151
|
Hasani A, Khosravi A, Behnam P, Ramezani F, Eslami Farsani B, Aliaghaei A, Pirani M, Akaberi-Nasrabadi S, Abdi S, Abdollahifar MA. Non-apoptotic cell death such as pyroptosis, autophagy, necroptosis and ferroptosis acts as partners to induce testicular cell death after scrotal hyperthermia in mice. Andrologia 2021; 54:e14320. [PMID: 34811771 DOI: 10.1111/and.14320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Cell death is a biologically uncontrollable and regulated process associated with human diseases which usually occur in response to oxidative stress that activates signalling pathways in multiple forms and can therefore contribute to human diseases. Thus, the current study aims to evaluate the signalling pathway involved in cell death after testicular hyperthermia. For this purpose, 32 mice were equally divided into four groups; I: Control; II, III and IV, Scrotal hyperthermia in which the testes are exposed to water at 43°C for 20 min every other day, respectively, 15, 10 and 5 times. Then, animals were euthanized and testicular tissue samples were isolated to evaluate protein expression as well as germ cell gene marker expression by Western blot and real-time PCR tests. Our data showed that the protein expression of Caspase-1, Beclin1, Atg7, Mlkl and Acsl4 together with the expression of Caspase-1, Beclin1, Atg7, Mlkl and Acsl4 genes was significantly up-regulated in scrotal hyperthermia-induced mice. In conclusion, the present study showed that heat stress disrupts spermatogenesis by activating several non-apoptotic signalling pathways in testicular tissue.
Collapse
Affiliation(s)
- Amirhosein Hasani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Khosravi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paria Behnam
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahim Ramezani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Eslami Farsani
- Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Khorasan Razavi, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Akaberi-Nasrabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Abdi
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
152
|
Shang M, Lu K, Guan W, Cao S, Ren M, Zhou C. 2',3'-Cyclic GMP-AMP Dinucleotides for STING-Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem 2021; 17:e202100671. [PMID: 34807508 DOI: 10.1002/cmdc.202100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.
Collapse
Affiliation(s)
- Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujie Cao
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
153
|
Chen M, Linstra R, van Vugt MATM. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188661. [PMID: 34800547 DOI: 10.1016/j.bbcan.2021.188661] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
Genomic and chromosomal instability are hallmarks of cancer and shape the genomic composition of cancer cells, thereby determining their behavior and response to treatment. Various genetic and epigenetic alterations in cancer have been linked to genomic instability, including DNA repair defects, oncogene-induced replication stress, and spindle assembly checkpoint malfunction. A consequence of genomic and chromosomal instability is the leakage of DNA from the nucleus into the cytoplasm, either directly or through the formation and subsequent rupture of micronuclei. Cytoplasmic DNA subsequently activates cytoplasmic DNA sensors, triggering downstream pathways, including a type I interferon response. This inflammatory signaling has pleiotropic effects, including enhanced anti-tumor immunity and potentially results in sensitization of cancer cells to immune checkpoint inhibitors. However, cancers frequently evolve mechanisms to avoid immune clearance, including suppression of inflammatory signaling. In this review, we summarize inflammatory signaling pathways induced by various sources of genomic instability, adaptation mechanisms that suppress inflammatory signaling, and implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Renske Linstra
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands.
| |
Collapse
|
154
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
155
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
156
|
Sanford SL, Welfer GA, Freudenthal BD, Opresko PL. How DNA damage and non-canonical nucleotides alter the telomerase catalytic cycle. DNA Repair (Amst) 2021; 107:103198. [PMID: 34371388 PMCID: PMC8526386 DOI: 10.1016/j.dnarep.2021.103198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Telomeres at the ends of linear chromosomes are essential for genome maintenance and sustained cellular proliferation, but shorten with each cell division. Telomerase, a specialized reverse transcriptase with its own integral RNA template, compensates for this by lengthening the telomeric 3' single strand overhang. Mammalian telomerase has the unique ability to processively synthesize multiple GGTTAG repeats, by translocating along its product and reiteratively copying the RNA template, termed repeat addition processivity (RAP). This unusual form of processivity is distinct from the nucleotide addition processivity (NAP) shared by all other DNA polymerases. In this review, we focus on the minimally active human telomerase catalytic core consisting of the telomerase reverse transcriptase (TERT) and the integral RNA (TR), which catalyzes DNA synthesis. We review the mechanisms by which oxidatively damaged nucleotides, and anti-viral and anti-cancer nucleotide drugs affect the telomerase catalytic cycle. Finally, we offer perspective on how we can leverage telomerase's unique properties, and advancements in understanding of telomerase catalytic mechanism, to selectively manipulate telomerase activity with therapeutics, particularly in cancer treatment.
Collapse
Affiliation(s)
- Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Griffin A Welfer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
157
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
158
|
Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T, Passos JF, Adams PD. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 2021; 184:5506-5526. [PMID: 34715021 PMCID: PMC8627867 DOI: 10.1016/j.cell.2021.09.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Karl N Miller
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanna Salmonowicz
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK; International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Peter D Adams
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
159
|
Banerjee D, Langberg K, Abbas S, Odermatt E, Yerramothu P, Volaric M, Reidenbach MA, Krentz KJ, Rubinstein CD, Brautigan DL, Abbas T, Gelfand BD, Ambati J, Kerur N. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat Commun 2021; 12:6207. [PMID: 34707113 PMCID: PMC8551335 DOI: 10.1038/s41467-021-26240-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.
Collapse
Affiliation(s)
- Daipayan Banerjee
- Aravind Medical Research Foundation, Madurai, 625020, India
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kurt Langberg
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Salar Abbas
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eric Odermatt
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Volaric
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kathy J Krentz
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - C Dustin Rubinstein
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - David L Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
160
|
Yan RL, Chen RH. Autophagy and cancer metabolism-The two-way interplay. IUBMB Life 2021; 74:281-295. [PMID: 34652063 DOI: 10.1002/iub.2569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Autophagy is an intracellular catabolic process that degrades cytoplasmic components for recycling in response to stressed conditions, such as nutrient deprivation. Dysregulation of autophagy is associated with various diseases, including cancer. Although autophagy plays dichotomous and context-dependent roles in cancer, evidence has emerged that cancer cells exploit autophagy for metabolic adaptation. Autophagy is upregulated in many cancer types through tumor cell-intrinsic proliferation demands and the hypoxic and nutrient-limited tumor microenvironment (TME). Autophagy-induced breakdown products then fuel into various metabolic pathways to supply tumor cells with energy and building blocks for biosynthesis and survival. This bidirectional regulation between autophagy and tumor constitutes a vicious cycle to potentiate tumor growth and therapy resistance. In addition, the pro-tumor functions of autophagy are expanded to host, including cells in TME and distant organs. Thus, inhibition of autophagy or autophagy-mediated metabolic reprogramming may be a promising strategy for anticancer therapy. Better understanding the metabolic rewiring mechanisms of autophagy for its pro-tumor effects will provide insights into patient treatment.
Collapse
Affiliation(s)
- Reui-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
161
|
Cornelison R, Biswas K, Llaneza DC, Harris AR, Sosale NG, Lazzara MJ, Landen CN. CX-5461 Treatment Leads to Cytosolic DNA-Mediated STING Activation in Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13205056. [PMID: 34680204 PMCID: PMC8533980 DOI: 10.3390/cancers13205056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest of the gynecologic malignancies, with an overall survival rate of <30%. Recent research has suggested that targeting RNA polymerase I (POL I) with small-molecule inhibitors may be a viable therapeutic approach to combating EOC, even when chemoresistance is present. CX-5461 is one of the most promising POL I inhibitors currently being investigated, and previous reports have shown that CX-5461 treatment induces DNA damage response (DDR) through ATM/ATR kinase. Investigation into downstream effects of CX-5461 led us to uncovering a previously unreported phenotype. Treatment with CX-5461 induces a rapid accumulation of cytosolic DNA. This accumulation leads to transcriptional upregulation of 'STimulator of Interferon Genes' (STING) in the same time frame, phosphorylation of IRF3, and activation of type I interferon response both in vitro and in vivo. This activation is mediated and dependent on cyclic GMP-AMP synthase (cGAS). Here, we show THAT CX-5461 leads to an accumulation of cytosolic dsDNA and thereby activates the cGAS-STING-TBK1-IRF3 innate immune pathway, which induces type I IFN. CX-5461 treatment-mediated immune activation may be a powerful mechanism of action to exploit, leading to novel drug combinations with a chance of increasing immunotherapy efficacy, possibly with some cancer specificity limiting deleterious toxicities.
Collapse
Affiliation(s)
- Robert Cornelison
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (K.B.); (D.C.L.); (A.R.H.)
| | - Kuntal Biswas
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (K.B.); (D.C.L.); (A.R.H.)
| | - Danielle C. Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (K.B.); (D.C.L.); (A.R.H.)
| | - Alexandra R. Harris
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (K.B.); (D.C.L.); (A.R.H.)
| | - Nisha G. Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22908, USA; (N.G.S.); (M.J.L.)
| | - Matthew J. Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22908, USA; (N.G.S.); (M.J.L.)
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (K.B.); (D.C.L.); (A.R.H.)
- Correspondence: ; Tel.: +1-434-243-6131
| |
Collapse
|
162
|
Li C, Liu F, Yang X, Guo B, Li G, Yin J, He G, Yang C, Xu L, Li S, Wu H, Liu H, Ruan Y, Gu J, Wang L. Targeting lectin-like oxidized low-density lipoprotein receptor-1 triggers autophagic program in esophageal cancer. Cell Death Differ 2021; 29:697-708. [PMID: 34611296 DOI: 10.1038/s41418-021-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved catabolic process to maintain cellular homeostasis. However, dysfunctional autophagy contributes to a context-dependent role in cancer. Here, we clarified the exact role of autophagy modulated by the scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in esophageal cancer (EC). A comprehensive analysis in various cancers displayed that LOX-1 was upregulated the most in EC tissues and associated with poor prognosis of patients. Deletion of LOX-1 ex vivo and in vivo suppresses EC development by inducing autophagic cell death. Receptor for activated C kinase 1 (RACK1) was identified as a signal adapter of LOX-1, which incented RAS/MEK/ERK pathway and TFEB nuclear export signal and safeguarded tumorigenesis. A sulfated polysaccharide fucoidan extracted from brown seaweed was found to bind with LOX-1 and mediate its proteasomal degradation but not the lysosome pathway, leading to autophagy-related cell death in EC. These results reveal a central contribution of LOX-1 to EC development and provide genetic ablation or bioactive polysaccharide as an effective intervention for EC therapy.
Collapse
Affiliation(s)
- Can Li
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fenglin Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xu Yang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Bao Guo
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jie Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Gaofei He
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ling Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuxuan Li
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Wu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hai Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lan Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
163
|
Wang Z, Chen J, Gao C, Xiao Q, Wang X, Tang S, Li Q, Zhong B, Song Z, Shu H, Li L, Wu M. Epigenetic Dysregulation Induces Translocation of Histone H3 into Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100779. [PMID: 34363353 PMCID: PMC8498869 DOI: 10.1002/advs.202100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Indexed: 06/13/2023]
Abstract
In eukaryote cells, core components of chromatin, such as histones and DNA, are packaged in nucleus. Leakage of nuclear materials into cytosol will induce pathological effects. However, the underlying mechanisms remain elusive. Here, cytoplasmic localization of nuclear materials induced by chromatin dysregulation (CLIC) in mammalian cells is reported. H3K9me3 inhibition by small chemicals, HP1α knockdown, or knockout of H3K9 methylase SETDB1, induces formation of cytoplasmic puncta containing histones H3.1, H4 and cytosolic DNA, which in turn activates inflammatory genes and autophagic degradation. Autophagy deficiency rescues H3 degradation, and enhances the activation of inflammatory genes. MRE11, a subunit of MRN complex, enters cytoplasm after heterochromatin dysregulation. Deficiency of MRE11 or NBS1, but not RAD50, inhibits CLIC puncta in cytosol. MRE11 depletion represses tumor growth enhanced by HP1α deficiency, suggesting a connection between CLIC and tumorigenesis. This study reveals a novel pathway that heterochromatin dysregulation induces translocation of nuclear materials into cytoplasm, which is important for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Ji Chen
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Chuan Gao
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Qiong Xiao
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Xi‐Wei Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Shan‐Bo Tang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Qing‐Lan Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Bo Zhong
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Zhi‐Yin Song
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hong‐Bing Shu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Lian‐Yun Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Min Wu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
164
|
Abstract
Innate immunity is regulated by a broad set of evolutionary conserved receptors to finely probe the local environment and maintain host integrity. Besides pathogen recognition through conserved motifs, several of these receptors also sense aberrant or misplaced self-molecules as a sign of perturbed homeostasis. Among them, self-nucleic acid sensing by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway alerts on the presence of both exogenous and endogenous DNA in the cytoplasm. We review recent literature demonstrating that self-nucleic acid detection through the STING pathway is central to numerous processes, from cell physiology to sterile injury, auto-immunity and cancer. We address the role of STING in autoimmune diseases linked to dysfunctional DNAse or related to mutations in DNA sensing pathways. We expose the role of the cGAS/STING pathway in inflammatory diseases, neurodegenerative conditions and cancer. Connections between STING in various cell processes including autophagy and cell death are developed. Finally, we review proposed mechanisms to explain the sources of cytoplasmic DNA.
Collapse
Affiliation(s)
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), Centre National de la Recherche Scientifique (CNRS), UMR7355 and University of Orleans, Orleans, France
| |
Collapse
|
165
|
Li B, Wei S, Yang L, Peng X, Ma Y, Wu B, Fan Q, Yang S, Li X, Jin H, Tang S, Huang M, Li H, Liu J. CISD2 Promotes Resistance to Sorafenib-Induced Ferroptosis by Regulating Autophagy in Hepatocellular Carcinoma. Front Oncol 2021; 11:657723. [PMID: 34485112 PMCID: PMC8415543 DOI: 10.3389/fonc.2021.657723] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Sorafenib is a multi-kinase inhibitor that is used as a standard treatment for advanced hepatocellular carcinoma (HCC). However, the mechanism of sorafenib resistance in HCC is still unclear. It has been shown that CISD2 expression is related to the progression and poor prognosis of HCC. Here, we show a new role for CISD2 in sorafenib resistance in HCC. Methods Bioinformatic analysis was used to detect the expression of negative regulatory genes of ferroptosis in sorafenib-resistant samples. The concentration gradient method was used to establish sorafenib-resistant HCC cells. Western blot was used to detect the protein expression of CISD2, LC3, ERK, PI3K, AKT, mTOR, and Beclin1 in HCC samples. Quantitative real-time PCR (qPCR) was used to detect gene expression. CISD2 shRNA and Beclin1 shRNA were transfected to knock down the expression of the corresponding genes. Cell viability was detected by a CCK-8 assay. ROS were detected by DCFH-DA staining, and MDA and GSH were detected with a Lipid Peroxidation MDA Assay Kit and Micro Reduced Glutathione (GSH) Assay Kit, respectively. Flow cytometry was used to detect apoptosis and the levels of ROS and iron ions. Results CISD2 was highly expressed in HCC cells compared with normal cells and was associated with poor prognosis in patients. Knockdown of CISD2 promoted a decrease in the viability of drug-resistant HCC cells. CISD2 knockdown promoted sorafenib-induced ferroptosis in resistant HCC cells. The levels of ROS, MDA, and iron ions increased, but the change in GSH was not obvious. Knockdown of CISD2 promoted uncontrolled autophagy in resistant HCC cells. Inhibition of autophagy attenuated CISD2 knockdown-induced ferroptosis. The autophagy promoted by CISD2 knockdown was related to Beclin1. When CISD2 and Beclin1 were inhibited, the effect on ferroptosis was correspondingly weakened. Conclusion Inhibition of CISD2 promoted sorafenib-induced ferroptosis in resistant cells, and this process promoted excessive iron ion accumulation through autophagy, leading to ferroptosis. The combination of CISD2 inhibition and sorafenib treatment is an effective therapeutic strategy for resistant HCC.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
166
|
Reinert LS, Rashidi AS, Tran DN, Katzilieris-Petras G, Hvidt AK, Gohr M, Fruhwürth S, Bodda C, Thomsen MK, Vendelbo MH, Khan AR, Hansen B, Bergström P, Agholme L, Mogensen TH, Christensen MH, Nyengaard JR, Sen GC, Zetterberg H, Verjans GM, Paludan SR. Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Invest 2021; 131:136824. [PMID: 32990676 DOI: 10.1172/jci136824] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Protection of the brain from viral infections involves the type I IFN (IFN-I) system, defects in which render humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels lead to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we showed that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, whereas lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices or mice treated with a caspase inhibitor exhibited lower viral load and an improved infection outcome. Collectively, we identify an activation-induced apoptosis program in brain immune cells that downmodulates local immune responses.
Collapse
Affiliation(s)
- Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ahmad S Rashidi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Diana N Tran
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Astrid K Hvidt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Gohr
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | | | | | - Mikkel H Vendelbo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Ahmad R Khan
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Centre of Biomedical Research, SGPGI Campus, Lucknow, India
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Petra Bergström
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Germany
| | - Lotta Agholme
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Germany
| | | | | | - Jens R Nyengaard
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Ganes C Sen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
167
|
Expression of Four Autophagy-Related Genes Accurately Predicts the Prognosis of Gastrointestinal Cancer in Asian Patients. DISEASE MARKERS 2021; 2021:7253633. [PMID: 34484469 PMCID: PMC8413069 DOI: 10.1155/2021/7253633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/07/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers are among the most fatal diseases in the world. Numerous studies have demonstrated the relationship between autophagy and development of gastrointestinal cancers. However, whether autophagy-related genes can predict prognosis of GI cancers in individuals of Asian ancestry has not been defined. This study, evaluated the prognostic value of autophagy-related genes in gastrointestinal cancer. Expression profile of autophagy-related genes for 296 gastrointestinal cancer patients of Asian ancestry was downloaded from the TCGA database (TCGA-LIHC, TCGA-STAD, TCGA-ESCA, TCGA-PAAD, TCGA-COAD, TCGA-CHOL, and TCGA-READ). The prognostic value of the autophagy-related genes was evaluated using univariate Cox, LASSO, and multivariate Cox regression analyses. The risk score of the autophagy-related gene signature was calculated to assess its predictive prognostic value for GI cancers. Forty-seven differentially expressed autophagy-related genes, in Asian patients with gastrointestinal cancers, were identified. Of the 47 genes, 4 were associated with prognosis of GI cancer (SQSTM1, BIRC5, NRG3, and CXCR4). A prognostic model for GI cancer, based on the expression of the above 4 genes in the training set, showed that cancer patients were stratified into high-risk and low-risk groups (P < 0.05). The utility of the model for overall survival (OS) of GI cancer patients was consistent across the entire set, training set, and test set (entire set: P = 4.568 × 10−4; train set: P = 5.718 × 10−3; test set: P = 3.516 × 10−2). The sensitivity and specificity of the ROC curve of the above prognostic model in predicting the 5-year prognosis of GI cancer was satisfactory (entire set: 0.728; train set: 0.727; test set: 0.733). Analysis of clinical samples validated the overexpression of the 4 genes (SQSTM1, BIRC5, NRG3, and CXCR4) in tumor tissues relative to paired normal tissues, consistent with bioinformatic findings. Expression of the 4 autophagy-related genes (SQSTM1, BIRC5, NRG3, and CXCR4) can accurately predict the prognosis of gastrointestinal tumors in Asian patients.
Collapse
|
168
|
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.
Collapse
Affiliation(s)
- Juli Bai
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA. .,National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Feng Liu
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA. .,National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
169
|
Hong Z, Ma T, Liu X, Wang C. cGAS-STING pathway: post-translational modifications and functions in sterile inflammatory diseases. FEBS J 2021; 289:6187-6208. [PMID: 34310043 DOI: 10.1111/febs.16137] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cytoplasmic microbial and host aberrant DNAs act as danger signals and trigger host immune responses. Upon recognition, the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) catalyzes the production of a second messenger 2'3'-cGAMP, which activates endoplasmic reticulum (ER)-associated stimulator of interferon (IFN) genes (STING) and ultimately leads to the induction of type I IFNs and inflammatory genes that collectively initiate host immune defense against microbial invasion. Inappropriate activation or suppression of this signaling pathway has been implicated in the development of some autoimmune diseases, sterile inflammation, and cancers. In this review, we describe how the activity of cGAS and STING is regulated by host post-translational modifications and summarize the recent advances of cell-specific cGAS-STING activation and its association in sterile inflammatory diseases. We also discuss key outstanding questions in the field, including how our knowledge of cGAS-STING pathway could be translated into clinical applications.
Collapse
Affiliation(s)
- Ze Hong
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tianchi Ma
- Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
170
|
Circulating mitochondrial DNA-triggered autophagy dysfunction via STING underlies sepsis-related acute lung injury. Cell Death Dis 2021; 12:673. [PMID: 34218252 PMCID: PMC8254453 DOI: 10.1038/s41419-021-03961-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
The STING pathway and its induction of autophagy initiate a potent immune defense response upon the recognition of pathogenic DNA. However, this protective response is minimal, as STING activation worsens organ damage, and abnormal autophagy is observed during progressive sepsis. Whether and how the STING pathway affects autophagic flux during sepsis-induced acute lung injury (sALI) are currently unknown. Here, we demonstrate that the level of circulating mtDNA and degree of STING activation are increased in sALI patients. Furthermore, STING activation was found to play a pivotal role in mtDNA-mediated lung injury by evoking an inflammatory storm and disturbing autophagy. Mechanistically, STING activation interferes with lysosomal acidification in an interferon (IFN)-dependent manner without affecting autophagosome biogenesis or fusion, aggravating sepsis. Induction of autophagy or STING deficiency alleviated lung injury. These findings provide new insights into the role of STING in the regulatory mechanisms behind extrapulmonary sALI.
Collapse
|
171
|
Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int J Mol Sci 2021; 22:ijms22137194. [PMID: 34281248 PMCID: PMC8268995 DOI: 10.3390/ijms22137194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD), the main cause of vision loss in the elderly, is associated with oxidation in the retina cells promoting telomere attrition. Activation of telomerase was reported to improve macular functions in AMD patients. The catalytic subunit of human telomerase (hTERT) may directly interact with proteins important for senescence, DNA damage response, and autophagy, which are impaired in AMD. hTERT interaction with mTORC1 (mTOR (mechanistic target of rapamycin) complex 1) and PINK1 (PTEN-induced kinase 1) activates macroautophagy and mitophagy, respectively, and removes cellular debris accumulated over AMD progression. Ectopic expression of telomerase in retinal pigment epithelium (RPE) cells lengthened telomeres, reduced senescence, and extended their lifespan. These effects provide evidence for the potential of telomerase in AMD therapy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be involved in AMD pathogenesis through decreasing oxidative stress and senescence, regulation of vascular endothelial growth factor (VEGF), and improving autophagy. PGC-1α and TERT form an inhibitory positive feedback loop. In conclusion, telomerase activation and its ectopic expression in RPE cells, as well as controlled clinical trials on the effects of telomerase activation in AMD patients, are justified and should be assisted by PGC-1α modulators to increase the therapeutic potential of telomerase in AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: (J.B.); (K.K.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: (J.B.); (K.K.)
| |
Collapse
|
172
|
Bowen ME, Mulligan AS, Sorayya A, Attardi LD. Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects. Cell Death Differ 2021; 28:2083-2094. [PMID: 33574585 PMCID: PMC8257737 DOI: 10.1038/s41418-021-00738-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
Inappropriate activation of the p53 transcription factor is thought to contribute to the developmental phenotypes in a range of genetic syndromes. Whether p53 activation drives these developmental phenotypes by triggering apoptosis, cell cycle arrest, or other p53 cellular responses, however, has remained elusive. As p53 hyperactivation in embryonic neural crest cells (NCCs) drives a number of phenotypes, including abnormal craniofacial and neuronal development, we investigate the basis for p53 action in this context. We show that p53-driven developmental defects are associated with the induction of a robust pro-apoptotic transcriptional signature. Intriguingly, however, deleting Puma or Caspase9, which encode key components of the intrinsic apoptotic pathway, does not rescue craniofacial, neuronal or pigmentation defects triggered by p53 hyperactivation in NCCs. Immunostaining analyses for two key apoptosis markers confirm that deleting Puma or Caspase9 does indeed impair p53-hyperactivation-induced apoptosis in NCCs. Furthermore, we demonstrate that p53 hyperactivation does not trigger a compensatory dampening of cell cycle progression in NCCs upon inactivation of apoptotic pathways. Together, our results indicate that p53-driven craniofacial, neuronal and pigmentation defects can arise in the absence of apoptosis and cell cycle arrest, suggesting that p53 hyperactivation can act via alternative pathways to trigger developmental phenotypes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abigail S Mulligan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aryo Sorayya
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
173
|
Hu S, Fang Y, Chen X, Cheng T, Zhao M, Du M, Li T, Li M, Zeng Z, Wei Y, Gu Z, Zhang C, Sun L, Chen ZJ. cGAS restricts colon cancer development by protecting intestinal barrier integrity. Proc Natl Acad Sci U S A 2021; 118:e2105747118. [PMID: 34074794 PMCID: PMC8201956 DOI: 10.1073/pnas.2105747118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The DNA-sensing enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) regulates inflammation and immune defense against pathogens and malignant cells. Although cGAS has been shown to exert antitumor effects in several mouse models harboring transplanted tumor cell lines, its role in tumors arising from endogenous tissues remains unknown. Here, we show that deletion of cGAS in mice exacerbated chemical-induced colitis and colitis-associated colon cancer (CAC). Interestingly, mice lacking cGAS were more susceptible to CAC than those lacking stimulator of interferon genes (STING) or type I interferon receptor under the same conditions. cGAS but not STING is highly expressed in intestinal stem cells. cGAS deficiency led to intestinal stem cell loss and compromised intestinal barrier integrity upon dextran sodium sulfate-induced acute injury. Loss of cGAS exacerbated inflammation, led to activation of STAT3, and accelerated proliferation of intestinal epithelial cells during CAC development. Mice lacking cGAS also accumulated myeloid-derived suppressive cells within the tumor, displayed enhanced Th17 differentiation, but reduced interleukin (IL)-10 production. These results indicate that cGAS plays an important role in controlling CAC development by defending the integrity of the intestinal mucosa.
Collapse
Affiliation(s)
- Shuiqing Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yan Fang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiang Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tianlei Cheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Miaoqing Zhao
- Department of Pathology, Provincial Hospital Affiliated to Shandong First Medical University, 250021 Shandong, China
| | - Mingjian Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Minghao Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhiqun Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yonglong Wei
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhimin Gu
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Conggang Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lijun Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
174
|
The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Rev Rep 2021; 16:288-300. [PMID: 31813120 DOI: 10.1007/s12015-019-09936-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.
Collapse
|
175
|
Zhang R, Kang R, Tang D. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther 2021; 6:208. [PMID: 34078874 PMCID: PMC8172903 DOI: 10.1038/s41392-021-00613-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023] Open
Abstract
Cell death and immune response are at the core of life. In past decades, the endoplasmic reticulum (ER) protein STING1 (also known as STING or TMEM173) was found to play a fundamental role in the production of type I interferons (IFNs) and pro-inflammatory cytokines in response to DNA derived from invading microbial pathogens or damaged hosts by activating multiple transcription factors. In addition to this well-known function in infection, inflammation, and immunity, emerging evidence suggests that the STING1-dependent signaling network is implicated in health and disease by regulating autophagic degradation or various cell death modalities (e.g., apoptosis, necroptosis, pyroptosis, ferroptosis, mitotic cell death, and immunogenic cell death [ICD]). Here, we outline the latest advances in our understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death, which may shed light on new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
176
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
177
|
Causes and consequences of DNA damage-induced autophagy. Matrix Biol 2021; 100-101:39-53. [DOI: 10.1016/j.matbio.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
|
178
|
Chen L, Zhang K, Sun J, Tang J, Zhou J. Development and Validation of an Autophagy-Stroma-Based Microenvironment Gene Signature for Risk Stratification in Colorectal Cancer. Onco Targets Ther 2021; 14:3503-3515. [PMID: 34103941 PMCID: PMC8180295 DOI: 10.2147/ott.s312003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background Colorectal cancer is the fourth most common cancer and the second leading cause of cancer-related death in the USA. The aim of this study was to establish a tumor gene signature based on tumor stromal cell and autophagy for predicting the risk of recurrence in patients with colorectal cancer. Methods We used “Rtsne” and “xCell” R packages to estimate autophagy and stroma status, respectively. The discovery cohort used microarray gene expression data retrieved from the GSE39582 dataset. The Cox regression model and Least Absolute Shrinkage and Selection Operator (LASSO) were used to identify prognostic genes and to construct an autophagy-stroma-based gene signature. Moreover, external validation was conducted using GSE17538, GSE38832, TCGA database, and patient data obtained from the First Hospital of China Medical University (CMU). Results The LASSO model identified three genes (TNS1, TAGLN, and SFRP4) which were used to develop a risk stratification gene signature. The autophagy-stroma-based gene signature was identified as an independent prognostic factor by multivariate analysis (p = 0.0023). The results were validated in GSE17538 (p=0.0062), GSE38832 (p=0.028), TCGA (p=0.046) database, and patient data obtained from the First Hospital of China Medical University (CMU) (p=0.027). Conclusion We have established and verified a feasible prognostic model of colorectal cancer based on autophagy and stromal cell characteristics of patients. The model can be used to evaluate recurrence risk of cancer patients, and the hub genes in the model provide potential targets for targeted colorectal cancer treatment.
Collapse
Affiliation(s)
- Lin Chen
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Kunzi Zhang
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jian Sun
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jingtong Tang
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jianping Zhou
- Department of gastrointestinal surgery of the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
179
|
Su H, Yang F, Fu R, Li X, French R, Mose E, Pu X, Trinh B, Kumar A, Liu J, Antonucci L, Todoric J, Liu Y, Hu Y, Diaz-Meco MT, Moscat J, Metallo CM, Lowy AM, Sun B, Karin M. Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell 2021; 39:678-693.e11. [PMID: 33740421 PMCID: PMC8119368 DOI: 10.1016/j.ccell.2021.02.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022]
Abstract
Many cancers, including pancreatic ductal adenocarcinoma (PDAC), depend on autophagy-mediated scavenging and recycling of intracellular macromolecules, suggesting that autophagy blockade should cause tumor starvation and regression. However, until now autophagy-inhibiting monotherapies have not demonstrated potent anti-cancer activity. We now show that autophagy blockade prompts established PDAC to upregulate and utilize an alternative nutrient procurement pathway: macropinocytosis (MP) that allows tumor cells to extract nutrients from extracellular sources and use them for energy generation. The autophagy to MP switch, which may be evolutionarily conserved and not cancer cell restricted, depends on activation of transcription factor NRF2 by the autophagy adaptor p62/SQSTM1. NRF2 activation by oncogenic mutations, hypoxia, and oxidative stress also results in MP upregulation. Inhibition of MP in autophagy-compromised PDAC elicits dramatic metabolic decline and regression of transplanted and autochthonous tumors, suggesting the therapeutic promise of combining autophagy and MP inhibitors in the clinic.
Collapse
Affiliation(s)
- Hua Su
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, China
| | - Fei Yang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, China
| | - Rao Fu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, China
| | - Xin Li
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Randall French
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego Moores Cancer Center, La Jolla, CA 92093, USA
| | - Evangeline Mose
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego Moores Cancer Center, La Jolla, CA 92093, USA
| | - Xiaohong Pu
- Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, China
| | - Brittney Trinh
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Avi Kumar
- Institute of Engineering in Medicine, Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Yuan Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yinling Hu
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Christian M Metallo
- Institute of Engineering in Medicine, Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego Moores Cancer Center, La Jolla, CA 92093, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
180
|
Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021; 22:4787. [PMID: 33946416 PMCID: PMC8124422 DOI: 10.3390/ijms22094787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Ya-Yun Cheng
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
181
|
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, Wu X, Xiang B, Zhou M, Li Y, Li G, Li X, Zeng Z, Guo C, Xiong W. The influence of circular RNAs on autophagy and disease progression. Autophagy 2021; 18:240-253. [PMID: 33904341 DOI: 10.1080/15548627.2021.1917131] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that have attracted considerable attention in recent years. Owing to their distinct circular structure, circRNAs are stable in cells. Autophagy is a catabolic process that helps in the degradation and recycling of harmful or inessential biological macromolecules in cells and enables cells to adapt to stress and changes in the internal and external environments. Evidence has shown that circRNAs influence the course of a disease by regulating autophagy, which indicates that autophagy is involved in the onset and development of various diseases and can affect drug resistance (for example, it affects cisplatin resistance in tumors). In this review, we summarized the role of circRNAs in autophagy and their influence on disease onset and progression as well as drug resistance. The review will expand our understanding of tumors as well as cardiovascular and neurological diseases and also suggest novel therapeutic strategies.Abbreviations: ACR: autophagy-related circRNA; ADSCs: adipogenic mesenchymal stem cells; AMPK: AMP-activated protein kinase; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; ceRNA: competing endogenous RNA; circRNA: circular RNA; CMA: chaperone-mediated autophagy; EPCs: endothelial progenitor cells; LE/MVBs: late endosomes/multivesicular bodies; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSCLC: non-small cell lung cancer; PDLSCs: periodontal ligament stem cells; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate 1,2-dipalmitoyl; PTEN: phosphatase and tensin homolog; RBPs: RNA-binding proteins; SiO2: silicon dioxide; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
182
|
Zhao M, Wang F, Wu J, Cheng Y, Cao Y, Wu X, Ma M, Tang F, Liu Z, Liu H, Ge B. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 2021; 17:3976-3991. [PMID: 33752561 PMCID: PMC8726603 DOI: 10.1080/15548627.2021.1899440] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Micronuclei are constantly considered as a marker of genome instability and very recently found to be a trigger of innate immune responses. An increased frequency of micronuclei is associated with many diseases, but the mechanism underlying the regulation of micronuclei homeostasis remains largely unknown. Here, we report that CGAS (cyclic GMP-AMP synthase), a known regulator of DNA sensing and DNA repair, reduces the abundance of micronuclei under genotoxic stress in an autophagy-dependent manner. CGAS accumulates in the autophagic machinery and directly interacts with MAP1LC3B/LC3B in a manner dependent upon its MAP1LC3-interacting region (LIR). Importantly, the interaction is essential for MAP1LC3 recruitment to micronuclei and subsequent clearance of micronuclei via autophagy (micronucleophagy) in response to genotoxic stress. Moreover, in contrast to its DNA sensing function to activate micronuclei-driven inflammation, CGAS-mediated micronucleophagy blunts the production of cyclic GMP-AMP (cGAMP) induced by genotoxic stress. We therefore conclude that CGAS is a receptor for the selective autophagic clearance of micronuclei and uncovered an unprecedented role of CGAS in micronuclei homeostasis to dampen innate immune surveillance. Abbreviations: ATG: autophagy-related; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LIR, MAP1LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NDZ: nocodazole; STING1: stimulator of interferon response cGAMP interactor 1
Collapse
Affiliation(s)
- Mengmeng Zhao
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Juehui Wu
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yajuan Cao
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiangyang Wu
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Mingtong Ma
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Fen Tang
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Zhi Liu
- CryoEM group, Shanghai Viva Biotech., Shanghai, China
| | - Haipeng Liu
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
183
|
Yi X, Li Y, Hu X, Wang F, Liu T. Changes in phospholipid metabolism in exosomes of hormone-sensitive and hormone-resistant prostate cancer cells. J Cancer 2021; 12:2893-2902. [PMID: 33854590 PMCID: PMC8040901 DOI: 10.7150/jca.48906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
Background: To explore the changes in lipids in exosomes of hormone-sensitive and hormone-resistant prostate cancer cells and develop an inexpensive and rapid technique for screening lipid-based biomarkers of prostate cancer. Methods: Exosomes were extracted from LnCap, PC3 and DU-145 cells, and their lipid composition was analyzed quantitatively using high-throughput mass spectrometry. Exosomes released by LnCap prostate cancer cells were also purified using a modified procedure based on polyethylene glycol (PEG) precipitation. Results: Exosomes extracted from LnCap cells contained higher proportions of phosphatidyl choline, phosphatidyl ethanolamine and phosphatidyl inositol lipids than whole LnCap cells. Lysophosphatidylcholine, a harmful intermediate product of phosphatidylcholine metabolism in vivo, was not found in LnCap cells but in exosomes. Phospholipids were different in exosomes from LnCap, PC3 and DU-145 prostate cancer cells. The main lipid pathways involved, i.e., glycerophospholipid metabolism, autophagy, and ferroptosis pathways, were also different in these cells. Exosomes isolated by this modified PEG precipitation technique were similar in purity to those obtained using a commercial kit. Conclusions: This study demonstrates that phosphatidylcholine and its harmful product lysophosphatidylcholine may play important roles in hormone-sensitive prostate cancer. Phospholipid exosome metabolism was changed in hormone-sensitive and hormone-resistant prostate cancer cells. The LPC, lipid pathway of autophagy and ferroptosis may act as therapeutic targets. The possibility of purifying prostate cancer cell exosomes using modified PEG precipitation is suitable for cancer screening.
Collapse
Affiliation(s)
- Xianlin Yi
- Department of Urology, The Affiliated Cancer Hospital of Guangxi Medical University & Guangxi Cancer Research Institute, Nanning 530021,China
| | - You Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China.,Life science institute of East China Normal University, Shanghai 200241, P.R. China
| | - XiaoGang Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - FuBing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China.,Wuhan infectious diseases and cancer research center, Chinese Academy of Medical Sciences, Wuhan 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China
| |
Collapse
|
184
|
Young ARJ, Cassidy LD, Narita M. Autophagy and senescence, converging roles in pathophysiology as seen through mouse models. Adv Cancer Res 2021; 150:113-145. [PMID: 33858595 DOI: 10.1016/bs.acr.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Both senescence and autophagy have been strongly linked to aging and also cancer development. Numerous molecular, cellular, and physiological changes are known to correlate with an increasing age, yet our understanding of what underlies these changes or how they combine to give rise to the various pathologies associated with aging is still unclear. Levels of autophagy activity are known to decrease with advancing age, in a variety of organisms including mammals. Whereas senescent cells are known to accumulate in our bodies with age. Herein we review evidence from some elegant genetic mouse models linking senescence and also autophagy to aging and cancer. It is especially interesting to note the convergence in the pathological phenotypes of these two processes, senescence and autophagy, in these mouse models.
Collapse
Affiliation(s)
- Andrew R J Young
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom.
| | - Liam D Cassidy
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom.
| |
Collapse
|
185
|
Abstract
Decades of study on cell cycle regulation have provided great insight into human cellular life span barriers, as well as their dysregulation during tumorigenesis. Telomeres, the extremities of linear chromosomes, perform an essential role in implementing these proliferative boundaries and preventing the propagation of potentially cancerous cells. The tumor-suppressive function of telomeres relies on their ability to initiate DNA damage signaling pathways and downstream cellular events, ranging from cell cycle perturbation to inflammation and cell death. While the tumor-suppressor role of telomeres is undoubtable, recent advances have pointed to telomeres as a major source of many of the genomic aberrations found in both early- and late-stage cancers, including the most recently discovered mutational phenomenon of chromothripsis. Telomere shortening appears as a double-edged sword that can function in opposing directions in carcinogenesis. This review focuses on the current knowledge of the dual role of telomeres in cancer and suggests a new perspective to reconcile the paradox of telomeres and their implications in cancer etiology.
Collapse
Affiliation(s)
- Joe Nassour
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tobias T Schmidt
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jan Karlseder
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
186
|
Zhang F, Shen H, Fu Y, Yu G, Cao F, Chang W, Xie Z. Vacuolar Membrane ATPase Activity 21 Predicts a Favorable Outcome and Acts as a Suppressor in Colorectal Cancer. Front Oncol 2021; 10:605801. [PMID: 33680927 PMCID: PMC7933500 DOI: 10.3389/fonc.2020.605801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular and/or intracellular manipulation of pH in tumor may have noticeable potential in cancer treatment. Although the assembly factor genes of V0 domain of the V-ATPase complex are required for intracellular pH homeostasis, their significance in colorectal cancer (CRC) remains largely unknown. Here, we used bioinformatics to identify the candidates from known assembly factor genes of the V0 domain, which were further evaluated by immunohistochemistry (IHC) in CRC and adjacent normal specimens from 661 patients. Univariate and multivariate Cox analyses were used to evaluate factors contributing to prognosis. The effects of variations in the expression of VMA21 on tumor growth were assessed in vitro and in vivo. Of five known assembly factors, only VMA21 showed differential expression between CRC and adjacent normal tissues at both mRNA and protein levels. Patients with high VMA21 expression had higher differentiation grade and longer disease-specific survival (DSS) at stages I–III disease. High VMA21 expression in tumors was also an independent predictor of DSS (hazard ratio, 0.345; 95% confidence interval, 0.123–0.976), with covariates included TNM stage and differentiation grade. VMA21 overexpression decreased CRC growth, whereas VMA21 knockdown increased CRC growth in vitro and in vivo. VMA21 expression suppresses CRC growth and predicts a favorable DSS in patients with stage I-III disease.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Environmental and Occupational Health, Second Military Medical University, Shanghai, China
| | - Hao Shen
- School of Medicine, Yunnan University, Kunming, China.,Department of Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yating Fu
- Department of Environmental and Occupational Health, Second Military Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjun Chang
- Department of Environmental and Occupational Health, Second Military Medical University, Shanghai, China
| | - Zhongdong Xie
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.,Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
187
|
Cararo-Lopes E, Dias MH, da Silva MS, Zeidler JD, Vessoni AT, Reis MS, Boccardo E, Armelin HA. Autophagy buffers Ras-induced genotoxic stress enabling malignant transformation in keratinocytes primed by human papillomavirus. Cell Death Dis 2021; 12:194. [PMID: 33602932 PMCID: PMC7892846 DOI: 10.1038/s41419-021-03476-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
Malignant transformation involves an orchestrated rearrangement of cell cycle regulation mechanisms that must balance autonomic mitogenic impulses and deleterious oncogenic stress. Human papillomavirus (HPV) infection is highly prevalent in populations around the globe, whereas the incidence of cervical cancer is 0.15%. Since HPV infection primes cervical keratinocytes to undergo malignant transformation, we can assume that the balance between transforming mitogenic signals and oncogenic stress is rarely attained. We showed that highly transforming mitogenic signals triggered by HRasG12V activity in E6E7-HPV-keratinocytes generate strong replication and oxidative stresses. These stresses are counteracted by autophagy induction that buffers the rapid increase of ROS that is the main cause of genotoxic stress promoted by the oncoprotein. As a result, autophagy creates a narrow window of opportunity for malignant keratinocytes to emerge. This work shows that autophagy is crucial to allow the transition of E6E7 keratinocytes from an immortalized to a malignant state caused by HRasG12V.
Collapse
Affiliation(s)
- Eduardo Cararo-Lopes
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Matheus H Dias
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Marcelo S da Silva
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
- Department of Chemical and Biological Sciences, Instituto de Biociência, Universidade do Estado de São Paulo, Botucatu, SP, 18618-689, Brazil
| | - Julianna D Zeidler
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
- Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Alexandre T Vessoni
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Marcelo S Reis
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Hugo A Armelin
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
188
|
Krupina K, Goginashvili A, Cleveland DW. Causes and consequences of micronuclei. Curr Opin Cell Biol 2021; 70:91-99. [PMID: 33610905 DOI: 10.1016/j.ceb.2021.01.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Micronuclei are small membrane-bounded compartments with a DNA content encapsulated by a nuclear envelope and spatially separated from the primary nucleus. Micronuclei have long been linked to chromosome instability, genome rearrangements, and mutagenesis. They are frequently found in cancers, during senescence, and after genotoxic stress. Compromised integrity of the micronuclear envelope delays or disrupts DNA replication, inhibits DNA repair, and exposes micronuclear DNA directly to cytoplasm. Micronuclei play a central role in tumorigenesis, with micronuclear DNA being a source of complex genome rearrangements (including chromothripsis) and promoting a cyclic GMP-AMP synthase (cGAS)-mediated cellular immune response that may contribute to cancer metastasis. Here, we discuss recent findings on how micronuclei are generated, what the consequences are, and what cellular mechanisms can be applied to protect against micronucleation.
Collapse
Affiliation(s)
- Ksenia Krupina
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Alexander Goginashvili
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
189
|
Quarleri J, Cevallos C, Delpino MV. Apoptosis in infectious diseases as a mechanism of immune evasion and survival. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:1-24. [PMID: 33931136 DOI: 10.1016/bs.apcsb.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In pluricellular organisms, apoptosis is indispensable for the development and homeostasis. During infection, apoptosis plays the main role in the elimination of infected cells. Infectious diseases control apoptosis, and this contributes to disease pathogenesis. Increased apoptosis may participate in two different ways. It can assist the dissemination of intracellular pathogens or induce immunosuppression to favor pathogen dissemination. In other conditions, apoptosis can benefit eradicate infectious agents from the host. Accordingly, bacteria, viruses, fungi, and parasites have developed strategies to inhibit host cell death by apoptosis to allow intracellular survival and persistence of the pathogen. The clarification of the intracellular signaling pathways, the receptors involved and the pathogen factors that interfere with apoptosis could disclose new therapeutic targets for blocking microbial actions on apoptotic pathways. In this review, we summarize the current knowledge on pathogen anti-apoptotic and apoptotic approaches and the mechanisms involving in disease.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
190
|
Qiao H, Zhang L, Fang D, Zhu Z, He W, Hu L, Di L, Guo Z, Wang X. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles. Chem Sci 2021; 12:4547-4556. [PMID: 34163720 PMCID: PMC8179575 DOI: 10.1039/d0sc06680j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Copper complexes are promising anticancer agents widely studied to overcome tumor resistance to metal-based anticancer drugs. Nevertheless, copper complexes per se encounter drug resistance from time to time. Adenosine-5'-triphosphate (ATP)-responsive nanoparticles containing a copper complex CTND and B-cell lymphoma 2 (Bcl-2) small interfering RNA (siRNA) were constructed to cope with the resistance of cancer cells to the complex. CTND and siRNA can be released from the nanoparticles in cancer cells upon reacting with intracellular ATP. The resistance of B16F10 melanoma cells to CTND was terminated by silencing the cellular Bcl-2 gene via RNA interference, and the therapeutic efficacy was significantly enhanced. The nanoparticles triggered a cellular autophagy that amplified the apoptotic signals, thus revealing a novel mechanism for antagonizing the resistance of copper complexes. In view of the extensive association of Bcl-2 protein with cancer resistance to chemotherapeutics, this strategy may be universally applicable for overcoming the ubiquitous drug resistance to metallodrugs.
Collapse
Affiliation(s)
- Hongzhi Qiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China .,Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Lei Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Dong Fang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Liuqing Di
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 China
| |
Collapse
|
191
|
Safavi S, Larouche A, Zahn A, Patenaude AM, Domanska D, Dionne K, Rognes T, Dingler F, Kang SK, Liu Y, Johnson N, Hébert J, Verdun RE, Rada CA, Vega F, Nilsen H, Di Noia JM. The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID. NAR Cancer 2021; 2:zcaa019. [PMID: 33554121 PMCID: PMC7848951 DOI: 10.1093/narcan/zcaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung−/− mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung−/− mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.
Collapse
Affiliation(s)
- Shiva Safavi
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Ariane Larouche
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Anne-Marie Patenaude
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Kiersten Dionne
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Felix Dingler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Seong-Kwi Kang
- ITR Laboratories Canada, Inc., 19601 Clark Graham Ave, Baie-D'Urfe, QC H9X 3T1, Canada
| | - Yan Liu
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Nathalie Johnson
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Josée Hébert
- Department of Medicine, Université de Montréal, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Ramiro E Verdun
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | | | - Francisco Vega
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Hilde Nilsen
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
192
|
Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, Doench JG, Bennett L, Levine B. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A 2021; 118:e2020478118. [PMID: 33495338 PMCID: PMC7865132 DOI: 10.1073/pnas.2020478118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Beclin 1, an autophagy and haploinsufficient tumor-suppressor protein, is frequently monoallelically deleted in breast and ovarian cancers. However, the precise mechanisms by which Beclin 1 inhibits tumor growth remain largely unknown. To address this question, we performed a genome-wide CRISPR/Cas9 screen in MCF7 breast cancer cells to identify genes whose loss of function reverse Beclin 1-dependent inhibition of cellular proliferation. Small guide RNAs targeting CDH1 and CTNNA1, tumor-suppressor genes that encode cadherin/catenin complex members E-cadherin and alpha-catenin, respectively, were highly enriched in the screen. CRISPR/Cas9-mediated knockout of CDH1 or CTNNA1 reversed Beclin 1-dependent suppression of breast cancer cell proliferation and anchorage-independent growth. Moreover, deletion of CDH1 or CTNNA1 inhibited the tumor-suppressor effects of Beclin 1 in breast cancer xenografts. Enforced Beclin 1 expression in MCF7 cells and tumor xenografts increased cell surface localization of E-cadherin and decreased expression of mesenchymal markers and beta-catenin/Wnt target genes. Furthermore, CRISPR/Cas9-mediated knockout of BECN1 and the autophagy class III phosphatidylinositol kinase complex 2 (PI3KC3-C2) gene, UVRAG, but not PI3KC3-C1-specific ATG14 or other autophagy genes ATG13, ATG5, or ATG7, resulted in decreased E-cadherin plasma membrane and increased cytoplasmic E-cadherin localization. Taken together, these data reveal previously unrecognized cooperation between Beclin 1 and E-cadherin-mediated tumor suppression in breast cancer cells.
Collapse
Affiliation(s)
- Tobias Wijshake
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhongju Zou
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Beibei Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lin Zhong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Lynda Bennett
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
193
|
Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell 2021; 184:306-322. [PMID: 33450206 DOI: 10.1016/j.cell.2020.12.028] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse molecular mechanisms and cellular systems that are interrelated and act in concert to drive the aging process. Here, through the lens of telomere biology, we examine how telomere dysfunction may amplify or drive molecular biological processes underlying each hallmark of aging and contribute to development of age-related diseases such as neurodegeneration and cancer. The intimate link of telomeres to aging hallmarks informs preventive and therapeutic interventions designed to attenuate aging itself and reduce the incidence of age-associated diseases.
Collapse
Affiliation(s)
- Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
194
|
Tran M, Reddy PH. Defective Autophagy and Mitophagy in Aging and Alzheimer's Disease. Front Neurosci 2021; 14:612757. [PMID: 33488352 PMCID: PMC7820371 DOI: 10.3389/fnins.2020.612757] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is the time-dependent process that all living organisms go through characterized by declining physiological function due to alterations in metabolic and molecular pathways. Many decades of research have been devoted to uncovering the cellular changes and progression of aging and have revealed that not all organisms with the same chronological age exhibit the same age-related declines in physiological function. In assessing biological age, factors such as epigenetic changes, telomere length, oxidative damage, and mitochondrial dysfunction in rescue mechanisms such as autophagy all play major roles. Recent studies have focused on autophagy dysfunction in aging, particularly on mitophagy due to its major role in energy generation and reactive oxidative species generation of mitochondria. Mitophagy has been implicated in playing a role in the pathogenesis of many age-related diseases, including Alzheimer's disease (AD), Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The purpose of our article is to highlight the mechanisms of autophagy and mitophagy and how defects in these pathways contribute to the physiological markers of aging and AD. This article also discusses how mitochondrial dysfunction, abnormal mitochondrial dynamics, impaired biogenesis, and defective mitophagy are related to aging and AD progression. This article highlights recent studies of amyloid beta and phosphorylated tau in relation to autophagy and mitophagy in AD.
Collapse
Affiliation(s)
- Michael Tran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
195
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
196
|
Zhu Z, Yu R, Yang C, Li D, Wang J, Yang W, Ji Y, Wang L, Wang Y, Jiang F. Stress-related hormone reduces autophagy through the regulation of phosphatidylethanolamine in breast cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:149. [PMID: 33569451 PMCID: PMC7867925 DOI: 10.21037/atm-20-8176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background An increasing number of studies indicate that adrenergic signaling plays a fundamental role in tumor progression and metastasis induced by chronic stress. However, despite the growing attention, an understanding of the mechanisms linking chronic stress and cancer is still insufficient. Methods Western blot analysis and transmission electron microscopy (TEM) were used to observe the changes in autophagy level in a breast cancer cell line (MCF-7) after epinephrine treatment. Non-targeted metabolomics was also used to detect MCF-7 metabolites after epinephrine treatment. The xenograft model was used to detect the level of autophagy after epinephrine intervention. Results The results showed that epinephrine treatment reduced the autophagy level of breast cancer cells. Epinephrine changed the level of phosphatidylethanolamine (PE) in breast cancer cells as detected by non-targeted metabolomics. Epinephrine also changed autophagy in breast cancer cells by decreasing the level of PE in cells. When autophagy decreased, the invasion and migration of breast cancer cells increased in vitro, and the progression of breast cancer accelerated in vivo. Conclusions These findings suggest that stress-related hormones affect the tumor progression of breast cancer. Therefore, strengthening the emotional management strategies of patients during the process of antitumor treatment as a supplement to the existing treatments may be beneficial.
Collapse
Affiliation(s)
- Zhen Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruihua Yu
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Chao Yang
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Dong Li
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Jiawei Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wanli Yang
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Yonghua Ji
- School of Life Sciences, Shanghai University, Shanghai, China.,Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Li Wang
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Yaosheng Wang
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| | - Feng Jiang
- Translational Institute for Cancer Pain, Clinical Research and Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai, China
| |
Collapse
|
197
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
198
|
Zein L, Fulda S, Kögel D, van Wijk SJL. Organelle-specific mechanisms of drug-induced autophagy-dependent cell death. Matrix Biol 2020; 100-101:54-64. [PMID: 33321172 DOI: 10.1016/j.matbio.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The conserved catabolic process of autophagy is an important control mechanism that degrades cellular organelles, debris and pathogens in autolysosomes. Although autophagy primarily protects against cellular insults, nutrient starvation or oxidative stress, hyper-activation of autophagy is also believed to cause autophagy-dependent cell death (ADCD). ADCD is a caspase-independent form of programmed cell death (PCD), characterized by an over-activation of autophagy, leading to prominent self-digestion of cellular material in autolysosomes beyond the point of cell survival. ADCD plays important roles in the development of lower organisms, but also in the response of cancer cells upon exposure of specific drugs or natural compounds. Importantly, the induction of ADCD as an alternative cell death pathway is of special interest in apoptosis-resistant cancer types and serves as an attractive and potential therapeutic option. Although the mechanisms of ADCD are diverse and not yet fully understood, both non-selective (bulk) autophagy and organelle-specific types of autophagy are believed to be involved in this type of cell death. Accordingly, several ADCD-inducing drugs are known to trigger severe mitochondrial damage and endoplasmic reticulum (ER) stress, whereas the contribution of other cell organelles, like ribosomes or peroxisomes, to the control of ADCD is not well understood. In this review, we highlight the general mechanisms of ADCD and discuss the current evidence for mitochondria- and ER-specific killing mechanisms of ADCD-inducing drugs.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe-University Hospital, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.
| |
Collapse
|
199
|
Lezaja A, Altmeyer M. Dealing with DNA lesions: When one cell cycle is not enough. Curr Opin Cell Biol 2020; 70:27-36. [PMID: 33310228 DOI: 10.1016/j.ceb.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Subversion of genome integrity fuels cellular adaptation and is a prerequisite for organismal evolution, yet genomic lesions are also the harmful driving force of cancer and other age-related human diseases. Genome integrity maintenance is inherently linked to genome organization and nuclear architecture, which are substantially remodeled during the cell cycle. Here we discuss recent findings on how actively dividing cells cope with endogenous genomic lesions that occur frequently at repetitive, heterochromatic, and late replicating regions as byproducts of genome duplication. We discuss how such lesions, rather than being resolved immediately when they occur, are dealt with in subsequent cell cycle phases, and even after mitotic cell division, and how this in turn affects genome organization, stability, and function.
Collapse
Affiliation(s)
- Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
200
|
M'kacher R, Colicchio B, Marquet V, Borie C, Najar W, Hempel WM, Heidingsfelder L, Oudrhiri N, Al Jawhari M, Wilhelm-Murer N, Miguet M, Dieterlen A, Deschênes G, Tabet AC, Junker S, Grynberg M, Fenech M, Bennaceur-Griscelli A, Voisin P, Carde P, Jeandidier E, Yardin C. Telomere aberrations, including telomere loss, doublets, and extreme shortening, are increased in patients with infertility. Fertil Steril 2020; 115:164-173. [PMID: 33272625 DOI: 10.1016/j.fertnstert.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To test the hypothesis that telomere shortening and/or loss are risk factors for infertility. DESIGN Retrospective analysis of the telomere status in patients with infertility using conventional cytogenetic data collected prospectively. SETTING Academic centers. PATIENT(S) Cytogenetic slides with cultured peripheral lymphocytes from 50 patients undergoing fertility treatment and 150 healthy donors, including 100 donors matched for age. INTERVENTION(S) Cytogenetic slides were used to detect chromosomal and telomere aberrations. MAIN OUTCOME MEASURE(S) Telomere length and telomere aberrations were analyzed after telomere and centromere staining. RESULT(S) The mean telomere length of patients consulting for infertility was significantly less than that of healthy donors of similar age. Moreover, patients with infertility showed significantly more extreme telomere loss and telomere doublet formation than healthy controls. Telomere shortening and/or telomere aberrations were more pronounced in patients with structural chromosomal aberrations. Dicentric chromosomes were identified in 6/13 patients, with constitutional chromosomal aberrations leading to chromosomal instability that correlated with chromosomal end-to-end fusions. CONCLUSION(S) Our findings demonstrate the feasibility of analyzing telomere aberrations in addition to chromosomal aberrations, using cytogenetic slides. Telomere attrition and/or dysfunction represent the main common cytogenetic characteristic of patients with infertility, leading to potential implications for fertility assessment. Pending further studies, these techniques that correlate the outcome of assisted reproduction and telomere integrity status may represent a novel and useful diagnostic and/or prognostic tool for medical care in this field.
Collapse
Affiliation(s)
- Radhia M'kacher
- Cell Environment, DNA Damage Research & Development, Paris, France.
| | - Bruno Colicchio
- Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | - Valentine Marquet
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l'Enfant, Centre hospitalo-universitaire Dupuytren, Limoges, France
| | - Claire Borie
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | - Wala Najar
- Cell Environment, DNA Damage Research & Development, Paris, France; Faculté de médecine Paris Centre, Université de Paris, Paris, France
| | - William M Hempel
- Cell Environment, DNA Damage Research & Development, Paris, France
| | | | - Noufissa Oudrhiri
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | | | - Nadège Wilhelm-Murer
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Marguerite Miguet
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Alain Dieterlen
- Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | | | | | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Antoine Béclère, Clamart, France
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia
| | - Annelise Bennaceur-Griscelli
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | - Philippe Voisin
- Cell Environment, DNA Damage Research & Development, Paris, France
| | - Patrice Carde
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Jeandidier
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Catherine Yardin
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l'Enfant, Centre hospitalo-universitaire Dupuytren, Limoges, France; CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France
| |
Collapse
|