151
|
Maruyama T, Saito K, Higurashi M, Ishikawa F, Kohno Y, Mori K, Shibanuma M. HMGA2 drives the IGFBP1/AKT pathway to counteract the increase in P27KIP1 protein levels in mtDNA/RNA-less cancer cells. Cancer Sci 2022; 114:152-163. [PMID: 36102493 PMCID: PMC9807519 DOI: 10.1111/cas.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.
Collapse
Affiliation(s)
- Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Koji Saito
- Department of PathologyShowa University School of MedicineTokyoJapan,Department of PathologyTeikyo University HospitalTokyoJapan
| | - Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Yohko Kohno
- Showa University Koto Toyosu HospitalTokyoJapan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| |
Collapse
|
152
|
Miglietta S, Girolimetti G, Marchio L, Sollazzo M, Laprovitera N, Coluccelli S, De Biase D, De Leo A, Santini D, Kurelac I, Iommarini L, Ghelli A, Campana D, Ferracin M, Perrone AM, Gasparre G, Porcelli AM. MicroRNA and Metabolic Profiling of a Primary Ovarian Neuroendocrine Carcinoma Pulmonary-Type Reveals a High Degree of Similarity with Small Cell Lung Cancer. Noncoding RNA 2022; 8:64. [PMID: 36287116 PMCID: PMC9611163 DOI: 10.3390/ncrna8050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Small cell neuroendocrine carcinoma is most frequently found in the lung (SCLC), but it has been also reported, albeit with a very low incidence, in the ovary. Here, we analyze a case of primary small cell carcinoma of the ovary of pulmonary type (SCCOPT), a rare and aggressive tumor with poor prognosis, whose biology and molecular features have not yet been thoroughly investigated. The patient affected by SCCOPT had a residual tumor following chemotherapy which displayed pronounced similarity with neuroendocrine tumors and lung cancer in terms of its microRNA expression profile and mTOR-downstream activation. By analyzing the metabolic markers of the neoplastic lesion, we established a likely glycolytic signature. In conclusion, this in-depth characterization of SCCOPT could be useful for future diagnoses, possibly aided by microRNA profiling, allowing clinicians to adopt the most appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Giulia Girolimetti
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Lorena Marchio
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Noemi Laprovitera
- Unit of Transplant immunobiology and Advanced Cell Therapy, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sara Coluccelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Antonio De Leo
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Manuela Ferracin
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Anna Myriam Perrone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
153
|
Jain A, Katiyar A, Singh R, Bakhshi S, Singh H, Palanichamy JK, Singh A. Implications of mitochondrial DNA variants in pediatric B-cell acute lymphoblastic leukemia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Research on the role of variations in the mitochondrial genome in pathogenesis of acute lymphoblastic leukemia (ALL) has been unfolding at a rapid rate. Our laboratory has previously described higher number of copies of the mitochondrial genomes per cell in pediatric ALL patients as compared to the healthy controls. In the current study, we evaluated the pattern of mitochondrial genome variations in 20 de-novo pediatric B-ALL cases and seven controls. Quantitative real-time Polymerase Chain Reaction was used for estimation of mitochondrial genomes’ copy number in bone marrow samples of each ALL patient and peripheral blood samples of controls. The complete mitochondrial genomes of all samples were sequenced using the Illumina platform.
Results
Sequencing data analysis using multiple mitochondrial genome databases revealed 325 variants in all 27 samples, out of which 221 variants were previously known while 104 were unassigned, new variants. The 325 variants consisted of 7 loss-of-function variants, 131 synonymous variants, 75 missense variants, and 112 non-coding variants. New, missense variants (n = 21) were identified in genes encoding the electron transport chain complexes with most of them encoding ND4, ND5 of complex I. Missense and loss-of-function variants were found to be deleterious by many predictor databases of pathogenicity. MuTect2 identified true somatic variants present only in tumors between patient-sibling pairs and showed overlap with missense and loss-of-function variants. Online MtDNA-server showed heteroplasmic and homoplasmic variants in mitochondrial genome.
Conclusions
The data suggest that some of these variations might have a deleterious impact on the expression of mitochondrial encoded genes with a possible functional relevance in leukemia.
Collapse
|
154
|
Xia W, Zeng C, Zheng Z, Huang C, Zhou Y, Bai L. Development and Validation of a Novel Mitochondrion and Ferroptosis-Related Long Non-Coding RNA Prognostic Signature in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:844759. [PMID: 36036006 PMCID: PMC9413087 DOI: 10.3389/fcell.2022.844759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondrion and ferroptosis are related to tumorigenesis and tumor progression of hepatocellular carcinoma (HCC). Therefore, this study focused on exploring the participation of lncRNAs in mitochondrial dysfunction and ferroptosis using public datasets from The Cancer Genome Atlas (TCGA) database. We identified the mitochondrion- and ferroptosis-related lncRNAs by Pearson's analysis and lasso-Cox regression. Moreover, real-time quantitative reverse transcription PCR (RT-qPCR) was utilized to further confirm the abnormal expression of these lncRNAs. Based on eight lncRNAs, the MF-related lncRNA prognostic signature (LPS) with outstanding stratification ability and prognostic prediction capability was constructed. In addition, functional enrichment analysis and immune cell infiltration analysis were performed to explore the possible functions of lncRNAs and their impact on the tumor microenvironment. The pathways related to G2M checkpoint and MYC were activated, and the infiltration ratio of regulatory T cells and M0 and M2 macrophages was higher in the high-risk group. In conclusion, these lncRNAs may affect mitochondria functions, ferroptosis, and immune cell infiltration in HCC through specific pathways, which may provide valuable insight into the progression and therapies of HCC.
Collapse
Affiliation(s)
- Wuzheng Xia
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cong Zeng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
- Department of General Practice, Hospital of South China Normal University, Guangzhou, China
| | - Zehao Zheng
- Department of Organ Transplant, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Surger, Shantou University of Medical College, Shantou, China
| | - Chunwang Huang
- Department of Ultrasound, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southem Medical University, Guangzhou, China
| |
Collapse
|
155
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
156
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
157
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
158
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
159
|
Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, Tang Y, Lam HC, Tsvetkov P, Georgiou G, Lamb C, Stone E, Puigserver P, Priolo C, Henske EP. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci U S A 2022; 119:e2122840119. [PMID: 35867762 PMCID: PMC9651629 DOI: 10.1073/pnas.2122840119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Chromophobe (Ch) renal cell carcinoma (RCC) arises from the intercalated cell in the distal nephron. There are no proven treatments for metastatic ChRCC. A distinguishing characteristic of ChRCC is strikingly high levels of reduced (GSH) and oxidized (GSSG) glutathione. Here, we demonstrate that ChRCC-derived cells exhibit higher sensitivity to ferroptotic inducers compared with clear-cell RCC. ChRCC-derived cells are critically dependent on cystine via the cystine/glutamate antiporter xCT to maintain high levels of glutathione, making them sensitive to inhibitors of cystine uptake and cyst(e)inase. Gamma-glutamyl transferase 1 (GGT1), a key enzyme in glutathione homeostasis, is markedly suppressed in ChRCC relative to normal kidney. Importantly, GGT1 overexpression inhibits the proliferation of ChRCC cells in vitro and in vivo, suppresses cystine uptake, and decreases levels of GSH and GSSG. Collectively, these data identify ferroptosis as a metabolic vulnerability in ChRCC, providing a potential avenue for targeted therapy for these distinctive tumors.
Collapse
Affiliation(s)
- Long Zhang
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Charbel S. Hobeika
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Harilaos Filippakis
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Hilaire C. Lam
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Everett Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
160
|
Gayan S, Joshi G, Dey T. Biomarkers of mitochondrial origin: a futuristic cancer diagnostic. Integr Biol (Camb) 2022; 14:77-88. [PMID: 35780307 DOI: 10.1093/intbio/zyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
Cancer is a highly fatal disease without effective early-stage diagnosis and proper treatment. Along with the oncoproteins and oncometabolites, several organelles from cancerous cells are also emerging as potential biomarkers. Mitochondria isolated from cancer cells are one such biomarker candidates. Cancerous mitochondria exhibit different profiles compared with normal ones in morphology, genomic, transcriptomic, proteomic and metabolic landscape. Here, the possibilities of exploring such characteristics as potential biomarkers through single-cell omics and Artificial Intelligence (AI) are discussed. Furthermore, the prospects of exploiting the biomarker-based diagnosis and its futuristic utilization through circulatory tumor cell technology are analyzed. A successful alliance of circulatory tumor cell isolation protocols and a single-cell omics platform can emerge as a next-generation diagnosis and personalized treatment procedure.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Gargee Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
161
|
Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation. Mitochondrion 2022; 65:176-183. [PMID: 35787470 DOI: 10.1016/j.mito.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
The mitochondrial genome (mtDNA) is an important source of disease-causing genetic variability, but existing sequencing methods limit understanding, precluding phased measurement of mutations and clear detection of large sporadic deletions. We adapted a method for amplification-free sequence enrichment using Cas9 cleavage to obtain full length nanopore reads of mtDNA. We then utilized the long reads to phase mutations in a patient with an mtDNA-linked syndrome and demonstrated that this method can map age-induced mtDNA deletions. We believe this method will offer deeper insight into our understanding of mtDNA variation.
Collapse
|
162
|
Huang J, Li Y, Zhang L, Wang J, Xu Z, Kang Y, Xue P. A platinum nanourchin-based multi-enzymatic platform to disrupt mitochondrial function assisted by modulating the intracellular H2O2 homeostasis. Biomaterials 2022; 286:121572. [DOI: 10.1016/j.biomaterials.2022.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 11/02/2022]
|
163
|
Ramasubramanian A, Arumugam P, Ramani P, Kannan BC, Murugan MS. Identification of Novel Cytochrome C1 (CYC1) Gene Expression in Oral Squamous Cell Carcinoma- An Evaluative Study. Ann Maxillofac Surg 2022; 12:144-150. [PMID: 36874769 PMCID: PMC9976869 DOI: 10.4103/ams.ams_26_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Cytochrome C1 (CYC1) is an important subunit of mitochondrial complex III and plays a vital role in oxidative phosphorylation (OXPHOS) and reactive oxygen species generation. Overexpression of the CYC1 gene has been implicated in cancer development and its prognosis previously, but unexplored in head-and-neck squamous cell carcinomas (HNSCC), especially oral squamous cell carcinoma (OSCC). Materials and Methods CYC1 m-RNA expression and gene alterations were assessed using the Cancer Genome Atlas dataset in HNSCC and validated in OSCC tissues using real-time polymerase chain reaction (RT-PCR). The protein-protein interaction (PPI) network and functional enrichment pathways were also analysed. Results A thorough analysis of the TCGA (The Cancer Genome Atlas) database revealed that CYC1 was overexpressed in the HNSCC cases and the increased expression correlated with several parameters which involve the prediction of advanced diseases such as histopathological grade, tumour-node-metastasis staging, and nodal metastases (P < 0.05). The expression of CYC1 was validated using RT-PCR showing significant upregulation (P < 0.05) in OSCC tissue samples compared to the normal tissue counterparts. PPI network and functional analysis show the prominent role of CYC1 in OXPHOS, especially in electron transport chain III complex regulation. Discussion The study revealed that CYC1 is highly expressed in HNSCC, and is validated in the OSCC patient tissue samples compared to the normal counterparts and associated with advanced disease stages and grade of the tumour. CYC1 could be a novel promising therapeutic and prognostic marker in HNSCC, especially in OSCC.
Collapse
Affiliation(s)
- Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - Paramasivam Arumugam
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - Bala Chander Kannan
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| | - M. Senthil Murugan
- Department of Molecular Biology, Centre for Cellular and Molecular Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India
| |
Collapse
|
164
|
Vali-Pour M, Park S, Espinosa-Carrasco J, Ortiz-Martínez D, Lehner B, Supek F. The impact of rare germline variants on human somatic mutation processes. Nat Commun 2022; 13:3724. [PMID: 35764656 PMCID: PMC9240060 DOI: 10.1038/s41467-022-31483-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.
Collapse
Affiliation(s)
- Mischan Vali-Pour
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jose Espinosa-Carrasco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Ortiz-Martínez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
165
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
166
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
167
|
Aurrière J, Goudenege D, Baechler SA, Huang SYN, Gueguen N, Desquiret-Dumas V, Chabrun F, Perrot R, Chevrollier A, Charif M, Baris OR, Pommier Y, Lenaers G, Khiati S. Cancer/Testis Antigen 55 is required for cancer cell proliferation and mitochondrial DNA maintenance. Mitochondrion 2022; 64:19-26. [PMID: 35189384 PMCID: PMC9057655 DOI: 10.1016/j.mito.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria. Among them, we identified the two isoforms encoded by CT55 for whom the function is poorly understood. First, we found that patients with tumors expressing wild-type CT55 are associated with poor survival. Moreover, CT55 silencing decreases dramatically cell proliferation. Second, to investigate the role of CT55 on mitochondria, we first show that CT55 is localized to both mitochondria and endoplasmic reticulum (ER) due to the presence of an ambiguous N-terminal targeting signal. Then, we show that CT55 silencing decreases mtDNA copy number and delays mtDNA recovery after an acute depletion. Moreover, demethylation of CT55 promotor increases its expression, which in turn increases mtDNA copy number. Finally, we measured the mtDNA copy number in NCI-60 cell lines and screened for genes whose expression is strongly correlated to mtDNA amount. We identified CT55 as the second highest correlated hit. Also, we show that compared to siRNA scrambled control (siCtrl) treatment, CT55 specific siRNA (siCT55) treatment down-regulates aerobic respiration, indicating that CT55 sustains mitochondrial respiration. Altogether, these data show for first time that CT55 acts on mtDNA copy number, modulates mitochondrial activity to sustain cancer cell proliferation.
Collapse
Affiliation(s)
- Jade Aurrière
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - David Goudenege
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shar-Yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Naig Gueguen
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Floris Chabrun
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, Angers, France; Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Rodolphe Perrot
- SCIAM, Institut de Biologie en Sante, Angers University, Angers 49933, France
| | - Arnaud Chevrollier
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Majida Charif
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Olivier R Baris
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Guy Lenaers
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France
| | - Salim Khiati
- MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers University, Angers, France.
| |
Collapse
|
168
|
Abstract
Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.
Collapse
|
169
|
Mitochondrial-Related Transcriptome Feature Correlates with Prognosis, Vascular Invasion, Tumor Microenvironment, and Treatment Response in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1592905. [PMID: 35535359 PMCID: PMC9078845 DOI: 10.1155/2022/1592905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/30/2022] [Indexed: 01/17/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, which was highly correlated with metabolic dysfunction. Nevertheless, the association between nuclear mitochondrial-related transcriptome and HCC remained unclear. Materials and Methods A total of 147 nuclear mitochondrial-related genes (NMRGs) were downloaded from the MITOMAP: A Human Mitochondrial Genome Database. The training dataset was downloaded from The Cancer Genome Atlas (TCGA), while validation datasets were retrieved from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). The univariate and multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were applied to construct a NMRG signature, and the value of area under receiver operating characteristic curve (AUC) was utilized to assess the signature and nomogram. Then, data from the Genomics of Drug Sensitivity in Cancer (GDSC) were used for the evaluation of chemotherapy response in HCC. Results Functional enrichment of differentially expressed genes (DEGs) between HCC and paired normal tissue samples demonstrated that mitochondrial dysfunction was significantly associated with HCC development. Survival analysis showed a total of 35 NMRGs were significantly correlated with overall survival (OS) of HCC, and the LASSO Cox regression analysis further identified a 25-NMRG signature and corresponding prognosis score based on their transcriptional profiling. HCC patients were divided into high- and low-risk groups according to the median prognosis score, and high-risk patients had significantly worse OS (median OS: 27.50 vs. 83.18 months, P < 0.0001). The AUC values for OS at 1, 3, and 5 years were 0.79, 0.77, and 0.77, respectively. The prognostic capacity of NMRG signature was verified in the GSE14520 dataset and ICGC-HCC cohort. Besides, the NMRG signature outperformed each NMRG and clinical features in prognosis prediction and could also differentiate whether patients presented with vascular invasions (VIs) or not. Subsequently, a prognostic nomogram (C-index: 0.753, 95% CI: 0.703~0.804) by the integration of age, tumor metastasis, and NMRG prognosis score was constructed with the AUC values for OS at 1, 3, and 5 years were 0.82, 0.81, and 0.82, respectively. Notably, significant enrichment of regulatory and follicular helper T cells in high-risk group indicated the potential treatment of immune checkpoint inhibitors for these patients. Interestingly, the NMRG signature could also identify the potential responders of sorafenib or transcatheter arterial chemoembolization (TACE) treatment. Additionally, HCC patients in high-risk group appeared to be more sensitive to cisplatin, vorinostat, and methotrexate, reversely, patients in low-risk group had significantly higher sensitivity to paclitaxel and bleomycin instead. Conclusions In summary, the development of NMRG signature provided a more comprehensive understanding of mitochondrial dysfunction in HCC, helped predict prognosis and tumor microenvironment, and provided potential targeted therapies for HCC patients with different NMRG prognosis scores.
Collapse
|
170
|
Comprehensive profiling of 1015 patients' exomes reveals genomic-clinical associations in colorectal cancer. Nat Commun 2022; 13:2342. [PMID: 35487942 PMCID: PMC9055073 DOI: 10.1038/s41467-022-30062-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/14/2022] [Indexed: 01/12/2023] Open
Abstract
The genetic basis of colorectal cancer (CRC) and its clinical associations remain poorly understood due to limited samples or targeted genes in current studies. Here, we perform ultradeep whole-exome sequencing on 1015 patients with CRC as part of the ChangKang Project. We identify 46 high-confident significantly mutated genes, 8 of which mutate in 14.9% of patients: LYST, DAPK1, CR2, KIF16B, NPIPB15, SYTL2, ZNF91, and KIAA0586. With an unsupervised clustering algorithm, we propose a subtyping strategy that classisfies CRC patients into four genomic subtypes with distinct clinical characteristics, including hypermutated, chromosome instability with high risk, chromosome instability with low risk, and genome stability. Analysis of immunogenicity uncover the association of immunogenicity reduction with genomic subtypes and poor prognosis in CRC. Moreover, we find that mitochondrial DNA copy number is an independent factor for predicting the survival outcome of CRCs. Overall, our results provide CRC-related molecular features for clinical practice and a valuable resource for translational research.
Collapse
|
171
|
Young MJ, Sachidanandam R, Hales DB, Brard L, Robinson K, Rahman MM, Khadka P, Groesch K, Young CKJ. Identification of Somatic Mitochondrial DNA Mutations, Heteroplasmy, and Increased Levels of Catenanes in Tumor Specimens Obtained from Three Endometrial Cancer Patients. Life (Basel) 2022; 12:life12040562. [PMID: 35455053 PMCID: PMC9030153 DOI: 10.3390/life12040562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common type of gynecologic malignant epithelial tumor, with the death rate from this disease doubling over the past 20 years. Mitochondria provide cancer cells with necessary anabolic building blocks such as amino acids, lipids, and nucleotides, and EC samples have been shown to increase mitochondrial biogenesis. In cancer, mitochondrial DNA (mtDNA) heteroplasmy studies suggest that heteroplasmic variants encode predicted pathogenic proteins. We investigated the mtDNA genotypes within peri-normal and tumor specimens obtained from three individuals diagnosed with EC. DNA extracts from peri-normal and tumor tissues were used for mtDNA-specific next-generation sequencing and analyses of mtDNA content and topoisomers. The three tumors harbor heteroplasmic somatic mutations, and at least one mutation in each carcinoma is predicted to deleteriously alter a mtDNA-encoded protein. Somatic heteroplasmy linked to two mtDNA tRNA genes was found in separate tumors, and two heteroplasmic non-coding variants were identified in a single EC tumor. While two tumors had altered mtDNA content, all three displayed increased mtDNA catenanes. Our findings support that EC cells require wild-type mtDNA, but heteroplasmic mutations may alter mitochondrial metabolism to help promote cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Matthew J. Young
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Correspondence: ; Tel.: +1-618-453-6437
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dale B. Hales
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Laurent Brard
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Kathy Robinson
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | - Md. Mostafijur Rahman
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| | - Pabitra Khadka
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| | - Kathleen Groesch
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Carolyn K. J. Young
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| |
Collapse
|
172
|
Wu Q, Tsai HI, Zhu H, Wang D. The Entanglement between Mitochondrial DNA and Tumor Metastasis. Cancers (Basel) 2022; 14:cancers14081862. [PMID: 35454769 PMCID: PMC9028275 DOI: 10.3390/cancers14081862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Mitochondrial dysfunction is one of the main features of cancer cells. As genetic material in mitochondria, mitochondrial DNA (mtDNA) variations and dysregulation of mitochondria-encoded genes have been shown to correlate with survival outcomes in cancer patients. Cancer metastasis is often a major cause of treatment failure, which is a multi-step cascade process. With the development of gene sequencing and in vivo modeling technology, the role of mtDNA in cancer metastasis has been continuously explored. Our review systematically provides a summary of the multiple roles of mtDNA in cancer metastasis and presents the broad prospects for mtDNA in cancer prediction and therapy. Abstract Mitochondrial DNA, the genetic material in mitochondria, encodes essential oxidative phosphorylation proteins and plays an important role in mitochondrial respiration and energy transfer. With the development of genome sequencing and the emergence of novel in vivo modeling techniques, the role of mtDNA in cancer biology is gaining more attention. Abnormalities of mtDNA result in not only mitochondrial dysfunction of the the cancer cells and malignant behaviors, but regulation of the tumor microenvironment, which becomes more aggressive. Here, we review the recent progress in the regulation of cancer metastasis using mtDNA and the underlying mechanisms, which may identify opportunities for finding novel cancer prediction and therapeutic targets.
Collapse
Affiliation(s)
- Qiwei Wu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| | - Dongqing Wang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| |
Collapse
|
173
|
CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 2022; 40:1378-1387. [PMID: 35379961 PMCID: PMC9463067 DOI: 10.1038/s41587-022-01256-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
The all-protein cytosine base editor DdCBE uses TALE proteins and a double-stranded DNA-specific cytidine deaminase (DddA) to mediate targeted C•G-to-T•A editing. To improve editing efficiency and overcome the strict TC sequence-context constraint of DddA, we used phage-assisted non-continuous and continuous evolution to evolve DddA variants with improved activity and expanded targeting scope. Compared to canonical DdCBEs, base editors with evolved DddA6 improved mitochondrial DNA (mtDNA) editing efficiencies at TC by 3.3-fold on average. DdCBEs containing evolved DddA11 offered a broadened HC (H = A, C or T) sequence compatibility for both mitochondrial and nuclear base editing, increasing average editing efficiencies at AC and CC targets from less than 10% for canonical DdCBE to 15-30% and up to 50% in cell populations sorted to express both halves of DdCBE. We used these evolved DdCBEs to efficiently install disease-associated mtDNA mutations in human cells at non-TC target sites. DddA6 and DddA11 substantially increase the effectiveness and applicability of all-protein base editing.
Collapse
|
174
|
Bladder cancer cells shift rapidly and spontaneously to cisplatin-resistant oxidative phosphorylation that is trackable in real time. Sci Rep 2022; 12:5518. [PMID: 35365706 PMCID: PMC8976067 DOI: 10.1038/s41598-022-09438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Genetic mutations have long been recognized as drivers of cancer drug resistance, but recent work has defined additional non-genetic mechanisms of plasticity, wherein cancer cells assume a drug resistant phenotype marked by altered epigenetic and transcriptional states. Currently, little is known about the real-time, dynamic nature of this phenotypic shift. Using a bladder cancer model of nongenetic plasticity, we discovered that rapid transition to drug resistance entails upregulation of mitochondrial gene expression and a corresponding metabolic shift towards the tricarboxylic acid cycle and oxidative phosphorylation. Based on this distinction, we were able to track cancer cell metabolic profiles in real time using fluorescence lifetime microscopy (FLIM). We observed single cells transitioning spontaneously to an oxidative phosphorylation state over hours to days, a trend that intensified with exposure to cisplatin chemotherapy. Conversely, pharmacological inhibition of oxidative phosphorylation significantly reversed the FLIM metabolic signature and reduced cisplatin resistance. These rapid, spontaneous metabolic shifts offer a new means of tracking nongenetic cancer plasticity and forestalling the emergence of drug resistance.
Collapse
|
175
|
Calabrese C, Pyle A, Griffin H, Coxhead J, Hussain R, Braund PS, Li L, Burgess A, Munroe PB, Little L, Warren HR, Cabrera C, Hall A, Caulfield MJ, Rothwell PM, Samani NJ, Hudson G, Chinnery PF. Heteroplasmic mitochondrial DNA variants in cardiovascular diseases. PLoS Genet 2022; 18:e1010068. [PMID: 35363781 PMCID: PMC9007378 DOI: 10.1371/journal.pgen.1010068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/13/2022] [Accepted: 02/01/2022] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are implicated in the pathogenesis of cardiovascular diseases (CVDs) but the reasons for this are not well understood. Maternally-inherited population variants of mitochondrial DNA (mtDNA) which affect all mtDNA molecules (homoplasmic) are associated with cardiometabolic traits and the risk of developing cardiovascular disease. However, it is not known whether mtDNA mutations only affecting a proportion of mtDNA molecules (heteroplasmic) also play a role. To address this question, we performed a high-depth (~1000-fold) mtDNA sequencing of blood DNA in 1,399 individuals with hypertension (HTN), 1,946 with ischemic heart disease (IHD), 2,146 with ischemic stroke (IS), and 723 healthy controls. We show that the per individual burden of heteroplasmic single nucleotide variants (mtSNVs) increases with age. The age-effect was stronger for low-level heteroplasmies (heteroplasmic fraction, HF, 5-10%), likely reflecting acquired somatic events based on trinucleotide mutational signatures. After correcting for age and other confounders, intermediate heteroplasmies (HF 10-95%) were more common in hypertension, particularly involving non-synonymous variants altering the amino acid sequence of essential respiratory chain proteins. These findings raise the possibility that heteroplasmic mtSNVs play a role in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Angela Pyle
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Helen Griffin
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Linxin Li
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annette Burgess
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Louis Little
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claudia Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alistair Hall
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Gavin Hudson
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
176
|
Kasaragod S, Kotimoole CN, Gurtoo S, Keshava Prasad TS, Gowda H, Modi PK. A computational workflow for predicting cancer neo-antigens. Bioinformation 2022; 18:214-218. [PMID: 36518130 PMCID: PMC9722413 DOI: 10.6026/97320630018214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 09/10/2024] Open
Abstract
Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is often used to predict cancer neo-antigens. However, this strategy is associated with significant false positives as many coding mutations may not be expressed at the protein level. Hence, we describe a computational workflow to integrate genomic and proteomic data to predictpotential neo-antigens.
Collapse
Affiliation(s)
- Sandeep Kasaragod
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sumrati Gurtoo
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
177
|
Herst PM, Carson GM, Eccles DA, Berridge MV. Bioenergetic and Metabolic Adaptation in Tumor Progression and Metastasis. Front Oncol 2022; 12:857686. [PMID: 35372069 PMCID: PMC8968714 DOI: 10.3389/fonc.2022.857686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
The ability of cancer cells to adjust their metabolism in response to environmental changes is a well-recognized hallmark of cancer. Diverse cancer and non-cancer cells within tumors compete for metabolic resources. Metabolic demands change frequently during tumor initiation, progression and metastasis, challenging our quest to better understand tumor biology and develop novel therapeutics. Vascularization, physical constraints, immune responses and genetic instability promote tumor evolution resulting in immune evasion, opportunities to breach basement membrane barriers and spread through the circulation and lymphatics. In addition, the unfolded protein response linked to the ubiquitin proteasome system is a key player in addressing stoichiometric imbalances between nuclear and mitochondrially-encoded protein subunits of respiratory complexes, and nuclear-encoded mitochondrial ribosomal protein subunits. While progressive genetic changes, some of which affect metabolic adaptability, contribute to tumorigenesis and metastasis through clonal expansion, epigenetic changes are also important and more dynamic in nature. Understanding the role of stromal and immune cells in the tumor microenvironment in remodeling cancer cell energy metabolism has become an increasingly important area of research. In this perspective, we discuss the adaptations made by cancer cells to balance mitochondrial and glycolytic energy metabolism. We discuss how hypoxia and nutrient limitations affect reductive and oxidative stress through changes in mitochondrial electron transport activity. We propose that integrated responses to cellular stress in cancer cells are central to metabolic flexibility in general and bioenergetic adaptability in particular and are paramount in tumor progression and metastasis.
Collapse
Affiliation(s)
- Patries M. Herst
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Georgia M. Carson
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David A. Eccles
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Michael V. Berridge
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
178
|
Hönigova K, Navratil J, Peltanova B, Polanska HH, Raudenska M, Masarik M. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 2022; 1877:188705. [PMID: 35276232 DOI: 10.1016/j.bbcan.2022.188705] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022]
Abstract
One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.
Collapse
Affiliation(s)
- Katerina Hönigova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
179
|
Mitochondrial Proteins as Source of Cancer Neoantigens. Int J Mol Sci 2022; 23:ijms23052627. [PMID: 35269772 PMCID: PMC8909979 DOI: 10.3390/ijms23052627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the past decade, anti-tumour immune responses have been successfully exploited to improve the outcome of patients with different cancers. Significant progress has been made in taking advantage of different types of T cell functions for therapeutic purposes. Despite these achievements, only a subset of patients respond favorably to immunotherapy. Therefore, there is a need of novel approaches to improve the effector functions of immune cells and to recognize the major targets of anti-tumour immunity. A major hallmark of cancer is metabolic rewiring associated with switch of mitochondrial functions. These changes are a consequence of high energy demand and increased macromolecular synthesis in cancer cells. Such adaptations in tumour cells might generate novel targets of tumour therapy, including the generation of neoantigens. Here, we review the most recent advances in research on the immune response to mitochondrial proteins in different cellular conditions.
Collapse
|
180
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
181
|
Cavalcante GC, Ribeiro-Dos-Santos Â, de Araújo GS. Mitochondria in tumour progression: a network of mtDNA variants in different types of cancer. BMC Genom Data 2022; 23:16. [PMID: 35183124 PMCID: PMC8857862 DOI: 10.1186/s12863-022-01032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mitochondrial participation in tumorigenesis and metastasis has been studied for many years, but several aspects of this mechanism remain unclear, such as the association of mitochondrial DNA (mtDNA) with different cancers. Here, based on two independent datasets, we modelled an mtDNA mutation-cancer network by systematic integrative analysis including 37 cancer types to identify the mitochondrial variants found in common among them. Results Our network showed mtDNA associations between gastric cancer and other cancer types, particularly kidney, liver, and prostate cancers, which is suggestive of a potential role of such variants in the metastatic processes among these cancer types. A graph-based interactive web tool was made available at www2.lghm.ufpa.br/mtdna. We also highlighted that most shared variants were in the MT-ND4, MT-ND5 and D-loop, and that some of these variants were nonsynonymous, indicating a special importance of these variants and regions regarding cancer progression, involving genomic and epigenomic alterations. Conclusions This study reinforces the importance of studying mtDNA in cancer and offers new perspectives on the potential involvement of different mitochondrial variants in cancer development and metastasis.
Collapse
Affiliation(s)
- Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil.,Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Rua dos Mundurucus, Belém, PA, 4487, 66073-005, Brazil
| | - Gilderlanio S de Araújo
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
182
|
Almeida J, Pérez-Figueroa A, Alves JM, Valecha M, Prado-López S, Alvariño P, Cameselle-Teijeiro JM, Chantada D, Fonseca MM, Posada D. Single-cell mtDNA heteroplasmy in colorectal cancer. Genomics 2022; 114:110315. [PMID: 35181467 DOI: 10.1016/j.ygeno.2022.110315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Human mitochondria can be genetically distinct within the same individual, a phenomenon known as heteroplasmy. In cancer, this phenomenon seems exacerbated, and most mitochondrial mutations seem to be heteroplasmic. How this genetic variation is arranged within and among normal and tumor cells is not well understood. To address this question, here we sequenced single-cell mitochondrial genomes from multiple normal and tumoral locations in four colorectal cancer patients. Our results suggest that single cells, both normal and tumoral, can carry various mitochondrial haplotypes. Remarkably, this intra-cell heteroplasmy can arise before tumor development and be maintained afterward in specific tumoral cell subpopulations. At least in the colorectal patients studied here, the somatic mutations in the single-cells do not seem to have a prominent role in tumorigenesis.
Collapse
Affiliation(s)
- João Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Andrés Pérez-Figueroa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - João M Alves
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Sonia Prado-López
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain; Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Débora Chantada
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Miguel M Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
183
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
184
|
Su L, Guo S, Guo W, Ji X, Liu Y, Zhang H, Huang Q, Zhou K, Guo X, Gu X, Xing J. mitoDataclean: A machine learning approach for the accurate identification of cross-contamination-derived tumor mitochondrial DNA mutations. Int J Cancer 2022; 150:1677-1689. [PMID: 35001369 DOI: 10.1002/ijc.33927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
Next-generation sequencing (NGS) of mitochondrial DNA (mtDNA) has widespread applications in aging and cancer studies. However, cross-contamination of mtDNA constitutes a major concern. Previous methods for the detection of mtDNA contamination mainly focus on haplogroup-level phylogeny, but neglect haplotype-level differences, leading to limited sensitivity and accuracy. In this study, we present mitoDataclean, a random-forest-based machine learning package for accurate identification of cross-contamination, evaluation of contamination levels and detection of contamination-derived variants in mtDNA NGS data. Comprehensive optimization of mitoDataclean revealed that training simulation with mixtures of small haplogroup distance and low polymorphic difference was critical for optimal modeling. Compared with existing methods, mitoDataclean exhibited significantly improved sensitivity and accuracy for the detection of sample contamination in simulated data. In addition, mitoDataclean achieved area under the curve values of 0.91 and 0.97 for discerning genuine and contamination-derived mtDNA variants in a simulated Western dataset and private sequencing contamination data, respectively, suggesting that this tool may be applicable for different populations and samples with different sources of contamination. Finally, mitoDataclean was further evaluated in several private and public datasets and showed a robust ability for contamination detection. Altogether, our study demonstrates that mitoDataclean may be used for accurate detection of contaminated samples and contamination-derived variants in mtDNA NGS data. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liping Su
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
185
|
Jacquemin V, Antoine M, Dom G, Detours V, Maenhaut C, Dumont JE. Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers (Basel) 2022; 14:280. [PMID: 35053446 PMCID: PMC8773841 DOI: 10.3390/cancers14020280] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Though heterogeneity of cancers is recognized and has been much discussed in recent years, the concept often remains overlooked in different routine examinations. Indeed, in clinical or biological articles, reviews, and textbooks, cancers and cancer cells are generally presented as evolving distinct entities rather than as an independent heterogeneous cooperative cell population with its self-oriented biology. There are, therefore, conceptual gaps which can mislead the interpretations/diagnostic and therapeutic approaches. In this short review, we wish to summarize and discuss various aspects of this dynamic evolving heterogeneity and its biological, pathological, clinical, diagnostic, and therapeutic implications, using thyroid carcinoma as an illustrative example.
Collapse
Affiliation(s)
- Valerie Jacquemin
- Correspondence: (V.J.); (J.E.D.); Tel.: +32-2-555-32-26 (V.J.); +32-2-555-41-34 (J.E.D.)
| | | | | | | | | | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.A.); (G.D.); (V.D.); (C.M.)
| |
Collapse
|
186
|
Mennuni M, Filograna R, Felser A, Bonekamp NA, Giavalisco P, Lytovchenko O, Larsson N. Metabolic resistance to the inhibition of mitochondrial transcription revealed by CRISPR-Cas9 screen. EMBO Rep 2022; 23:e53054. [PMID: 34779571 PMCID: PMC8728608 DOI: 10.15252/embr.202153054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Mara Mennuni
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Roberta Filograna
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Andrea Felser
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- University Institute of Clinical ChemistryBern University HospitalBernSwitzerland
| | - Nina A Bonekamp
- Mitochondrial Biology GroupMax Planck Institute for Biology of AgeingCologneGermany
- Department of NeuroanatomyMannheim Center for Translational Neuroscience (MCTN)Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Patrick Giavalisco
- Metabolomics Core FacilityMax Planck Institute for Biology of AgeingCologneGermany
| | - Oleksandr Lytovchenko
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Nils‐Göran Larsson
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
187
|
Liu Z, Tian J, Peng F, Wang J. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma. J Cancer 2022; 13:304-312. [PMID: 34976191 PMCID: PMC8692697 DOI: 10.7150/jca.62278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney cancers including clear cell carcinoma (RCC) are identified with very vulnerable mitochondria DNA (mtDNA) and frequent epigenetic aberrations. Bone metastasis from RCC is prevalent and destructive. Bone marrow contains a quite hypoxic microenvironment that usually insitigate 50% of hypermethylation events in conferring a selective advantage for tumor growth. We hypothesized that hypermethylation of mtDNA in RCC cells would significantly contribute to bone metastatic tumor progression. Methylation-specific polymerase chain reaction assay (MSP) was adopted to measure the methylation status of D-loop region of mtDNA in 15 pairs of bone metastatic and primary RCC as well as tumor adjescent normal kidney tissues. mtDNA copy number was examined by the real-time quantitative polymerase chain reaction (qPCR). Western blotting analysis was used to measure the accumulation of several DNA methyltransferases (DNMTs) in the mitochondria and nucleus fractions of bone metastatic RCC cells. mRNA expression of mitochondria encoded genes was examined by RT-PCR. Reactive oxygen species (ROS), mitochondrial membrane potential and ATP content were measured using in vitro cells treated with de-methylation drug 5-Azacytidine (5-Aza). Non-invasive bioluminescent imaging was performed to monitor tumor occurrence in skeleton in mice. Our results showed that the D-loop region in bone metastatic tumor cells was markedly hypermethylated than those in primary RCC tumor cells, that is associated with a decreased mtDNA copy number and accumulation of DNMT1 in the mitochondria. The bone-tropism tumor colonization and progression of RCC cells was significantly suppressed by demethylating the D-loop region of mtDNA and reducing the intracellular level of ROS and ATP by 5-Aza treatment. In conclusion, our study provided a direct association between hypermethylation of mtDNA in RCC with bone metastastic tumor growth.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Oncology, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Jinhai Tian
- Department of Orthopedics, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Fuhong Peng
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
188
|
Pham VH, Nguyen VL, Jung HE, Cho YS, Shin JG. The frequency of the known mitochondrial variants associated with drug-induced toxicity in a Korean population. BMC Med Genomics 2022; 15:3. [PMID: 34980117 PMCID: PMC8722126 DOI: 10.1186/s12920-021-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Few studies have annotated the whole mitochondrial DNA (mtDNA) genome associated with drug responses in Asian populations. This study aimed to characterize mtDNA genetic profiles, especially the distribution and frequency of well-known genetic biomarkers associated with diseases and drug-induced toxicity in a Korean population. METHOD Whole mitochondrial genome was sequenced for 118 Korean subjects by using a next-generation sequencing approach. The bioinformatic pipeline was constructed for variant calling, haplogroup classification and annotation of mitochondrial mutation. RESULTS A total of 681 variants was identified among all subjects. The MT-TRNP gene and displacement loop showed the highest numbers of variants (113 and 74 variants, respectively). The m.16189T > C allele, which is known to reduce the mtDNA copy number in human cells was detected in 25.4% of subjects. The variants (m.2706A > G, m.3010A > G, and m.1095T > C), which are associated with drug-induced toxicity, were observed with the frequency of 99.15%, 30.51%, and 0.08%, respectively. The m.2150T > A, a genotype associated with highly disruptive effects on mitochondrial ribosomes, was identified in five subjects. The D and M groups were the most dominant groups with the frequency of 34.74% and 16.1%, respectively. CONCLUSIONS Our finding was consistent with Korean Genome Project and well reflected the unique profile of mitochondrial haplogroup distribution. It was the first study to annotate the whole mitochondrial genome with drug-induced toxicity to predict the ADRs event in clinical implementation for Korean subjects. This approach could be extended for further study for validation of the potential ethnic-specific mitochondrial genetic biomarkers in the Korean population.
Collapse
Affiliation(s)
- Vinh Hoa Pham
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea
| | - Van Lam Nguyen
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea
| | - Hye-Eun Jung
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea.,Department of Precision Medicine, SPMED Co., Ltd., Busan, 46508, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea.,Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea. .,Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea. .,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
189
|
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022; 36:1-12. [PMID: 34561557 PMCID: PMC8727299 DOI: 10.1038/s41375-021-01416-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.
Collapse
Affiliation(s)
- Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
190
|
Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, Bartz TM, Sarnowski C, Liu C, Burrows K, Guyatt AL, Gaunt TR, Kacprowski T, Yang J, De Jager PL, Yu L, Bergman A, Xia R, Fornage M, Feitosa MF, Wojczynski MK, Kraja AT, Province MA, Amin N, Rivadeneira F, Tiemeier H, Uitterlinden AG, Broer L, Van Meurs JBJ, Van Duijn CM, Raffield LM, Lange L, Rich SS, Lemaitre RN, Goodarzi MO, Sitlani CM, Mak ACY, Bennett DA, Rodriguez S, Murabito JM, Lunetta KL, Sotoodehnia N, Atzmon G, Ye K, Barzilai N, Brody JA, Psaty BM, Taylor KD, Rotter JI, Boerwinkle E, Pankratz N, Arking DE. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet 2022; 141:127-146. [PMID: 34859289 PMCID: PMC8758627 DOI: 10.1007/s00439-021-02394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
Collapse
Affiliation(s)
- R J Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Y Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C A Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - W Shi
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - K Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - A L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | - T R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Brunswick, Germany
| | - J Yang
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - P L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - L Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Xia
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, USA
| | - M F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - A T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - N Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. School of Public Health, Boston, USA
| | - A G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J B J Van Meurs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C M Van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - S S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - A C Y Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - S Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J M Murabito
- Boston University School of Medicine, Boston University, Boston, MA, USA
| | - K L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - G Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - K Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - N Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - J A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
| | - K D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - E Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, USA
| | - N Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
191
|
Racial disparities in the genetic landscape of lung cancer. CANCER HEALTH DISPARITIES 2022; 6:210. [PMID: 36819657 PMCID: PMC9937545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lung cancer has the highest cancer-related mortality worldwide and in the United States. Although reduced tobacco consumption and advancement in therapies have led to a modest decline in lung cancer death rates over the past two decades; the overall survival rate is still disappointing. Moreover, race-associated disparities are also observed, especially in the clinical outcomes. Socioeconomic factors are considered major contributors in cancer health disparities, however, the differences in the genetic landscape of lung cancer among different racial groups have also been reported. In this review, we shed light on the genetic heterogeneity of lung cancer and race-associated differences in genetic alterations to build a framework for future studies to understand the biological basis of lung cancer disparities.
Collapse
|
192
|
An J, Min KI, Ju YS. Identifying Somatic Mitochondrial DNA Mutations. Methods Mol Biol 2022; 2493:153-165. [PMID: 35751814 DOI: 10.1007/978-1-0716-2293-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondria are cellular organelles that play an essential role in eukaryotes, producing the energy needed for a cell to survive. Beyond the ~3.2 Gb of nuclear genomic DNA, each human cell has hundreds of mitochondria which carry one or a few copies of the 16.5 kb circular mitochondria DNA (mtDNA). Despite its small size, the circular genome encodes 37 genes, including 13 proteins that generate respiratory chain complexes together with other proteins of nuclear origin. Similar to nuclear genome, mtDNA in cancer cells frequently harbor somatically acquired alterations. Whole-genome or whole-exome sequencing of the tumor and its matched normal tissues (frequently blood or adjacent non-tumor tissues) enables sensitive and efficient detection of somatic mtDNA mutations. Because each cancer cell commonly carries hundreds to thousands of mtDNA copies, detection of mtDNA mutations is dependent on the heteroplasmic level of each mutation. Here, we describe strategies to accurately identify somatic mtDNA mutations in cancer genome studies.
Collapse
Affiliation(s)
- Jisong An
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyoung Il Min
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
193
|
Wang Y, Wang S, Chen A, Wang R, Li L, Fang X. Efficient exosome subpopulation isolation and proteomic profiling using a Sub-ExoProfile chip towards cancer diagnosis and treatment. Analyst 2022; 147:4237-4248. [DOI: 10.1039/d2an01268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deconstruction of the heterogeneity of surface marker-dependent exosome subpopulations by the Sub-ExoProfile chip.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Aipeng Chen
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Ruoke Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Lanting Li
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Xiaoni Fang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| |
Collapse
|
194
|
Wang Y, Zhao G, Fang Z, Pan H, Zhao Y, Wang Y, Zhou X, Wang X, Luo T, Zhang Y, Wang Z, Chen Q, Dong L, Huang Y, Zhou Q, Xia L, Li B, Guo J, Xia K, Tang B, Li J. Genetic landscape of human mitochondrial genome using whole genome sequencing. Hum Mol Genet 2021; 31:1747-1761. [PMID: 34897451 DOI: 10.1093/hmg/ddab358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Increasing evidences suggest that mitochondrial dysfunction is implicated in diseases and aging, and whole-genome sequencing (WGS) is the most unbiased method in analyzing the mitochondrial genome (mtDNA). However, the genetic landscape of mtDNA in the Chinese population has not been fully examined. Here, we described the genetic landscape of mtDNA using WGS data from Chinese individuals (n = 3241). We identified 3892 mtDNA variants, of which 3349 (86%) were rare variants. Interestingly, we observed a trend toward extreme heterogeneity of mtDNA variants. Our study observed a distinct purifying selection on mtDNA, which inhibits the accumulation of harmful heteroplasmies at the individual level: (1) mitochondrial dN/dS ratios were much less than 1; (2) the dN/dS ratio of heteroplasmies was higher than homoplasmies; (3) heteroplasmies had more indels and predicted deleterious variants than homoplasmies. Furthermore, we found that haplogroup M (20.27%) and D (20.15%) had the highest frequencies in the Chinese population, followed by B (18.51%) and F (16.45%). The number of variants per individual differed across haplogroup groups, with a higher number of homoplasmies for the M lineage. Meanwhile, mtDNA copy number was negatively correlated with age but positively correlated with the female sex. Finally, we developed an mtDNA variation database of Chinese populations called MTCards (http://genemed.tech/mtcards/) to facilitate the query of mtDNA variants in this study. In summary, these findings contribute to different aspects of understanding mtDNA, providing a better understanding of the genetic basis of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Hongxu Pan
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yige Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaomeng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tengfei Luo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lijie Dong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jifeng Guo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
195
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
196
|
Heilig CE, Horak P, Kreutzfeldt S, Teleanu V, Mock A, Renner M, Bhatti IA, Hutter B, Hüllein J, Fröhlich M, Uhrig S, Süße H, Heiligenthal L, Ochsenreither S, Illert AL, Vogel A, Desuki A, Heinemann V, Heidegger S, Bitzer M, Scheytt M, Brors B, Hübschmann D, Baretton G, Stenzinger A, Steindorf K, Benner A, Jäger D, Heining C, Glimm H, Fröhling S, Schlenk RF. Rationale and design of the CRAFT (Continuous ReAssessment with Flexible ExTension in Rare Malignancies) multicenter phase II trial. ESMO Open 2021; 6:100310. [PMID: 34808524 PMCID: PMC8609144 DOI: 10.1016/j.esmoop.2021.100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Approvals of cancer therapeutics are primarily disease entity specific. Current molecular diagnostic approaches frequently identify actionable alterations in rare cancers or rare subtypes of common cancers for which the corresponding treatments are not approved and unavailable within clinical trials due to entity-related eligibility criteria. Access may be negotiated with health insurances. However, approval rates vary, and critical information required for a scientific evaluation of treatment-associated risks and benefits is not systematically collected. Thus clinical trials with optimized patient selection and comprehensive molecular characterization are essential for translating experimental treatments into standard care. PATIENTS AND METHODS Continuous ReAssessment with Flexible ExTension in Rare Malignancies (CRAFT) is an open-label phase II trial for adults with pretreated, locally advanced, or metastatic solid tumors. Based on the evaluation by a molecular tumor board, patients are assigned to combinations of six molecularly targeted agents and a programmed death-ligand 1 (PD-L1) antagonist within seven study arms focusing on (i) BRAF V600 mutations; (ii) ERBB2 amplification and/or overexpression, activating ERBB2 mutations; (iii) ALK rearrangements, activating ALK mutations; (iv and v) activating PIK3CA and AKT mutations, other aberrations predicting increased PI3K-AKT pathway activity; (vi) aberrations predicting increased RAF-MEK-ERK pathway activity; (vii) high tumor mutational burden and other alterations predicting sensitivity to PD-L1 inhibition. The primary endpoint is the disease control rate (DCR) at week 16; secondary and exploratory endpoints include the progression-free survival ratio, overall survival, and patient-reported outcomes. Using Simon's optimal two-stage design, 14 patients are accrued for each study arm. If three or fewer patients achieve disease control, the study arm is stopped. Otherwise, 11 additional patients are accrued. If the DCR exceeds 7 of 25 patients, the null hypothesis is rejected for the respective study arm. CONCLUSIONS CRAFT was activated in October 2021 and will recruit at 10 centers in Germany. TRIAL REGISTRATION NUMBERS EudraCT: 2019-003192-18; ClinicalTrials.gov: NCT04551521.
Collapse
Affiliation(s)
- C E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - P Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - S Kreutzfeldt
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - V Teleanu
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - A Mock
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany
| | - M Renner
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - I A Bhatti
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany
| | - B Hutter
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany; Division of Applied Bioinformatics, DKFZ, Heidelberg, Germany
| | - J Hüllein
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - M Fröhlich
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany; Division of Applied Bioinformatics, DKFZ, Heidelberg, Germany
| | - S Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany; Division of Applied Bioinformatics, DKFZ, Heidelberg, Germany
| | - H Süße
- NCT Trial Center, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - L Heiligenthal
- NCT Trial Center, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - S Ochsenreither
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; DKTK, Berlin, Germany
| | - A L Illert
- Comprehensive Cancer Center Freiburg, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Internal Medicine I, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DKTK, Freiburg, Germany
| | - A Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - A Desuki
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany; DKTK, Mainz, Germany; Third Medical Department, University Medical Center, Mainz, Germany
| | - V Heinemann
- Department of Medicine III, University Hospital, Ludwig Maximilians University Munich, Munich, Germany; DKTK, Munich, Germany
| | - S Heidegger
- DKTK, Munich, Germany; Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - M Bitzer
- Center for Personalized Medicine, Eberhard-Karls University, Tübingen, Germany; Department of Internal Medicine I, University Hospital, Eberhard-Karls University, Tübingen, Germany; DKTK, Tübingen, Germany
| | - M Scheytt
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany; Department of Internal Medicine II, Würzburg University Medical Center, Würzburg, Germany
| | - B Brors
- German Cancer Consortium (DKTK), Heidelberg, Germany; Division of Applied Bioinformatics, DKFZ, Heidelberg, Germany
| | - D Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany; Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg and DKFZ, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - G Baretton
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - A Stenzinger
- German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - K Steindorf
- Division of Physical Activity, Prevention and Cancer, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - A Benner
- Division of Biostatistics, DKFZ, Heidelberg, Germany
| | - D Jäger
- Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany
| | - C Heining
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany; Center for Personalized Oncology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany; DKTK, Dresden, Germany
| | - H Glimm
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany; Center for Personalized Oncology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany; DKTK, Dresden, Germany
| | - S Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - R F Schlenk
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany; Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany; NCT Trial Center, NCT Heidelberg and DKFZ, Heidelberg, Germany.
| |
Collapse
|
197
|
Penter L, Gohil SH, Lareau C, Ludwig LS, Parry EM, Huang T, Li S, Zhang W, Livitz D, Leshchiner I, Parida L, Getz G, Rassenti LZ, Kipps TJ, Brown JR, Davids MS, Neuberg DS, Livak KJ, Sankaran VG, Wu CJ. Longitudinal Single-Cell Dynamics of Chromatin Accessibility and Mitochondrial Mutations in Chronic Lymphocytic Leukemia Mirror Disease History. Cancer Discov 2021; 11:3048-3063. [PMID: 34112698 PMCID: PMC8660953 DOI: 10.1158/2159-8290.cd-21-0276] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
While cancers evolve during disease progression and in response to therapy, temporal dynamics remain difficult to study in humans due to the lack of consistent barcodes marking individual clones in vivo. We employ mitochondrial single-cell assay for transposase-accessible chromatin with sequencing to profile 163,279 cells from 9 patients with chronic lymphocytic leukemia (CLL) collected across disease course and utilize mitochondrial DNA (mtDNA) mutations as natural genetic markers of cancer clones. We observe stable propagation of mtDNA mutations over years in the absence of strong selective pressure, indicating clonal persistence, but dramatic changes following tight bottlenecks, including disease transformation and relapse posttherapy, paralleled by acquisition of copy-number variants and changes in chromatin accessibility and gene expression. Furthermore, we link CLL subclones to distinct chromatin states, providing insight into nongenetic sources of relapse. mtDNA mutations thus mirror disease history and provide naturally occurring genetic barcodes to enable patient-specific study of cancer subclonal dynamics. SIGNIFICANCE Single-cell multi-omic profiling of CLL reveals the utility of somatic mtDNA mutations as in vivo barcodes, which mark subclones that can evolve over time along with changes in accessible chromatin and gene expression profiles to capture dynamics of disease evolution. See related commentary by Hilton and Scott, p. 2965. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Satyen H. Gohil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Academic Haematology, University College London Cancer Institute, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Caleb Lareau
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Leif S. Ludwig
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berlin Institute of Health at Charité — Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Erin M. Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dimitri Livitz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Ignaty Leshchiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Laxmi Parida
- IBM TJ Watson Research Center, Yorktown Heights, New York, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Vijay G. Sankaran
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
198
|
Zhou X, Trinh-Minh T, Tran-Manh C, Gießl A, Bergmann C, Györfi AH, Schett G, Distler JHW. Impaired TFAM expression promotes mitochondrial damage to drive fibroblast activation and fibrosis in systemic sclerosis. Arthritis Rheumatol 2021; 74:871-881. [PMID: 34807516 DOI: 10.1002/art.42033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The transcription factor TFAM is controlling the transcription of core proteins required for mitochondrial homeostasis. The aim of the current study was to investigate changes in TFAM expression in systemic sclerosis (SSc), to analyze mitochondrial function and to evaluate the consequences for fibroblast activation. METHODS The expression of TFAM was analyzed by immunofluorescence and Western blot. The effects of TFAM knockout were investigated in cultured fibroblasts and in bleomycin-induced skin and lung fibrosis and in TβRIact -induced skin fibrosis. RESULTS The expression of TFAM was downregulated in fibroblasts in SSc skin and in cultured SSc fibroblasts. The downregulation of TFAM was associated with decreased mitochondrial number and accumulation of damaged mitochondria with release of mtDNA, accumulation of deletions in mtDNA, metabolic alterations with impaired OXPHOS and release of the mitokine GDF15. Chronic, but not acute, exposure of normal fibroblasts to TGFβ mimicked the finding in SSc fibroblasts with downregulation of TFAM and accumulation of mitochondrial damage. Downregulation of TFAM promotes fibroblast activation with upregulation of fibrosis-relevant GO-terms in RNASeq, partially in a ROS-dependent manner. Mice with fibroblast-specific knockout of TFAM are prone to fibrotic tissue remodeling with fibrotic responses even to NaCl instillation and enhanced sensitivity to bleomycin injection and TβRIact-overexpression. TFAM knockout fosters SMAD3 signaling to promote fibroblast activation. CONCLUSIONS Alterations in the key mitochondrial transcription factor TFAM in response to prolonged activation of TGFβ and associated mitochondrial damage induce transcriptional programs that promote fibroblast-to-myofibroblast transition and drive tissue fibrosis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Cuong Tran-Manh
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
199
|
Singh LN, Ennis B, Loneragan B, Tsao NL, Lopez Sanchez MIG, Li J, Acheampong P, Tran O, Trounce IA, Zhu Y, Potluri P, Regeneron Genetics Center, Emanuel BS, Rader DJ, Arany Z, Damrauer SM, Resnick AC, Anderson SA, Wallace DC. MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Comput Biol 2021; 17:e1009594. [PMID: 34762648 PMCID: PMC8610268 DOI: 10.1371/journal.pcbi.1009594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/23/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants. We introduce MitoScape, a novel, big-data, software for extracting mitochondrial DNA sequences from NGS. MitoScape adopts a novel departure from other algorithms by using machine learning to model the unique characteristics of mitochondrial genetics. We also employ a novel approach of using rho-zero (mitochondrial DNA-depleted) data to model nuclear-encoded mitochondrial sequences. We showed that MitoScape produces accurate heteroplasmy estimates using gold-standard mitochondrial DNA data. We provide a comprehensive comparison of the most common tools for obtaining mtDNA variants from NGS and showed that MitoScape had superior performance to compared tools in every statistically category we compared, including false positives and false negatives. By applying MitoScape to common disease examples, we illustrate how MitoScape facilitates important heteroplasmy-disease association discoveries by expanding upon a reported association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men (adjusted p-value = 0.003). The improved accuracy of mitochondrial DNA variants produced by MitoScape will be instrumental in diagnosing disease in the context of personalized medicine and clinical diagnostics. Recent studies have highlighted the importance of mitochondrial DNA variation in both primary mitochondrial disease and complex, human pathology including COVID-19, and space-flight stress. The vast amount of existing, next-generation sequencing (NGS) data can be leveraged to interrogate both nuclear and mitochondrial DNA (mtDNA) sequence simultaneously, allowing for analysis of the interplay between mitochondrial and nuclear encoded genes in mitochondrial function. Identifying mtDNA sequence accurately is complicated by the presence of nuclear encoded mitochondrial sequences (NUMTs), which are homologous to mtDNA. Current software for analyzing mtDNA from NGS do not accurately model the unique characteristics of mitochondrial genetics. We introduce MitoScape, a novel, big-data, software which models mitochondrial genetics through machine learning to accurately identify mtDNA sequence from NGS data. MitoScape takes advantage of rho-zero cell data to model the characteristics of NUMTs. We show that MitoScape produces more accurate heteroplasmy estimates compared to published software. We provide an example of applying MitoScape in replicating an association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men. MitoScape is an important contribution to mitochondrial genomics allowing for accurate mtDNA variants, and the ability to tailor mtDNA analysis in different population and disease contexts, which is not available in other software.
Collapse
Affiliation(s)
- Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Brian Ennis
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Bryn Loneragan
- Center for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Noah L. Tsao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Isabel G. Lopez Sanchez
- Center for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Jianping Li
- Department of Psychiatry, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Patrick Acheampong
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Oanh Tran
- 22q and You Center, Division of Human Genetics, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian A. Trounce
- Center for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | | | - Beverly S. Emanuel
- 22q and You Center, Division of Human Genetics, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott M. Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam C. Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Stewart A. Anderson
- Department of Psychiatry, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
200
|
Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res 2021; 49:11103-11118. [PMID: 34614167 PMCID: PMC8565317 DOI: 10.1093/nar/gkab901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth K Schmidt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|