151
|
Desideri E, Ciccarone F, Ciriolo MR, Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med 2021; 172:508-520. [PMID: 34214634 DOI: 10.1016/j.freeradbiomed.2021.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released from most cell types that play a key role in cell-to-cell communication by carrying DNA, non-coding RNAs, proteins and lipids out of cells. The composition of EVs depends on the cell or tissue of origin and changes according to their pathophysiological conditions, making EVs a potential circulating biomarker of disease. Additionally, the natural tropism of EVs for specific organs and cells has raised the interest in their use as delivery vehicles. In this review, we provide an overview of EV biogenesis, isolation and characterization. We also discuss EVs in the context of endothelial pathophysiology, summarizing the current knowledge about their role in cell communication in quiescent and activated endothelial cells. In the last part, we describe the potential use of EVs as delivery vehicles of bioactive compounds and the current strategies to load exogenous cargo and to functionalize EVs to drive them to a specific tissue.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome; IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
152
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
153
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021:1-18. [PMID: 34382896 DOI: 10.1080/15384101.2021.1958501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9, and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration, and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
154
|
Zarkada G, Howard JP, Xiao X, Park H, Bizou M, Leclerc S, Künzel SE, Boisseau B, Li J, Cagnone G, Joyal JS, Andelfinger G, Eichmann A, Dubrac A. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 2021; 56:2237-2251.e6. [PMID: 34273276 PMCID: PMC9951594 DOI: 10.1016/j.devcel.2021.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here, we show that diving tip cells invading the mouse neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGF-β signaling, and they begin to acquire blood-retina barrier properties. Endothelial deletion of TGF-β receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation and hemorrhagic vascular malformations. Oxygen-induced retinopathy vasculature exhibits S-like tip cells, and Alk5 deletion impedes retina revascularization. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that non-canonical-TGF-β signaling could improve retinal revascularization and neural function in ischemic retinopathy.
Collapse
Affiliation(s)
- Georgia Zarkada
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel P. Howard
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,These authors contributed equally
| | - Xue Xiao
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada,These authors contributed equally
| | - Hyojin Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mathilde Bizou
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Severine Leclerc
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Steffen E. Künzel
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Blanche Boisseau
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | - Jinyu Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Gael Cagnone
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada
| | | | | | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC H3T 1C5, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
155
|
Walker JL, Slavish DC, Dolan M, Dietch JR, Wardle-Pinkston S, Messman B, Ruggero CJ, Kohut M, Borwick J, Kelly K, Taylor DJ. Age-dependent associations among insomnia, depression, and inflammation in nurses. Psychol Health 2021; 36:967-984. [PMID: 32795158 PMCID: PMC7882004 DOI: 10.1080/08870446.2020.1805450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/29/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Insomnia and depression have been inconsistently associated with inflammation. Age may be one important moderator of these associations. This study examined associations between insomnia and depression with inflammatory biomarkers in nurses and how these associations varied by age. Design: Participants were 392 nurses ages 18-65 (Mage = 39.54 years ± 11.15, 92% female) recruited from two hospitals. Main outcome measures: Participants completed surveys to assess insomnia and depression symptoms. Serum samples were obtained and analysed for inflammatory biomarkers interleukin-6 (IL-6), C-reactive protein (CRP), interleukin-1 beta (IL-1β), and tumour necrosis factor alpha (TNF-α). Results: Neither insomnia nor depression symptoms were associated with inflammatory biomarkers. Older age was associated with higher IL-1β, and age moderated the effects of depression symptoms on CRP and TNF-α: Greater depression symptoms were associated with higher CRP (b = .14, p = .017) and TNF-α (b = .008, p = .165) among older nurses only. Conclusion: Results suggest older nurses with higher depression symptoms may be at increased risk for elevated inflammation. Interventions should consider the role of age-related processes in modifying health and well-being. Given relatively low levels of depression in the current sample, future studies should replicate results in clinical and non-nurse samples.
Collapse
Affiliation(s)
- Jamie L Walker
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Danica C Slavish
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Megan Dolan
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Jessica R Dietch
- War Related Illness and Injury Study Center, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | | | - Brett Messman
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Camilo J Ruggero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Marian Kohut
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Joshua Borwick
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kimberly Kelly
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Daniel J Taylor
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
156
|
Chan SM, Weininger G, Langford J, Jane-Wit D, Dardik A. Sex Differences in Inflammation During Venous Remodeling of Arteriovenous Fistulae. Front Cardiovasc Med 2021; 8:715114. [PMID: 34368264 PMCID: PMC8335484 DOI: 10.3389/fcvm.2021.715114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular disorders frequently have differing clinical presentations among women and men. Sex differences exist in vascular access for hemodialysis; women have reduced rates of arteriovenous fistula (AVF) maturation as well as fistula utilization compared with men. Inflammation is increasingly implicated in both clinical studies and animal models as a potent mechanism driving AVF maturation, especially in vessel dilation and wall thickening, that allows venous remodeling to the fistula environment to support hemodialysis. Sex differences have long been recognized in arterial remodeling and diseases, with men having increased cardiovascular events compared with pre-menopausal women. Many of these arterial diseases are driven by inflammation that is similar to the inflammation during AVF maturation. Improved understanding of sex differences in inflammation during vascular remodeling may suggest sex-specific vascular therapies to improve AVF success.
Collapse
Affiliation(s)
- Shin Mei Chan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| | - Gabe Weininger
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Daniel Jane-Wit
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Veterans Affairs (VA) Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
157
|
Abstract
Cells of the vascular wall are exquisitely sensitive to changes in their mechanical environment. In healthy vessels, mechanical forces regulate signaling and gene expression to direct the remodeling needed for the vessel wall to maintain optimal function. Major diseases of arteries involve maladaptive remodeling with compromised or lost homeostatic mechanisms. Whereas homeostasis invokes negative feedback loops at multiple scales to mediate mechanobiological stability, disease progression often occurs via positive feedback that generates mechanobiological instabilities. In this review, we focus on the cell biology, wall mechanics, and regulatory pathways associated with arterial health and how changes in these processes lead to disease. We discuss how positive feedback loops arise via biomechanical and biochemical means. We conclude that inflammation plays a central role in overriding homeostatic pathways and suggest future directions for addressing therapeutic needs.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Department of Cell Biology, Department of Internal Medicine (Cardiology), and Cardiovascular Research Center, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
158
|
Mehta V, Pang KL, Givens CS, Chen Z, Huang J, Sweet DT, Jo H, Reader JS, Tzima E. Mechanical forces regulate endothelial-to-mesenchymal transition and atherosclerosis via an Alk5-Shc mechanotransduction pathway. SCIENCE ADVANCES 2021; 7:7/28/eabg5060. [PMID: 34244146 PMCID: PMC8270486 DOI: 10.1126/sciadv.abg5060] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
The response of endothelial cells to mechanical forces is a critical determinant of vascular health. Vascular pathologies, such as atherosclerosis, characterized by abnormal mechanical forces are frequently accompanied by endothelial-to-mesenchymal transition (EndMT). However, how forces affect the mechanotransduction pathways controlling cellular plasticity, inflammation, and, ultimately, vessel pathology is poorly understood. Here, we identify a mechanoreceptor that is sui generis for EndMT and unveil a molecular Alk5-Shc pathway that leads to EndMT and atherosclerosis. Depletion of Alk5 abrogates shear stress-induced EndMT responses, and genetic targeting of endothelial Shc reduces EndMT and atherosclerosis in areas of disturbed flow. Tensional force and reconstitution experiments reveal a mechanosensory function for Alk5 in EndMT signaling that is unique and independent of other mechanosensors. Our findings are of fundamental importance for understanding how mechanical forces regulate biochemical signaling, cell plasticity, and vascular disease.
Collapse
Affiliation(s)
- Vedanta Mehta
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kar-Lai Pang
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christopher S Givens
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhongming Chen
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianhua Huang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel T Sweet
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - John S Reader
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellie Tzima
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
159
|
Bian Z, Yamashita T, Shi X, Feng T, Yu H, Hu X, Hu X, Bian Y, Sun H, Tadokoro K, Takemoto M, Omote Y, Morihara R, Abe K. Accelerated accumulation of fibrinogen peptide chains with Aβ deposition in Alzheimer's disease (AD) mice and human AD brains. Brain Res 2021; 1767:147569. [PMID: 34197775 DOI: 10.1016/j.brainres.2021.147569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that is characterized by the abnormal accumulation of intracellular and extracellular amyloid-β (Aβ) as well as disruption of the blood brain barrier (BBB). Fibrinogen plays an essential role in regulating thrombosis, wound healing, and other biological functions. In the present study, we investigated the relationship between three polypeptide chains α, β, and γ (FGA, FGB, and FGG) and Aβ deposition in the APP23 plus chronic cerebral hypoperfusion (CCH) mice model as well as the human AD brain. FGA, FGB, and FGG accumulated when Aβ was deposited in neural cells and cerebral vessels. This deposition was significantly higher in AD plus CCH mice models relative to wild-type brains, and in human AD brains compared to control brains. The present study demonstrates that FGA, FGB, and FGG are associated with AD progress, and can thus be potential targets for the diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xiao Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
160
|
Treps L, Declercq M, Bousfia S, Carmeliet P, Witters P. Comparative meta-analysis of cystic fibrosis cell models suggests partial endothelial-to-mesenchymal transition. J Cyst Fibros 2021; 20:876-880. [PMID: 33858770 DOI: 10.1016/j.jcf.2021.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The mesenchymal conversion of epithelial cells (EMT) has been suggested as a potential contributor in cystic fibrosis (CF) disease progression. Endothelial cells (EndCs), the cells lining blood vessels, express functional CFTR and CFTR impairment promotes endothelial activation and dysfunction. However, if the mesenchymal switch also exists in CF EndCs remains uncharacterized. To understand whether the endothelial-to-mesenchymal transition (EndMT) could occur in CF, we have conducted a transcriptomic meta-analysis of primary CFTR-impaired and patient-derived EndCs, and further compared our results to data from CF epithelial cells (EpCs) where EMT has been demonstrated. As compared to EpCs, we show that CFTR-impaired EndCs display a limited signature of EndMT, and that expression of the mesenchymal inducer Twist1 remained unchanged. Nonetheless, the use of CFTR modulators reduced the expression of mesenchymal markers from CF patient-derived EndCs, suggesting an additional therapeutic added-value next to the known effect on CFTR ion transport.
Collapse
Affiliation(s)
- Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium; Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.
| | - Mathias Declercq
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium; Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium
| | - Siham Bousfia
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium; Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Peter Witters
- Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium; Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium; Centre of Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
161
|
Kheradvar A, Vannan MA, Dasi LP, Pedrizzetti G. The effect of aortic root anatomy and vortex flow induced shear stress on the aortic valve leaflets. Eur Heart J Cardiovasc Imaging 2021; 22:995-997. [PMID: 33758910 DOI: 10.1093/ehjci/jeab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arash Kheradvar
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Enginnering, University of California, Irvine, CA, USA
| | - Mani A Vannan
- Marcus Heart Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| |
Collapse
|
162
|
Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions. Stem Cell Rev Rep 2021; 17:1713-1740. [PMID: 33730327 PMCID: PMC8446106 DOI: 10.1007/s12015-021-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/31/2022]
Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis. Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β+ mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction, and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β+ vSCs and identified the presence of S100β+vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Collapse
|
163
|
Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells 2021; 10:cells10030625. [PMID: 33799835 PMCID: PMC7998923 DOI: 10.3390/cells10030625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and underlies the development of cardiovascular diseases, such as myocardial infarction and ischemic stroke. As such, atherosclerosis stands as the leading cause of death and disability worldwide and intensive scientific efforts are made to investigate its complex pathophysiology, which involves the deregulation of crucial intracellular pathways and intricate interactions between diverse cell types. A growing body of evidence, including in vitro and in vivo studies involving cell-specific deletion of autophagy-related genes (ATGs), has unveiled the mechanistic relevance of cell-specific (endothelial, smooth-muscle, and myeloid cells) defective autophagy in the processes of atherogenesis. In this review, we underscore the recent insights on autophagy's cell-type-dependent role in atherosclerosis development and progression, featuring the relevance of canonical catabolic functions and emerging noncanonical mechanisms, and highlighting the potential therapeutic implications for prevention and treatment of atherosclerosis and its complications.
Collapse
Affiliation(s)
- James M. Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
- Correspondence: (C.W.); (D.S.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, I-09042 Milan, Italy
- Correspondence: (C.W.); (D.S.)
| |
Collapse
|
164
|
Hemanthakumar KA, Fang S, Anisimov A, Mäyränpää MI, Mervaala E, Kivelä R. Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. eLife 2021; 10:62678. [PMID: 33661096 PMCID: PMC8043751 DOI: 10.7554/elife.62678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Aging, obesity, hypertension, and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing, and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity, and pressure overload all upregulated pathways related to TGF-β signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis, and cellular senescence, whereas exercise training attenuated most of the same pathways. We identified collagen chaperone Serpinh1 (also called as Hsp47) to be significantly increased by aging and obesity and repressed by exercise training. Mechanistic studies demonstrated that increased SERPINH1 in human ECs induced mesenchymal properties, while its silencing inhibited collagen deposition. Our data demonstrate that CVD risk factors significantly remodel the transcriptomic landscape of cardiac ECs inducing inflammatory, senescence, and mesenchymal features. SERPINH1 was identified as a potential therapeutic target in ECs. Cardiovascular diseases are the number one cause of death in the western world. Endothelial cells that line the blood vessels of the heart play a central role in the development of these diseases. In addition to helping transport blood, these cells support the normal running of the heart, and help it to grow and regenerate. Over time as the body ages and experiences stress, endothelial cells start to deteriorate. This can cause the cells to undergo senescence and stop dividing, and lay down scar-like tissue via a process called fibrosis. As a result, the blood vessels start to stiffen and become less susceptible to repair. Ageing, obesity, high blood pressure, and inactivity all increase the risk of developing cardiovascular diseases, whereas regular exercise has a protective effect. But it was unclear how these different factors affect endothelial cells. To investigate this, Hemanthakumar et al. compared the gene activity of different sets of mice: old vs young, obese vs lean, heart problems vs healthy, and fit vs sedentary. All these risk factors – age, weight, inactivity and heart defects – caused the mice’s endothelial cells to activate mechanisms that lead to stress, senescence and fibrosis. Whereas exercise training had the opposite effect, and turned off the same genes and pathways. All of the at-risk groups also had high levels of a gene called SerpinH1, which helps produce tissue fiber and collagen. Experiments increasing the levels of SerpinH1 in human endothelial cells grown in the laboratory recreated the effects seen in mice, and switched on markers of stress, senescence and fibrosis. According to the World Health Organization, cardiovascular disease now accounts for 10% of the disease burden worldwide. Revealing the affects it has on gene activity could help identify new targets for drug development, such as SerpinH1. Understanding the molecular effects of exercise on blood vessels could also aid in the design of treatments that mimic exercise. This could help people who are unable to follow training programs to reduce their risk of cardiovascular disease.
Collapse
Affiliation(s)
- Karthik Amudhala Hemanthakumar
- Wihuri Research Institute, Helsinki, Finland.,Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shentong Fang
- Wihuri Research Institute, Helsinki, Finland.,Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Wihuri Research Institute, Helsinki, Finland.,Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I Mäyränpää
- Pathology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute, Helsinki, Finland.,Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
165
|
Fledderus J, Vanchin B, Rots MG, Krenning G. The Endothelium as a Target for Anti-Atherogenic Therapy: A Focus on the Epigenetic Enzymes EZH2 and SIRT1. J Pers Med 2021; 11:jpm11020103. [PMID: 33562658 PMCID: PMC7915331 DOI: 10.3390/jpm11020103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell inflammatory activation and dysfunction are key events in the pathophysiology of atherosclerosis, and are associated with an elevated risk of cardiovascular events. Yet, therapies specifically targeting the endothelium and atherosclerosis are lacking. Here, we review how endothelial behaviour affects atherogenesis and pose that the endothelium may be an efficacious cellular target for antiatherogenic therapies. We discuss the contribution of endothelial inflammatory activation and dysfunction to atherogenesis and postulate that the dysregulation of specific epigenetic enzymes, EZH2 and SIRT1, aggravate endothelial dysfunction in a pleiotropic fashion. Moreover, we propose that commercially available drugs are available to clinically explore this postulation.
Collapse
Affiliation(s)
- Jolien Fledderus
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
| | - Byambasuren Vanchin
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
- Department Cardiology, School of Medicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia
| | - Marianne G. Rots
- Epigenetic Editing, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands;
| | - Guido Krenning
- Medical Biology Section, Laboratory for Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (J.F.); (B.V.)
- Correspondence: ; Tel.: +31-50-361-8043; Fax: +31-50-361-9911
| |
Collapse
|
166
|
Newman AAC, Serbulea V, Baylis RA, Shankman LS, Bradley X, Alencar GF, Owsiany K, Deaton RA, Karnewar S, Shamsuzzaman S, Salamon A, Reddy MS, Guo L, Finn A, Virmani R, Cherepanova OA, Owens GK. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab 2021; 3:166-181. [PMID: 33619382 PMCID: PMC7905710 DOI: 10.1038/s42255-020-00338-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/03/2023]
Abstract
Stable atherosclerotic plaques are characterized by a thick, extracellular matrix-rich fibrous cap populated by protective ACTA2+ myofibroblast (MF)-like cells, assumed to be almost exclusively derived from smooth muscle cells (SMCs). Herein, we show that in murine and human lesions, 20% to 40% of ACTA2+ fibrous cap cells, respectively, are derived from non-SMC sources, including endothelial cells (ECs) or macrophages that have undergone an endothelial-to-mesenchymal transition (EndoMT) or a macrophage-to-mesenchymal transition (MMT). In addition, we show that SMC-specific knockout of the Pdgfrb gene, which encodes platelet-derived growth factor receptor beta (PDGFRβ), in Apoe-/- mice fed a Western diet for 18 weeks resulted in brachiocephalic artery lesions nearly devoid of SMCs but with no changes in lesion size, remodelling or indices of stability, including the percentage of ACTA2+ fibrous cap cells. However, prolonged Western diet feeding of SMC Pdgfrb-knockout mice resulted in reduced indices of stability, indicating that EndoMT- and MMT-derived MFs cannot compensate indefinitely for loss of SMC-derived MFs. Using single-cell and bulk RNA-sequencing analyses of the brachiocephalic artery region and in vitro models, we provide evidence that SMC-to-MF transitions are induced by PDGF and transforming growth factor-β and dependent on aerobic glycolysis, while EndoMT is induced by interleukin-1β and transforming growth factor-β. Together, we provide evidence that the ACTA2+ fibrous cap originates from a tapestry of cell types, which transition to an MF-like state through distinct signalling pathways that are either dependent on or associated with extensive metabolic reprogramming.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, New York University Langone Medical Center, NY, New York, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Laura S Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xenia Bradley
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Katherine Owsiany
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sohel Shamsuzzaman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anita Salamon
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mahima S Reddy
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular and Metabolic Sciences Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
167
|
Affiliation(s)
- Ashish Misra
- Heart Research Institute, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
| | - Edward A Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA.
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
168
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
169
|
Alexander Y, Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, Aboyans V, Bäck M, Badimon L, Cosentino F, De Carlo M, Dorobantu M, Harrison DG, Guzik TJ, Hoefer I, Morris PD, Norata GD, Suades R, Taddei S, Vilahur G, Waltenberger J, Weber C, Wilkinson F, Bochaton-Piallat ML, Evans PC. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res 2021; 117:29-42. [PMID: 32282914 PMCID: PMC7797212 DOI: 10.1093/cvr/cvaa085] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells (ECs) are sentinels of cardiovascular health. Their function is reduced by the presence of cardiovascular risk factors, and is regained once pathological stimuli are removed. In this European Society for Cardiology Position Paper, we describe endothelial dysfunction as a spectrum of phenotypic states and advocate further studies to determine the role of EC subtypes in cardiovascular disease. We conclude that there is no single ideal method for measurement of endothelial function. Techniques to measure coronary epicardial and micro-vascular function are well established but they are invasive, time-consuming, and expensive. Flow-mediated dilatation (FMD) of the brachial arteries provides a non-invasive alternative but is technically challenging and requires extensive training and standardization. We, therefore, propose that a consensus methodology for FMD is universally adopted to minimize technical variation between studies, and that reference FMD values are established for different populations of healthy individuals and patient groups. Newer techniques to measure endothelial function that are relatively easy to perform, such as finger plethysmography and the retinal flicker test, have the potential for increased clinical use provided a consensus is achieved on the measurement protocol used. We recommend further clinical studies to establish reference values for these techniques and to assess their ability to improve cardiovascular risk stratification. We advocate future studies to determine whether integration of endothelial function measurements with patient-specific epigenetic data and other biomarkers can enhance the stratification of patients for differential diagnosis, disease progression, and responses to therapy.
Collapse
Affiliation(s)
- Yvonne Alexander
- Centre for Bioscience, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, University Heart Center, Zurich, Switzerland
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Basel, Switzerland
| | - Michael Shechter
- Leviev Heart Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danijela Trifunovic
- Cardiology Department, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, Inserm U-1094, Limoges University, Limoges, France
| | - Magnus Bäck
- Department of Cardiology, Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
- INSERM U1116, Université de Lorraine, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre les Nancy, France
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Marco De Carlo
- Catheterization Laboratory, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Dorobantu
- ‘CarolDavila’ University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Department of Medicine, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Imo Hoefer
- Laboratory of Clinical Chemistry and Hematology, University Medical Centre Utrecht, The Netherlands
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre & INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rosa Suades
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- SRH Central Hospital Suhl, Suhl, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fiona Wilkinson
- Centre for Bioscience, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | | | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre & INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for In Silico Medicine, Sheffield, UK
| |
Collapse
|
170
|
Li H, Zou J, Yu XH, Ou X, Tang CK. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol 2020; 236:4216-4230. [PMID: 33275290 DOI: 10.1002/jcp.30177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor belonging to the ZEB family, plays a crucial role in regulating gene expression required for both normal physiological and pathological processes. Accumulating evidence has shown that ZEB1 participates in the initiation and progression of atherosclerotic cardiovascular disease. Recent studies suggest that ZEB1 protects against atherosclerosis by regulation of endothelial cell angiogenesis, endothelial dysfunction, monocyte-endothelial cell interaction, macrophage lipid accumulation, macrophage polarization, monocyte-vascular smooth muscle cell (VSMC) interaction, VSMC proliferation and migration, and T cell proliferation. In this review, we summarize the recent progress of ZEB1 in the pathogenesis of atherosclerosis and provide insights into the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
171
|
Fragiadaki M, Macleod FM, Ong ACM. The Controversial Role of Fibrosis in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2020; 21:ijms21238936. [PMID: 33255651 PMCID: PMC7728143 DOI: 10.3390/ijms21238936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the progressive growth of cysts but it is also accompanied by diffuse tissue scarring or fibrosis. A number of recent studies have been published in this area, yet the role of fibrosis in ADPKD remains controversial. Here, we will discuss the stages of fibrosis progression in ADPKD, and how these compare with other common kidney diseases. We will also provide a detailed overview of some key mechanistic pathways to fibrosis in the polycystic kidney. Specifically, the role of the 'chronic hypoxia hypothesis', persistent inflammation, Transforming Growth Factor beta (TGFβ), Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and microRNAs will be examined. Evidence for and against a pathogenic role of extracellular matrix during ADPKD disease progression will be provided.
Collapse
|
172
|
Chakrabarti A, Goldstein DR, Sutton NR. Age-associated arterial calcification: the current pursuit of aggravating and mitigating factors. Curr Opin Lipidol 2020; 31:265-272. [PMID: 32773466 PMCID: PMC7891872 DOI: 10.1097/mol.0000000000000703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW The incidence of arterial calcification increases with age, can occur independently of atherosclerosis and hyperlipidemia, contributes to vessel stiffening, and is associated with adverse cardiovascular outcomes. Here, we provide an up-to-date review of how aging leads to arterial calcification and discuss potential therapies. RECENT FINDINGS Recent research suggests that mitochondrial dysfunction (impaired efficiency of the respiratory chain, increased reactive oxygen species production, and a high mutation rate of mitochondrial DNA), cellular senescence, ectonucleotidases, and extrinsic factors such as hyperglycemia promote age-determined calcification. We discuss the future potential impact of antilipidemics, senolytics, and poly(ADP-ribose)polymerases inhibitors on age-associated arterial calcification. SUMMARY Understanding how mechanisms of aging lead to arterial calcification will allow us to pinpoint prospective strategies to mitigate arterial calcification, even after the effects of aging have already begun to occur.
Collapse
Affiliation(s)
- Apurba Chakrabarti
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
173
|
Bosseboeuf E, Raimondi C. Signalling, Metabolic Pathways and Iron Homeostasis in Endothelial Cells in Health, Atherosclerosis and Alzheimer's Disease. Cells 2020; 9:cells9092055. [PMID: 32911833 PMCID: PMC7564205 DOI: 10.3390/cells9092055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells drive the formation of new blood vessels in physiological and pathological contexts such as embryonic development, wound healing, cancer and ocular diseases. Once formed, all vessels of the vasculature system present an endothelial monolayer (the endothelium), lining the luminal wall of the vessels, that regulates gas and nutrient exchange between the circulating blood and tissues, contributing to maintaining tissue and vascular homeostasis. To perform their functions, endothelial cells integrate signalling pathways promoted by growth factors, cytokines, extracellular matrix components and signals from mechanosensory complexes sensing the blood flow. New evidence shows that endothelial cells rely on specific metabolic pathways for distinct cellular functions and that the integration of signalling and metabolic pathways regulates endothelial-dependent processes such as angiogenesis and vascular homeostasis. In this review, we provide an overview of endothelial functions and the recent advances in understanding the role of endothelial signalling and metabolism in physiological processes such as angiogenesis and vascular homeostasis and vascular diseases. Also, we focus on the signalling pathways promoted by the transmembrane protein Neuropilin-1 (NRP1) in endothelial cells, its recently discovered role in regulating mitochondrial function and iron homeostasis and the role of mitochondrial dysfunction and iron in atherosclerosis and neurodegenerative diseases.
Collapse
|
174
|
Mandrycky C, Hadland B, Zheng Y. 3D curvature-instructed endothelial flow response and tissue vascularization. SCIENCE ADVANCES 2020; 6:eabb3629. [PMID: 32938662 PMCID: PMC7494348 DOI: 10.1126/sciadv.abb3629] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/21/2020] [Indexed: 05/08/2023]
Abstract
Vascularization remains a long-standing challenge in engineering complex tissues. Particularly needed is recapitulating 3D vascular features, including continuous geometries with defined diameter, curvature, and torsion. Here, we developed a spiral microvessel model that allows precise control of curvature and torsion and supports homogeneous tissue perfusion at the centimeter scale. Using this system, we showed proof-of-principle modeling of tumor progression and engineered cardiac tissue vascularization. We demonstrated that 3D curvature induced rotation and mixing under laminar flow, leading to unique phenotypic and transcriptional changes in endothelial cells (ECs). Bulk and single-cell RNA-seq identified specific EC gene clusters in spiral microvessels. These mark a proinflammatory phenotype associated with vascular development and remodeling, and a unique cell cluster expressing genes regulating vascular stability and development. Our results shed light on the role of heterogeneous vascular structures in differential development and pathogenesis and provide previously unavailable tools to potentially improve tissue vascularization and regeneration.
Collapse
Affiliation(s)
- Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Cardiovascular Biology, and Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
- Center for Cardiovascular Biology, and Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
175
|
Bogert NV, Furkel J, Din S, Braren I, Eckstein V, Müller JA, Uhlmann L, Katus HA, Konstandin MH. A novel approach to genetic engineering of T-cell subsets by hematopoietic stem cell infection with a bicistronic lentivirus. Sci Rep 2020; 10:13740. [PMID: 32792615 PMCID: PMC7426960 DOI: 10.1038/s41598-020-70793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
Lentiviral modification of hematopoietic stem cells (HSCs) paved the way for in vivo experimentation and therapeutic approaches in patients with genetic disease. A disadvantage of this method is the use of a ubiquitous promoter leads not only to genetic modification of the leukocyte subset of interest e.g. T-cells, but also all other subsequent leukocyte progeny of the parent HSCs. To overcome this limitation we tested a bicistronic lentivirus, enabling subset specific modifications. Designed novel lentiviral constructs harbor a global promoter (mPGK) regulating mCherry for HSCs selection and a T-cell specific promoter upstream of eGFP. Two T-cell specific promoters were assessed: the distal Lck—(dLck) and the CD3δ-promoter. Transduced HSCs were FACS sorted by mCherry expression and transferred into sublethally irradiated C57/BL6 mice. Successful transplantation and T-cell specific expression of eGFP was monitored by peripheral blood assessment. Furthermore, recruitment response of lentiviral engineered leukocytes to the site of inflammation was tested in a peritonitis model without functional impairment. Our constructed lentivirus enables fast generation of subset specific leukocyte transgenesis as shown in T-cells in vivo and opens new opportunities to modify other HSCs derived subsets in the future.
Collapse
Affiliation(s)
- N V Bogert
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany.
| | - J Furkel
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - S Din
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - I Braren
- Vector Core Facility, University Hospital Hamburg-Eppendorf, University Hamburg, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Hamburg, Germany
| | - V Eckstein
- Department of Hematology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - J A Müller
- Department of Hematology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - L Uhlmann
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - H A Katus
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - M H Konstandin
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
176
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
177
|
Harman JL, Sayers J, Chapman C, Pellet-Many C. Emerging Roles for Neuropilin-2 in Cardiovascular Disease. Int J Mol Sci 2020; 21:E5154. [PMID: 32708258 PMCID: PMC7404143 DOI: 10.3390/ijms21145154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, is predominantly associated with atherosclerosis. Atherosclerosis is a chronic inflammatory disease characterised by the narrowing of large to medium-sized arteries due to a build-up of plaque. Atherosclerotic plaque is comprised of lipids, extracellular matrix, and several cell types, including endothelial, immune, and vascular smooth muscle cells. Such narrowing of the blood vessels can itself restrict blood flow to vital organs but most severe clinical complications, including heart attacks and strokes, occur when lesions rupture, triggering the blood to clot and obstructing blood flow further down the vascular tree. To circumvent such obstructions, percutaneous coronary intervention or bypass grafts are often required; however, re-occlusion of the treated artery frequently occurs. Neuropilins (NRPs), a multifunctional family of cell surface co-receptors, are expressed by endothelial, immune, and vascular smooth muscle cells and are regulators of numerous signalling pathways within the vasculature. Here, we review recent studies implicating NRP2 in the development of occlusive vascular diseases and discuss how NRP2 could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer L Harman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jacob Sayers
- University College London, Division of Medicine, Rayne Building, University Street, London WC1E 6JF, UK
| | - Chey Chapman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
178
|
Cai J, Deng J, Gu W, Ni Z, Liu Y, Kamra Y, Saxena A, Hu Y, Yuan H, Xiao Q, Lu Y, Xu Q. Impact of Local Alloimmunity and Recipient Cells in Transplant Arteriosclerosis. Circ Res 2020; 127:974-993. [PMID: 32689904 DOI: 10.1161/circresaha.119.316470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Transplant arteriosclerosis is the major limitation to long-term survival of solid organ transplantation. Although both immune and nonimmune cells have been suggested to contribute to this process, the complex cellular heterogeneity within the grafts, and the underlying mechanisms regulating the disease progression remain largely uncharacterized. OBJECTIVE We aimed to delineate the cellular heterogeneity within the allografts, and to explore possible mechanisms underlying this process. METHODS AND RESULTS Here, we reported the transcriptional profiling of 11 868 cells in a mouse model of transplant arteriosclerosis by single-cell RNA sequencing. Unbiased clustering analyses identified 21 cell clusters at different stages of diseases, and focused analysis revealed several previously unknown subpopulations enriched in the allografts. Interestingly, we found evidence of the local formation of tertiary lymphoid tissues and suggested a possible local modulation of alloimmune responses within the grafts. Intercellular communication analyses uncovered a potential role of several ligands and receptors, including Ccl21a and Cxcr3, in regulating lymphatic endothelial cell-induced early chemotaxis and infiltration of immune cells. In vivo mouse experiments confirmed the therapeutic potential of CCL21 and CXCR3 neutralizing antibodies in transplant arteriosclerosis. Combinational use of genetic lineage tracing and single-cell techniques further indicate the infiltration of host-derived c-Kit+ stem cells as heterogeneous populations in the allografts. Finally, we compared the immune response between mouse allograft and atherosclerosis models in single-cell RNA-seq analysis. By analyzing susceptibility genes of disease traits, we also identified several cell clusters expressing genes associated with disease risk. CONCLUSIONS Our study provides a transcriptional and cellular landscape of transplant arteriosclerosis, which could be fundamental to understanding the initiation and progression of this disease. CCL21/CXCR3 was also identified as important regulators of immune response and may serve as potential therapeutic targets in disease treatment.
Collapse
Affiliation(s)
- Jingjing Cai
- From the Center of Pharmacology (J.C., Y.L., H.Y., Y.L.), The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (J.D., W.G., Y.H., Q.X.).,School of Cardiovascular Medicine and Sciences, King's College BHF Centre, London, United Kingdom (J.D., W.G., Z.N.)
| | - Wenduo Gu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (J.D., W.G., Y.H., Q.X.).,School of Cardiovascular Medicine and Sciences, King's College BHF Centre, London, United Kingdom (J.D., W.G., Z.N.)
| | - Zhichao Ni
- School of Cardiovascular Medicine and Sciences, King's College BHF Centre, London, United Kingdom (J.D., W.G., Z.N.)
| | - Yuanyuan Liu
- From the Center of Pharmacology (J.C., Y.L., H.Y., Y.L.), The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yogesh Kamra
- Genomics Research Platform, Biomedical Research Centre at Guy's Hospital, London, United Kingdom (Y.K., A.S.)
| | - Alka Saxena
- Genomics Research Platform, Biomedical Research Centre at Guy's Hospital, London, United Kingdom (Y.K., A.S.)
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (J.D., W.G., Y.H., Q.X.)
| | - Hong Yuan
- From the Center of Pharmacology (J.C., Y.L., H.Y., Y.L.), The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiology (H.Y.), The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingzhong Xiao
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (J.D., W.G., Y.H., Q.X.).,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Yao Lu
- From the Center of Pharmacology (J.C., Y.L., H.Y., Y.L.), The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingbo Xu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| |
Collapse
|
179
|
|
180
|
Chen PY, Schwartz MA, Simons M. Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Front Cardiovasc Med 2020; 7:53. [PMID: 32478094 PMCID: PMC7232582 DOI: 10.3389/fcvm.2020.00053] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic progressive disease characterized by vascular inflammation and growth of atherosclerotic plaque that eventually lead to compromise of blood flow. The disease has proven to be remarkably resistant to multiple attempts at meaningful reversal including recent strategies targeting selective inflammatory mediators. Endothelial-to-mesenchymal transition (EndMT) has emerged as a key driver of both vascular inflammation and plaque growth. A deeper understanding of EndMT provides new insights into the underlying biology of atherosclerosis, suggests likely molecular mechanism of atherosclerotic resistance, and identifies potential new therapeutic targets.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, United States
| | - Martin A Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Simons
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
181
|
Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S, Gujja S, Caulk AW, Murtada SI, Zhang X, Zhuang ZW, Rao DA, Wang G, Tobiasova Z, Jiang B, Montgomery RR, Sun L, Sun H, Fisher EA, Gulcher JR, Fernandez-Hernando C, Humphrey JD, Tellides G, Chittenden TW, Simons M. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell 2020; 26:542-557.e11. [PMID: 32243809 PMCID: PMC7182079 DOI: 10.1016/j.stem.2020.02.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 11/29/2022]
Abstract
The etiology of aortic aneurysms is poorly understood, but it is associated with atherosclerosis, hypercholesterolemia, and abnormal transforming growth factor β (TGF-β) signaling in smooth muscle. Here, we investigated the interactions between these different factors in aortic aneurysm development and identified a key role for smooth muscle cell (SMC) reprogramming into a mesenchymal stem cell (MSC)-like state. SMC-specific ablation of TGF-β signaling in Apoe-/- mice on a hypercholesterolemic diet led to development of aortic aneurysms exhibiting all the features of human disease, which was associated with transdifferentiation of a subset of contractile SMCs into an MSC-like intermediate state that generated osteoblasts, chondrocytes, adipocytes, and macrophages. This combination of medial SMC loss with marked increases in non-SMC aortic cell mass induced exuberant growth and dilation of the aorta, calcification and ossification of the aortic wall, and inflammation, resulting in aneurysm development.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong Province, China
| | - Jose Malagon-Lopez
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA
| | - Zheng Wang
- School of Basic Medicine, Qingdao University, Shandong, China
| | - Sonia Bergaya
- Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | - Sharvari Gujja
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA
| | - Alexander W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guilin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lele Sun
- Genomics Laboratory, WuXiNextCODE, Shanghai, China
| | - Hongye Sun
- Genomics Laboratory, WuXiNextCODE, Shanghai, China
| | - Edward A Fisher
- Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | | | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | - Thomas W Chittenden
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
182
|
Yu F, Tie Y, Zhang Y, Wang Z, Yu L, Zhong L, Zhang C. Circular RNA expression profiles and bioinformatic analysis in coronary heart disease. Epigenomics 2020; 12:439-454. [PMID: 32043895 DOI: 10.2217/epi-2019-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We aimed to identify the expression profile and role of circular RNAs (circRNAs) in coronary heart disease (CHD). Materials & methods: We performed sequence analysis of circRNAs in peripheral blood mononuclear cells of 70 CHD patients and 30 controls. Eight selected circRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR) in human atherosclerotic coronary arteries. Results: In total, 2283 downregulated and 85 upregulated circRNAs were identified in CHD. Parental genes of top 100 dysregulated-circRNAs are related to metabolism and protein modification, and 12 circRNAs might upregulate their CHD-related parental genes through miRNA sponges. Of the eight circRNAs validated in atherosclerotic coronary arteries by qRT-PCR, six were consistent with sequencing results of peripheral blood mononuclear cells. Conclusion: As potential ceRNAs, dysregulated circRNAs may be involved in CHD pathophysiology.
Collapse
Affiliation(s)
- Fangpu Yu
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, & The State & Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Yuanyuan Tie
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, & The State & Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Ya Zhang
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, & The State & Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Zunzhe Wang
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, & The State & Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, & The State & Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Lin Zhong
- The Cardiology Department of Yuhuangding Hospital, Qingdao University School of Medicine, Yantai 264000, Shandong, PR China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education, Chinese Ministry of Health & Chinese Academy of Medical Sciences, & The State & Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| |
Collapse
|
183
|
Simons M, Chen PY, Chittenden TW. Resilience, disease and the age of single cell science. Aging (Albany NY) 2020; 12:2028-2029. [PMID: 32039835 PMCID: PMC7041776 DOI: 10.18632/aging.102850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Simons
- Yale Cardiovascular Research Center, New Haven, CT 06510, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pei-Yu Chen
- Yale Cardiovascular Research Center, New Haven, CT 06510, USA
| | - Thomas W Chittenden
- WuXi NextCode, Inc., Cambridge, MA 02142, USA.,Divison of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
184
|
Liu Y, Deng W, Yang L, Fu X, Wang Z, van Rijn P, Zhou Q, Yu T. Biointerface topography mediates the interplay between endothelial cells and monocytes. RSC Adv 2020; 10:13848-13854. [PMID: 35492981 PMCID: PMC9051607 DOI: 10.1039/d0ra00704h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022] Open
Abstract
Endothelial cell (EC) monolayers located in the inner lining of blood vessels serve as a semipermeable barrier between circulating blood and surrounding tissues. The structure and function of the EC monolayer affect the recruitment and adhesion of monocytes, which plays a pivotal role in the development of inflammation and atherosclerosis. Here we investigate the effect of material wrinkled topographies on the responses of human umbilical vein endothelial cells (HUVECs) and adhesion of monocytes to HUVECs. It is found that HUVEC responses are non-linearly mediated by surface topographies with different dimensions. Specifically, more cell elongation and better cell orientation on the wrinkled surface with a 3.5 μm amplitude and 10 μm wavelength (W10) are observed compared to other surfaces. The proliferation rate of HUVECs on the W10 surface is higher than that on other surfaces due to more 5-ethynyl-2′-deoxyuridine (EdU) detected on the W10 surface. Also, greater expression of inflammatory cytokines from HUVECs and adhesion of monocytes to HUVECs on the W10 surface is shown than other surfaces due to greater expression of p-AKT and ICAM, respectively. This study offers a new in vitro system to understand the interplay between HUVEC monolayers and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing. This study offers a new in vitro system to understand the interplay between HUVEC monolayer and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing.![]()
Collapse
Affiliation(s)
- Yan Liu
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| | - Wenshuai Deng
- Department of Neurosurgery
- The Affiliated Hospital of Qingdao University
- Qingdao 266003
- China
| | - Liangliang Yang
- University of Groningen
- W. J. Kolff Institute for Biomedical Engineering and Materials Science
- Department of Biomedical Engineering
- University Medical Center Groningen
- Groningen
| | - Xiuxiu Fu
- Department of Echocardiography
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Zhibin Wang
- Department of Echocardiography
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Patrick van Rijn
- University of Groningen
- W. J. Kolff Institute for Biomedical Engineering and Materials Science
- Department of Biomedical Engineering
- University Medical Center Groningen
- Groningen
| | - Qihui Zhou
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| | - Tao Yu
- Institute for Translational Medicine
- School of Basic Medicine
- Qingdao University
- Qingdao
- China
| |
Collapse
|
185
|
Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 120:85-122. [PMID: 32085889 DOI: 10.1016/bs.apcsb.2019.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The term atherosclerosis refers to the condition of deposition of lipids and other substances in and on the artery walls, called as plaque that restricts the normal blood flow. The plaque may be stable or unstable in nature. Unstable plaque can burst and trigger clot formation adding further adversities. The process of plaque formation involves various stages including fatty streak, intermediate or fibro-fatty lesion and advanced lesion. The cells participating in the formation of atherosclerotic plaque include endothelial cells, vascular smooth muscle cells (VSMC), monocytes, monocytes derived macrophages, macrophages and dendritic cells and regulatory T cells (TREG). The role of a variety of cytokines and chemokines have been studied which either help in progression of atherosclerotic plaque or vice versa. The cytokines involved in atherosclerotic plaque formation include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IL-20, IL-25, IL-27, IL-33, IL-37, TNF-α, TGF-β and IFN-γ; whereas amongst the chemokines (family of small cytokines) are CCL2, CCL3, CXCL4, CCL5, CXCL1, CX3CL1, CCL17, CXCL8, CXCL10, CCL20, CCL19 and CCL21 and macrophage migration-inhibitory factor. These are involved in the atherosclerosis advancements, whereas the chemokine CXCL12 is play atheroprotective roles. Apart this, contradictory functions have been documented for few other chemokines such as CXCL16. Since the cytokines and chemokines are amongst the key molecules involved in orchestrating the atherosclerosis advancements, targeting them might be an effective strategy to encumber the atherosclerotic progression. Blockage of cytokines and chemokines via the means of broad-spectrum inhibitors, neutralizing antibodies, usage of decoy receptors or RNA interference have been proved to be useful intervention against atherosclerosis.
Collapse
Affiliation(s)
- Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| |
Collapse
|
186
|
TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci 2019; 20:ijms20205002. [PMID: 31658594 PMCID: PMC6834140 DOI: 10.3390/ijms20205002] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is broadly defined as the functional decline that occurs in all body systems. The accumulation of senescent cells is considered a hallmark of aging and thought to contribute to the aging pathologies. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates a myriad of cellular processes and has important roles in embryonic development, physiological tissue homeostasis, and various pathological conditions. TGF-β exerts potent growth inhibitory activities in various cell types, and multiple growth regulatory mechanisms have reportedly been linked to the phenotypes of cellular senescence and stem cell aging in previous studies. In addition, accumulated evidence has indicated a multifaceted association between TGF-β signaling and aging-associated disorders, including Alzheimer’s disease, muscle atrophy, and obesity. The findings regarding these diseases suggest that the impairment of TGF-β signaling in certain cell types and the upregulation of TGF-β ligands contribute to cell degeneration, tissue fibrosis, inflammation, decreased regeneration capacity, and metabolic malfunction. While the biological roles of TGF-β depend highly on cell types and cellular contexts, aging-associated changes are an important additional context which warrants further investigation to better understand the involvement in various diseases and develop therapeutic options. The present review summarizes the relationships between TGF-β signaling and cellular senescence, stem cell aging, and aging-related diseases.
Collapse
|
187
|
Affiliation(s)
- Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|