restrictions, and limited tumor invasion. Furthermore, the interactions between CAR-T cells and their host tumor microenvironments have a significant impact on CAR-T function. To overcome these considerable hurdles, fresh methodologies and approaches are needed to produce more powerful CAR-T cells with greater anti-tumor activity and less toxicity. Despite advances in CAR-T research, microbial resistance remains a significant obstacle. In this review, we discuss and describe the basics of CAR-T structures, generations, challenges, and potential risks of infections in CAR-T cell therapy.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Guo Wei
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| |
Collapse
|
186
|
Ding H, Wu Y. CAR-T Therapy in Relapsed Refractory Multiple Myeloma. Curr Med Chem 2024; 31:4362-4382. [PMID: 37779413 PMCID: PMC11340289 DOI: 10.2174/0109298673268932230920063933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
Multiple myeloma is a plasma cell neoplasm. The emergence of proteasome inhibitors, immunomodulatory drugs, and anti-CD38 monoclonal antibodies has improved the prognosis of multiple myeloma patients. However, some patients are still insensitive to conventional therapy or frequently relapse after remission. Chemotherapy based on proteasome inhibitors or immunomodulatory drugs is ineffective in controlling the progression of relapsed refractory multiple myeloma. No consensus has been reached on treating relapsed refractory multiple myeloma to date. Recently chimeric antigen receptor T cells therapy has shown promising results that could achieve rapid remissions of patients and improve their prognoses. Additionally, most patients in chimeric antigen receptor T cell clinical trials were triple-refractory multiple myeloma patients, indicating that chimeric antigen receptor T cell immunotherapy could overcome drug resistance to new drugs. Since single immunotherapies are prone to acquired resistance, combination immunotherapies based on emerging immunotherapies may solve this issue. Achieving complete remission and minimal residual disease negative status as soon as possible is beneficial to patients. This paper reviewed the main chimeric antigen receptor T cell products in relapsed refractory multiple myeloma, and it explained the drug resistance mechanism and improvement methods of chimeric antigen receptor T cells therapy. This review summarized the best beneficiaries of chimeric antigen receptor T cell therapy and the salvage treatment of disease recurrence after chimeric antigen receptor T cell therapy, providing some ideas for the clinical application of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Hong Ding
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, China
| |
Collapse
|
187
|
Santiago-Vicente Y, de Jesús Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E, Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M, Torres-Espíndola LM. Immunotherapy for Pediatric Gliomas: CAR-T Cells Against B7H3: A Review of the Literature. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:420-430. [PMID: 37038673 DOI: 10.2174/1871527322666230406094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND B7H3 is a co-stimulatory molecule for immune reactions found on the surface of tumor cells in a wide variety of tumors. Preclinical and clinical studies have reported it as a tumor target towards which various immunotherapy modalities could be directed. So far, good results have been obtained in hematological neoplasms; however, a contrasting situation is evident in solid tumors, including those of the CNS, which show high refractoriness to current treatments. The appearance of cellular immunotherapies has transformed oncology due to the reinforcement of the immune response that is compromised in people with cancer. OBJECTIVE This article aims to review the literature to describe the advancement in knowledge on B7H3 as a target of CAR-T cells in pediatric gliomas to consider them as an alternative in the treatment of these patients. RESULTS Although B7H3 is considered a suitable candidate as a target agent for various immunotherapy techniques, there are still limitations in using CAR-T cells to achieve the desired success. CONCLUSION Results obtained with CAR-T cells can be further improved by the suggested proposals; therefore, more clinical trials are needed to study this new therapy in children with gliomas.
Collapse
Affiliation(s)
- Yolanda Santiago-Vicente
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México
| | | | | | | | | | | | - Marta Zapata-Tarrés
- Head of Research Coordination at Mexican Social Security Institute Foundation, Mexico City, México
| | | |
Collapse
|
188
|
Ventin M, Cattaneo G, Maggs L, Arya S, Wang X, Ferrone CR. Implications of High Tumor Burden on Chimeric Antigen Receptor T-Cell Immunotherapy: A Review. JAMA Oncol 2024; 10:115-121. [PMID: 37943567 DOI: 10.1001/jamaoncol.2023.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Importance Chimeric antigen receptor (CAR) T-cell therapy has redefined the therapeutic landscape of several hematologic malignant tumors. Despite its clinical efficacy, many patients with cancer experience nonresponse to CAR T-cell treatment, disease relapse within months, or severe adverse events. Furthermore, CAR T-cell therapy has demonstrated minimal to no clinical efficacy in the treatment of solid tumors in clinical trials. Observations A complex interplay between high tumor burden and the systemic and local tumor microenvironment on clinical outcomes of CAR T-cell therapy is emerging from preclinical and clinical data. The hallmarks of advanced cancers-namely, inflammation and immune dysregulation-sustain cancer progression. They negatively affect the production, expansion, antitumor activity, and persistence of CAR T-cell products. Understanding of CAR T-cell therapy, mechanisms underlying its failure, and adverse events under conditions of high tumor burden is critical for realizing the full potential of this novel treatment approach. Conclusions and Relevance This review focuses on linking the efficacy and safety of CAR T-cell therapy with tumor burden. Its limitations relative to high tumor burden, systemic inflammation, and immune dysregulation are discussed. Emerging clinical approaches to overcome these obstacles and more effectively incorporate this therapeutic strategy into the treatment paradigm of patients with solid malignant tumors are also described.
Collapse
Affiliation(s)
- Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
189
|
Han H, Chen BT, Liu Y, Wang Y, Xing L, Wang H, Zhou TJ, Jiang HL. Engineered stem cell-based strategy: A new paradigm of next-generation stem cell product in regenerative medicine. J Control Release 2024; 365:981-1003. [PMID: 38123072 DOI: 10.1016/j.jconrel.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
190
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
191
|
Dalal N, Challa R, Thimukonda JJ, Tayalia P. Gelatin Methacryloyl Based Injectable Cryogels with Tunable Degradability for Cell Delivery. Macromol Biosci 2024; 24:e2200562. [PMID: 36974501 DOI: 10.1002/mabi.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Scaffold-based cell delivery can improve therapeutic effects of transplanted cells in cell therapy. Biomaterial scaffolds serveas niche for cell growth and proliferation which improves cell survival and overall function post cell delivery. In this study, gelatin methacryloyl based injectable scaffolds made using poly(ethylene)glycol as a sacrificial polymer and cryogelation as a technique, are demonstrated to have tunable degradability and porosity that is required for cell and drug delivery applications. The pore size (10-142 µm) of these gels makes them suitable for loading different cell types as per the application. In vitro studies using mammalian cells confirm that these cryogels are cytocompatible. These cell-laden scaffolds are injectable and have a cell retention ability of up to 90% after injection. Rheology is done to evaluate stiffness and shape recovery property, and it is found that these gels can maintain their original shape even after applying 7 cycles of strain from 0.1% to 20%. Furthermore, their degradability can be modulated between 6 and 10 days by changing the overall polymer composition. Thus, injectability and degradability of these cryogels can circumvent invasive surgical procedures, thereby making them useful for a variety of applications including delivery of cells and bioactive factors.
Collapse
Affiliation(s)
- Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ramadevi Challa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Jeyapriya J Thimukonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
192
|
Rotte A. Development of Cell and Gene Therapies for Clinical Use in the US and EU: Summary of Regulatory Guidelines. Curr Gene Ther 2024; 25:10-21. [PMID: 38676481 DOI: 10.2174/0115665232306205240419091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Recent decades have seen advancements in the management and treatment of difficultto- treat diseases such as cancer. A special class of therapeutics called cell and gene therapy has been introduced in the past 10 years. Cell and gene therapy products have strengthened the treatment options for life-threatening diseases with unmet clinical needs and also provided the possibility of a potential cure for the disease in some of the patients. Cell and gene therapy products are gaining recognition, and the interest in clinical development of cell and gene therapy products is increasing. Moreover, as the class of cell and gene therapy products is relatively new, there is a limited regulatory experience in the development, and the developers of the cell and gene therapy products can often be puzzled with an array of questions on regulations. The current review intends to provide a basic understanding of regulatory guidelines from the FDA and EMA that are applicable to cell and gene therapy products. Essentials such as which office is responsible for the evaluation of applications, which regulatory class/pathway is appropriate for development, and what are the quality, nonclinical and clinical studies that are needed to support the application are discussed in the article. In addition, a summary of regulatory designations and the post-approval requirements, such as Risk Evaluation and Mitigation Strategies (REMS) and long-term follow- up, is included in the article. Developers (referred to as 'sponsors' in this article) of cell and gene therapies can use the respective guidance documents and other specific review articles cited in this review for detailed information on the topics.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, California, CA, USA
| |
Collapse
|
193
|
Wang S, Wei W, Yuan Y, Guo J, Liang D, Zhao X. Cell-Surface GRP78-Targeted Chimeric Antigen Receptor T Cells Eliminate Lung Cancer Tumor Xenografts. Int J Mol Sci 2024; 25:564. [PMID: 38203736 PMCID: PMC10779323 DOI: 10.3390/ijms25010564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is one of the most common and intractable malignancies. It is associated with low survival rates despite existing treatments, indicating that new and more effective therapies are urgently needed such as the chimeric antigen receptor-T (CAR-T) cell immunotherapy. The cell-surface glucose-regulated protein 78 (csGRP78) is expressed in various hematological malignancies and solid tumor cells including lung cancer in response to cancer-related endoplasmic reticulum stress, while GRP78 is restricted to inside the normal cells. Here, we detected the prominent expression of csGRP78 in both lung cancer cell lines, A549 and H1299, as well as cancer stemlike cells derived from A549 by immunofluorescence. Next, a csGRP78-targeted CAR was constructed, and the transduced CAR-T cells were tested for their potency to kill the two lung cancer cell lines and derived stemlike cells, which was correlated with specific interferon γ release in vitro. Finally, we found that csGRP78 CAR-T cells also efficiently killed both lung cancer cells and cancer stemlike cells, resulting into the elimination of tumor xenografts in vivo, neither with any evidence of relapse after 63 days of tumor clearance nor any detrimental impact on other body organs we examined. Our study reveals the capacity of csGRP78 as a therapeutic target and offers valuable insight into the development of csGRP78 CAR-T cells as potential therapy for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.W.); (Y.Y.); (J.G.); (D.L.)
| |
Collapse
|
194
|
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Kai Huang
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
195
|
Hickey JW, Haist M, Horowitz N, Caraccio C, Tan Y, Rech AJ, Baertsch MA, Rovira-Clavé X, Zhu B, Vazquez G, Barlow G, Agmon E, Goltsev Y, Sunwoo JB, Covert M, Nolan GP. T cell-mediated curation and restructuring of tumor tissue coordinates an effective immune response. Cell Rep 2023; 42:113494. [PMID: 38085642 PMCID: PMC10765317 DOI: 10.1016/j.celrep.2023.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023] Open
Abstract
Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.
Collapse
Affiliation(s)
- John W Hickey
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maximillian Haist
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina Horowitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Chiara Caraccio
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuqi Tan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew J Rech
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc-Andrea Baertsch
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bokai Zhu
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gustavo Vazquez
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Graham Barlow
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eran Agmon
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yury Goltsev
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John B Sunwoo
- Department of Otolaryngology, Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
196
|
Canichella M, Molica M, Mazzone C, de Fabritiis P. Chimeric Antigen Receptor T-Cell Therapy in Acute Myeloid Leukemia: State of the Art and Recent Advances. Cancers (Basel) 2023; 16:42. [PMID: 38201469 PMCID: PMC10777995 DOI: 10.3390/cancers16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptors (CAR)-T-cell therapy represents the most important innovation in onco-hematology in recent years. The progress achieved in the management of complications and the latest generations of CAR-T-cells have made it possible to anticipate in second-line the indication of this type of treatment in large B-cell lymphoma. While some types of B-cell lymphomas and B-cell acute lymphoid leukemia have shown extremely promising results, the same cannot be said for myeloid leukemias-in particular, acute myeloid leukemia (AML), which would require innovative therapies more than any other blood disease. The heterogeneities of AML cells and the immunological complexity of the interactions between the bone marrow microenvironment and leukemia cells have been found to be major obstacles to the clinical development of CAR-T in AML. In this review, we report on the main results obtained in AML clinical trials, the preclinical studies testing potential CAR-T constructs, and future perspectives.
Collapse
Affiliation(s)
- Martina Canichella
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
| | - Matteo Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, 88100 Catanzaro, Italy;
| | - Carla Mazzone
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
| | - Paolo de Fabritiis
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
- Department of Biomedicina e Prevenzione, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
197
|
Boucher JC, Shrestha B, Vishwasrao P, Leick M, Cervantes EV, Ghafoor T, Reid K, Spitler K, Yu B, Betts BC, Guevara-Patino JA, Maus MV, Davila ML. Bispecific CD33/CD123 targeted chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Mol Ther Oncolytics 2023; 31:100751. [PMID: 38075241 PMCID: PMC10701585 DOI: 10.1016/j.omto.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2023] [Indexed: 02/12/2024] Open
Abstract
CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an "AND" logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. In vitro testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for in vivo analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.
Collapse
Affiliation(s)
- Justin C. Boucher
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bishwas Shrestha
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Paresh Vishwasrao
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA 91010, USA
- Department of Hematology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Leick
- Cellular Immunotherapy Program. Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | | | - Kayla Reid
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kristen Spitler
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bin Yu
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplant, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Marcela V. Maus
- Cellular Immunotherapy Program. Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Marco L. Davila
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Medicine and Immunology, Roswell Park Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
198
|
Takayanagi SI, Wang B, Hasegawa S, Nishikawa S, Fukumoto K, Nakano K, Chuganji S, Kato Y, Kamibayashi S, Minagawa A, Kunisato A, Nozawa H, Kaneko S. Mini-TCRs: Truncated T cell receptors to generate T cells from induced pluripotent stem cells. Mol Ther Methods Clin Dev 2023; 31:101109. [PMID: 37822720 PMCID: PMC10562677 DOI: 10.1016/j.omtm.2023.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Allogeneic T cell platforms utilizing induced pluripotent stem cell (iPSC) technology exhibit significant promise for the facilitation of adoptive immunotherapies. While mature T cell receptor (TCR) signaling plays a crucial role in generating T cells from iPSCs, the introduction of exogenous mature TCR genes carries a potential risk of causing graft-versus-host disease (GvHD). In this study, we present the development of truncated TCRα and TCRβ chains, termed mini-TCRs, which lack variable domains responsible for recognizing human leukocyte antigen (HLA)-peptide complexes. We successfully induced cytotoxic T lymphocytes (CTLs) from iPSCs by employing mini-TCRs. Combinations of TCRα and TCRβ fragments were screened from mini-TCR libraries based on the surface localization of CD3 proteins and their ability to transduce T cell signaling. Consequently, mini-TCR-expressing iPSCs underwent physiological T cell development, progressing from the CD4 and CD8 double-positive stage to the CD8 single-positive stage. The resulting iPSC-derived CTLs exhibited comparable cytokine production and cytotoxicity in comparison to that of full-length TCR-expressing T lymphocytes when chimeric antigen receptors (CARs) were expressed. These findings demonstrate the potential of mini-TCR-carrying iPSCs as a versatile platform for CAR T cell therapy, offering a promising avenue for advancing adoptive immunotherapies.
Collapse
Affiliation(s)
- Shin-ichiro Takayanagi
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Bo Wang
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Shinobi Therapeutics, Inc., 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saki Hasegawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Nishikawa
- R&D Division, Kyowa Kirin Co. Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Ken Fukumoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kohei Nakano
- Shinobi Therapeutics, Inc., 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sayaka Chuganji
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuya Kato
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Sanae Kamibayashi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsutaka Minagawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Kunisato
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Hajime Nozawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Shinobi Therapeutics, Inc., 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
199
|
Mo G, Lu X, Wu S, Zhu W. Strategies and rules for tuning TCR-derived therapy. Expert Rev Mol Med 2023; 26:e4. [PMID: 38095091 PMCID: PMC11062142 DOI: 10.1017/erm.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?
Collapse
Affiliation(s)
- Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
200
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|