151
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
152
|
Lushchak O, Schosserer M, Grillari J. Senopathies-Diseases Associated with Cellular Senescence. Biomolecules 2023; 13:966. [PMID: 37371545 PMCID: PMC10296713 DOI: 10.3390/biom13060966] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence describes a stable cell cycle arrest state with a characteristic phenotype. Senescent cells accumulate in the human body during normal aging, limiting the lifespan and promoting aging-related, but also several non-related, pathologies. We propose to refer to all diseases whose pathogenesis or progression is associated with cellular senescence as "senopathies". Targeting senescent cells with senolytics or senomorphics is likely to mitigate these pathologies. Examples of senopathies include cardiovascular, metabolic, musculoskeletal, liver, kidney, and lung diseases and neurodegeneration. For all these pathologies, animal studies provide clear mechanistic evidence for a connection between senescent cell accumulation and disease progression. The major persisting challenge in developing novel senotherapies is the heterogeneity of senescence phenotypes, causing a lack of universal biomarkers and difficulties in discriminating senescent from non-senescent cells.
Collapse
Affiliation(s)
- Oleh Lushchak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
- Department of Biochemistry and Biotechnology, Precarpathian National University, 76000 Ivano-Frankivsk, Ukraine
- Research and Development University, 76018 Ivano-Frankivsk, Ukraine
| | - Markus Schosserer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
153
|
Mattia L, Gossiel F, Walsh JS, Eastell R. Effect of age and gender on serum growth differentiation factor 15 and its relationship to bone density and bone turnover. Bone Rep 2023; 18:101676. [PMID: 37090856 PMCID: PMC10113774 DOI: 10.1016/j.bonr.2023.101676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Senescent cells and senescence-associated secretory phenotype (SASP) proteins are involved in age-related bone loss. Growth differentiation factor 15 (GDF 15), a stress-responsive cytokine member of the transforming growth factor-β (TGF-β) superfamily, is one of the key SASP proteins. It is strongly associated with age and higher levels correlate with frailty and are detected in several conditions and diseases. It also modulates appetite and body weight through the binding to its receptor glial cell- derived neurotrophic factor family receptor alpha- like (GFRAL) in the brainstem. The GDF 15 involvement in bone metabolism has been studied in several murine models, however, it is still unclear in humans. Therefore, this study aims to determine whether GDF 15 is associated with bone mineral density (BMD) and bone turnover, and to establish the effect of age and gender on its levels. Serum GDF 15 was measured with an ELISA from R&D Systems in 180 healthy women and men from the "XtremeCT study", divided into three age groups which represent different stages of skeletal development (16-18, 30-32, over 70 years). We also measured bone resorption marker C-terminal telopeptide of type I collagen (CTX) and bone formation markers N-terminal propeptide of type I collagen (PINP), osteocalcin (OC) and bone alkaline phosphatase (BAP) using iSYS-IDS analyser. Parathyroid hormone (PTH), 25hydroxyvitamin D (25OH-vitamin D), Insulin-like Growth Factor I (IGF-1), estradiol and testosterone were measured using the Cobas automated analyser (Roche Diagnostics). We assessed BMD at spine and total hip by dual-energy x-ray absorptiometry (DXA) and high resolution peripheral quantitative computed tomography (HRpQCT) of the radius and tibia. Univariate analysis of variance with the post-hoc Sheffe test and multiple linear regression has been used to assess the effect of age and gender. Spearman's rank correlation was used to evaluate the associations between GDF 15 and the other variables. We found GDF 15 levels significantly associated with age (p < 0.001) and gender (p = 0.008), with a significant gender ∗ age interaction (p < 0.001). Significantly higher levels of GDF 15 were found in subjects aged over 70 compared with the younger people (p < 0.001) and significantly higher levels were detected in men. We did not find any significant correlation between GDF 15 and bone turnover markers (BTMs), BMD, HRpQCT measures and hormones in any of the age groups. In conclusion, age and gender are determinants of GDF15 and much higher levels are found in older people and in men. Since no association was found between GDF 15 and bone health measures, we hypothesize that the effect of GDF 15 on bone might be exert by other tissue, such as muscle.
Collapse
Affiliation(s)
- Lorenza Mattia
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| | - Jennifer S. Walsh
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| | - Richard Eastell
- Academic Unit of Bone Metabolism, Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
| |
Collapse
|
154
|
Kaur J, Saul D, Doolittle ML, Farr JN, Khosla S, Monroe DG. MicroRNA- 19a- 3p Decreases with Age in Mice and Humans and Inhibits Osteoblast Senescence. JBMR Plus 2023; 7:e10745. [PMID: 37283656 PMCID: PMC10241091 DOI: 10.1002/jbm4.10745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023] Open
Abstract
Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-β-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Dominik Saul
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Madison L. Doolittle
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Joshua N. Farr
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Sundeep Khosla
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - David G. Monroe
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| |
Collapse
|
155
|
Ren J, Li H, Zeng G, Pang B, Wang Q, Wei J. Gut microbiome-mediated mechanisms in aging-related diseases: are probiotics ready for prime time? Front Pharmacol 2023; 14:1178596. [PMID: 37324466 PMCID: PMC10267478 DOI: 10.3389/fphar.2023.1178596] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Chronic low-grade inflammation affects health and is associated with aging and age-related diseases. Dysregulation of the gut flora is an important trigger for chronic low-grade inflammation. Changes in the composition of the gut flora and exposure to related metabolites have an effect on the inflammatory system of the host. This results in the development of crosstalk between the gut barrier and immune system, contributing to chronic low-grade inflammation and impairment of health. Probiotics can increase the diversity of gut microbiota, protect the gut barrier, and regulate gut immunity, thereby reducing inflammation. Therefore, the use of probiotics is a promising strategy for the beneficial immunomodulation and protection of the gut barrier through gut microbiota. These processes might positively influence inflammatory diseases, which are common in the elderly.
Collapse
Affiliation(s)
- Jing Ren
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Zeng
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxian Pang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
156
|
Samakkarnthai P, Saul D, Zhang L, Aversa Z, Doolittle ML, Sfeir JG, Kaur J, Atkinson EJ, Edwards JR, Russell GG, Pignolo RJ, Kirkland JL, Tchkonia T, Niedernhofer LJ, Monroe DG, Lebrasseur NK, Farr JN, Robbins PD, Khosla S. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging (Albany NY) 2023; 15:3331-3355. [PMID: 37154858 PMCID: PMC10449299 DOI: 10.18632/aging.204701] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
In addition to reducing fracture risk, zoledronic acid has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronic acid could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronic acid killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronic acid or vehicle for 8 weeks, zoledronic acid significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronic acid demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronic acid, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronic acid significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronic acid has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo. These data point to the need for additional studies testing zoledronic acid and/or other bisphosphonate derivatives for senotherapeutic efficacy.
Collapse
Affiliation(s)
- Parinya Samakkarnthai
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Phramongkutklao Hospital and College of Medicine, Bangkok 10400, Thailand
| | - Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Tübingen 72076, Germany
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Madison L. Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jad G. Sfeir
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Japneet Kaur
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Graham G. Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, S10 2RX, UK
| | - Robert J. Pignolo
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David G. Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K. Lebrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
157
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
158
|
Farr JN, Saul D, Doolittle ML, Kaur J, Rowsey JL, Vos SJ, Froemming MN, Lagnado AB, Zhu Y, Weivoda M, Ikeno Y, Pignolo RJ, Niedernhofer LJ, Robbins PD, Jurk D, Passos JF, LeBrasseur NK, Tchkonia T, Kirkland JL, Monroe DG, Khosla S. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J Clin Invest 2023; 133:e162519. [PMID: 36809340 PMCID: PMC10104901 DOI: 10.1172/jci162519] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.
Collapse
Affiliation(s)
- Joshua N. Farr
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
- Department of Physiology and Biomedical Engineering, and
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Japneet Kaur
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Stephanie J. Vos
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Anthony B. Lagnado
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Megan Weivoda
- Department of Hematology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yuji Ikeno
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Robert J. Pignolo
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | - David G. Monroe
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
- Department of Physiology and Biomedical Engineering, and
| |
Collapse
|
159
|
Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L, Mingiano C. Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants (Basel) 2023; 12:antiox12040928. [PMID: 37107303 PMCID: PMC10135862 DOI: 10.3390/antiox12040928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) and osteoporosis (OP) are major causes of morbidity and mortality that have arelevant health and economic burden. Recent epidemiological evidence suggests that both of these disorders are often associated with each other and that T2D patients have an increased risk of fracture, making bone an additional target of diabetes. As occurs for other diabetic complications, the increased accumulation of advanced glycation end-products (AGEs) and oxidative stress represent the major mechanisms explaining bone fragility in T2D. Both of these conditions directly and indirectly (through the promotion of microvascular complications) impair the structural ductility of bone and negatively affect bone turnover, leading to impaired bone quality, rather than decreased bone density. This makes diabetes-induced bone fragility remarkably different from other forms of OP and represents a major challenge for fracture risk stratification, since either the measurement of BMD or the use of common diagnostic algorithms for OP have a poor predictive value. We review and discuss the role of AGEs and oxidative stress on the pathophysiology of bone fragility in T2D, providing some indications on how to improve fracture risk prediction in T2D patients.
Collapse
Affiliation(s)
- Guido Cavati
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Filippo Pirrotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Marco Calabrese
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
160
|
Cheng Y, Hou BH, Xie GL, Shao YT, Yang J, Xu C. Transient inhibition of mitochondrial function by chrysin and apigenin prolong longevity via mitohormesis in C. elegans. Free Radic Biol Med 2023; 203:24-33. [PMID: 37023934 DOI: 10.1016/j.freeradbiomed.2023.03.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Mild inhibition of mitochondrial function leads to longevity. Genetic disruption of mitochondrial respiratory components either by mutation or RNAi greatly extends the lifespan in yeast, worms, and drosophila. This has given rise to the idea that pharmacologically inhibiting mitochondrial function would be a workable strategy for postponing aging. Toward this end, we used a transgenic worm strain that expresses the firefly luciferase enzyme widely to evaluate compounds by tracking real-time ATP levels. We identified chrysin and apigenin, which reduced ATP production and increased the lifespan of worms. Mechanistically, we discovered that chrysin and apigenin transiently inhibit mitochondrial respiration and induce an early ROS, and the lifespan-extending effect is dependent on transient ROS formation. We also show that AAK-2/AMPK, DAF-16/FOXO, and SKN-1/NRF-2 are required for chrysin or apigenin-mediated lifespan extension. Temporary increases in ROS levels trigger an adaptive response in a mitohormetic way, thereby increasing oxidative stress capacity and cellular metabolic adaptation, finally leading to longevity. Thus, chrysin and apigenin represent a class of compounds isolated from natural products that delay senescence and improve age-related diseases by inhibiting mitochondrial function and shed new light on the function of additional plant-derived polyphenols in enhancing health and delaying aging. Collectively, this work provides an avenue for pharmacological inhibition of mitochondrial function and the mechanism underlining their lifespan-extending properties.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bing-Hao Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Gui-Lin Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Ting Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
161
|
Matsubayashi S, Ito S, Araya J, Kuwano K. Drugs against metabolic diseases as potential senotherapeutics for aging-related respiratory diseases. Front Endocrinol (Lausanne) 2023; 14:1079626. [PMID: 37077349 PMCID: PMC10106576 DOI: 10.3389/fendo.2023.1079626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Recent advances in aging research have provided novel insights for the development of senotherapy, which utilizes cellular senescence as a therapeutic target. Cellular senescence is involved in the pathogenesis of various chronic diseases, including metabolic and respiratory diseases. Senotherapy is a potential therapeutic strategy for aging-related pathologies. Senotherapy can be classified into senolytics (induce cell death in senescent cells) and senomorphics (ameliorate the adverse effects of senescent cells represented by the senescence-associated secretory phenotype). Although the precise mechanism has not been elucidated, various drugs against metabolic diseases may function as senotherapeutics, which has piqued the interest of the scientific community. Cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), which are aging-related respiratory diseases. Large-scale observational studies have reported that several drugs, such as metformin and statins, may ameliorate the progression of COPD and IPF. Recent studies have reported that drugs against metabolic diseases may exert a pharmacological effect on aging-related respiratory diseases that can be different from their original effect on metabolic diseases. However, high non-physiological concentrations are needed to determine the efficacy of these drugs under experimental conditions. Inhalation therapy may increase the local concentration of drugs in the lungs without exerting systemic adverse effects. Thus, the clinical application of drugs against metabolic diseases, especially through an inhalation treatment modality, can be a novel therapeutic approach for aging-related respiratory diseases. This review summarizes and discusses accumulating evidence on the mechanisms of aging, as well as on cellular senescence and senotherapeutics, including drugs against metabolic diseases. We propose a developmental strategy for a senotherapeutic approach for aging-related respiratory diseases with a special focus on COPD and IPF.
Collapse
|
162
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
163
|
Petrocelli JJ, de Hart NM, Lang MJ, Yee EM, Ferrara PJ, Fix DK, Chaix A, Funai K, Drummond MJ. Cellular senescence and disrupted proteostasis induced by myotube atrophy are prevented with low-dose metformin and leucine cocktail. Aging (Albany NY) 2023; 15:1808-1832. [PMID: 36947713 PMCID: PMC10085594 DOI: 10.18632/aging.204600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Aging coincides with the accumulation of senescent cells within skeletal muscle that produce inflammatory products, known as the senescence-associated secretory phenotype, but the relationship of senescent cells to muscle atrophy is unclear. Previously, we found that a metformin + leucine (MET+LEU) treatment had synergistic effects in aged mice to improve skeletal muscle structure and function during disuse atrophy. Therefore, the study's purpose was to determine the mechanisms by which MET+LEU exhibits muscle atrophy protection in vitro and if this occurs through cellular senescence. C2C12 myoblasts differentiated into myotubes were used to determine MET+LEU mechanisms during atrophy. Additionally, aged mouse single myofibers and older human donor primary myoblasts were individually isolated to determine the translational potential of MET+LEU on muscle cells. MET+LEU (25 + 125 μM) treatment increased myotube differentiation and prevented myotube atrophy. Low concentration (0.1 + 0.5 μM) MET+LEU had unique effects to prevent muscle atrophy and increase transcripts related to protein synthesis and decrease transcripts related to protein breakdown. Myotube atrophy resulted in dysregulated proteostasis that was reversed with MET+LEU and individually with proteasome inhibition (MG-132). Inflammatory and cellular senescence transcriptional pathways and respective transcripts were increased following myotube atrophy yet reversed with MET+LEU treatment. Dasatinib + quercetin (D+Q) senolytic prevented myotube atrophy similar to MET+LEU. Finally, MET+LEU prevented loss in myotube size in alternate in vitro models of muscle atrophy as well as in aged myofibers while, in human primary myotubes, MET+LEU prevented reductions in myonuclei fusion. These data support that MET+LEU has skeletal muscle cell-autonomous properties to prevent atrophy by reversing senescence and improving proteostasis.
Collapse
Affiliation(s)
- Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
| | - Naomi M.M.P. de Hart
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
| | - Marisa J. Lang
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena M. Yee
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick J. Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Dennis K. Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
164
|
Bancaro N, Calì B, Troiani M, Elia AR, Arzola RA, Attanasio G, Lai P, Crespo M, Gurel B, Pereira R, Guo C, Mosole S, Brina D, D'Ambrosio M, Pasquini E, Spataro C, Zagato E, Rinaldi A, Pedotti M, Di Lascio S, Meani F, Montopoli M, Ferrari M, Gallina A, Varani L, Pereira Mestre R, Bolis M, Gillessen Sommer S, de Bono J, Calcinotto A, Alimonti A. Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell 2023; 41:602-619.e11. [PMID: 36868226 DOI: 10.1016/j.ccell.2023.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
Tumor cells promote the recruitment of immunosuppressive neutrophils, a subset of myeloid cells driving immune suppression, tumor proliferation, and treatment resistance. Physiologically, neutrophils are known to have a short half-life. Here, we report the identification of a subset of neutrophils that have upregulated expression of cellular senescence markers and persist in the tumor microenvironment. Senescent-like neutrophils express the triggering receptor expressed on myeloid cells 2 (TREM2) and are more immunosuppressive and tumor-promoting than canonical immunosuppressive neutrophils. Genetic and pharmacological elimination of senescent-like neutrophils decreases tumor progression in different mouse models of prostate cancer. Mechanistically, we have found that apolipoprotein E (APOE) secreted by prostate tumor cells binds TREM2 on neutrophils, promoting their senescence. APOE and TREM2 expression increases in prostate cancers and correlates with poor prognosis. Collectively, these results reveal an alternative mechanism of tumor immune evasion and support the development of immune senolytics targeting senescent-like neutrophils for cancer therapy.
Collapse
Affiliation(s)
- Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Angela Rita Elia
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Mateus Crespo
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Bora Gurel
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Rita Pereira
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Guo
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Clarissa Spataro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Elena Zagato
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Mattia Pedotti
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute for Research in Biomedicine (IRB), 6500 Bellinzona, Switzerland
| | - Simona Di Lascio
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Francesco Meani
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Matteo Ferrari
- Department of Urology, Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano - Civico USI - Università della Svizzera Italiana, Lugano, Switzerland
| | - Andrea Gallina
- Department of Urology, Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano - Civico USI - Università della Svizzera Italiana, Lugano, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine (IRB), 6500 Bellinzona, Switzerland
| | - Ricardo Pereira Mestre
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Computational Oncology Unit, Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Via Mario Negri 2, 20156 Milano, Italy
| | - Silke Gillessen Sommer
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Johann de Bono
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, Padova, Italy; Department of Medicine, University of Padova, Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
165
|
Gilbert MM, Mathes SC, Mahajan AS, Rohan CA, Travers JB, Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med (Lausanne) 2023; 10:1021908. [PMID: 36993812 PMCID: PMC10040577 DOI: 10.3389/fmed.2023.1021908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast’s ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- *Correspondence: Michael M. Gilbert,
| | | | - Avinash S. Mahajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Anita Thyagarajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Anita Thyagarajan,
| |
Collapse
|
166
|
Li Y, Deng W, Wu J, He Q, Yang G, Luo X, Jia Y, Duan Y, Zhou L, Liu D. TXNIP Exacerbates the Senescence and Aging-Related Dysfunction of β Cells by Inducing Cell Cycle Arrest Through p38-p16/p21-CDK-Rb Pathway. Antioxid Redox Signal 2023; 38:480-495. [PMID: 36070438 DOI: 10.1089/ars.2021.0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Thioredoxin-interacting protein (TXNIP) is a crucial molecular promoter of oxidative stress and has been identified to be associated with cellular senescence. It is an important mediator of β cell insulin secretion and has effects on β cell mass. However, its role in β cell senescence is unclear. The present study was designed to investigate the effects and mechanisms of TXNIP on the senescence and aging- and diet-related dysfunction of β cells. Methods: Human pancreatic paraffin tissues and serum samples from different ages were collected to detect TXNIP expression. TXNIP-/- and C57BL/6J mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD) until 5, 11, 14, or 20 months. The recapitulation experiment was conducted with TXNIP protein injection. MIN6 cells were transfected with LV-TXNIP and LV-siTXNIP. The biochemical indexes, ageing-related markers, cell cycle proteins, and pathways were examined both in vivo and in vitro. Results: TXNIP expression showed an age-related increase in β cells and serum samples from humans. TXNIP significantly impaired glucose metabolism and insulin secretion in an age-dependent manner. TXNIP aggravated age-related and obesity-induced structural failure, oxidative stress, decreased proliferation, increased apoptosis in β cells, and induced the cell cycle arrest. TXNIP interacted with p38 mitogen-activated protein kinase (p38MAPK) and modulated the p16/p21-CDK-Rb axis to accelerate β cell senescence. Innovation and Conclusions: The present study demonstrated that TXNIP may exacerbate pancreatic β cell senescence and age-related dysfunction by inducing cell cycle arrest through the p38-p16/p21-CDK-Rb pathway, in natural and pathological states. Antioxid. Redox Signal. 38, 480-495.
Collapse
Affiliation(s)
- Yang Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenzhen Deng
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Endocrinology, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Jinlin Wu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xie Luo
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanjun Jia
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaqian Duan
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liping Zhou
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
167
|
Research progress on the role of extracellular vesicles derived from aging cells in osteoporosis. Biosci Rep 2023; 43:232531. [PMID: 36734979 PMCID: PMC9939407 DOI: 10.1042/bsr20221775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
The occurrence and development of many diseases are highly associated with the aging of the body. Among them, osteoporosis (OP) is a common age-related disease that tends to occur in the elderly population and is highly related to the aging factors in the body. In the process of aging transmission, the senescence-related secretory phenotype (SASP) can convey the information about aging through the paracrine pathway and endocrine mechanism through the extracellular vesicles (EVs) connected to SASP. EVs can be used as a way of conduction to join the connection between micro-environmental aging and age-related illnesses. EVs are double-layer membranous vesicles separated or secreted from the cell membrane, which mainly include microvesicles (MVs) and exosomes. Vesicular bodies secreted by this exocrine form carry a variety of cell-derived related substances (including a variety of proteins, lipids, DNA, mRNA, miRNAs, etc). These substances are mainly concentrated in human body fluids, especially can be transported to all parts of the body with the blood circulation system, and participate in the interactions between cells. Osteoporosis is closely associated with aging and aging cells, suggesting EVs were active in this pathological process. In this article, the basic mechanisms of aging cells in the occurrence and progression of osteoporosis through EVs will be discussed, to explore the connection between aging and osteoporosis, thereby providing a new perspective on the occurrence and development as well as prevention and treatment of osteoporosis.
Collapse
|
168
|
Samakkarnthai P, Saul D, Zhang L, Aversa Z, Doolittle ML, Sfeir JG, Kaur J, Atkinson EJ, Edwards JR, Russell RGG, Pignolo RJ, Kirkland JL, Tchkonia T, Niedernhofer LJ, Monroe DG, LeBrasseur NK, Farr JN, Robbins PD, Khosla S. In vitro and in vivo effects of zoledronate on senescence and senescence-associated secretory phenotype markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529777. [PMID: 36865244 PMCID: PMC9980119 DOI: 10.1101/2023.02.23.529777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In addition to reducing fracture risk, zoledronate has been found in some studies to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple co-morbidities, the non-skeletal actions of zoledronate could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype [SASP]) actions. To test this, we first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronate killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronate or vehicle for 8 weeks, zoledronate significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronate demonstrated a significant downregulation of senescence/SASP genes (SenMayo). To establish that these cells are potential senolytic/senomorphic targets of zoledronate, we used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronate significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. Collectively, our findings demonstrate that zoledronate has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo . These data point to the need for additional studies testing zoledronate and/or other bisphosphonate derivatives for senotherapeutic efficacy.
Collapse
|
169
|
Wang HL, Yin W, Xia X, Li Z. Orthologs of Human-Disease-Associated Genes in Plants Are Involved in Regulating Leaf Senescence. Life (Basel) 2023; 13:559. [PMID: 36836919 PMCID: PMC9965218 DOI: 10.3390/life13020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
As eukaryotes, plants and animals have many commonalities on the genetic level, although they differ greatly in appearance and physiological habits. The primary goal of current plant research is to improve the crop yield and quality. However, plant research has a wider aim, exploiting the evolutionary conservatism similarities between plants and animals, and applying discoveries in the field of botany to promote zoological research that will ultimately serve human health, although very few studies have addressed this aspect. Here, we analyzed 35 human-disease-related gene orthologs in plants and characterized the genes in depth. Thirty-four homologous genes were found to be present in the herbaceous annual plant Arabidopsis thaliana and the woody perennial plant Populus trichocarpa, with most of the genes having more than two exons, including the ATM gene with 78 exons. More surprisingly, 27 (79.4%) of the 34 homologous genes in Arabidopsis were found to be senescence-associated genes (SAGs), further suggesting a close relationship between human diseases and cellular senescence. Protein-protein interaction network analysis revealed that the 34 genes formed two main subnetworks, and genes in the first subnetwork interacted with 15 SAGs. In conclusion, our results show that most of the 34 homologs of human-disease-associated genes in plants are involved in the leaf senescence process, suggesting that leaf senescence may offer a means to study the pathogenesis of human diseases and to screen drugs for the treat of diseases.
Collapse
Affiliation(s)
| | | | - Xinli Xia
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
170
|
Chen C, Wu M, Lei H, Cao Z, Wu F, Song Y, Zhang C, Qin M, Zhang C, Du R, Zhou J, Lu Y, Xie D, Zhang L. A Novel Prenylflavonoid Icariside I Ameliorates Estrogen Deficiency-Induced Osteoporosis via Simultaneous Regulation of Osteoblast and Osteoclast Differentiation. ACS Pharmacol Transl Sci 2023; 6:270-280. [PMID: 36798476 PMCID: PMC9926523 DOI: 10.1021/acsptsci.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 01/15/2023]
Abstract
Regulation of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is crucial for bone health. Currently, most clinical drugs for osteoporosis treatment such as bisphosphonates are commonly used to inhibit bone resorption but unable to promote bone formation. In this study, we discovered for the first time that icariside I (GH01), a novel prenylflavonoid isolated from Epimedium, can effectively ameliorate estrogen deficiency-induced osteoporosis with enhancement of trabecular and cortical bone in an ovariectomy (OVX) mouse model. Mechanistically, our in vitro results showed that GH01 repressed osteoclast differentiation and resorption through inhibition of RANKL-induced TRAF6-MAPK-p38-NFATc1 cascade. Simultaneously, we also found that GH01 dose-dependently promoted osteoblast differentiation and formation by inhibiting adipogenesis and accelerating energy metabolism of osteoblasts. In addition, both in vitro and in vivo studies also suggested that GH01 is not only a non-toxic natural small molecule but also beneficial for restoration of liver injury in OVX mice. These results demonstrated that GH01 has great potential for osteoporosis treatment by simultaneous regulation of osteoblast and osteoclast differentiation.
Collapse
Affiliation(s)
- Chuan Chen
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Hehua Lei
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Zheng Cao
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Qin
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Cui Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden
Health (Guangdong) Biotechnology Co., Ltd., Foshan 528225, China
- Engineering
Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden
Health (Guangdong) Biotechnology Co., Ltd., Foshan 528225, China
- School
of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Denghui Xie
- Department
of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Limin Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Engineering
Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| |
Collapse
|
171
|
Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion. Int J Mol Sci 2023; 24:ijms24043179. [PMID: 36834587 PMCID: PMC9960843 DOI: 10.3390/ijms24043179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells.
Collapse
|
172
|
Conover CA, Bale LK. Senescence induces proteolytically-active PAPP-A secretion and association with extracellular vesicles in human pre-adipocytes. Exp Gerontol 2023; 172:112070. [PMID: 36549546 PMCID: PMC9868105 DOI: 10.1016/j.exger.2022.112070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Senescence is a cellular response to various stressors characterized by irreversible cell cycle arrest, resistance to apoptosis and expression of a senescence-associated secretory phenotype (SASP). Interestingly, studies where senescent cells were deleted in mice produced beneficial effects similar to those where the zinc metalloproteinase, PAPP-A, was deleted in mice. In this study, we investigated the effect of senescence on PAPP-A secretion and activity in primary cultures of adult human pre-adipocytes. Cultured pre-adipocytes were isolated from subcutaneous (Sub) and omental (Om) fat. Senescence was induced with low dose etoposide. PAPP-A protein was measured by an ultrasensitive PAPP-A ELISA. PAPP-A proteolytic activity was measured by a specific substrate cleavage assay. Senescence significantly increased PAPP-A levels in both Sub and Om conditioned medium (CM) 8- to 15-fold over non-senescent CM. Proteolytic activity reflected PAPP-A protein with 12- to 18-fold greater activity in senescent CM versus non-senescent CM. Furthermore, PAPP-A was found at high levels on the surface of extracellular vesicles secreted by senescent pre-adipocytes and was proteolytically active. In conclusion, we identified enzymatically active PAPP-A as a component of human pre-adipocyte SASP. This recognition warrants further investigation of PAPP-A as a new biomarker for senescence and a potential therapeutic target to control of the spread of senescence in adipose tissue.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA.
| | - Laurie K Bale
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
173
|
Khosla S. Senescent cells, senolytics and tissue repair: the devil may be in the dosing. NATURE AGING 2023; 3:139-141. [PMID: 37118118 PMCID: PMC10148948 DOI: 10.1038/s43587-023-00365-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
174
|
Li C, Liu Z, Shi R. A comprehensive overview of cellular senescence from 1990 to 2021: A machine learning-based bibliometric analysis. Front Med (Lausanne) 2023; 10:1072359. [PMID: 36744145 PMCID: PMC9894629 DOI: 10.3389/fmed.2023.1072359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Background As a cellular process, senescence functions to prevent the proliferation of damaged, old and tumor-like cells, as well as participate in embryonic development, tissue repair, etc. This study aimed to analyze the themes and topics of the scientific publications related to cellular senescence in the past three decades by machine learning. Methods The MeSH term "cellular senescence" was used for searching publications from 1990 to 2021 on the PubMed database, while the R platform was adopted to obtain associated data. A topic network was constructed by latent Dirichlet allocation (LDA) and the Louvain algorithm. Results A total of 21,910 publications were finally recruited in this article. Basic studies (15,382, 70.21%) accounted for the most proportion of publications over the past three decades. Physiology, drug effects, and genetics were the most concerned MeSH terms, while cell proliferation was the leading term since 2010. Three senolytics were indexed by MeSH terms, including quercetin, curcumin, and dasatinib, with the accumulated occurrence of 35, 26, and 22, separately. Three clusters were recognized by LDA and network analyses. Telomere length was the top studied topic in the cluster of physiological function, while cancer cell had been a hot topic in the cluster of pathological function, and protein kinase pathway was the most popular topic in the cluster of molecular mechanism. Notably, the cluster of physiological function showed a poor connection with other clusters. Conclusion Cellular senescence has obtained increasing attention over the past three decades. While most of the studies focus on the pathological function and molecular mechanism, more researches should be conducted on the physiological function and the clinical translation of cellular senescence, especially the development and application of senotherapeutics.
Collapse
Affiliation(s)
- Chan Li
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Zhaoya Liu,
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Ruizheng Shi,
| |
Collapse
|
175
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
176
|
Tian C, An Y, Zhao J, Zhu X, Wei W, Ruan G, Li Y, Pan X. Bone Marrow Mesenchymal Stem Cells Reversed Ovarian Aging-related m6A RNA Methylation Modification Profile in Aged Granulosa Cells. Stem Cell Rev Rep 2023; 19:953-967. [PMID: 36609903 DOI: 10.1007/s12015-022-10485-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ovarian ageing causes endocrine disturbances and the degeneration of systemic tissue and organ functions to seriously affect women's physical and mental health, and effective treatment methods are urgently needed. Based on our previous studies using juvenile rhesus monkey bone marrow mesenchymal stem cells (BMMSCs) to treat ovarian ageing in rhesus monkey, we found that BMMSCs improved ovarian structure and function. This study continues to explore the mechanism by which BMMSCs reversed granulosa cell (GC) ageing. METHODS A GC ageing model and coculture system of BMMSCs were established, changes in the level of the N6-methyladenosine (m6A) methylation modification were detected, m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq) were performed, correlations between m6A peaks and mRNA expression were determined, and the expression of hub genes was identified using Q-PCR, immunofluorescence staining, and western blot. RESULTS Our results showed that H2O2 successfully induced GC ageing and that BMMSCs reversed measures of GC ageing. BMMSCs increased the expression of the FTO protein and reduced the overall level of m6A. We identified 797 m6A peaks (348 hypomethylated and 449 hypermethylated peaks) and 817 differentially expressed genes (DEGs) (412 upregulated and 405 downregulated) after aged GCs were cocultured with BMMSCs, which significantly associated with ovarian function and epigenetic modification. The epigenetic repressive mark and important cell cycle regulator lysine demethylase 8 (KDM8) was downregulated at both the mRNA and protein levels, histone H3 was upregulated in aged GCs after BMMSC coculture, and KDM8 was upregulated after FTO was inhibited through FB23. CONCLUSIONS Our study revealed an essential role for m6A in BMMSCs in reversing GC ageing, and FTO regulated KDM8 mediates histone H3 changes may as a novel regulatory mechanism in BMMSCs to reverse GC ageing.
Collapse
Affiliation(s)
- Chuan Tian
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Yuanyuan An
- The Affiliated Stomatology of Kunming Medical University, Kunming, 650106, Yunnan Province, China
| | - Jing Zhao
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei Wei
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guangping Ruan
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Ye Li
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920Th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
177
|
Noppert GA, Stebbins RC, Dowd JB, Aiello AE. Socioeconomic and race/ethnic differences in immunosenescence: Evidence from the Health and Retirement Study. Brain Behav Immun 2023; 107:361-368. [PMID: 36347419 PMCID: PMC9636606 DOI: 10.1016/j.bbi.2022.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the urgent need to understand variation in immunosenescence at the population-level. Thus far, population patterns of immunosenescence have not well described. METHODS We characterized measures of immunosenescence from the 2016 Venous Blood Study from the nationally representative U.S Health and Retirement Study (HRS) of individuals ages 50 years and older. RESULTS Median values of the CD8+:CD4+, EMRA:Naïve CD4+ and EMRA:Naïve CD8+ ratios were higher among older participants and were lower in those with additional educational attainment. Generally, minoritized race and ethnic groups had immune markers suggestive of a more aged immune profile: Hispanics had a CD8+:CD4+ median value of 0.37 (95 % CI: 0.35, 0.39) compared to 0.30 in non-Hispanic Whites (95 % CI: 0.29, 0.31). Non-Hispanic Blacks had the highest median value of the EMRA:Naïve CD4+ ratio (0.08; 95 % CI: 0.07, 0.09) compared to non-Hispanic Whites (0.03; 95 % CI: 0.028, 0.033). In regression analyses, race/ethnicity and education were associated with large differences in the immune ratio measures after adjustment for age and sex. CONCLUSIONS Lower educational attainment and minoritized racial ethnic status were associated with higher levels of immunosenescence. This population variation may have important implications for both risk of age-related disease and vulnerability to emerging pathogens (e.g., SARS-CoV-2).
Collapse
Affiliation(s)
- Grace A Noppert
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Rebecca C Stebbins
- Social, Genetic, & Developmental Psychiatry Centre, Institute for Psychiatry, Psychology, and Neuroscience; King's College London, London, UK.
| | - Jennifer Beam Dowd
- Leverhulme Centre for Demographic Science, Department of Sociology, University of Oxford, UK
| | - Allison E Aiello
- Department of Epidemiology and Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
178
|
Gustafson CE, Weyand CM, Goronzy JJ. Immune Deficiencies at the Extremes of Age. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
179
|
Ma S, Xia T, Wang X, Wang H. Identification and validation of biomarkers based on cellular senescence in mild cognitive impairment. Front Aging Neurosci 2023; 15:1139789. [PMID: 37187578 PMCID: PMC10176455 DOI: 10.3389/fnagi.2023.1139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Background Mild cognitive impairment (MCI), a syndrome defined as decline of cognitive function greater than expected for an individual's age and education level, occurs in up to 22.7% of elderly patients in United States, causing the heavy psychological and economic burdens to families and society. Cellular senescence (CS) is a stress response that accompanies permanent cell-cycle arrest, which has been reported to be a fundamental pathological mechanism of many age-related diseases. This study aims to explore biomarkers and potential therapeutic targets in MCI based on CS. Methods The mRNA expression profiles of peripheral blood samples from patients in MCI and non-MCI group were download from gene expression omnibus (GEO) database (GSE63060 for training and GSE18309 for external validation), CS-related genes were obtained from CellAge database. Weighted gene co-expression network analysis (WGCNA) was conducted to discover the key relationships behind the co-expression modules. The differentially expressed CS-related genes would be obtained through overlapping among the above datasets. Then, pathway and GO enrichment analyses were performed to further elucidate the mechanism of MCI. The protein-protein interaction network was used to extract hub genes and the logistic regression was performed to distinguish the MCI patients from controls. The hub gene-drug network, hub gene-miRNA network as well as transcription factor-gene regulatory network were used to analyze potential therapeutic targets for MCI. Results Eight CS-related genes were identified as key gene signatures in MCI group, which were mainly enriched in the regulation of response to DNA damage stimulus, Sin3 complex and transcription corepressor activity. The receiver operating characteristic curves of logistic regression diagnostic model were constructed and presented great diagnostic value in both training and validation set. Conclusion Eight CS-related hub genes - SMARCA4, GAPDH, SMARCB1, RUNX1, SRC, TRIM28, TXN, and PRPF19 - serve as candidate biomarkers for MCI and display the excellent diagnostic value. Furthermore, we also provide a theoretical basis for targeted therapy against MCI through the above hub genes.
Collapse
Affiliation(s)
- Songmei Ma
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, The First People’s Hospital of Shangqiu, Shangqiu, Henan, China
| | - Tong Xia
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- *Correspondence: Haiyun Wang,
| |
Collapse
|
180
|
Ye Y, Zhou J. The protective activity of natural flavonoids against osteoarthritis by targeting NF-κB signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1117489. [PMID: 36998478 PMCID: PMC10043491 DOI: 10.3389/fendo.2023.1117489] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteoarthritis (OA) is a typical joint disease associated with chronic inflammation. The nuclear factor-kappaB (NF-κB) pathway plays an important role in inflammatory activity and inhibiting NF-κB-mediated inflammation can be a potential strategy for treating OA. Flavonoids are a class of naturally occurring polyphenols with anti-inflammatory properties. Structurally, natural flavonoids can be divided into several sub-groups, including flavonols, flavones, flavanols/catechins, flavanones, anthocyanins, and isoflavones. Increasing evidence demonstrates that natural flavonoids exhibit protective activity against the pathological changes of OA by inhibiting the NF-κB signaling pathway. Potentially, natural flavonoids may suppress NF-κB signaling-mediated inflammatory responses, ECM degradation, and chondrocyte apoptosis. The different biological actions of natural flavonoids against the NF-κB signaling pathway in OA chondrocytes might be associated with the differentially substituted groups on the structures. In this review, the efficacy and action mechanism of natural flavonoids against the development of OA are discussed by targeting the NF-κB signaling pathway. Potentially, flavonoids could become useful inhibitors of the NF-κB signaling pathway for the therapeutic management of OA.
Collapse
Affiliation(s)
- Yongjun Ye
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Jianguo Zhou,
| |
Collapse
|
181
|
Yuan G, Li Z, Lin X, Li N, Xu R. New perspective of skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:280-294. [PMID: 36846511 PMCID: PMC9947737 DOI: 10.12336/biomatertransl.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023]
Abstract
Tissue-resident stem cells are a group of stem cells distinguished by their capacity for self-renewal and multilineage differentiation capability with tissue specificity. Among these tissue-resident stem cells, skeletal stem cells (SSCs) were discovered in the growth plate region through a combination of cell surface markers and lineage tracing series. With the process of unravelling the anatomical variation of SSCs, researchers were also keen to investigate the developmental diversity outside the long bones, including in the sutures, craniofacial sites, and spinal regions. Recently, fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing have been used to map lineage trajectories by studying SSCs with different spatiotemporal distributions. The SSC niche also plays a pivotal role in regulating SSC fate, such as cell-cell interactions mediated by multiple signalling pathways. This review focuses on discussing the spatial and temporal distribution of SSCs, and broadening our understanding of the diversity and plasticity of SSCs by summarizing the progress of research into SSCs in recent years.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Zan Li
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| |
Collapse
|
182
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Færgeman N, Rauch A, Tencerova M, Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell 2022; 21:e13726. [PMID: 36217558 PMCID: PMC9741509 DOI: 10.1111/acel.13726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022] Open
Abstract
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Atenisa Caci
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Clarissa Schmal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Greet Kerckhofs
- Biomechanics Section, Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Nils Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Molecular Physiology of Bone, Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Department of Cellular and Molecular Medicine, Danish Stem Cell Centre (DanStem)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
183
|
Salerno N, Marino F, Scalise M, Salerno L, Molinaro C, Filardo A, Chiefalo A, Panuccio G, De Angelis A, Urbanek K, Torella D, Cianflone E. Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice. Mech Ageing Dev 2022; 208:111740. [PMID: 36150603 DOI: 10.1016/j.mad.2022.111740] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are predominantly an aging disease. Important sex-specific differences exist and the mechanism(s) by which this sex-by-age interaction influences CVD development and progression remains elusive. Accordingly, it is still unknown whether cell senescence, a main feature of cardiac male aging, is a significant feature also of the female aged mouse heart and whether senolytics, senescence-clearing compounds, promote myocardial repair and regeneration after myocardial infarction (MI) in aged female mice. To this aim, the combination of two senolytics, dasatinib and quercetin (D+Q) or just their vehicle was administered to 22-24 months old C57BL/6 female mice after MI. D+Q improved global left ventricle function and myocardial performance after MI whereby female cardiac aging is characterized by accumulation of cardiac senescent cells that are further increased by MI. Despite their terminal differentiation nature, also cardiomyocytes acquire a senescent phenotype with age in females. D+Q removed senescent cardiac non-myocyte and myocyte cells ameliorating cardiac remodeling and regeneration. Senolytics removed aged dysfunctional cardiac stem/progenitor cells (CSCs), relieving healthy CSCs with normal proliferative and cardiomyogenic differentiation potential. In conclusions, cardiac senescent cells accumulate in the aged female hearts. Removing senescent cells is a key therapeutic target for efficient repair of the aged female heart.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| |
Collapse
|
184
|
Ansari A, Denton KM, Lim R. Strategies for immortalisation of amnion-derived mesenchymal and epithelial cells. Cell Biol Int 2022; 46:1999-2008. [PMID: 35998259 DOI: 10.1002/cbin.11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023]
Abstract
Mesenchymal (human amniotic mesenchymal stem cell [HAMSC]) and epithelial cells (human amnion epithelial cell [HAEC]) derived from human amniotic membranes possess characteristics of pluripotency. However, the pluripotency of HAMSC and HAEC are sustained only for a finite period. This in vitro cell growth can be extended by cell immortalisation. Many well-defined immortalisation systems have been used for artificially overexpressing genes such as human telomerase reverse transcriptase in HAMSC and HAEC leading to controlled and prolonged cell proliferation. In recent years, much progress has been made in our understanding of the cellular machinery that regulates the cell cycle when immortalised. This review summarises the current understanding of molecular mechanisms that contribute to cell immortalisation, the strategies that have been employed to immortalise amnion-derived cell types, and their likely applications in regenerative medicine.
Collapse
Affiliation(s)
- Aneesa Ansari
- Department of Physiology, Monash University, Clayton, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Clayton, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
185
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
186
|
Correa-de-Araujo R, Bhasin S. Public Health Need, Molecular Targets, and Opportunities for the Accelerated Development of Function-Promoting Therapies: Proceedings of a National Institute on Aging Workshop. J Gerontol A Biol Sci Med Sci 2022; 77:2227-2237. [PMID: 36399442 PMCID: PMC10148729 DOI: 10.1093/gerona/glac181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
People ≥ 65 years are expected to live a substantial portion of their remaining lives with a limiting physical condition and the numbers of affected individuals will increase substantially due to the growth of the population of older adults worldwide. The age-related loss of muscle mass, strength, and function is associated with an increased risk of physical disabilities, falls, loss of independence, metabolic disorders, and mortality. The development of function-promoting therapies to prevent and treat age-related skeletal muscle functional limitations is a pressing public health problem.
Methods
On March 20–22, 2022, the National Institute on Aging (NIA) held a workshop entitled “Development of Function-Promoting Therapies: Public Health Need, Molecular Targets, and Drug Development.”
Results
The workshop covered a variety of topics including advances in muscle biology, novel candidate molecules, findings from randomized trials, and challenges in the design of clinical trials and regulatory approval of function-promoting therapies. Leading academic investigators, representatives from the National Institutes of Health (NIH) and the U.S. Food and Drug Administration (FDA), professional societies, pharmaceutical industry, and patient advocacy organizations shared research findings and identified research gaps and strategies to advance the development of function-promoting therapies. A diverse audience of 397 national and international professionals attended the conference.
Conclusions
Function-promoting therapies to prevent and treat physical disabilities associated with aging and chronic diseases are a public health imperative. Appropriately powered, well-designed clinical trials and synergistic collaboration among academic experts, patients and stakeholders, the NIH and the FDA, and the pharmaceutical industry are needed to accelerate the development of function-promoting therapies.
Collapse
Affiliation(s)
- Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda, Maryland , USA
| | - Shalender Bhasin
- Director, Research Program in Men’s Health: Aging and Metabolism. Director, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital , Boston, Massachusetts , USA
| |
Collapse
|
187
|
Faienza MF, Pontrelli P, Brunetti G. Type 2 diabetes and bone fragility in children and adults. World J Diabetes 2022; 13:900-911. [PMID: 36437868 PMCID: PMC9693736 DOI: 10.4239/wjd.v13.i11.900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a global epidemic disease. The prevalence of T2D in adolescents and young adults is increasing alarmingly. The mechanisms leading to T2D in young people are similar to those in older patients. However, the severity of onset, reduced insulin sensitivity and defective insulin secretion can be different in subjects who develop the disease at a younger age. T2D is associated with different complications, including bone fragility with consequent susceptibility to fractures. The purpose of this systematic review was to describe T2D bone fragility together with all the possible involved pathways. Numerous studies have reported that patients with T2D show preserved, or even increased, bone mineral density compared with controls. This apparent paradox can be explained by the altered bone quality with increased cortical bone porosity and compr-omised mechanical properties. Furthermore, reduced bone turnover has been described in T2D with reduced markers of bone formation and resorption. These findings prompted different researchers to highlight the mechanisms leading to bone fragility, and numerous critical altered pathways have been identified and studied. In detail, we focused our attention on the role of microvascular disease, advanced glycation end products, the senescence pathway, the Wnt/β-catenin pathway, the osteoprotegerin/receptor-activator of nuclear factor kappa B ligand, osteonectin and fibroblast growth factor 23. The understanding of type 2 myeloid bone fragility is an important issue as it could suggest possible interventions for the prevention of poor bone quality in T2D and/or how to target these pathways when bone disease is clearly evident.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Paola Pontrelli
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
188
|
Miszkiewicz JJ, Buckley HR, Feldman M, Kiko L, Carlhoff S, Naegele K, Bertolini E, Guimarães NRD, Walker MM, Powell A, Posth C, Kinaston RL. Female bone physiology resilience in a past Polynesian Outlier community. Sci Rep 2022; 12:18857. [PMID: 36344562 PMCID: PMC9640697 DOI: 10.1038/s41598-022-23171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Remodelling is a fundamental biological process involved in the maintenance of bone physiology and function. We know that a range of health and lifestyle factors can impact this process in living and past societies, but there is a notable gap in bone remodelling data for populations from the Pacific Islands. We conducted the first examination of femoral cortical histology in 69 individuals from ca. 440-150 BP Taumako in Solomon Islands, a remote 'Polynesian Outlier' island in Melanesia. We tested whether bone remodelling indicators differed between age groups, and biological sex validated using ancient DNA. Bone vascular canal and osteon size, vascular porosity, and localised osteon densities, corrected by femoral robusticity indices were examined. Females had statistically significantly higher vascular porosities when compared to males, but osteon densities and ratios of canal-osteon (~ 8%) did not differ between the sexes. Our results indicate that, compared to males, localised femoral bone tissue of the Taumako females did not drastically decline with age, contrary to what is often observed in modern populations. However, our results match findings in other archaeological samples-a testament to past female bone physiology resilience, also now observed in the Pacific region.
Collapse
Affiliation(s)
- Justyna J. Miszkiewicz
- grid.1001.00000 0001 2180 7477School of Archaeology and Anthropology, Australian National University, Canberra, Australia ,grid.1003.20000 0000 9320 7537School of Social Science, University of Queensland, St Lucia, Australia
| | - Hallie R. Buckley
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michal Feldman
- grid.10392.390000 0001 2190 1447Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany ,grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lawrence Kiko
- The Solomon Islands National Museum, Honiara, Solomon Islands
| | - Selina Carlhoff
- grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Naegele
- grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Emilie Bertolini
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nathalia R. Dias Guimarães
- grid.1001.00000 0001 2180 7477School of Archaeology and Anthropology, Australian National University, Canberra, Australia
| | - Meg M. Walker
- grid.1001.00000 0001 2180 7477School of Archaeology and Anthropology, Australian National University, Canberra, Australia
| | - Adam Powell
- grid.419518.00000 0001 2159 1813Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- grid.10392.390000 0001 2190 1447Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany ,grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rebecca L. Kinaston
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand ,grid.1022.10000 0004 0437 5432Centre for Social and Cultural Research, Griffith University, Southport, QLD Australia ,BioArch South, Waitati, New Zealand
| |
Collapse
|
189
|
Liu H, Zhao H, Sun Y. Tumor microenvironment and cellular senescence: Understanding therapeutic resistance and harnessing strategies. Semin Cancer Biol 2022; 86:769-781. [PMID: 34799201 DOI: 10.1016/j.semcancer.2021.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is a major contributor to cancer malignancy including development of therapeutic resistance, a process mediated in part through intercellular crosstalk. Besides diverse soluble factors responsible for pro-survival pathway activation, immune evasion and extracellular matrix (ECM) remodeling further promote cancer resistance. Importantly, therapy-induced senescence (TIS) of cells in the TME is frequently observed in anticancer regimens, an off-target effect that can generate profound impacts on disease progression. By conferring the resistance and fueling the repopulation of remaining cancerous cells, TIS is responsible for tumor relapse and distant metastasis in posttreatment stage. This pathological trajectory can be substantially driven by the pro-inflammatory feature of senescent cells, termed as the senescence-associated secretory phenotype (SASP). Targeting strategies to selectively and efficiently remove senescent cells before they exert non-autonomous but largely deleterious effects, are emerging as an effective solution to prevent drug resistance acquired from a treatment-remodeled TME. In this review, we summarize the TME composition and key activities that affect tissue homeostasis and support treatment resistance. Promising opportunities that allow TME-manipulation and senescent cell-targeting (senotherapy) are discussed, with translational pipelines to overcome therapeutic barriers in clinical oncology projected.
Collapse
Affiliation(s)
- Hanxin Liu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huifang Zhao
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yu Sun
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
190
|
Guaraldi G, Milic J, Cesari M, Leibovici L, Mandreoli F, Missier P, Rozzini R, Cattelan AM, Motta F, Mussini C, Cossarizza A. The interplay of post-acute COVID-19 syndrome and aging: a biological, clinical and public health approach. Ageing Res Rev 2022; 81:101686. [PMID: 35820609 PMCID: PMC9270773 DOI: 10.1016/j.arr.2022.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The post-acute COVID-19 syndrome (PACS) is characterized by the persistence of fluctuating symptoms over three months from the onset of the possible or confirmed COVID-19 acute phase. Current data suggests that at least 10% of people with previously documented infection may develop PACS, and up to 50-80% of prevalence is reported among survivors after hospital discharge. This viewpoint will discuss various aspects of PACS, particularly in older adults, with a specific hypothesis to describe PACS as the expression of a modified aging trajectory induced by SARS CoV-2. This hypothesis will be argued from biological, clinical and public health view, addressing three main questions: (i) does SARS-CoV-2-induced alterations in aging trajectories play a role in PACS?; (ii) do people with PACS face immuno-metabolic derangements that lead to increased susceptibility to age-related diseases?; (iii) is it possible to restore the healthy aging trajectory followed by the individual before pre-COVID?. A particular focus will be given to the well-being of people with PACS that could be assessed by the intrinsic capacity model and support the definition of the healthy aging trajectory.
Collapse
Affiliation(s)
- Giovanni Guaraldi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy,Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy,Correspondence to: Department of Surgical, Medical, Dental and Morphological Sciences University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41124 Modena, Italy
| | - Jovana Milic
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Federica Mandreoli
- Department of Physical, Computer and Mathematical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Missier
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Renzo Rozzini
- Geriatric Department, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Federico Motta
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy,Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
191
|
Bhattacharya K, Maiti S, Zahoran S, Weidenauer L, Hany D, Wider D, Bernasconi L, Quadroni M, Collart M, Picard D. Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life. Nat Commun 2022; 13:6271. [PMID: 36270993 PMCID: PMC9587034 DOI: 10.1038/s41467-022-33916-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life. Although reduced Hsp90 levels correlate with aging, it was unknown whether eukaryotic cells and organisms can tune the basal Hsp90 levels to alleviate physiologically accumulated stress. We have investigated whether and how mice adapt to the deletion of three out of four alleles of the two genes encoding cytosolic Hsp90, with one Hsp90β allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90β protein to at least wild-type levels. Our studies reveal an internal ribosome entry site in the 5' untranslated region of the Hsp90β mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We find that the minimum amount of total Hsp90 required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have markedly increased during eukaryotic evolution.
Collapse
Affiliation(s)
- Kaushik Bhattacharya
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Samarpan Maiti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Szabolcs Zahoran
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenz Weidenauer
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Dina Hany
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Diana Wider
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lilia Bernasconi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Martine Collart
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Didier Picard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
192
|
Microglia senescence is related to neuropathic pain-associated comorbidities in the spared nerve injury model. Pain 2022; 164:1106-1117. [PMID: 36448971 PMCID: PMC10108589 DOI: 10.1097/j.pain.0000000000002807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022]
Abstract
ABSTRACT The increased presence of senescent cells in different neurological diseases suggests the contribution of senescence in the pathophysiology of neurodegenerative disorders. Microglia can adapt to any type of disturbance of the homeostasis of the central nervous system (CNS) and its altered activity can lead to permanent and unresolvable damage. The aim of this work was to characterize the behavioural phenotype of spared nerve injury (SNI) mice and then associate it to senescence-related mechanisms. In this work we investigated the timing of the onset of anxiety, depression, or memory decline associated with peripheral neuropathic pain, and their correlation with the presence of microglial cellular senescence. SNI mice showed a persistent pain hypersensitivity from 3 days after surgery. 28 days after nerve injury they also developed anxiety, depression, and cognitive impairment. The appearance of these symptoms was coincident to a significant increase of senescence markers, such as β-galactosidase and senescent-associated secretory phenotype (SASP), at microglial level in the spinal cord and hippocampus of SNI animals. These markers were unaltered at previous time points. In murine immortalized microglial cells (BV2) stimulated with LPS 500 ng/mL for 10 days (4h/day) every other day, we observed an increase of β-galactosidase, SASP appearance, a reduction of cell viability and an increase of Senescence-Associated Heterochromatic Foci (SAHF). Therefore, present findings could represent an important step to a better understanding of the pathophysiological cellular mechanisms in comorbidities related to neuropathic pain states.
Collapse
|
193
|
Zhang X, Englund DA, Aversa Z, Jachim SK, White TA, LeBrasseur NK. Exercise Counters the Age-Related Accumulation of Senescent Cells. Exerc Sport Sci Rev 2022; 50:213-221. [PMID: 35776782 PMCID: PMC9680689 DOI: 10.1249/jes.0000000000000302] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We propose the beneficial effects of exercise are in part mediated through the prevention and elimination of senescent cells. Exercise counters multiple forms of age-related molecular damage that initiate the senescence program and activates immune cells responsible for senescent cell clearance. Preclinical and clinical evidence for exercise as a senescence-targeting therapy and areas needing further investigation are discussed.
Collapse
Affiliation(s)
- Xu Zhang
- Robert and Arlene Kogod Center on Aging, Rochester, MN
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Davis A. Englund
- Robert and Arlene Kogod Center on Aging, Rochester, MN
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Rochester, MN
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Sarah K. Jachim
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
| | | | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, Rochester, MN
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
194
|
FBXW7 inactivation induces cellular senescence via accumulation of p53. Cell Death Dis 2022; 13:788. [PMID: 36104351 PMCID: PMC9475035 DOI: 10.1038/s41419-022-05229-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023]
Abstract
F-box and WD repeat domain containing 7 (FBXW7) acts as a substrate receptor of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase and plays crucial roles in the regulation of several cellular processes, including cell growth, division, and differentiation, by targeting diverse key regulators for degradation. However, its role in regulating cellular senescence remains elusive. Here, we found that FBXW7 inactivation by siRNA-based knockdown or CRISPR/Cas9-based knockout induced significant cellular senescence in p53 wild-type cells, but not in p53 mutant or null cells, along with activation of both the p53/p21 and p16INK4a/Rb pathways. Simultaneous p53 inactivation abrogated senescence and cell growth arrest induced by FBXW7 deficiency as well as the alteration of both the p53/p21 and p16INK4a/Rb pathways. Moreover, Fbxw7 deletion accelerated replicative senescence of primary mouse embryonic fibroblasts in a p53-dependent manner. In addition, FBXW7 deletion induced the senescence-associated secretory phenotype to trigger secondary senescence. Importantly, in a radiation-induced senescence mouse model, simultaneous deletion of p53 rescued accelerated senescence and aging caused by Fbxw7 loss. Thus, our study uncovered a novel role for FBXW7 in the regulation of senescence by eliminating p53.
Collapse
|
195
|
Kimura S, Ichikawa M, Sugawara S, Katagiri T, Hirasawa Y, Ishikawa T, Matsunaga W, Gotoh A. Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus 2022; 14:e28812. [PMID: 36225528 PMCID: PMC9534732 DOI: 10.7759/cureus.28812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
196
|
Moreira T. Ratifying frailty. J Aging Stud 2022; 62:101055. [DOI: 10.1016/j.jaging.2022.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
|
197
|
Torrance BL, Haynes L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front Immunol 2022; 13:1006710. [PMID: 36119079 PMCID: PMC9473698 DOI: 10.3389/fimmu.2022.1006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging. Many of these age-related changes can impair the normal function of the respiratory system and its capability to respond appropriately to potential pathogens that are encountered daily. In this review, we aim to establish the effects of cellular senescence on the disruption of normal lung function with aging and describe how these effects compound to leave an aged respiratory system at great risk when exposed to a pathogen. We will also discuss the role cellular senescence may play in the inability of most vaccines to confer protection against respiratory infections when administered to older adults. We posit that cellular senescence may be the point of convergence of many age-related immunological declines. Enhanced investigation into this area could provide much needed insight to understand the aging immune system and how to effectively ameliorate responses to pathogens that continue to disproportionately harm this vulnerable population.
Collapse
Affiliation(s)
| | - Laura Haynes
- UConn Center on Aging and Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
198
|
Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, Zhang L. Mesenchymal stem cells and their microenvironment. STEM CELL RESEARCH & THERAPY 2022; 13:429. [PMID: 35987711 PMCID: PMC9391632 DOI: 10.1186/s13287-022-02985-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs), coming from a wide range of sources, have multi-directional differentiation ability. MSCs play vital roles in immunomodulation, hematopoiesis and tissue repair. The microenvironment of cells often refers to the intercellular matrix, other cells, cytokines and humoral components. It is also the place for cells’ interaction. The stability of the microenvironment is pivotal for maintaining cell proliferation, differentiation, metabolism and functional activities. Abnormal changes in microenvironment components can interfere cell functions. In some diseases, MSCs can interact with the microenvironment and accelerate disease progression. This review will discuss the characteristics of MSCs and their microenvironment, as well as the interaction between MSCs and microenvironment in disease.
Collapse
|
199
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
200
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|