151
|
Abbas M, Alzarea S, Papke RL, Rahman S. The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-α in the hippocampus in mice. Pharmacol Rep 2019. [DOI: https://doi.org/10.1016/j.pharep.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
152
|
Abbas M, Alzarea S, Papke RL, Rahman S. The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-α in the hippocampus in mice. Pharmacol Rep 2019; 71:1168-1176. [PMID: 31655281 PMCID: PMC7745232 DOI: 10.1016/j.pharep.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies have shown that α7 nicotinic acetylcholine receptor (nAChR) has a critical role in the regulation of pain sensitivity and neuroinflammation. However, pharmacological effects of α7 nAChR activation in the hippocampus on neuroinflammatory mechanisms associated with allodynia and hyperalgesia remain unknown. We have determined the effects of 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an α7 nAChR positive allosteric modulator, on lipopolysaccharide (LPS)-induced allodynia and hyperalgesia in mice. We also evaluated the effects of TQS on immunoreactivity of microglial marker ionized-calcium binding adaptor molecule 1 (Iba-1), phospho-nuclear factor-κB (p-NF-κB p65), tumor necrosis factor-alpha (TNF-α), and norepinephrine (NE) level. METHODS Mice were treated with (0.25, 1 or 4 mg/kg, ip) followed by LPS (1 mg/kg, ip) administration. Allodynia and hyperalgesia were determined using von Frey filaments and hot plate respectively. Immunoreactivity of Iba-1, p-NF-κB p65, and TNF-α, were measured in the hippocampus using immunofluorescence assay. Hippocampal NE level was evaluated using high performance liquid chromatography. RESULTS LPS administration resulted in allodynia and hyperalgesia in mice after six h. Systemic administration of TQS prevented LPS-induced allodynia and hyperalgesia. TQS pretreatment significantly decreased the immunoreactivity of Iba-1, p-NF-κB, and TNF-α in CA1 and DG regions of the hippocampus. In addition, TQS reversed LPS-induced NE reduction in the hippocampus. CONCLUSIONS Taken together, our results suggest that TQS prevented LPS-induced allodynia and hyperalgesia, upregulation of TNF-α expression and NE level reduction involving microglial α7 nAChR in part in the hippocampus. Therefore, these findings highlight the important effects of α7 nAChR allosteric modulator against symptoms of inflammatory pain.
Collapse
Affiliation(s)
- Muzaffar Abbas
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, USA
| | - Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
153
|
Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019; 62:10376-10390. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC50's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay. After characterizing the expanded lead landscape, we ranked the compounds for rapid activation using Xenopus oocytes expressing human α7 nAChR with a two-electrode voltage clamp. This approach enabled us to define the molecular determinants governing rapid activation, agonist potency, and desensitization of α7 nAChRs after exposure to pyrimidine analogues, thereby distinguishing this subclass of noncanonical agonists from previously defined types of agonists (agonists, partial agonists, silent agonists, and ago-PAMs). By NMR, we analyzed pKa values for ionization of lead candidates, demonstrating distinctive modes of interaction for this landscape of ligands.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Clare Stokes
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Brendan M Duggan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Stefania Brandao-Araiza
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Lisa Doan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Roger L Papke
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Palmer Taylor
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| |
Collapse
|
154
|
Nasoohi S, Parveen K, Ishrat T. Metabolic Syndrome, Brain Insulin Resistance, and Alzheimer's Disease: Thioredoxin Interacting Protein (TXNIP) and Inflammasome as Core Amplifiers. J Alzheimers Dis 2019; 66:857-885. [PMID: 30372683 DOI: 10.3233/jad-180735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Empirical evidence indicates a strong association between insulin resistance and pathological alterations related to Alzheimer's disease (AD) in different cerebral regions. While cerebral insulin resistance is not essentially parallel with systemic metabolic derangements, type 2 diabetes mellitus (T2DM) has been established as a risk factor for AD. The circulating "toxic metabolites" emerging in metabolic syndrome may engage several biochemical pathways to promote oxidative stress and neuroinflammation leading to impair insulin function in the brain or "type 3 diabetes". Thioredoxin-interacting protein (TXNIP) as an intracellular amplifier of oxidative stress and inflammasome activation may presumably mediate central insulin resistance. Emerging data including those from our recent studies has demonstrated a sharp TXNIP upregulation in stroke, aging and AD and well underlining the significance of this hypothesis. With the main interest to illustrate TXNIP place in type 3 diabetes, the present review primarily briefs the potential mechanisms contributing to cerebral insulin resistance in a metabolically deranged environment. Then with a particular focus on plausible TXNIP functions to drive and associate with AD pathology, we present the most recent evidence supporting TXNIP as a promising therapeutic target in AD as an age-associated dementia.
Collapse
|
155
|
Halawa AA, Rees KA, McCamy KM, Winzer-Serhan UH. Central and peripheral immune responses to low-dose lipopolysaccharide in a mouse model of the 15q13.3 microdeletion. Cytokine 2019; 126:154879. [PMID: 31629107 DOI: 10.1016/j.cyto.2019.154879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Carriers of the human 15q13.3 microdeletion (MD) present with a variable spectrum of neuropathological phenotypes that range from asymptomatic to severe clinical outcomes, suggesting an interplay of genetic and non-genetic factors. The most common 2 MB 15q13.3 MD encompasses six genes (MTMR10, FAN1, TRPM1, KLF13, OTUD7A, and CHRNA7), which are expressed in neuronal and non-neuronal tissues. The nicotinic acetylcholine receptor (nAChR) α7, encoded by CHRNA7, is a key player in the cholinergic anti-inflammatory pathway, and the transcription factor KLF13 is also involved in immune responses. Using a mouse model with a heterozygous deletion of the orthologous region of the human 15q13.3 (Df[h15q13]/+), the present study examined peripheral and central innate immune responses to an acute intraperitoneal (i.p.) injection of the bacteriomimetic, lipopolysaccharide (LPS) (100 μg/kg) in adult heterozygous (Het) and wildtype (WT) mice. Serum levels of inflammatory markers were measured 2 h post injection using a Multiplex assay. In control saline injected animals, all measured cytokines were at or below detection limits, whereas LPS significantly increased serum levels of interleukin 1beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6 and IL-10, but not interferon-γ. There was no effect of genotype but a sexual dimorphic response for TNF-α, with females exhibiting greater LPS-induced TNF-α serum levels than males. In situ hybridization revealed similar increases in LPS-induced c-fos mRNA expression in the dorsal vagal complex in all groups. The hippocampal expression of the pro-inflammatory cytokines was evaluated by real-time quantitative PCR. LPS-treatment resulted in significantly increased mRNA expression for IL-1β, IL-6, and TNF-α compared to saline controls, with no effect of genotype, but a significant sex-effect was detected for IL-1β. The present study provided no evidence for interactive effects between the heterozygous 15q13.3 MD and a low-dose LPS immune challenge in innate peripheral or central immune responses, although, sex-differential effects in males and females were detected.
Collapse
Affiliation(s)
- Amal A Halawa
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
156
|
Herman AP, Skipor J, Krawczyńska A, Bochenek J, Wojtulewicz K, Pawlina B, Antushevich H, Herman A, Tomaszewska-Zaremba D. Effect of Central Injection of Neostigmine on the Bacterial Endotoxin Induced Suppression of GnRH/LH Secretion in Ewes during the Follicular Phase of the Estrous Cycle. Int J Mol Sci 2019; 20:ijms20184598. [PMID: 31533319 PMCID: PMC6769544 DOI: 10.3390/ijms20184598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Induced by a bacterial infection, an immune/inflammatory challenge is a potent negative regulator of the reproduction process in females. The reduction of the synthesis of pro-inflammatory cytokine is considered as an effective strategy in the treatment of inflammatory induced neuroendocrine disorders. Therefore, the effect of direct administration of acetylcholinesterase inhibitor—neostigmine—into the third ventricle of the brain on the gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretions under basal and immune stress conditions was evaluated in this study. In the study, 24 adult, 2-years-old Blackhead ewes during the follicular phase of their estrous cycle were used. Immune stress was induced by the intravenous injection of LPS Escherichia coli in a dose of 400 ng/kg. Animals received an intracerebroventricular injection of neostigmine (1 mg/animal) 0.5 h before LPS/saline treatment. It was shown that central administration of neostigmine might prevent the inflammatory-dependent decrease of GnRH/LH secretion in ewes and it had a stimulatory effect on LH release. This central action of neostigmine is connected with its inhibitory action on local pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)α synthesis in the hypothalamus, which indicates the importance of this mediator in the inhibition of GnRH secretion during acute inflammation.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
- Correspondence: ; Tel.: +48-22-765-33-02; Fax: +48-22-765-33-03
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Bartosz Pawlina
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, 02-366 Warsaw, Poland;
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| |
Collapse
|
157
|
Purohit D, Saini V, Kumar S, Kumar A, Narasimhan B. Three-dimensional Quantitative Structure-activity Relationship (3DQSAR) and Molecular Docking Study of 2-((pyridin-3-yloxy)methyl) Piperazines as α7 Nicotinic Acetylcholine Receptor Modulators for the Treatment of Inflammatory Disorders. Mini Rev Med Chem 2019; 20:1031-1041. [PMID: 31483229 DOI: 10.2174/1389557519666190904151227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/27/2019] [Accepted: 05/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Comparative molecular field analysis (CoMFA) of 27 analogues of 2-((pyridin-3-yloxy)methyl)piperazine derivatives was carried out using software Tripos SYBYL X. Optimal r2 (0.854) and q2 (0.541) values were obtained for the developed 3D-QSAR model. The contour plots obtained from CoMFA analysis have shown 13.84% steric contribution and 66.14% electrostatic contribution towards an anti-inflammatory activity. METHODS The homology model of the receptor protein, α7 nicotinic acetylcholine, was generated in SWISS MODELLER using auto template mode and was analysed for the quality using Procheck, QMEAN Z-score, Anolea and GROMOS plots. The QMEAN score for the model was observed to be - 3.862. The generated model of alpha 7 nicotinic acetylcholine receptor was used for docking study of 27 piperazine analogues using Auto-Dock 4.2.5.1. RESULTS The dock score obtained from docking analysis was then correlated with experimental pIC50 values for in-silico validation of the developed CoMFA model and a good correlation was obtained with correlation coefficient (r2) value of -0.7378. CONCLUSION The present investigation suggests an optimal 3D-QSAR with CoMFA model for further evaluating new chemical entities based on piperazine skeleton.
Collapse
Affiliation(s)
- Deepika Purohit
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Vandana Saini
- Centre For Bioinformatics, Maharshi Dayanand University, Rohtak-124001, India
| | - Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Ajit Kumar
- Centre For Bioinformatics, Maharshi Dayanand University, Rohtak-124001, India
| | | |
Collapse
|
158
|
Bosmans G, Appeltans I, Stakenborg N, Gomez‐Pinilla PJ, Florens MV, Aguilera‐Lizarraga J, Matteoli G, Boeckxstaens GE. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy 2019; 74:1748-1759. [PMID: 30897213 PMCID: PMC6790670 DOI: 10.1111/all.13790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
Background The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti‐inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. Methods Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA‐specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. Results When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. Conclusions These results underscore the anti‐inflammatory properties of the vagus nerve and the potential of neuro‐immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune‐mediated diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Iris Appeltans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Pedro J. Gomez‐Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Morgane V. Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Javier Aguilera‐Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| |
Collapse
|
159
|
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, Mokhtarzadeh A, Shanehbandi D, Doustvandi MA, Asadzadeh Z, Baradaran B. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? J Cell Physiol 2019; 234:14666-14679. [PMID: 30701535 DOI: 10.1002/jcp.28220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
The lung tissue expresses the cholinergic system including nicotinic acetylcholine receptors (nAChRs) which included in many physiologic and pathologic processes. Mounting evidence revealed that these receptors have important roles in lung carcinogenesis via modulating either stimulatory or inhibitory signaling pathways. Among different members of nicotinic receptors family, alpha7-subtype of nAChR (α7nAChR) is a critical mediator involved in both inflammatory responses and cancers. Several studies have shown that this receptor is the most powerful regulator of responses that stimulate lung cancer processes such as proliferation, angiogenesis, metastasis, and inhibition of apoptosis. Moreover, aside from its roles in the regulation of cancer pathways, there is growing evidence indicating that α7nAChR has profound impacts on lung inflammation through the cholinergic anti-inflammatory pathway. Regarding such diverse effects as well as the critical roles of nicotine as an activator of α7nAChR on lung cancer pathogenesis, its modulation has emerged as a promising target for drug developments. In this review, we aim to highlight the detrimental as well as the possible beneficial influences of α7nAChR downstream signaling cascades in the control of lung inflammation and cancer-associated properties. Consequently, by considering the significant global burden of lung cancer, delineating the complex influences of α7 receptors would be of great interest in designing novel anticancer and anti-inflammatory strategies for the patients suffering from lung cancer.
Collapse
Affiliation(s)
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
160
|
Swartzwelder HS, Healey KL, Liu W, Dubester K, Miller KM, Crews FT. Changes in Neuroimmune and Neuronal Death Markers after Adolescent Alcohol Exposure in Rats are Reversed by Donepezil. Sci Rep 2019; 9:12110. [PMID: 31431637 PMCID: PMC6702347 DOI: 10.1038/s41598-019-47039-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
Adolescent intermittent ethanol (AIE) exposure diminishes neurogenesis and dendritic spine density in the dentate gyrus. The cholinesterase inhibitor, donepezil (Aricept), reverses AIE effects on dendritic spines, possibly by interacting with inflammatory and/or epigenetic mediators after AIE exposure. This study tests the hypothesis that donepezil reverses AIE-induced neuroimmune, and epigenetic changes in the adult dentate gyrus. Adolescent Sprague-Dawley male rats (PD30-43) were given 10 intermittent, intragastric doses of ethanol (5.0 g/kg) or isovolumetric water (AIW). Twenty-one days later half of the animals from each group were treated with either donepezil or isovolumetric water (i.g.) once daily for four days. Two hours after the last donepezil or water dose animals were sacrificed and brains prepared for immunohistochemical analyses. AIE reduced immunoreactivity for doublecortin (DCX) and increased immunoreactivity for activated caspase-3 and death receptor-3 in adulthood, suggesting an enduring attenuation of neurogenesis and an increase in progenitor death. These effects were reversed by donepezil treatment in adulthood. AIE also increased immunoreactivity for the inflammatory signaling molecules HMGB1 and RAGE, as well as the activated phosphorylated transcription factor pNFκB p65, and the gene silencing marker dimethylated histone H3K9. All of these AIE effects were also reversed by donepezil, with the exception of HMGB1.
Collapse
Affiliation(s)
- H S Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, N.C., USA.
| | - Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, N.C., USA
| | - Wen Liu
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, N.C., USA
| | - Kira Dubester
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, N.C., USA
| | - Kelsey M Miller
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, N.C., USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, N.C., USA
| |
Collapse
|
161
|
Lykhmus O, Kalashnyk O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Mesenchymal Stem Cells or Interleukin-6 Improve Episodic Memory of Mice Lacking α7 Nicotinic Acetylcholine Receptors. Neuroscience 2019; 413:31-44. [DOI: 10.1016/j.neuroscience.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
162
|
Zazueta-Favela D, Donis-Maturano L, Licea-Navarro AF, Bernáldez-Sarabia J, Dan KWL, Cota-Arce JM, Escobedo G, De León-Nava MA. Marine peptides as immunomodulators: Californiconus californicus-derived synthetic conotoxins induce IL-10 production by regulatory T cells (CD4+Foxp3+). Immunopharmacol Immunotoxicol 2019; 41:463-468. [DOI: 10.1080/08923973.2019.1641114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniela Zazueta-Favela
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| | - Luis Donis-Maturano
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| | - Alexei F. Licea-Navarro
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| | - Johanna Bernáldez-Sarabia
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| | - Kee W. L. Dan
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| | - Julián M. Cota-Arce
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| | - Galileo Escobedo
- Laboratory for Proteomics and Metabolomics, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Marco A. De León-Nava
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Baja California, Mexico
| |
Collapse
|
163
|
Choline Supplementation Ameliorates Behavioral Deficits and Alzheimer's Disease‐Like Pathology in Transgenic
APP/PS1
Mice. Mol Nutr Food Res 2019; 63:e1801407. [DOI: 10.1002/mnfr.201801407] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/10/2019] [Indexed: 12/20/2022]
|
164
|
Alzarea S, Rahman S. Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice. Behav Brain Res 2019. [DOI: https://doi.org/10.1016/j.bbr.2019.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
165
|
Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice. Behav Brain Res 2019; 366:19-28. [DOI: 10.1016/j.bbr.2019.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
|
166
|
Malińska D, Więckowski MR, Michalska B, Drabik K, Prill M, Patalas-Krawczyk P, Walczak J, Szymański J, Mathis C, Van der Toorn M, Luettich K, Hoeng J, Peitsch MC, Duszyński J, Szczepanowska J. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr 2019; 51:259-276. [PMID: 31197632 PMCID: PMC6679833 DOI: 10.1007/s10863-019-09800-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jarosław Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
167
|
Fernández-Cabezudo MJ, George JA, Bashir G, Mohamed YA, Al-Mansori A, Qureshi MM, Lorke DE, Petroianu G, Al-Ramadi BK. Involvement of Acetylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes. Front Immunol 2019; 10:1038. [PMID: 31156627 PMCID: PMC6529936 DOI: 10.3389/fimmu.2019.01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Type I diabetes (T1D) is a T cell-driven autoimmune disease that results in the killing of pancreatic β-cells and, consequently, loss of insulin production. Using the multiple low-dose streptozotocin (MLD-STZ) model of experimental autoimmune diabetes, we previously reported that pretreatment with a specific acetylcholinesterase inhibitor (AChEI), paraoxon, prevented the development of hyperglycemia in C57BL/6 mice. This correlated with an inhibition of T cell infiltration into the pancreatic islets and a reduction in pro-inflammatory cytokines. The cholinergic anti-inflammatory pathway utilizes nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs, respectively) expressed on a variety of cell types. In this study, we carried out a comparative analysis of the effect of specific antagonists of nAChRs or mAChRs on the development of autoimmune diabetes. Co-administration of mecamylamine, a non-selective antagonist of nAChRs maintained the protective effect of AChEI on the development of hyperglycemia. In contrast, co-administration of atropine, a non-selective antagonist of mAChRs, mitigated AChEI-mediated protection. Mice pretreated with mecamylamine had an improved response in glucose tolerance test (GTT) than mice pretreated with atropine. These differential effects of nAChR and mAChR antagonists correlated with the extent of islet cell infiltration and with the structure and functionality of the β-cells. Taken together, our data suggest that mAChRs are essential for the protective effect of cholinergic stimulation in autoimmune diabetes.
Collapse
Affiliation(s)
- Maria J Fernández-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Junu A George
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alreem Al-Mansori
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed M Qureshi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Dietrich E Lorke
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Georg Petroianu
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
168
|
Cao M, MacDonald JW, Liu HL, Weaver M, Cortes M, Durosier LD, Burns P, Fecteau G, Desrochers A, Schulkin J, Antonelli MC, Bernier RA, Dorschner M, Bammler TK, Frasch MG. α7 Nicotinic Acetylcholine Receptor Signaling Modulates Ovine Fetal Brain Astrocytes Transcriptome in Response to Endotoxin. Front Immunol 2019; 10:1063. [PMID: 31143190 PMCID: PMC6520997 DOI: 10.3389/fimmu.2019.01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation in utero may result in lifelong neurological disabilities. Astrocytes play a pivotal role in this process, but the mechanisms are poorly understood. No early postnatal treatment strategies exist to enhance neuroprotective potential of astrocytes. We hypothesized that agonism on α7 nicotinic acetylcholine receptor (α7nAChR) in fetal astrocytes will augment their neuroprotective transcriptome profile, while the inhibition of α7nAChR will achieve the opposite. Using an in vivo–in vitro model of developmental programming of neuroinflammation induced by lipopolysaccharide (LPS), we validated this hypothesis in primary fetal sheep astrocytes cultures re-exposed to LPS in the presence of a selective α7nAChR agonist or antagonist. Our RNAseq findings show that a pro-inflammatory astrocyte transcriptome phenotype acquired in vitro by LPS stimulation is reversed with α7nAChR agonistic stimulation. Conversely, α7nAChR inhibition potentiates the pro-inflammatory astrocytic transcriptome phenotype. Furthermore, we conducted a secondary transcriptome analysis against the identical α7nAChR experiments in fetal sheep primary microglia cultures. Similar to findings in fetal microglia, in fetal astrocytes we observed a memory effect of in vivo exposure to inflammation, expressed in a perturbation of the iron homeostasis signaling pathway (hemoxygenase 1, HMOX1), which persisted under pre-treatment with α7nAChR antagonist but was reversed with α7nAChR agonist. For both glia cell types, common pathways activated due to LPS included neuroinflammation signaling and NF-κB signaling in some, but not all comparisons. However, overall, the overlap on the level of signaling pathways was rather minimal. Astrocytes, not microglia—the primary immune cells of the brain, were characterized by unique inhibition patterns of STAT3 pathway due to agonistic stimulation of α7nAChR prior to LPS exposure. Lastly, we discuss the implications of our findings for fetal and postnatal brain development.
Collapse
Affiliation(s)
- Mingju Cao
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Hai L Liu
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Molly Weaver
- UW Medicine Center for Precision Diagnostics, University of Washington, Seattle, WA, United States
| | - Marina Cortes
- Animal Reproduction Research Centre (CRRA), Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lucien D Durosier
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Patrick Burns
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gilles Fecteau
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - André Desrochers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Schulkin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Michael Dorschner
- UW Medicine Center for Precision Diagnostics, University of Washington, Seattle, WA, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Martin G Frasch
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Animal Reproduction Research Centre (CRRA), Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States.,Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| |
Collapse
|
169
|
Chu ECP, Bellin D. Remission of myasthenia gravis following cervical adjustment. AME Case Rep 2019; 3:9. [PMID: 31119210 PMCID: PMC6509433 DOI: 10.21037/acr.2019.04.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 09/09/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder, caused by circulating antibodies against the acetylcholine receptor (AChR) and associated proteins. Anticholinesterase medications and immunomodulating therapies are the mainstays of current treatment. Presented here is a case of a 51-year-old female who had been diagnosed with MG based on symptoms and continued elevation of antibody to AChR (anti-AChR) by her family physician. The patient's anticholinesterase medication was halted due to significant side effects affecting bowel function. She only received acupuncture treatment in the past 4 months prior to this presentation. Myasthenic symptoms deteriorated and the anti-AChR titer kept elevating after stopping medication. She originally came to us due to neck and back pain rather than myasthenic complaints. This case is interesting that her back pain and myasthenic symptoms went into complete remission within 1 month of initiating chiropractic adjustment. The concomitant recession of the myasthenic symptoms raises considerable interest for the mystery of MG, including the causal link between stress and autoimmune disease, the role of ACh in immune regulation, and the possible mechanisms of disease amelioration. Further studies would shed more light on the efficacy of various modalities in treating MG.
Collapse
Affiliation(s)
- Eric Chun Pu Chu
- New York Chiropractic and Physiotherapy Centre, New York Medical Group, Hong Kong, China
| | - David Bellin
- New York Chiropractic and Physiotherapy Centre, New York Medical Group, Hong Kong, China
| |
Collapse
|
170
|
Habek M. Immune and autonomic nervous system interactions in multiple sclerosis: clinical implications. Clin Auton Res 2019; 29:267-275. [PMID: 30963343 DOI: 10.1007/s10286-019-00605-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis is characterized by a wide spectrum of clinical manifestations, among which dysfunction of the autonomic nervous system represents an important cause of multiple sclerosis-related disability. The aim of this review is to provide an overview of autonomic dysfunction in people with multiple sclerosis, and to discuss the interactions between the immune and autonomic nervous systems and the effects of these interactions on various aspects of multiple sclerosis. Autonomic dysfunction in people with multiple sclerosis can be demonstrated clinically and on a molecular level. Clinically, it can be demonstrated by measuring autonomic symptoms with the Composite Autonomic Symptom Score (COMPASS-31), and neurophysiologically, with different autonomic nervous system tests. Both symptomatic and objectively determined autonomic dysfunction can be associated with increased risk of multiple sclerosis disease activity. Further supporting these clinical observations are molecular changes in immune cells. Changes in the sympathetic autonomic system, such as different expression of dopaminergic and adrenergic receptors on immune cells, or modulation of the cholinergic anti-inflammatory pathway over different subunits of the nicotinic acetylcholine receptor in the peripheral immune system, may mediate different effects on multiple sclerosis disease activity.
Collapse
Affiliation(s)
- Mario Habek
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia. .,School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
171
|
Garg BK, Loring RH. GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors. PLoS One 2019; 14:e0214942. [PMID: 30947238 PMCID: PMC6448884 DOI: 10.1371/journal.pone.0214942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
α7 Nicotinic acetylcholine receptors (nAChRs) reportedly reduce inflammation by blocking effects of the important pro-inflammatory transcription factor, nuclear factor kappa-light chain-enhancer of B cells (NFκB). The α7 nAChR partial agonist GTS-21 reduces secretion of pro-inflammatory cytokines including interleukin-6 (IL6) and tumor-necrosis factor (TNF) in models of endotoxemia and sepsis, and its anti-inflammatory effects are widely ascribed to α7 nAChR activation. However, mechanistic details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways remain unclear. Here, we investigate how GTS-21 acts in two cell systems including the non-immune rat pituitary cell line GH4C1 expressing an NFκB-driven reporter gene and cytokine secretion by ex vivo cultures of primary mouse macrophages activated by lipopolysaccharide (LPS). GTS-21 does not change TNF-stimulated NFκB signaling in GH4C1 cells expressing rat α7 nAChRs, suggesting that GTS-21 requires additional unidentified factors besides α7 nAChR expression to allow anti-inflammatory effects in these cells. In contrast, GTS-21 dose-dependently suppresses LPS-induced IL6 and TNF secretion in primary mouse macrophages endogenously expressing α7 nAChRs. GTS-21 also blocks TNF-induced phosphorylation of NFκB inhibitor alpha (IκBα), an important intermediary in NFκB signaling. However, α7 antagonists methyllycaconitine and α-bungarotoxin only partially reverse GTS-21 blockade of IL6 and TNF secretion. Further, GTS-21 significantly inhibited LPS-induced IL6 and TNF secretion in macrophages isolated from knockout mice lacking α7 nAChRs. These data indicate that even though a discrete component of the anti-inflammatory effects of GTS-21 requires expression of α7 nAChRs in macrophages, GTS-21 also has anti-inflammatory effects independent of these receptors depending on the cellular context.
Collapse
Affiliation(s)
- Brijesh K. Garg
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Ralph H. Loring
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
172
|
Xu Y, Huang C, Deng H, Jia J, Wu Y, Yang J, Tu W. TRPA1 and substance P mediate stress induced duodenal lesions in water immersion restraint stress rat model. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:692-700. [PMID: 30381276 DOI: 10.5152/tjg.2018.17817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Transient receptor potential ankyrin 1 (TRPA1) and substance P (SP), both expression in sensory neurons, have important roles in stress-induced duodenal lesions. The possible contribution of TRPA1 and SP to stress-induced duodenal lesions was explored by using the water immersion restraint stress (WIRS) rat model. MATERIALS AND METHODS Western blotting, Real-time polymerase chain reaction (RT-PCR), and immunohistochemistry assay were used to evaluate the changes of TRPA1and SP expression in the dorsal root ganglia (DRG, T8-11), the corresponding segment of the spinal cord (T8-11), and the duodenum in a duodenal lesions rat model. The SP concentrations of duodenal mucosa were investigated using an enzyme-linked immunosorbent assay (ELISA). Duodenal lesions were assessed according to histopathological changes. TRPA1 specific antagonist HC-030031 was intrathecally or intraperitoneally performed to suppress the expression of both TRPA1 and SP for evaluating the roles of TRPA1 and SP in duodenal lesions. RESULTS In contrast to the control group, TRPA1 and substance P in the DRG (T8-11) and duodenum were up-regulated, and concentrations of SP in the duodenal mucosa were increased after WIRS (p<0.05), which are closely associated with duodenal lesions. SP concentrations in the duodenal mucosa were decreased and duodenal lesions were alleviated by pretreatment with TRPA1 antagonist HC-030031. We identified a protective role for HC-030031 in WIRS-induced duodenal lesions. Furthermore, we demonstrated that WIRS increased the concentrations of SP in the duodenal mucosa in a TRPA1-dependent manner. However, WIRS caused no significant changes of TRPA1 and SP in the spinal cord (T8-11) compared with the control group (p>0.05). CONCLUSION Our study indicates that TRPA1 antagonist HC-030031 alleviates duodenal lesions. TRPA1 is activated and sensitized, therefore concomitant neuropeptide SP is released, which exerts a critical role in inducing and maintaining duodenal lesions following WIRS in rats. This provides evidence that neuroimmune interactions may control duodenal injury. TRPA1 may be a potential drug target to inhibit the development of duodenal lesions by stress-induced in patients.
Collapse
Affiliation(s)
- Yan Xu
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China; The 173rd Clinical Department of PLA 421rd Hospital, Guangdong, China
| | - Caiqun Huang
- The 173rd Clinical Department of PLA 421rd Hospital, Guangdong, China
| | - Hui Deng
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| | - Ji Jia
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| | - Youping Wu
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| | - Jing Yang
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| | - Weifeng Tu
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangdong, China
| |
Collapse
|
173
|
Chen CJ, Ding D, Ironside N, Buell TJ, Southerland AM, Koch S, Flaherty M, Woo D, Worrall BB. Cigarette Smoking History and Functional Outcomes After Spontaneous Intracerebral Hemorrhage. Stroke 2019; 50:588-594. [PMID: 30732556 PMCID: PMC6389405 DOI: 10.1161/strokeaha.118.023580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Background and Purpose- Although cigarette use may be a risk for intracerebral hemorrhage (ICH), animal models suggest that nicotine has a potential neuroprotective effect. The aim of this multicenter study is to determine the effect of smoking history on outcome in ICH patients. Methods- We analyzed prospectively collected data from the Ethnic/Racial Variations of Intracerebral Hemorrhage study and included patients with smoking status data in the analysis. Patients were dichotomized into nonsmokers versus ever-smokers, and the latter group was further categorized as former (>30 days before ICH) or current (≤30 days before ICH) smokers. The primary outcome was 90-day modified Rankin Scale score shift analysis. Secondary outcomes were in-hospital mortality and mortality, Barthel Index, and self-reported health status measures at 90 days. Results- The overall study cohort comprised 1509 nonsmokers and 1423 ever-smokers (841 former, 577 current, 5 unknown). No difference in primary outcome was observed between nonsmokers versus ever-smokers (adjusted odds ratio [aOR], 1.041; 95% CI, 0.904-1.199; P=0.577). No differences in primary outcome were observed between former (aOR, 0.932; 95% CI, 0.791-1.178; P=0.399) or current smokers (aOR, 1.178; 95% CI, 0.970-1.431; P=0.098) versus nonsmokers. Subgroup analyses by race/ethnicity demonstrated no differences in primary outcome when former and current smokers were compared with nonsmokers. Former, but not current, smokers had a lower in-hospital mortality rate (aOR, 0.695; 95% CI, 0.500-0.968; P=0.031), which was only observed in Hispanics (aOR, 0.533; 95% CI, 0.309-0.921; P=0.024). Differences in self-reported health status measures were only observed in whites. Conclusions- Cigarette smoking history does not seem to provide a beneficial effect on 90-day functional outcome in patients with ICH.
Collapse
Affiliation(s)
- Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Dale Ding
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky
| | - Natasha Ironside
- Department of Neurosurgery, NewYork-Presbyterian/Columbia University Medical Center, New York, New York
| | - Thomas J. Buell
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Andrew M. Southerland
- Department of Neurology and Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Sebastian Koch
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Matthew Flaherty
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Bradford B. Worrall
- Department of Neurology and Public Health Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
174
|
Shulepko MA, Kulbatskii DS, Bychkov ML, Lyukmanova EN. Human Nicotinic Acetylcholine Receptors: Part II. Non-Neuronal Cholinergic System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
175
|
Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency. Nutrients 2019; 11:nu11020374. [PMID: 30759768 PMCID: PMC6412879 DOI: 10.3390/nu11020374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023] Open
Abstract
Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/− mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/− mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/− pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p < 0.1) placental labyrinth size at E10.5 and decrease (p < 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p < 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfα (at E12.5) and Nfκb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficiency.
Collapse
|
176
|
Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13:38. [PMID: 30804738 PMCID: PMC6370742 DOI: 10.3389/fnins.2019.00038] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with abnormal protein modification, inflammation and memory impairment. Aggregated amyloid beta (Aβ) and phosphorylated tau proteins are medical diagnostic features. Loss of memory in AD has been associated with central cholinergic dysfunction in basal forebrain, from where the cholinergic circuitry projects to cerebral cortex and hippocampus. Various reports link AD progression with declining activity of cholinergic neurons in basal forebrain. The neurotrophic molecule, nerve growth factor (NGF), plays a major role in the maintenance of cholinergic neurons integrity and function, both during development and adulthood. Numerous studies have also shown that NGF contributes to the survival and regeneration of neurons during aging and in age-related diseases such as AD. Changes in neurotrophic signaling pathways are involved in the aging process and contribute to cholinergic and cognitive decline as observed in AD. Further, gradual dysregulation of neurotrophic factors like NGF and brain derived neurotrophic factor (BDNF) have been reported during AD development thus intensifying further research in targeting these factors as disease modifying therapies against AD. Today, there is no cure available for AD and the effects of the symptomatic treatment like cholinesterase inhibitors (ChEIs) and memantine are transient and moderate. Although many AD treatment studies are being carried out, there has not been any breakthrough and new therapies are thus highly needed. Long-term effective therapy for alleviating cognitive impairment is a major unmet need. Discussion and summarizing the new advancements of using NGF as a potential therapeutic implication in AD are important. In summary, the intent of this review is describing available experimental and clinical data related to AD therapy, priming to gain additional facts associated with the importance of NGF for AD treatment, and encapsulated cell biodelivery (ECB) as an efficient tool for NGF delivery.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Homira Behbahani
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Aging Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
177
|
Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease. Neuropeptides 2019; 73:96-106. [PMID: 30579679 DOI: 10.1016/j.npep.2018.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 12/16/2018] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is one of the major disabling and lethal diseases for aged individuals worldwide. To date, there are more than 10 hypotheses proposed for AD pathology. The beta-amyloid (Aβ) cascade hypothesis is the most widely accepted and proposes that the accumulation of Aβ in the brain is one potential mechanism for AD pathogenesis. Because some Aβ-overloaded patients do not have AD syndrome, this hypothesis is challenged from time to time. More recently, it has been shown that intracellular Aβ plays a key role in AD pathology. Aβ is internalized by receptors distributed on the cell membrane. Among these receptors, the alpha7 nicotinic acetylcholine receptor (α7 nAChR) has been shown to play an important role in AD. The α7 nAChR is a ligand-gated ion channel and is expressed in pivotal brain regions (e.g., the cerebral cortex and hippocampus) responsible for cognitive functions. The α7 nAChR is localized both presynaptically and postsynaptically, where it activates intracellular signaling cascades. Its agonist has been investigated in clinical studies to improve cognitive functions in AD. Although many studies have shown the importance of the α7 nAChR in AD, little is known regarding its role in AD pathology. Therefore, in the current review, we summarized the basic information regarding the structures and functions of the α7 nAChR, the distribution and expression of the α7 nAChR, and the role of the α7 nAChR in mediating Aβ internalization. We subsequently focused on introducing the comprehensive α7 nAChR related signaling pathways and how these signaling pathways are integrated with the α7 nAChR to play a role in AD. Finally, we stressed the AD therapy that targets the α7 nAChR.
Collapse
Affiliation(s)
- Kai-Ge Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China; Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
178
|
Majdi A, Kamari F, Sadigh-Eteghad S, Gjedde A. Molecular Insights Into Memory-Enhancing Metabolites of Nicotine in Brain: A Systematic Review. Front Neurosci 2019; 12:1002. [PMID: 30697142 PMCID: PMC6341027 DOI: 10.3389/fnins.2018.01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023] Open
Abstract
Background: The alleged procognitive effects of nicotine and its metabolites in brain are controversial. Objective: Here, we review the pharmacologically active metabolites of nicotine in brain and their effects on neuronal mechanisms involving two main cognitive domains, i.e., learning and memory. Methods: We searched Embase, Medline via PubMed, Scopus, and Web of Science databases for entries no later than May 2018, and restricted the search to articles about nicotine metabolites and cognitive behavior or cognitive mechanisms. Results: The initial search yielded 425 articles, of which 17 were eligible for inclusion after application of exclusion criteria. Of these, 13 were experimental, two were clinical, and two were conference papers. Conclusions: The results revealed three pharmacologically active biotransformations of nicotine in the brain, including cotinine, norcotinine, and nornicotine, among which cotinine and nornicotine both had a procognitive impact without adverse effects. The observed effect was significant only for cotinine.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Kamari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
179
|
Grau V, Richter K, Hone AJ, McIntosh JM. Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Front Pharmacol 2019; 9:1499. [PMID: 30687084 PMCID: PMC6338043 DOI: 10.3389/fphar.2018.01499] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Venomous marine snails of the genus Conus employ small peptides to capture prey, mainly osteichthyes, mollusks, and worms. A subset of these peptides known as α-conotoxins, are antagonists of nicotinic acetylcholine receptors (nAChRs). These disulfide-rich peptides provide a large number of evolutionarily refined templates that can be used to develop conopeptides that are highly selective for the various nAChR subtypes. Two such conopeptides, namely [V11L;V16D]ArIB and RgIA4, have been engineered to selectively target mammalian α7∗ and α9∗ nAChRs, respectively, and have been used to study the functional roles of these subtypes in immune cells. Unlike in neurons and cochlear hair cells, where α7∗ and α9∗ nAChRs, respectively, function as ligand-gated ion channels, in immune cells ligand-evoked ion currents have not been demonstrated. Instead, different metabotropic functions of α7∗ and α9∗ nAChRs have been described in monocytic cells including the inhibition of ATP-induced ion currents, inflammasome activation, and interleukin-1β (IL-1β) release. In addition to conventional nAChR agonists, diverse compounds containing a phosphocholine group inhibit monocytic IL-1β release and include dipalmitoyl phosphatidylcholine, palmitoyl lysophosphatidylcholine, glycerophosphocholine, phosphocholine, phosphocholine-decorated lipooligosaccharides from Haemophilus influenzae, synthetic phosphocholine-modified bovine serum albumin, and the phosphocholine-binding C-reactive protein. In monocytic cells, the effects of [V11L;V16D]ArIB and RgIA4 suggested that activation of nAChRs containing α9, α7, and/or α10 subunits inhibits ATP-induced IL-1β release. These results have been corroborated utilizing gene-deficient mice and small interfering RNA. Targeted re-engineering of native α-conotoxins has resulted in excellent tools for nAChR research as well as potential therapeutics. ∗indicates possible presence of additional subunits.
Collapse
Affiliation(s)
- Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Giessen University, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Giessen University, Giessen, Germany
| | - Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
180
|
Rahman S, Alzarea S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:159-178. [DOI: 10.1016/bs.pmbts.2019.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
181
|
Quadri M, Garai S, Thakur GA, Stokes C, Gulsevin A, Horenstein NA, Papke RL. Macroscopic and Microscopic Activation of α7 Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Mol Pharmacol 2019; 95:43-61. [PMID: 30348894 PMCID: PMC6277926 DOI: 10.1124/mol.118.113340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
B-973 is an efficacious type II positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptors that, like 4BP-TQS and its active isomer GAT107, can produce direct allosteric activation in addition to potentiation of orthosteric agonist activity, which identifies it as an allosteric activating (ago)-PAM. We compared the properties of B-973B, the active enantiomer of B-973, with those of GAT107 regarding the separation of allosteric potentiation and activation. Both ago-PAMs can strongly activate mutants of α7 that are insensitive to standard orthosteric agonists like acetylcholine. Likewise, the activity of both ago-PAMs is largely eliminated by the M254L mutation in the putative transmembrane PAM-binding site. Allosteric activation by B-973B appeared more protracted than that produced by GAT107, and B-973B responses were relatively insensitive to the noncompetitive antagonist mecamylamine compared with GAT107 responses. Similar differences are also seen in the single-channel currents. The two agents generate unique profiles of full-conductance and subconductance states, with B-973B producing protracted bursts, even in the presence of mecamylamine. Modeling and docking studies suggest that the molecular basis for these effects depends on specific interactions in both the extracellular and transmembrane domains of the receptor.
Collapse
Affiliation(s)
- Marta Quadri
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Alican Gulsevin
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
182
|
Pelgrim CE, Peterson JD, Gosker HR, Schols AMWJ, van Helvoort A, Garssen J, Folkerts G, Kraneveld AD. Psychological co-morbidities in COPD: Targeting systemic inflammation, a benefit for both? Eur J Pharmacol 2018; 842:99-110. [PMID: 30336140 DOI: 10.1016/j.ejphar.2018.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
COPD is a chronic lung disease characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities. Furthermore, COPD is often characterized by extrapulmonary manifestations and comorbidities worsening COPD progression and quality of life. A neglected comorbidity in COPD management is mental health impairment defined by anxiety, depression and cognitive problems. This paper summarizes the evidence for impaired mental health in COPD and focuses on current pharmacological intervention strategies. In addition, possible mechanisms in impaired mental health in COPD are discussed with a central role for inflammation. Many comorbidities are associated with multi-organ-associated systemic inflammation in COPD. Considering the accumulative evidence for a major role of systemic inflammation in the development of neurological disorders, it can be hypothesized that COPD-associated systemic inflammation also affects the function of the brain and is an interesting therapeutic target for nutra- and pharmaceuticals.
Collapse
Affiliation(s)
- Charlotte E Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Julia D Peterson
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Harry R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands
| | - Annemie M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands
| | - Ardy van Helvoort
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands; Nutrition, Metabolism and Muscle Sciences, Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Platform Immunology, Nutricia Research, Utrecht, the Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Veterinary Pharmacology & Therapeutics, Institute of Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
183
|
Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. Eur J Med Chem 2018; 160:207-228. [PMID: 30342362 DOI: 10.1016/j.ejmech.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are relevant therapeutic targets for a variety of disorders including neurodegeneration, cognitive impairment, and inflammation. Although traditionally identified as an ionotropic receptor, the α7 subtype showed metabotropic-like functions, mainly linked to the modulation of immune responses. In the present work, we investigated the structure-activity relationships in a set of novel α7 ligands incorporating the 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole scaffold, i.e. derivatives 21a-34a and 21b-34b, aiming to identify the structural requirements able to preferentially trigger one of the two activation modes of this receptor subtype. The new compounds were characterized as partial and silent α7 nAChR agonists in electrophysiological assays, which allowed to assess the contribution of the different groups towards the final pharmacological profile. Overall, modifications of the selected structural backbone mainly afforded partial agonists, among them tertiary bases 27a-33a, whereas additional hydrogen-bond acceptor groups in permanently charged ligands, such as 29b and 31b, favored a silent desensitizing profile at the α7 nAChR.
Collapse
|
184
|
Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul 2018; 12:19-29. [PMID: 30337243 DOI: 10.1016/j.brs.2018.10.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The vagus nerve is involved in regulating immunity and resolving inflammation. Current strategies aimed at modulating neuroinflammation and cognitive decline, in many cases, are limited and ineffective. OBJECTIVE We sought to develop a minimally invasive, targeted, vagus nerve stimulation approach (pVNS), and we tested its efficacy with respect to microglial activation and amelioration of cognitive dysfunction following lipopolysaccharide (LPS) endotoxemia in mice. METHODS We stimulated the cervical vagus nerve in mice using an ultrasound-guided needle electrode under sevoflurane anesthesia. The concentric bipolar needle electrode was percutaneously placed adjacent to the carotid sheath and stimulation was verified in real-time using bradycardia as a biomarker. Activation of vagal fibers was confirmed with immunostaining in relevant brainstem structures, including the dorsal motor nucleus and nucleus tractus solitarius. Efficacy of pVNS was evaluated following administration of LPS and analyses of changes in inflammation and behavior. RESULTS pVNS enabled stimulation of the vagus nerve as demonstrated by changes in bradycardia and histological evaluation of c-Fos and choline acetyltransferase expression in brainstem nuclei. Following LPS administration, pVNS significantly reduced plasma levels of tumor necrosis factor-α at 3 h post-injection. pVNS prevented LPS-induced hippocampal microglial activation as analyzed by changes in Iba-1 immunoreactivity, including cell body enlargement and shortened ramifications. Cognitive dysfunction following endotoxemia was also restored by pVNS. CONCLUSION Targeted cervical VNS using this novel percutaneous approach reduced LPS-induced systemic and brain inflammation and significantly improved cognitive responses. These results provide a novel therapeutic approach using bioelectronic medicine to modulate neuro-immune interactions that affect cognition.
Collapse
Affiliation(s)
- William J Huffman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Saraswathi Subramaniyan
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Electrical and Computer Engineering, Neurobiology, and Neurosurgery, Duke University, Durham, NC, 27708, USA
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
185
|
A new hypothesis for the pathophysiology of complex regional pain syndrome. Med Hypotheses 2018; 119:41-53. [DOI: 10.1016/j.mehy.2018.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
186
|
Roy S, Singh M, Sammi SR, Pandey R, Kaithwas G. ALA-mediated biphasic downregulation of α-7nAchR/HIF-1α along with mitochondrial stress modulation strategy in mammary gland chemoprevention. J Cell Physiol 2018; 234:4015-4029. [PMID: 30221357 DOI: 10.1002/jcp.27168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
The study elucidates the effect of ɑ-linolenic acid (ALA) on mitochondrial stress, hypoxic cancer microenvironment, and intervention of cholinergic anti-inflammatory pathway using N-methyl-N-nitrosourea (MNU) induced estrogen receptor (ER+) mammary gland carcinoma and Caenorhabditis elegans model, respectively. The efficacy of ALA was scrutinized in vivo and in vitro using various experiments like hemodynamic studies, morphological analysis, antioxidants parameters, immunoblotting, and quantitative reverse transcription polymerase chain reaction. The effect of ALA was also validated using C. elegans worms. ALA administration had a positive effect on tissue architecture of the malignancy when scrutinized through the whole mount carmine staining, hematoxylin and eosin staining, and scanning electron microscopy. The proteomic and genomic checkpoint revealed the participation of mitochondrial dysfunction, alteration of hypoxic microenvironment, and involvement of cholinergic anti-inflammatory response after treatment with ALA. ALA treatment has also increased the level of synaptic acetylcholine and acetylcholine esterase with a significant decrease in lipid content. It was concluded that ALA persuaded the mitochondrial stress, activation of downstream cholinergic anti-inflammatory markers, and favorable regulation of hypoxia microenvironment through inhibition of fatty acid synthase and sterol regulatory element-binding protein.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shreesh Raj Sammi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
187
|
Alzarea S, Rahman S. Effects of alpha-7 nicotinic allosteric modulator PNU 120596 on depressive-like behavior after lipopolysaccharide administration in mice. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:218-228. [PMID: 29800595 DOI: 10.1016/j.pnpbp.2018.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023]
Abstract
Evidence suggests that α7 nicotinic acetylcholine receptor (α7 nAChR) in the central nervous system has a critical role in the regulation of microglial function and neuroinflammation associated with the pathophysiology of major depressive disorder. The objectives of the present study were to determine the effects of PNU 120596, an α7 nAChR positive allosteric modulator (PAM), on depressive-like behavior and expression of ionized calcium binding adaptor molecule 1 (Iba-1), a microglial marker, in male C57BL/6J mice following lipopolysaccharide (LPS) administration, an animal model for depressive-like behavior. Forced swim test (FST), tail suspension test (TST), and sucrose preference test were used to determine the effects of PNU 120596 on depressive-like behavior, measured by increased immobility time or decreased sucrose preference. We also examined the effects of PNU 120596 on Iba-1 expression by using Western blot analysis and immunofluorescence staining in the hippocampus and prefrontal cortex, the brain regions implicated in major depressive disorder. Administration of LPS (1 mg/kg, i.p.) significantly increased immobility time during FST and TST and decreased sucrose preference. The PNU 120596 (1 or 4 mg/kg, i.p.) dose-dependently prevented LPS-induced depressive-like behavior during FST, TST, and sucrose preference test. The PNU 120596 (1 or 4 mg/kg) alone did not show any significant alteration on immobility time and sucrose preference. Pretreatment of methyllycaconitine (3 mg/kg, i.p.), an α7 nAChR antagonist, significantly prevented the antidepressant-like effects of PNU (4 mg/kg). Similarly, the PNU 120596 (4 mg/kg, i.p.) significantly reduced LPS-induced increased expression of Iba-1 in the hippocampus or prefrontal cortex. Overall, these results suggest that PNU 120596 reduces LPS-induced depressive-like behavior and microglial activation in the hippocampus and prefrontal cortex in mice. Therefore, α7 nAChR PAMs could be developed as potential therapeutic utility for the treatment of major depressive disorder in humans.
Collapse
Affiliation(s)
- Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
188
|
Intachai K, C Chattipakorn S, Chattipakorn N, Shinlapawittayatorn K. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19092466. [PMID: 30134547 PMCID: PMC6164157 DOI: 10.3390/ijms19092466] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects.
Collapse
Affiliation(s)
- Kannaporn Intachai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
189
|
Quadri M, Bagdas D, Toma W, Stokes C, Horenstein NA, Damaj MI, Papke RL. The Antinociceptive and Anti-Inflammatory Properties of the α7 nAChR Weak Partial Agonist p-CF 3 N, N-diethyl- N'-phenylpiperazine. J Pharmacol Exp Ther 2018; 367:203-214. [PMID: 30111636 DOI: 10.1124/jpet.118.249904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic pain and inflammatory diseases can be regulated by complex mechanisms involving α7 nicotinic acetylcholine receptors (nAChRs), making this subtype a promising drug target for anti-inflammatory therapies. Recent evidence suggests that suchtreatment of inflammatory pain may rely on metabotropic-like rather than ionotropic activation of the α7 receptor subtype in non-neuronal cells. We previously identified para-trifluoromethyl (p-CF3) N,N-diethyl-N'-phenylpiperazinium (diEPP) iodide to be among the compounds classified as silent agonists, which are very weak α7 partial agonists that are able to induce positive allosteric modulator (PAM)-sensitive desensitization. Such drugs have been shown to selectively promote α7 ionotropic-independent functions. Therefore, we here further investigated the electrophysiological profile of p-CF3 diEPP and its in vivo antinociceptive activity using Xenopus oocytes expressing α7, α4β2, or α3β4 nAChRs. The evoked currents confirmed p-CF3 diEPP to be α7-selective with a maximal agonism 5% that of acetylcholine (ACh). Coapplication of p-CF3 diEPP with the type II PAM 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS) produced desensitization that could be converted to PAM-potentiated currents, which at a negative holding potential were up to 13-fold greater than ACh controls. Voltage-dependence experiments indicated that channel block may limit both control ACh and TQS-potentiated responses. Although no p-CF3 diEPP agonist activity was detected for the heteromeric nAChRs, it was a noncompetitive antagonist of these receptors. The compound displayed remarkable antihyperalgesic and antiedema effects in in vivo assays. The antinociceptive activity was dose and time dependent. The anti-inflammatory components were sensitive to the α7-selective antagonist methyllycaconitine, which supports the idea that these effects are mediated by the α7 nAChR.
Collapse
Affiliation(s)
- Marta Quadri
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Deniz Bagdas
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Wisam Toma
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - M Imad Damaj
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| |
Collapse
|
190
|
Murdock KW, LeRoy AS, Fagundes CP. Inhibition is associated with metabolic syndrome and depression through inflammation. Stress Health 2018; 34:457-461. [PMID: 29602200 DOI: 10.1002/smi.2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/19/2017] [Accepted: 03/07/2018] [Indexed: 11/07/2022]
Abstract
Inhibition is the ability to stop one's self from responding, or paying attention, to tempting/distracting stimuli or thoughts. Those with poor inhibition are at greater risk of depression and a variety of diseases of older adulthood than those with better inhibition. Inflammation may be a mechanism underlying these links. A total of 840 participants from the Midlife in the United States study completed a neuropsychological measure of inhibition, a self-report measure of depressive symptoms, and a blood draw. Results indicated that poor inhibition was associated with high interleukin-6 (IL-6). Inhibition was indirectly associated with metabolic syndrome incidence and depressive symptoms through IL-6. Findings suggest that IL-6 may be a mechanism linking inhibition with metabolic syndrome and depression.
Collapse
Affiliation(s)
- Kyle W Murdock
- Department of Psychology, Rice University, Houston, TX, USA.,Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Angie S LeRoy
- Department of Psychology, Rice University, Houston, TX, USA.,Department of Psychology, University of Houston, Houston, TX, USA
| | - Christopher P Fagundes
- Department of Psychology, Rice University, Houston, TX, USA.,Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
191
|
Capó-Vélez CM, Delgado-Vélez M, Báez-Pagán CA, Lasalde-Dominicci JA. Nicotinic Acetylcholine Receptors in HIV: Possible Roles During HAND and Inflammation. Cell Mol Neurobiol 2018; 38:1335-1348. [PMID: 30008143 PMCID: PMC6133022 DOI: 10.1007/s10571-018-0603-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Infection with the human immunodeficiency virus (HIV) remains a threat to global health. Since its discovery, many efforts have been directed at understanding the mechanisms and consequences of infection. Although there have been substantial advances since the advent of antiretroviral therapy, there are still complications that significantly compromise the health of infected patients, particularly, chronic inflammation and HIV-associated neurocognitive disorders (HAND). In this review, a new perspective is addressed in the field of HIV, where the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is the protagonist. We comprehensively discuss the available evidence implicating α7-nAChRs in the context of HIV and provide possible explanations about its role in HAND and inflammation in both the central nervous system and the periphery.
Collapse
Affiliation(s)
- Coral M Capó-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Manuel Delgado-Vélez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Molecular Sciences Research Center, San Juan, PR, 00926, USA
| | - Carlos A Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA.,Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, PO Box 23323, San Juan, PR, 00931, USA
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, PR, 00931, USA. .,Molecular Sciences Research Center, San Juan, PR, 00926, USA.
| |
Collapse
|
192
|
Maldifassi MC, Martín-Sánchez C, Atienza G, Cedillo JL, Arnalich F, Bordas A, Zafra F, Giménez C, Extremera M, Renart J, Montiel C. Interaction of the α7-nicotinic subunit with its human-specific duplicated dupα7 isoform in mammalian cells: Relevance in human inflammatory responses. J Biol Chem 2018; 293:13874-13888. [PMID: 30006348 DOI: 10.1074/jbc.ra118.003443] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Indexed: 01/19/2023] Open
Abstract
The α7 nicotinic receptor subunit and its partially duplicated human-specific dupα7 isoform are coexpressed in neuronal and non-neuronal cells. In these cells, α7 subunits form homopentameric α7 nicotinic acetylcholine receptors (α7-nAChRs) implicated in numerous pathologies. In immune cells, α7-nAChRs are essential for vagal control of inflammatory response in sepsis. Recent studies show that the dupα7 subunit is a dominant-negative regulator of α7-nAChR activity in Xenopus oocytes. However, its biological significance in mammalian cells, particularly immune cells, remains unexplored, as the duplicated form is indistinguishable from the original subunit in standard tests. Here, using immunocytochemistry, confocal microscopy, coimmunoprecipitation, FRET, flow cytometry, and ELISA, we addressed this challenge in GH4C1 rat pituitary cells and RAW264.7 murine macrophages transfected with epitope- and fluorescent protein-tagged α7 or dupα7. We used quantitative RT-PCR of dupα7 gene expression levels in peripheral blood mononuclear cells (PBMCs) from patients with sepsis to analyze its relationship with PBMC α7 mRNA levels and with serum concentrations of inflammatory markers. We found that a physical interaction between dupα7 and α7 subunits in both cell lines generates heteromeric nAChRs that remain mainly trapped in the endoplasmic reticulum. The dupα7 sequestration of α7 subunits reduced membrane expression of functional α7-nAChRs, attenuating their anti-inflammatory capacity in lipopolysaccharide-stimulated macrophages. Moreover, the PBMC's dupα7 levels correlated inversely with their α7 levels and directly with the magnitude of the patients' inflammatory state. These results indicate that dupα7 probably reduces human vagal anti-inflammatory responses and suggest its involvement in other α7-nAChR-mediated pathophysiological processes.
Collapse
Affiliation(s)
- María C Maldifassi
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and.,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Carolina Martín-Sánchez
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and.,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Gema Atienza
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and.,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - José L Cedillo
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and.,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Francisco Arnalich
- the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain.,the Servicio de Medicina Interna, Hospital Universitario La Paz de Madrid, 28046 Madrid
| | - Anna Bordas
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and.,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Francisco Zafra
- the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain.,the Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, and
| | - Cecilio Giménez
- the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain.,the Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, and
| | - María Extremera
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and.,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Jaime Renart
- the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid
| | - Carmen Montiel
- From the Departamento de Farmacología y Terapéutica, Facultad de Medicina and .,the Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28046 Madrid, Spain
| |
Collapse
|
193
|
Jackson A, Papke RL, Damaj MI. Pharmacological modulation of the α7 nicotinic acetylcholine receptor in a mouse model of mecamylamine-precipitated nicotine withdrawal. Psychopharmacology (Berl) 2018; 235:1897-1905. [PMID: 29549391 PMCID: PMC6015775 DOI: 10.1007/s00213-018-4879-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
RATIONALE Recent preclinical data has implicated the α7 nicotinic acetylcholine receptor (nAChR) as a target in modulating nicotine reward. However, the role of the channel properties of the α7 nAChR in nicotine withdrawal is unknown. OBJECTIVES This study aimed to investigate the impact of α7 nAChR pharmacological modulation on mecamylamine-precipitated nicotine withdrawal behaviors in mice by using positive allosteric modulators (PAMs). METHODS The effect of the orthosteric α7 nAChR full agonist PNU282987 (1, 3, 9 mg/kg, s.c.), type I α7 PAM NS1738 (1 and 10 mg/kg; i.p.) and the type II α7 PAM PNU120596 (3 and 9 mg/kg, i.p.) on anxiety-like behavior, somatic signs, and hyperalgesia was measured in mice undergoing mecamylamine-precipitated nicotine withdrawal. Mice were infused with 24 mg/kg/day nicotine or saline for 14 days using s.c. osmotic minipumps. Nicotine withdrawal signs were precipitated upon administration of the non-selective nAChR antagonist mecamylamine (3.5 mg/kg, i.p.). RESULTS Anxiety-like behavior in nicotine withdrawn mice was only attenuated by PNU282987 in a dose-related fashion. Somatic signs were reduced by PNU282987 and NS1738. PNU120596 was the only compound that reversed precipitated nicotine withdrawal-induced hyperalgesia. CONCLUSIONS Taken together, our results suggest that modulation of the α7 nAChR can play important roles in mecamylamine-precipitated nicotine withdrawal behaviors in mice. In addition, the effects of PAMs in this study suggest that endogenous acetylcholine/choline tone is sufficient to attenuate some aspects of precipitated nicotine withdrawal. These findings highlight a beneficial effect of using α7 nAChR PAMs in some aspects of precipitated nicotine withdrawal.
Collapse
Affiliation(s)
- Asti Jackson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610-0267
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond VA, USA
| |
Collapse
|
194
|
Martín A, Domercq M, Matute C. Inflammation in stroke: the role of cholinergic, purinergic and glutamatergic signaling. Ther Adv Neurol Disord 2018; 11:1756286418774267. [PMID: 29774059 PMCID: PMC5949933 DOI: 10.1177/1756286418774267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The inflammatory response is a major factor in stroke pathophysiology and contributes to secondary neuronal damage in both acute and chronic stages of the ischemic injury. Recent work in experimental cerebral ischemia has demonstrated the involvement of neurotransmitter signaling in the modulation of neuroinflammation. The present review discusses recent findings on the therapeutic potential and diagnostic perspectives of cholinergic, purinergic and glutamatergic receptors and transporters in experimental stroke. It provides evidence of the role of neurotransmission signaling as a promising inflammatory biomarker in stroke. Finally, recent molecular imaging studies using positron emission tomography of cholinergic receptors and glutamatergic transporters are outlined along with their potential as novel anti-inflammatory therapy to reduce the outcome of cerebral ischemia.
Collapse
Affiliation(s)
- Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, Pº Miramon 182, San Sebastian, Spain
| | - María Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain Achucarro Basque Center for Neuroscience-UPV/EHU, Zamudio, Spain Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain Achucarro Basque Center for Neuroscience-UPV/EHU, Zamudio, Spain Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
195
|
Kim H, Kim SR, Je J, Jeong K, Kim S, Kim HJ, Chang KC, Park SW. The proximal tubular α7 nicotinic acetylcholine receptor attenuates ischemic acute kidney injury through Akt/PKC signaling-mediated HO-1 induction. Exp Mol Med 2018; 50:1-17. [PMID: 29674665 PMCID: PMC5938048 DOI: 10.1038/s12276-018-0061-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Activation of the α7 nicotinic acetylcholine receptor (α7nAChR) has been shown to attenuate excessive inflammation by inhibiting proinflammatory cytokines during ischemia-reperfusion (IR) injury; however, the underlying kidney-specific molecular mechanisms remain unclear. The protective action of α7nAChR against renal IR injury was investigated using a selective α7nAChR agonist and antagonist. α7nAChR activation reduced plasma creatinine levels and tubular cell damage, whereas α7nAChR inhibition aggravated the IR-induced phenotype. α7nAChR activation decreased neutrophil infiltration and proinflammatory cytokine expression, increased heme oxygenase-1 (HO-1) expression, and reduced proximal tubular apoptosis after IR as shown by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and caspase-3 cleavage. In this study, we first showed that α7nAChR activation in the proximal tubules induced HO-1 expression through the phosphoinositide 3-kinase (PI3K)/Akt and protein kinase C (PKC) signaling pathway in vivo in renal IR mice and in vitro in proximal tubular cells. Chemical inhibitors of PKC or PI3K/Akt and small interfering RNA-mediated PKC silencing confirmed the signal specificity of α7nAChR-mediated HO-1 induction in the proximal tubular cells. α7nAChR activation inhibited high-mobility group box 1 release by inducing HO-1 expression and reduced proinflammatory cytokine gene expression and apoptotic cell death in tumor necrosis factor α-stimulated proximal tubular cells. Taken together, we conclude that α7nAChR activation in proximal tubular cells directly protects cells against renal IR injury by inducing HO-1 expression through PI3K/Akt and PKC signaling.
Collapse
Affiliation(s)
- Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sooji Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.
| |
Collapse
|
196
|
Papke RL, Peng C, Kumar A, Stokes C. NS6740, an α7 nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neurosci Lett 2018; 677:6-13. [PMID: 29679680 DOI: 10.1016/j.neulet.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) in the dentate gyrus was previously shown to be enhanced by nicotine, an effect dependent on both homomeric α7 and heteromeric α2β2 nicotinic acetylcholine receptors (nAChR). In our experiments, bath-applied nicotine produced no significant enhancement of LTP. The α7 nAChR silent agonist NS6740, a weak activator of α7 nAChR ion channels but an effective modulator of the cholinergic anti-inflammatory pathway, decreased LTP and, additionally, produced a substantial reduction in the baseline synaptic function prior to the high frequency stimulation used to induce LTP. The effects of NS6740 on the various ligand-gated ion channels associated with the generation and modulation of dentate LTP were evaluated with receptors expressed in Xenopus oocytes. A 60 s pre-application of 5 μM NS6740 to α7 receptors blocked the response to subsequent applications of acetylcholine (ACh). In contrast, the responses of α2β2 nAChR to control applications of ACh were not significantly affected by NS6740. Likewise, responses of cells expressing GluR1 + GluR2 AMPA-type glutamate receptor subunits or GABAA α1, β2, and γ2L subunits to control agonist applications (100 μM kainic acid or 10 μM GABA, respectively), were unaffected by NS6740. The effects of NS6740 on α7 were inconsistent with simple antagonism since, while unresponsive to ACh, the receptors exposed to NS6740 were effectively activated by the positive allosteric modulator PNU-120596. The results support the hypothesis that NS6740 switches the mode of α7 signaling in a channel-independent manner that can reduce synaptic function.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States.
| | - Can Peng
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| |
Collapse
|
197
|
Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, Guo A, Newell KA, Huang XF, Yu Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation 2018; 15:112. [PMID: 29669582 PMCID: PMC5907415 DOI: 10.1186/s12974-018-1141-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases such as Alzheimer's disease. Lipopolysaccharide (LPS, endotoxin) levels are higher in the brains of Alzheimer's disease patients and are associated with neuroinflammation and cognitive decline, while neural cholinergic signaling controls inflammation. This study aimed to examine the efficacy of galantamine, a clinically approved cholinergic agent, in alleviating LPS-induced neuroinflammation and cognitive decline as well as the associated mechanism. METHODS Mice were treated with galantamine (4 mg/kg, intraperitoneal injection) for 14 days prior to LPS exposure (intracerebroventricular injection). Cognitive tests were performed, including the Morris water maze and step-through tests. mRNA expression of the microglial marker (CD11b), astrocytic marker (GFAP), and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were examined in the hippocampus by quantitative RT-PCR. The inflammatory signaling molecule, nuclear factor-kappa B (NF-κB p65), and synapse-associated proteins (synaptophysin, SYN, and postsynaptic density protein 95, PSD-95) were examined in the hippocampus by western blotting. Furthermore, NF-κB p65 levels in microglial cells and hippocampal neurons were examined in response to LPS and galantamine. RESULTS Galantamine treatment prevented LPS-induced deficits in spatial learning and memory as well as memory acquisition of the passive avoidance response. Galantamine decreased the expression of microglia and astrocyte markers (CD11b and GFAP), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and NF-κB p65 in the hippocampus of LPS-exposed mice. Furthermore, galantamine ameliorated LPS-induced loss of synapse-associated proteins (SYN and PSD-95) in the hippocampus. In the in vitro study, LPS increased NF-κB p65 levels in microglia (BV-2 cells); the supernatant of LPS-stimulated microglia (Mi-sup), but not LPS, decreased the viability of hippocampal neuronal cells (HT-22 cells) and increased NF-κB p65 levels as well as expression of pro-inflammatory cytokines (IL-1β, IL-6) in HT-22 cells. Importantly, galantamine reduced the inflammatory response not only in the BV-2 microglia cell line, but also in the HT-22 hippocampal neuronal cell line. CONCLUSIONS These findings indicate that galantamine could be a promising treatment to improve endotoxin-induced cognitive decline and neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Yuyun Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xian Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tongyong Fang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xuan Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Anlei Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kelly A Newell
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
198
|
Yu M, Mukai K, Tsai M, Galli SJ. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immunol 2018; 142:1618-1627.e9. [PMID: 29678746 DOI: 10.1016/j.jaci.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thirdhand smoke (THS) represents the accumulation of secondhand smoke on indoor surfaces and in dust, which, over time, can become more toxic than secondhand smoke. Although it is well known that children of smokers are at increased risk for asthma or asthma exacerbation if the disease is already present, how exposure to THS can influence the development or exacerbation of asthma remains unknown. OBJECTIVE We investigated whether epicutaneous exposure to an important component of THS, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), can influence asthma pathology in a mouse model elicited by means of repeated intranasal challenge with cockroach antigen (CRA). METHODS Wild-type mice, α7 nicotinic acetylcholine receptor (nAChR)- or mast cell (MC)-deficient mice, and mice with MCs that lacked α7 nAChRs or were the host's sole source of α7 nAChRs were subjected to epicutaneous NNK exposure, intranasal CRA challenge, or both, and the severity of features of asthma pathology, including airway hyperreactivity, airway inflammation, and airway remodeling, was assessed. RESULTS We found that α7 nAChRs were required to observe adverse effects of epicutaneous NNK exposure on multiple features of CRA-induced asthma pathology. Moreover, MC expression of α7 nAChRs contributed significantly to the ability of epicutaneous NNK exposure to exacerbate airway hyperreactivity to methacholine, airway inflammation, and airway remodeling in this model. CONCLUSION Our results show that skin exposure to NNK, a component of THS, can exacerbate multiple features of a CRA-induced model of asthma in mice and define MCs as key contributors to these adverse effects of NNK.
Collapse
Affiliation(s)
- Mang Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
199
|
Royal W, Can A, Gould TD, Guo M, Huse J, Jackson M, Davis H, Bryant J. Cigarette smoke and nicotine effects on brain proinflammatory responses and behavioral and motor function in HIV-1 transgenic rats. J Neurovirol 2018; 24:246-253. [PMID: 29644536 DOI: 10.1007/s13365-018-0623-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/21/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
Cognitive impairment in HIV-1 infection is associated with the induction of chronic proinflammatory responses in the brains of infected individuals. The risk of HIV-related cognitive impairment is increased by cigarette smoking, which induces brain inflammation in rodent models. To better understand the role of smoking and the associated immune response on behavioral and motor function in HIV infection, wild-type F344 and HIV-1 transgenic (HIV1Tg) rats were exposed to either smoke from nicotine-containing (regular) cigarettes, smoke from nicotine-free cigarettes, or to nicotine alone. The animals were then tested using the rotarod test (RRT), the novel object recognition test (NORT), and the open field test (OFT). Subsequently, brain frontal cortex from the rats was analyzed for levels of TNF-α, IL-1, and IL-6. On the RRT, impairment was noted for F344 rats exposed to either nicotine-free cigarette smoke or nicotine alone and for F344 and HIV1Tg rats exposed to regular cigarette smoke. Effects from the exposures on the OFT were seen only for HIV1Tg rats, for which function was worse following exposure to regular cigarette smoke as compared to exposure to nicotine alone. Expression levels for all three cytokines were overall higher for HIV1Tg than for F344 rats. For HIV1Tg rats, TNF-α, IL-1, and IL-6 gene expression levels for all exposure groups were higher than for control rats. All F344 rat exposure groups also showed significantly increased TNF-α expression levels. However, for F344 rats, IL-1 expression levels were higher only for rats exposed to nicotine-free and nicotine-containing CS, and no increase in IL-6 gene expression was noted with any of the exposures as compared to controls. These studies, therefore, demonstrate that F344 and HIV1Tg rats show differential behavioral and immune effects from these exposures. These effects may potentially reflect differences in the responsiveness of the various brain regions in the two animal species as well as the result of direct toxicity mediated by the proinflammatory cytokines that are produced by HIV proteins and by other factors that are present in regular cigarette smoke.
Collapse
Affiliation(s)
- Walter Royal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| | - Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ming Guo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jared Huse
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Myles Jackson
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
200
|
Gao X, Sun Q, Zhang W, Jiang Y, Li R, Ye J. Anti-inflammatory effect and mechanism of the spirocyclopiperazinium salt compound LXM-15 in rats and mice. Inflamm Res 2018; 67:363-370. [PMID: 29302720 DOI: 10.1007/s00011-017-1127-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the anti-inflammatory effects of a novel spirocyclopiperazinium salt compound LXM-15, and explore the underlying mechanisms. METHODS Xylene-induced mouse ear oedema and carrageenan-induced rat paw oedema tests were used to evaluate the anti-inflammatory effects of LXM-15. The protein levels of TNF-α, IL-6, phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were detected by ELISA or Western blot analysis. Additionally, receptor blocking test was performed to explore the possible target. RESULTS Intragastric administration with LXM-15 (2, 1, 0.5 mg/kg in mice, and 6, 3, 1.5 mg/kg in rats) produced distinct anti-inflammatory effects in vivo, the highest inhibition percentage was 60 and 52%, respectively (P < 0.01). Following treatment with LXM-15 (6 mg/kg, i.g.), the levels of TNF-α and IL-6 in the rats paws were attenuated by 40 and 41%; and the phosphorylation of JAK2 and STAT3 was restrained by 35 and 45%, respectively (P < 0.01). All effects of LXM-15 were blocked by pretreatment with methyllycaconitine citrate or tropicamide. CONCLUSION This study provides the first report that the spirocyclopiperazinium salt compound LXM-15 displays considerable anti-inflammatory effects. The underlying mechanism may be through activating the peripheral α7 nicotinic acetylcholine receptor and M4 muscarinic acetylcholine receptor, leading to the inhibition of the JAK2/STAT3 signalling pathway, eventually resulting in the reduction of TNF-α and IL-6.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Weiwei Zhang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
- Clinical Pharmacy of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, People's Republic of China
| | - Yimin Jiang
- Centre of Medical and Health Analysis, Peking University, Beijing, 100191, People's Republic of China
| | - Runtao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|