151
|
The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:71-82. [PMID: 29085973 DOI: 10.1007/s00210-017-1436-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
Collapse
|
152
|
Banerjee K, Biswas MK, Choudhuri SK. A newly synthesized nickel chelate can selectively target and overcome multidrug resistance in cancer through redox imbalance both in vivo and in vitro. J Biol Inorg Chem 2017; 22:1223-1249. [PMID: 29063196 DOI: 10.1007/s00775-017-1498-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/06/2017] [Indexed: 01/24/2023]
Abstract
Induction of undesired toxicity and emergence of multidrug resistance (MDR) are the major obstacles for cancer treatment. Moreover, aggressive cancers are less sensitive towards existing chemotherapeutics. Therefore, selective targeting of cancers without inducing undesired side effects and designing proper strategies to overcome MDR has utmost importance in modern chemotherapy. Previously we revealed the anticancer properties of some transition metal chelates of Schiff base, but the effectiveness of nickel complex is still unrevealed. Herein, we synthesized and characterized a Schiff base nickel chelate, nickel-(II) N-(2-hydroxyacetophenone) glycinate (NiNG), through different spectroscopic means. NiNG proves to be a broad spectrum anticancer agent with considerable efficacy to overcome MDR in cancer. Antiproliferative effects of NiNG was evaluated using drug-resistant (CEM/ADR5000; NIH-MDR-G185; EAC/Dox), drug-sensitive aggressive (Hct116; CCRF-CEM; EAC/S) and normal (NIH-3T3) cells that reveal the selective nature of NiNG towards drug resistant and sensitive cancer cells without inducing any significant toxicity in normal cells. Moreover, NiNG involves reactive oxygen species (ROS)-mediated redox imbalance for induction of caspase 3-dependent apoptosis in aggressive drug-sensitive Hct116 and drug-resistant NIH-MDR-G185 cells through disruption of mitochondrial membrane potential. Moreover, intraperitoneal (i.p.) application of NiNG at non-toxic doses caused significant increase in the life-span of Swiss albino mice bearing sensitive and doxorubicin-resistant subline of Ehrlich ascites carcinoma cells. It is noteworthy that, in vitro NiNG can only overcome P-glycoprotein-mediated MDR while in vivo NiNG can overcome MRP1-mediated MDR in cancer. Therefore, NiNG has therapeutic potential to target and overcome MDR in cancer.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Manas Kumar Biswas
- Department of Chemistry, Ramakrishna Mission Residential College, Kolkata, India
| | - Soumitra Kumar Choudhuri
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
153
|
CYT-Rx20 Inhibits Cervical Cancer Cell Growth and Migration Through Oxidative Stress-Induced DNA Damage, Cell Apoptosis, and Epithelial-to-Mesenchymal Transition Inhibition. Int J Gynecol Cancer 2017; 27:1306-1317. [PMID: 30814237 DOI: 10.1097/igc.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/01/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated. METHODS The effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo. RESULTS CYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist. CONCLUSIONS CYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.
Collapse
|
154
|
Yang L, Chen Y, Yu Z, Pan W, Wang H, Li N, Tang B. Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27512-27521. [PMID: 28770609 DOI: 10.1021/acsami.7b08223] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Autophagy and apoptosis are closely associated with various pathological and physiological processes in cell cycles. Investigating the dynamic changes of intracellular active molecules in autophagy and apoptosis is of great significance for clarifying their inter-relationship and regulating mechanism in many diseases. In this study, we develop a dual-ratiometric fluorescent nanoprobe for quantitatively differentiating the dynamic process of superoxide anion (O2•-) and pH changes in autophagy and apoptosis in HeLa cells. A rhodamine B-loaded mesoporous silica core was used as the reference, and fluorescence probes for pH and O2•- measurement were doped in the outer layer shell of SiO2. Then, chitosan and triphenylphosphonium were modified on the surface of SiO2. The experimental results showed that the nanoprobe is able to simultaneously and precisely visualize the changes of mitochondrial O2•- and pH in HeLa cells. The kinetics data revealed that the changes of pH and O2•- during autophagy and apoptosis in HeLa cells were significantly different. The pH value was decreased at the early stage of apoptosis and autophagy, whereas the O2•- level was enhanced at the early stage of apoptosis and almost unchanged at the initial stage of autophagy. At the late stage of apoptosis and autophagy, the concentration of O2•- was increased, whereas the pH was decreased at the late stage of autophagy and almost unchanged at the late stage of apoptosis. We hope that the present results provide useful information for studying the effects of O2•- and pH in autophagy and apoptosis in various pathological conditions and diseases.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Zhengze Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Hongyu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
155
|
Apoptotic and genotoxic effects of low-intensity ultrasound on healthy and leukemic human peripheral mononuclear blood cells. J Med Ultrason (2001) 2017; 45:31-39. [DOI: 10.1007/s10396-017-0805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022]
|
156
|
Akther F, Cheng J, Yang SH, Chung G. Differential anticancer effect of fermented squid jeotgal due to varying concentrations of soymilk additive. ACTA ACUST UNITED AC 2017. [DOI: 10.3839/jabc.2017.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fahima Akther
- Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Jinhua Cheng
- Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi, Republic of Korea
| | - Seung Hwan Yang
- Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Gyuhwa Chung
- Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
157
|
Sinha A, Banerjee K, Banerjee A, Sarkar A, Ahir M, Adhikary A, Chatterjee M, Choudhuri SK. Induction of apoptosis in human colorectal cancer cell line, HCT-116 by a vanadium- Schiff base complex. Biomed Pharmacother 2017; 92:509-518. [PMID: 28575808 DOI: 10.1016/j.biopha.2017.05.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Vanadium compounds are well known for their therapeutic interventions against several diseases. Various biochemical attributes of vanadium complexes inspired us to evaluate the cancer cell killing efficacy of the vanadium complex, viz., vanadyl N-(2-hydroxyacetophenone) glycinate [VO(NG)2]. Previously we showed that VO(NG)2 is an effective anticancer agent in in vitro and in vivo cancer models and imposed miniscule side effects. Herein we report that VO(NG)2 is significantly cytotoxic to various cancer cell lines. Furthermore, this redox active vanadyl complex altered the redox homeostatsis of many human cancer cell lines significantly. VO(NG)2 actuates programmed cell death in human colorectal carcinoma cells(HCT-116) through mitochondrial outer membrane permeabilization but in caspase independent manner, possibly by altering cellular redox status and by inflicting DNA damage. Thus, the present work is an attempt to provide many evidences regarding the potent and selective chemotherapeutic efficacy of the novel VO(NG)2.
Collapse
Affiliation(s)
- Abhinaba Sinha
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Kaushik Banerjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Arpita Banerjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Avijit Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata 700020, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata 700020, India
| | - Soumitra Kumar Choudhuri
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
158
|
CYT-Rx20 inhibits ovarian cancer cells in vitro and in vivo through oxidative stress-induced DNA damage and cell apoptosis. Cancer Chemother Pharmacol 2017; 79:1129-1140. [PMID: 28500555 DOI: 10.1007/s00280-017-3330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/02/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE The β-nitrostyrene family has been previously reported to possess anticancer property. However, the biological effects of β-nitrostyrenes on ovarian cancer and the underlying mechanisms involved remain unclear. In the present study, we synthesized a β-nitrostyrene derivative, CYT-Rx20 3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene), and investigated its anticancer effects and the putative pathways of action in ovarian cancer. METHODS The effects of CYT-Rx20 were analyzed using cell viability assay, reactive oxygen species (ROS) generation assay, FACS analysis, annexin V staining, immunostaining, comet assay, immunoblotting, soft agar assay, migration assay, nude mice xenograft study and immunohistochemistry. RESULTS CYT-Rx20 induced cytotoxicity in ovarian cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited ovarian cancer cell migration by regulating the expression of epithelial to mesenchymal transition (EMT) markers. In nude mice, CYT-Rx20 inhibited ovarian tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of EMT marker Vimentin. CONCLUSIONS CYT-Rx20 inhibits ovarian cancer cells in vitro and in vivo, and has the potential to be further developed into an anti-ovarian cancer drug clinically.
Collapse
|
159
|
Valdez BC, Hassan M, Andersson BS. Development of an assay for cellular efflux of pharmaceutically active agents and its relevance to understanding drug interactions. Exp Hematol 2017; 52:65-71. [PMID: 28479418 DOI: 10.1016/j.exphem.2017.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 02/03/2023]
Abstract
Drug interactions may dictate the failure or success of a treatment. Patients undergoing hematopoietic stem cell transplantation (HSCT) are exposed to various types of drugs, and understanding how these drugs interact is of the utmost importance. The pharmacokinetics of busulfan, melphalan, and cyclophosphamide, drugs commonly used for HSCT, are known to be affected by a variety of other drugs with differing molecular structures. We hypothesized that these structurally unrelated drugs affect the transport of DNA-alkylating agents. To test this hypothesis, we developed a flow cytometry assay that used 5-carboxyfluorescein diacetate acetoxymethyl ester, which is cleaved by nonspecific intracellular esterases to 5-carboxyfluorescein (5-CF), a fluorescent ligand for the drug transporter MRP1. A decreased 5-CF efflux in the presence of a test compound suggests competitive inhibition. We demonstrated that chlorambucil, 4-hydroperoxycyclophosphamide, ketoconazole, ethacrynic acid, everolimus, and sirolimus strongly inhibited 5-CF efflux in lymphoma and leukemia cell lines. The efflux of these drugs partially depends on the glutathione (GSH) level, and their cytotoxicity is synergistic with inhibited GSH synthesis. This is consistent with the hypothesis that their GSH-conjugated products are ligands of a common cellular drug transporter. Our results may explain clinical observations on the effects of various drugs on the pharmacokinetics and pharmacodynamics of alkylating agents, and the assay may be used to deduce interaction mechanisms of drugs transported by a common system.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
160
|
Saranya G, Anees P, Joseph MM, Maiti KK, Ajayaghosh A. A Ratiometric Near-Infrared Fluorogen for the Real Time Visualization of Intracellular Redox Status during Apoptosis. Chemistry 2017; 23:7191-7195. [PMID: 28375562 DOI: 10.1002/chem.201700839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/14/2022]
Abstract
Direct monitoring of apoptotic progression is a major step forward for the early assessment of therapeutic efficacy of certain treatments and the accurate evaluation of the spread of a disease. Here, the regulatory role of glutathione (GSH) is explored as a potential biomarker for tracking apoptosis. For this purpose, a near- infrared (NIR) squaraine dye is introduced that is capable of sensing GSH in a ratiometric manner by switching its emission from NIR (690 nm) to visible region (560 nm). The favorable biocompatible attributes of the probe facilitated the real-time monitoring of apoptotic process in line with the conventional apoptotic assay. Furthermore, the robust nature of the probe was utilized for the quantitative estimation of GSH during different stages of apoptosis. Through this study, an easy and reliable method of assaying apoptosis is demonstrated, which can provide valuable insights in translational clinical research.
Collapse
Affiliation(s)
- Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| | - Palapuravan Anees
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| |
Collapse
|
161
|
Wang YY, Chen YK, Hsu YL, Chiu WC, Tsai CH, Hu SCS, Hsieh PW, Yuan SSF. Synthetic β-nitrostyrene derivative CYT-Rx20 as inhibitor of oral cancer cell proliferation and tumor growth through glutathione suppression and reactive oxygen species induction. Head Neck 2017; 39:1055-1064. [PMID: 28346709 DOI: 10.1002/hed.24664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The β-nitrostyrene family possesses anticancer properties. In this study, β-nitrostyrene derivative CYT-Rx20 (3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene) was synthesized and investigated its anticancer activity in oral cancer. METHODS Anticancer activity of CYT-Rx20 and the underlying mechanisms were analyzed using cell viability assay, reactive oxygen species (ROS) generation assay, fluorescence-activated cell sorter analysis, annexin V staining, comet assay, glutathione (GSH)/glutathione disulfide (GSSG) ratio, immunoblotting, soft agar assay, nude mice xenograft study, and immunohistochemistry. RESULTS CYT-Rx20-induced cell apoptosis via ROS generation and mitochondrial membrane potential reduction, associated with release of mitochondrial cytochrome C to cytosol and activation of downstream caspases and poly ADP-ribose polymerase (PARP). Furthermore, CYT-Rx20 induced mitochondrial ROS accumulation and mitochondrial dysfunction, followed by GSH downregulation. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In nude mice, CYT-Rx20 inhibited oral tumor growth accompanied by increased expression of γH2AX, GSH reductase, and cleaved-caspase-3. CONCLUSION CYT-Rx20 has the potential to be further developed into an antioral cancer drug clinically. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1055-1064, 2017.
Collapse
Affiliation(s)
- Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- Division of Oral Pathology and Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Oral and Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chin Chiu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shyng-Shiou F Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
162
|
Eckstein M, Vaeth M, Fornai C, Vinu M, Bromage TG, Nurbaeva MK, Sorge JL, Coelho PG, Idaghdour Y, Feske S, Lacruz RS. Store-operated Ca 2+ entry controls ameloblast cell function and enamel development. JCI Insight 2017; 2:e91166. [PMID: 28352661 DOI: 10.1172/jci.insight.91166] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function mutations in stromal interaction molecule 1 (STIM1) impair the activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry (SOCE), resulting in a disease syndrome called CRAC channelopathy that is characterized by severe dental enamel defects. The cause of these enamel defects has remained unclear given a lack of animal models. We generated Stim1/2K14cre mice to delete STIM1 and its homolog STIM2 in enamel cells. These mice showed impaired SOCE in enamel cells. Enamel in Stim1/2K14cre mice was hypomineralized with decreased Ca content, mechanically weak, and thinner. The morphology of SOCE-deficient ameloblasts was altered, showing loss of the typical ruffled border, resulting in mislocalized mitochondria. Global gene expression analysis of SOCE-deficient ameloblasts revealed strong dysregulation of several pathways. ER stress genes associated with the unfolded protein response were increased in Stim1/2-deficient cells, whereas the expression of components of the glutathione system were decreased. Consistent with increased oxidative stress, we found increased ROS production, decreased mitochondrial function, and abnormal mitochondrial morphology in ameloblasts of Stim1/2K14cre mice. Collectively, these data show that loss of SOCE in enamel cells has substantial detrimental effects on gene expression, cell function, and the mineralization of dental enamel.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Cinzia Fornai
- Department of Anthropology, University of Vienna, Vienna, Austria.,Department of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Manikandan Vinu
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA.,Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Jessica L Sorge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
163
|
Cystatin SN inhibits auranofin-induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal cancer. Cell Death Dis 2017; 8:e2682. [PMID: 28300829 PMCID: PMC5386512 DOI: 10.1038/cddis.2017.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
Cystatin SN (CST1) is a specific inhibitor belonging to the cystatin superfamily that controls the proteolytic activities of cysteine proteases such as cathepsins. Our previous study showed that high CST1 expression enhances tumor metastasis and invasiveness in colorectal cancer. Recently, auranofin (AF), a gold(I)-containing thioredoxin reductase 1 (TrxR1) inhibitor, has been used clinically to treat rheumatoid arthritis. AF is a proteasome-associated deubiquitinase inhibitor and can act as an anti-tumor agent. In this study, we investigated whether CST1 expression induces autophagy and tumor cell survival. We also investigated the therapeutic effects of AF as an anti-tumor agent in colorectal cancer (CRC) cells. We found that CRC cells expressing high levels of CST1 undergo increased autophagy and exhibit chemotherapeutic resistance to AF-induced cell death, while those expressing low levels of CST1 are sensitive to AF. We also observed that knockdown of CST1 in high-CST1 CRC cells using CST1-specific small interfering RNAs attenuated autophagic activation and restored AF-induced cell mortality. Conversely, the overexpression of CST1 increased autophagy and viability in cells expressing low levels of CST1. Interestingly, high expression of CST1 attenuates AF-induced cell death by inhibiting intracellular reactive oxygen species (ROS) generation, as demonstrated by the fact that the blockage of ROS production reversed AF-induced cell death in CRC cells. In addition, upregulation of CST1 expression increased cellular glutathione reductase (GR) activity, reducing the cellular redox state and inducing autophagy in AF-treated CRC cells. These results suggest that high CST1 expression may be involved in autophagic induction and protects from AF-induced cell death by inhibition of ROS generation through the regulation of GR activity.
Collapse
|
164
|
Xie X, Li M, Tang F, Li Y, Zhang L, Jiao X, Wang X, Tang B. Combinatorial Strategy to Identify Fluorescent Probes for Biothiol and Thiophenol Based on Diversified Pyrimidine Moieties and Their Biological Applications. Anal Chem 2017; 89:3015-3020. [PMID: 28192974 DOI: 10.1021/acs.analchem.6b04608] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a feasible paradigm of developing original fluorescent probes for target biomolecules via combinatorial chemistry. In this developmental program, pyrimidine moieties were investigated and optimized as unique recognition units for thiols for the first time through a parallel synthesis in combination with a rapid screening process. This time-efficient and cost-saving process effectively facilitated the developmental progress and provided detailed structure-reactivity relationships. As a result, Res-Biot and Flu-Pht were identified as optimal fluorescent probes for biothiol and thiophenol, respectively. Their favorable characteristics and superior applicability have been well demonstrated in both chemical and biological contexts. In particular, Res-Biot enables the direct visualization of biothiol fluctuations during oxidative stress and cell apoptosis, indicating its suitability in elucidation of a specific pathophysiological process in both living cells and living animals. Meanwhile, Flu-Pht is competent to visualize thiophenols without the interference from endogenous biothiols in living cells.
Collapse
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Mengmeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Fuyan Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Leilei Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 10050, China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
165
|
Chang WL, Cheng FC, Wang SP, Chou ST, Shih Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:456-468. [PMID: 26919256 DOI: 10.1002/tox.22250] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Cinnamomum cassia essential oil (CC-EO) has various functional properties, such as anti-microbial, hypouricemic, anti-tyrosinase and anti-melanogenesis activities. The present study aimed to evaluate the anti-cancer activities of CC-EO and its major constituent, cinnamaldehyde, in human oral squamous cell carcinoma HSC-3 cells. Determination of the cell viability, apoptotic characteristics, DNA damage, cell cycle analysis, reactive oxygen species (ROS) production, mitochondrial membrane potential, cytosolic Ca2+ level and intracellular redox status were performed. Our results demonstrated that CC-EO and cinnamaldehyde significantly decreased cell viability and caused morphological changes. The cell cycle analysis revealed that CC-EO and cinnamaldehyde induced G2/M cell cycle arrest in HSC-3 cells. The apoptotic characteristics (DNA laddering and chromatin condensation) and DNA damage were observed in the CC-EO-treated and cinnamaldehyde-treated HSC-3 cells. Moreover, CC-EO and cinnamaldehyde promoted an increase in cytosolic Ca2+ levels, induced mitochondrial dysfunction and activated cytochrome c release. The results of ROS production and intracellular redox status demonstrated that CC-EO and cinnamaldehyde significantly increased the ROS production and thiobarbituric acid reactive substance levels, and the cellular glutathione content and glutathione peroxidase activity were significantly reduced in HSC-3 cells. Our results suggest that CC-EO and cinnamaldehyde may possess anti-oral cancer activity in HSC-3 cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 456-468, 2017.
Collapse
Affiliation(s)
- Wen-Lun Chang
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| | - Fu-Chou Cheng
- Stem Cell Center, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan, Republic of China
| | - Shu-Ping Wang
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| | - Su-Tze Chou
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| | - Ying Shih
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| |
Collapse
|
166
|
Bandyopadhyay S, Fisher DAC, Malkova O, Oh ST. Analysis of Signaling Networks at the Single-Cell Level Using Mass Cytometry. Methods Mol Biol 2017; 1636:371-392. [PMID: 28730492 DOI: 10.1007/978-1-4939-7154-1_24] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mass cytometry is a powerful technology that enables the measurement of >40 parameters at the single-cell level. The inherent spectral limitations of fluorescent flow cytometry are circumvented by the use of antibodies conjugated to metal isotope reporters, which are measured quantitatively using a CyTOF mass cytometer. The high dimensionality of mass cytometry is particularly useful for the analysis of cell signaling networks in complex biological samples. We describe here methods for cell preparation, antibody staining, data acquisition, and analysis of multidimensional data from a mass cytometry experiment.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Division of Hematology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8125, St. Louis, MO, 63110, USA
| | - Daniel A C Fisher
- Division of Hematology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8125, St. Louis, MO, 63110, USA
| | - Olga Malkova
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T Oh
- Division of Hematology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8125, St. Louis, MO, 63110, USA.
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
167
|
Dawson NJ, Storey KB. Passive regeneration of glutathione: Glutathione reductase regulation from the freeze-tolerant North American wood frog, Rana sylvatica. J Exp Biol 2017; 220:3162-3171. [DOI: 10.1242/jeb.159475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/25/2017] [Indexed: 11/20/2022]
Abstract
Wood frogs inhabit a broad range across North America, extending from the southern tip of the Appalachian Mountains to the northern boreal forest. Remarkably they can survive the winter in a frozen state, where as much as 70% of their body water is converted into ice. During the frozen state, their hearts cease to pump blood, causing their cells to experience ischemia which can dramatically increase the production of reactive oxygen species produced within the cell. To overcome this, wood frogs have elevated levels of glutathione, a primary antioxidant. We examined the regulation of glutathione reductase, the enzyme involved in recycling glutathione, in both the frozen and unfrozen state (control). Glutathione reductase activity from both the control and frozen state showed dramatic reduction in substrate specificity (Km) for oxidized glutathione (50%) when measured in the presence of glucose (300mM) and a increase (157%) when measured in the presence of levels of urea (75mM) encountered in the frozen state. However, when we tested the synergistic effect of urea and glucose simultaneously, we observed a substantial reduction in the Km for oxidized glutathione (43%) to a value similar to that of glucose alone. In fact, we found no observable differences in the kinetic and structural properties of glutathione reductase between the two states. Therefore, a significant increase in the affinity for oxidized glutathione in the presence of endogenous levels of glucose, suggests that increased glutathione recycling may result due to passive regulation of glutathione reductase by rising levels of glucose during freezing.
Collapse
Affiliation(s)
- Neal J. Dawson
- Department of Biology and Institute of Biochemistry Carleton University, Ottawa, ON, Canada
| | - Kenneth B. Storey
- Department of Biology and Institute of Biochemistry Carleton University, Ottawa, ON, Canada
| |
Collapse
|
168
|
Chen X, Yang J, Liang H, Jiang Q, Ke B, Nie Y. Disulfide modified self-assembly of lipopeptides with arginine-rich periphery achieve excellent gene transfection efficiency at relatively low nitrogen to phosphorus ratios. J Mater Chem B 2017; 5:1482-1497. [PMID: 32264639 DOI: 10.1039/c6tb02945k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Self-assembled lipopeptides, with viral envelope, capsid-inspired arginine-rich periphery and disulfide bonds, achieve excellent transfectionin vitroandin vivo.
Collapse
Affiliation(s)
- Xiaobing Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- No. 29
- Chengdu 610064
- P. R. China
| | - Jun Yang
- Laboratory of Anaesthesiology & Critical Care Medicine
- Translational Neuroscience Center
- West China Hospital
- Sichuan University
- Chengdu
| | - Hong Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- No. 29
- Chengdu 610064
- P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- No. 29
- Chengdu 610064
- P. R. China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine
- Translational Neuroscience Center
- West China Hospital
- Sichuan University
- Chengdu
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- No. 29
- Chengdu 610064
- P. R. China
| |
Collapse
|
169
|
Banerjee K, Das S, Majumder S, Majumdar S, Biswas J, Choudhuri SK. Modulation of cell death in human colorectal and breast cancer cells through a manganese chelate by involving GSH with intracellular p53 status. Mol Cell Biochem 2016; 427:35-58. [PMID: 28012015 DOI: 10.1007/s11010-016-2896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Chemotherapy is central to current treatment modality especially for advanced and metastatic colorectal and breast cancers. Targeting the key molecular events of the neoplastic cells may open a possibility to treat cancer. Although some improvements in understanding of colorectal and breast cancer treatment have been recorded, the involvement of glutathione (GSH) and dependency of p53 status on the modulation of GSH-mediated treatment efficacy have been largely overlooked. Herein, we tried to decipher the underlying mechanism of the action of Mn-N-(2-hydroxyacetophenone) glycinate (MnNG) against differential p53 status bearing Hct116, MCF-7, and MDA-MB-468 cells on the backdrop of intracellular GSH level and reveal the role of p53 status in modulating GSH-dependant abrogation of MnNG-induced apoptosis in these cancer cells. Present study discloses that MnNG targets specifically wild-type-p53 expressing Hct116 and MCF-7 cells by significantly depleting both cytosolic, mitochondrial GSH, and modulating nuclear GSH through Glutathione reductase and Glutamate-cysteine ligase depletion that may in turn induce p53-mediated intrinsic apoptosis in them. Thus GSH addition abrogates p53-mediated apoptosis in wild-type-p53 expressing cells. GSH addition also overrides MnNG-induced modulation of phase II detoxifying parameters in them. However, GSH addition partially replenishes the down-regulated or modulated GSH pool in cytosol, mitochondria, and nucleus, and relatively abrogates MnNG-induced intrinsic apoptosis in p53-mutated MDA-MB-468 cells. On the contrary, although MnNG induces significant cell death in p53-null Hct116 cells, GSH addition fails to negate MnNG-induced cell death. Thus p53 status with intracellular GSH is critical for the modulation of MnNG-induced apoptosis.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Satyajit Das
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Jaydip Biswas
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Soumitra Kumar Choudhuri
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
170
|
Ho VW, Hofs E, Elisia I, Lam V, Hsu BE, Lai J, Luk B, Samudio I, Krystal G. All Trans Retinoic Acid, Transforming Growth Factor β and Prostaglandin E2 in Mouse Plasma Synergize with Basophil-Secreted Interleukin-4 to M2 Polarize Murine Macrophages. PLoS One 2016; 11:e0168072. [PMID: 27977740 PMCID: PMC5158015 DOI: 10.1371/journal.pone.0168072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023] Open
Abstract
In previous studies we found that macrophages (MФs) from SH2-containing inositol-5'-phosphatase (SHIP) deficient mice are M2 polarized while their wild type (WT) counterparts are M1 polarized and that this difference in MФ phenotype can be recapitulated during in vitro derivation from bone marrow if mouse plasma (MP), but not fetal calf serum, is added to standard M-CSF-containing cultures. In the current study we investigated the mechanism by which MP skews SHIP-/- but not +/+ MФs to an M2 phenotype. Our results suggest that SHIP-/- basophils constitutively secrete higher levels of IL-4 than SHIP+/+ basophils and this higher level of IL-4 is sufficient to skew both SHIP+/+ and SHIP-/- MФs to an M2 phenotype, but only when MP is present to increase the sensitivity of the MФs to this level of IL-4. MP increases the IL-4 sensitivity of both SHIP+/+ and -/- MФs not by increasing cell surface IL-4 or CD36 receptor levels, but by triggering the activation of Erk and Akt and the production of ROS, all of which play a critical role in sensitizing MФs to IL-4-induced M2 skewing. Studies to identify the factor(s) in MP responsible for promoting IL-4-induced M2 skewing suggests that all-trans retinoic acid (ATRA), TGFβ and prostaglandin E2 (PGE2) all play a role. Taken together, these results indicate that basophil-secreted IL-4 plays an essential role in M2 skewing and that ATRA, TGFβ and PGE2 within MP collaborate to dramatically promote M2 skewing by acting directly on MФs to increase their sensitivity to IL-4.
Collapse
Affiliation(s)
- Victor W. Ho
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Brian E. Hsu
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - June Lai
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Beryl Luk
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ismael Samudio
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
171
|
Singh R, Karakoti AS, Self W, Seal S, Singh S. Redox-Sensitive Cerium Oxide Nanoparticles Protect Human Keratinocytes from Oxidative Stress Induced by Glutathione Depletion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12202-12211. [PMID: 27792880 DOI: 10.1021/acs.langmuir.6b03022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cerium oxide nanoparticles (CeNPs) have gathered much attention in the biomedical field due to its unique antioxidant property. It can protect cells and tissues from oxidative stress induced damage due to its autoregenerative redox cycle. Our study explores the antioxidant and antigenotoxic behavior of PEGylated CeNPs toward oxidative insult produced by buthionine sulfoximine (BSO) in human keratinocytes (HaCaT cells). BSO inhibits the γ-glutamylcysteinesynthetase (γ-GCS) enzyme and thus acts as a glutathione (GSH) depleting agent to modulate the cellular redox potential. GSH is a natural ROS scavenger present in the mammalian cells, and its depletion causes generation of reactive oxygen species (ROS). In this study, we challenged HaCaT cells (keratinocytes) with BSO to alter the redox potential within the cell and monitored toxicity, ROS generation, and nuclear fragmentation. We also followed changes in expressions of related proteins and genes. We found that PEGylated CeNPs can protect HaCaT cells from BSO-induced oxidative damage. BSO-exposed cells, preincubated with PEGylated CeNPs, showed better cell survival and significant decrease in the intracellular levels of ROS. We also observed decrease in lactate dehydrogenase (LDH) release and nuclear fragmentation in CeNP-treated cells that were challenged with BSO as compared to treatment with BSO alone. Exposure of HaCaT cells with BSO leads to altered expression of antioxidant genes and proteins, i.e., thioredoxin reductase (TrxR) and peroxiredoxin 6 (Prx6) whereas, in our study, pretreatment of PEGylated CeNPs reduces the need for induction of genes that produce enzymes involved in the defense against oxidative stress. Since, growing evidence argued the involvement of ROS in mediating death of mammalian cells in several ailments, our finding reinforces the use of PEGylated CeNPs as a potent pharmacological agent under the lower cellular GSH/GSSG ratios for the treatment of diseases mediated by free radicals.
Collapse
Affiliation(s)
- Ragini Singh
- Division of Biological and Life Sciences, School of Arts and Sciences and ‡School of Engineering and Applied Sciences, Ahmedabad University , Navrangpura, Ahmedabad-380009, Gujarat, India
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science and ∥Advanced Materials Processing and Analysis Centre, Nanoscience Technology Centre (NSTC), Materials Science and Engineering and College of Medicine, University of Central Florida , Orlando, Florida 32816, United States
| | - Ajay S Karakoti
- Division of Biological and Life Sciences, School of Arts and Sciences and ‡School of Engineering and Applied Sciences, Ahmedabad University , Navrangpura, Ahmedabad-380009, Gujarat, India
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science and ∥Advanced Materials Processing and Analysis Centre, Nanoscience Technology Centre (NSTC), Materials Science and Engineering and College of Medicine, University of Central Florida , Orlando, Florida 32816, United States
| | - William Self
- Division of Biological and Life Sciences, School of Arts and Sciences and ‡School of Engineering and Applied Sciences, Ahmedabad University , Navrangpura, Ahmedabad-380009, Gujarat, India
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science and ∥Advanced Materials Processing and Analysis Centre, Nanoscience Technology Centre (NSTC), Materials Science and Engineering and College of Medicine, University of Central Florida , Orlando, Florida 32816, United States
| | - Sudipta Seal
- Division of Biological and Life Sciences, School of Arts and Sciences and ‡School of Engineering and Applied Sciences, Ahmedabad University , Navrangpura, Ahmedabad-380009, Gujarat, India
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science and ∥Advanced Materials Processing and Analysis Centre, Nanoscience Technology Centre (NSTC), Materials Science and Engineering and College of Medicine, University of Central Florida , Orlando, Florida 32816, United States
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences and ‡School of Engineering and Applied Sciences, Ahmedabad University , Navrangpura, Ahmedabad-380009, Gujarat, India
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science and ∥Advanced Materials Processing and Analysis Centre, Nanoscience Technology Centre (NSTC), Materials Science and Engineering and College of Medicine, University of Central Florida , Orlando, Florida 32816, United States
| |
Collapse
|
172
|
Hobani YH. The Role of Oxidative Stress in Koenimbine-Induced DNA Damage and Heat Shock Protein Modulation in HepG2 Cells. Integr Cancer Ther 2016; 16:563-571. [PMID: 27879375 PMCID: PMC5739142 DOI: 10.1177/1534735416678982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Murraya koenigii (L.) Spreng, is a significant herb of traditional Ayurvedic system of medicine. Koenimbine, a carbazole alkaloid isolated from this plant holds antiproliferative and apoptotic effects. The aim of this study was to assess koenimbine-induced DNA damage and to clarify the role of free radicals in cell death mechanisms, using HepG2 cells. Methods. The level of cytotoxicity was assayed by MTT assay. To elucidate the role of glutathione (GSH), the intracellular GSH level was analyzed. The effect of koenimbine in the cell mitochondria was evaluated using mitochondrial membrane potential (MMP) changes. Single cell gel electrophoresis assay was used to examine the level of DNA damage. Heat shock proteins, Hsp 70 and Hsp 90 expressions were checked at mRNA and protein level. Ascorbic acid and catalase were used as control antioxidants. Results. It was observed that koenimbine considerably increased DNA damage in HepG2 cells at subcytotoxic concentrations. Koenimbine induced the increased levels of reactive oxygen species (ROS) and reduction of GSH level in HepG2 cells, together with time-dependent loss of MMP. In addition, results clearly showed that koenimbine encouraged cells to express Hsp 70 and Hsp 90 in a concentration-dependent manner up to a concentration of 100 µM and a time-dependent manner at 24-hour incubation both at transcriptional and translational levels. The antioxidant capacity of ascorbic acid was found to be not as prominent as to catalase throughout the study. Conclusion. Based on these data it can be concluded that koenimbine causes DNA strand breaks in HepG2 cells, probably through oxidative stress. Moreover, the oxidative stress induced was closely associated with MMP reduction and GSH depletion associated with HSP modulation at subcytotoxic concentration.
Collapse
|
173
|
Jiang WD, Feng L, Qu B, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Changes in integrity of the gill during histidine deficiency or excess due to depression of cellular anti-oxidative ability, induction of apoptosis, inflammation and impair of cell-cell tight junctions related to Nrf2, TOR and NF-κB signaling in fish. FISH & SHELLFISH IMMUNOLOGY 2016; 56:111-122. [PMID: 27394967 DOI: 10.1016/j.fsi.2016.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
This study firstly explored the possible effects of dietary histidine on structural integrity and the related signaling factor gene expression in the gills of fish. Young grass carp (Ctenopharyngodon idella) were fed with six diets containing gradual levels of histidine for 8 weeks. The results firstly demonstrated that histidine deficiency caused increases in reactive oxygen species (ROS) contents, and severe oxidative damage (lipid peroxidation and protein oxidation) in the gills of fish, which was partially due to the decreased glutathione (GSH) content and antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR)]. Further investigations indicated that histidine deficiency caused depressions of those antioxidant enzyme activities are related to the down-regulation of corresponding antioxidant enzyme genes and the related signaling factor Nrf2 mRNA levels. Meanwhile, histidine deficiency induced DNA fragmentation via up-regulation of caspase-3, caspase-8 and caspase-9 expressions that referring to the down-regulation of TOR and S6K mRNA levels. Furthermore, His deficiency down-regulated claudin-b, claudin-c, claudin-3, claudin-12, claudin-15, occludin and ZO-1 transcription in fish gills. These effects were partially related to the up-regulation of pro-inflammatory cytokines, interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and related signaling factor nuclear factor κB P65 (NF-κB P65) mRNA levels, and the down-regulation of anti-inflammatory cytokines, interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and related signaling factor IκBα mRNA levels. Excessive histidine exhibited negative effects that were similar to histidine deficiency, whereas the optimal histidine levels reversed those negative effects. Taken together, our results showed that histidine deficiency or excess impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, apoptosis, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gills.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
174
|
Xiao H, Li P, Hu X, Shi X, Zhang W, Tang B. Simultaneous fluorescence imaging of hydrogen peroxide in mitochondria and endoplasmic reticulum during apoptosis. Chem Sci 2016; 7:6153-6159. [PMID: 30034754 PMCID: PMC6024174 DOI: 10.1039/c6sc01793b] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
Cell apoptosis is a biochemical and molecular pathway essential for maintaining cellular homeostasis. It is an integrated process involving in a series of signal transduction cascades. Moreover, the apoptotic pathways may be initiated inside various subcellular organelles. Increasing evidence indicates that hydrogen peroxide (H2O2) is closely related to cell apoptosis, particularly in the mitochondria. However, during the apoptotic process, the synergetic variation of H2O2 levels in different compartments is seldom explored, particularly in two important organelles: mitochondria and endoplasmic reticulum (ER). To solve this problem, we developed two new organelle-specific fluorescent probes termed MI-H2O2 and ER-H2O2 that can detect H2O2 in mitochondria and ER, respectively or simultaneously. Experimental results demonstrated that MI-H2O2 and ER-H2O2 display distinguishable excitation and emission spectra, as well as excellent organelle targeting capabilities. Therefore, we used MI-H2O2 and ER-H2O2 to successfully image exogenous or endogenous hydrogen peroxide in the mitochondria and ER. Interestingly, during diverse apoptotic stimuli, dual-color fluorescence imaging results revealed that the changes of H2O2 levels in mitochondria and ER are different. The H2O2 levels are enhanced in both the mitochondria and ER during the l-buthionine sulfoximine (BSO)-treated cell apoptosis process. During mitochondria-oriented apoptosis induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) or rotenone, H2O2 levels prominently and continuously increase in the mitochondria, whereas the ER H2O2 levels were found to rise subsequently after a delay. Moreover, during ER-oriented apoptosis induced by tunicamycin, ER is the major site for overproduction of H2O2, and delayed elevation of the H2O2 levels was found in the mitochondria. Altogether, this dual-probe and multicolor imaging approach may offer a proven methodology for studying molecular communication events on H2O2-related apoptosis and also other physiological and pathological processes within different subcellular organelles.
Collapse
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Xiufen Hu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Xiaohui Shi
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China .
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China .
| |
Collapse
|
175
|
Chen W, Ma X, Lin Y, Xiong Y, Zheng C, Hu Y, Yu D, Jiang Z. Dietary supplementation with a high dose of daidzein enhances the antioxidant capacity in swine muscle but experts pro-oxidant function in liver and fat tissues. J Anim Sci Biotechnol 2016; 7:43. [PMID: 27486514 PMCID: PMC4969673 DOI: 10.1186/s40104-016-0102-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/16/2016] [Indexed: 01/01/2023] Open
Abstract
Background Although isoflavones are natural dietary antioxidants, they may have toxicological effects. This study aimed to evaluate the redox system in tissues of finishing pigs by supplementation with high dose of daidzein (640 mg/kg). Results The supplementation of high dose of daidzein for 64 d increased the activity of superoxide dismutase and total antioxidant capacity in longissimus muscle but down-regulated the expression of reactive oxygen species (ROS)-producing enzyme NADPH oxidase-2 and cyclooxygenase-2. In contrast, high-level supplementation with daidzein exerted pro-oxidant changes in back fat, abdominal fat, liver, and plasma, as reflected by increased contents of malondialdehyde, a lipid peroxidation product, in these tissues. Furthermore, daidzein supplementation resulted in higher expression of ROS-producing enzymes, including NADPH oxidase-1 and cyclooxygenase-1 in liver, 5-lipoxygenase (5-LOX) in backfat and NADPH oxidase-2 both in abdominal fat and backfat. The supplementation of daidzein did not affect meat quality parameters in longissimus muscle, including marbling score, eye muscle areas, intramuscular fat, shear force, drip loss, pH and meat color. Conclusions This experiment suggests that dietary supplementation of finishing pigs with daidzein at a high dose level improves redox status in muscle but exerts pro-oxidant effect in liver and fat tissues.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Yingcai Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Yunxia Xiong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Youjun Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Deqian Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China ; The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou, People's Republic of China ; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, People's Republic of China ; Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China ; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, People's Republic of China
| |
Collapse
|
176
|
Plačková P, Šála M, Šmídková M, Dejmek M, Hřebabecký H, Nencka R, Thibaut HJ, Neyts J, Mertlíková-Kaiserová H. 9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 97:223-235. [PMID: 27288283 DOI: 10.1016/j.freeradbiomed.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED 9-Norbornyl-6-chloropurine (NCP) is a representative of a series of antienteroviral bicycle derivatives with selective cytotoxicity towards leukemia cell lines. In this work we explored the mechanism of the antileukemic activity of NCP in T-cell lymphoblast cells (CCRF-CEM). Specifically, we searched for a potential link between its ability to induce cell death on the one hand and to modulate intracellular glutathione (GSH) that is necessary to its metabolic transformation via glutathione-S-transferase on the other hand. We have observed that GSH levels decreased rapidly in NCP-treated cells. Despite a complete regeneration following 24h of incubation with NCP, this profound drop in cellular GSH content triggered ER stress, ROS production and lipid peroxidation leading to the loss of mitochondrial membrane potential (MMP). These events induced concentration-dependent cell cycle arrest in G2/M phase and apoptosis. Both MMP loss and apoptosis were reversed by sulfhydryl-containing compounds (GSH, N-acetyl-l-cysteine). Furthermore, we have also shown that NCP-induced GSH decrease activated the Nrf2 pathway and its downstream targets NAD(P)H quinone oxidoreductase (NQO-1) and glutamate cysteine ligase modifier subunit (GCLm), thus explaining the fast restoration of GSH pool and ROS decrease. Importantly, we confirmed that the cell death-inducing properties of the compounds were co-dependent on their ability to diminish cellular GSH level by analyzing the relationships between the GSH-depleting potency and cytotoxicity in a series of other norbornylpurine analogs. Altogether, the results demonstrated that in CCRF-CEM cells NCP triggered apoptosis through GSH depletion-associated oxidative and ER stress and mitochondrial depolarization.
Collapse
Affiliation(s)
- Pavla Plačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Hendrik-Jan Thibaut
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
177
|
Xie S, Zhou W, Tian L, Niu J, Liu Y. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2016; 55:233-241. [PMID: 27235905 DOI: 10.1016/j.fsi.2016.05.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1β (IL-1β) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability.
Collapse
Affiliation(s)
- Shiwei Xie
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwen Zhou
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lixia Tian
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Liu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
178
|
Huang Y, Zhou J, Feng H, Zheng J, Ma HM, Liu W, Tang C, Ao H, Zhao M, Qian Z. A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosens Bioelectron 2016; 86:748-755. [PMID: 27476056 DOI: 10.1016/j.bios.2016.07.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 12/25/2022]
Abstract
A convenient, fluorescent dual-channel chemosensor on the basis of bis(3-pyridylmethyl)amine-functionalized carbon quantum dots (BPMA-CQDs) nanoprobe was constructed, and it can discriminatively detect glutathione from its analogues cysteine and homocysteine based on two distinctive strategies. Two distinct fluorescence responses of BPMA-CQDs probe to Cu(II) and Ag(I) were identified and further employed to achieve selective detection of Cu(II) and Ag(I) respectively. Based on the BPMA-CQDs/Cu(II) conjugate, discriminative detection of GSH was achieved in terms of correlation between the amounts of GSH and fluorescence recovery. The addition of GSH into BPMA-CQDs/Cu(II) system induces the reduction of Cu(II) to Cu(I), which could efficiently block PET process resulting in the following fluorescence recovery. Based on the BPMA-CQDs/Ag(I) conjugate, GSH assay could also be established on the basis of fluorescence response to GSH. The introduction of GSH into the preceding system triggers the competitive coordination to Ag(I) between BPMA and GSH, and silver ions are finally taken away by GSH from the probe, where the fluorescence is restored to its original weak state. Both of the detection strategies can achieve discriminative detection of GSH from Cys and Hcy. The assays showed good stability and repeatability, and covered a broad linear range of up to 13.3μM with a lowest detection limit of 42.0nM. Moreover, both of them were utilized to monitor GSH level in live cells.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jin Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Feng
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jieyu Zheng
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hui-Min Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weidong Liu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Cong Tang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hang Ao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Meizhi Zhao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaosheng Qian
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
179
|
Zhang Z, Jiao Y, Wang Y, Zhang S. Core-shell self-assembly triggered via a thiol-disulfide exchange reaction for reduced glutathione detection and single cells monitoring. Sci Rep 2016; 6:29872. [PMID: 27412605 PMCID: PMC4944157 DOI: 10.1038/srep29872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022] Open
Abstract
A novel core-shell DNA self-assembly catalyzed by thiol-disulfide exchange reactions was proposed, which could realize GSH-initiated hybridization chain reaction (HCR) for signal amplification and molecules gathering. Significantly, these self-assembled products via electrostatic interaction could accumulate into prominent and clustered fluorescence-bright spots in single cancer cells for reduced glutathione monitoring, which will effectively drive cell monitoring into a new era.
Collapse
Affiliation(s)
- Zhen Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yuting Jiao
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Yuanyuan Wang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
180
|
Matschke J, Riffkin H, Klein D, Handrick R, Lüdemann L, Metzen E, Shlomi T, Stuschke M, Jendrossek V. Targeted Inhibition of Glutamine-Dependent Glutathione Metabolism Overcomes Death Resistance Induced by Chronic Cycling Hypoxia. Antioxid Redox Signal 2016; 25:89-107. [PMID: 27021152 DOI: 10.1089/ars.2015.6589] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS Tumor hypoxia is a major biological factor causing poor patient outcome. Evidence is increasing that improved protection against reactive oxygen species (ROS) participates in therapy resistance of chronically hypoxic cancer cells. We aimed at characterizing the relevance of improved ROS defense for radiation resistance of cancer cells with tolerance to cycling anoxia/re-oxygenation stress ("anoxia-tolerant") and at designing rational treatment strategies for overcoming the resulting therapy resistance by targeting the underlying mechanisms identified in an in vitro model. RESULTS We demonstrate that chronic exposure of NCH-H460 lung adenocarcinoma, DU145 prostate cancer, and T98G glioblastoma cells to cycling anoxia/re-oxygenation stress induced upregulation of the aspartate-aminotransferase glutamic-oxaloacetic transaminase (GOT1), particularly in RAS-driven anoxia-tolerant NCI-H460 cells. Altered glutamine utilization of the anoxia-tolerant cancer cells contributed to the observed decrease in cellular ROS levels, the increase in cellular glutathione levels, and improved cell survival on ROS-inducing treatments, including exposure to ionizing radiation. Importantly, targeting glutamine-dependent antioxidant capacity or glutathione metabolism allowed us to hit anoxia-tolerant cancer cells and to overcome their increased resistance to radiation-induced cell death. Targeting glutathione metabolism by Piperlongumine also improved the radiation response of anoxia-tolerant NCI-H460 cells in vivo. INNOVATION Improved antioxidant capacity downstream of up-regulated GOT1-expression is a characteristic of anoxia-tolerant cancer cells and is predictive for a specific vulnerability to inhibition of glutamine utilization or glutathione metabolism, respectively. CONCLUSION Unraveling the molecular alterations underlying improved ROS defense of anoxia-tolerant cancer cells allows the design of rational strategies for overcoming radiation resistance caused by tumor cell heterogeneity in hypoxic tumors. Antioxid. Redox Signal. 25, 89-107.
Collapse
Affiliation(s)
- Johann Matschke
- 1 Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen, Germany
| | - Helena Riffkin
- 1 Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen, Germany
| | - Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen, Germany
| | - René Handrick
- 2 Institute of Applied Biotechnology (IAB), University of Applied Sciences , Biberach, Germany
| | - Lutz Lüdemann
- 3 Department of Radiotherapy, University Hospital Essen , Essen, Germany
| | - Eric Metzen
- 4 Institute of Physiology, University Hospital Essen , Essen, Germany
| | - Tomer Shlomi
- 5 Department of Computer Science and Biology & Lokey Center for Life Science and Engineering, Technion, Haifa, Israel
| | - Martin Stuschke
- 3 Department of Radiotherapy, University Hospital Essen , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen, Germany
| |
Collapse
|
181
|
Valdez BC, Brammer JE, Li Y, Murray D, Teo EC, Liu Y, Hosing C, Nieto Y, Champlin RE, Andersson BS. Romidepsin enhances the cytotoxicity of fludarabine, clofarabine and busulfan combination in malignant T-cells. Leuk Res 2016; 47:100-8. [PMID: 27294334 DOI: 10.1016/j.leukres.2016.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 05/26/2016] [Indexed: 11/18/2022]
Abstract
Novel approaches to pre-transplant conditioning are needed to improve treatment of advanced T-cell malignancies. We investigated the synergism of fludarabine (Flu), clofarabine (Clo), busulfan (Bu), and romidepsin (Rom) in T-cell lines and patient-derived cell samples. [Flu+Clo+Bu+Rom] had combination indexes of 0.4-0.5 at ∼50% cytotoxicity in PEER and SUPT1 cells, suggesting synergism. Drug exposure resulted in histone modifications, DNA-damage response (DDR), increased reactive oxygen species (ROS), decreased glutathione (GSH) and mitochondrial membrane (MM) potential, and apoptosis. Similar activation of DDR and apoptosis was observed in patient samples. The PI3K-AKT-mTOR, NFκB, Raf-MEK-ERK, JAK-STAT and Wnt/β-catenin pro-survival pathways were inhibited by the 4-drug combination. The SAPK/JNK stress pathway was activated. A novel finding was the down-regulation of the drug transporter MRP1. We propose the following mechanisms of synergism: Flu, Clo and Rom induce histone modifications and chromatin remodeling, exposing DNA to Bu alkylation; the increased production of ROS, due to drug-mediated stress response and decreased GSH, damages the MM causing leakage of pro-apoptotic factors; down-regulation of MRP1 increases intracellular Bu concentration and exacerbates the DDR; and inhibition of multiple survival pathways. Our results provide the basis for a clinical trial to evaluate [Flu+Clo+Bu+Rom] as part of conditioning regimen for refractory T-cell malignancy patients undergoing stem cell transplantation.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jonathan E Brammer
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Esmeralda C Teo
- Department of Hematology, Singapore General Hospital, Level 3 Academia, 20 College Road, Singapore, Singapore
| | - Yan Liu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
182
|
A mitochondria-targeted turn-on fluorescent probe for the detection of glutathione in living cells. Biosens Bioelectron 2016; 85:164-170. [PMID: 27176914 DOI: 10.1016/j.bios.2016.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
A novel turn-on red fluorescent BODIPY-based probe (Probe 1) for the detection of glutathione was developed. Such a probe carries a para-dinitrophenoxy benzyl pyridinium moiety at the meso position of a BODIPY dye as self-immolative linker. Probe 1 responds selectively to glutathione with the detection limit of 109nM over other amino acids, common metal ions, reactive oxygen species, reactive nitrogen species, and reactive sulfur species. A novel electrostatic interaction to modulate the SNAr attack of glutathione was believed to play significant role for the observed selective response to glutathione. The cleavage of dinitrophenyl ether by glutathione leads to the production of para-hydroxybenzyl moiety which is able to self-immolate through an intramolecular 1,4-elimination reaction to release the fluorescent BODIPY dye. The low toxic probe has been successfully used to detect mitochondrial glutathione in living cells.
Collapse
|
183
|
Yu J, Zhao L, Liu L, Yang F, Zhu X, Cao B. Tetrahydropalmatine protects rat pulmonary endothelial cells from irradiation-induced apoptosis by inhibiting oxidative stress and the calcium sensing receptor/phospholipase C-γ1 pathway. Free Radic Res 2016; 50:611-26. [PMID: 27134043 DOI: 10.3109/10715762.2016.1154549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J. Yu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - L. Zhao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - L. Liu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - F. Yang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - X. Zhu
- Department of Oncology, Guang An Men Hospital of Chinese Medica Science Research Institute, Xicheng District, Beijing, P.R. China
| | - B. Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| |
Collapse
|
184
|
Chen L, Peng Z, Meng Q, Mongan M, Wang J, Sartor M, Chen J, Niu L, Medvedovic M, Kao W, Xia Y. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop. Protein Cell 2016; 7:338-50. [PMID: 26946493 PMCID: PMC4853320 DOI: 10.1007/s13238-015-0241-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IκB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c-Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Zhimin Peng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Qinghang Meng
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Maureen Mongan
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Jingcai Wang
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Maureen Sartor
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Jing Chen
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Liang Niu
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Ying Xia
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA. .,Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA.
| |
Collapse
|
185
|
Understanding the importance of conservative hypothetical protein LdBPK_070020 in Leishmania donovani and its role in subsistence of the parasite. Arch Biochem Biophys 2016; 596:10-21. [PMID: 26926257 DOI: 10.1016/j.abb.2016.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
The genome of Leishmania donovani, the causative agent of visceral leishmaniasis, codes for approximately 65% of both conserved and non-conserved hypothetical proteins. Studies on 'conserved hypothetical' proteins are expected to reveal not only new and crucial aspects of Leishmania biochemistry, but it could also lead to discovery of novel drug candidates. Conserved hypothetical protein, LdBPK_070020, is a 31.14 kDa protein, encoded by an 810 bp gene. BLAST analysis of LdBPK_070020, performed against NCBI non-redundant database, showed 80-99% similarity with conserved hypothetical proteins of Leishmania belonging to other species. Using homologues recombination method, we have performed gene knockout of LdBPK_070020 and effects of the same were investigated on the parasite. The gene knocked out strain shows significant retardation in growth with respect to wild type. Detailed biochemical studies indicated towards important role of LdBPK_070020 in the parasite survival and growth.
Collapse
|
186
|
Zheng LP, Zou T, Ma YJ, Wang JW, Zhang YQ. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1. Molecules 2016; 21:E174. [PMID: 26861269 PMCID: PMC6273749 DOI: 10.3390/molecules21020174] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS) at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH) radical scavenging activity of the EPS reached more than 50% at 3-5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7-1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H₂O₂ exposure increased the cell survival and glutathione (GSH) level and catalase (CAT) activities, and decreased the level of malondialdehyde (MDA) and lactate dehydrogenase (LDH) activity in a dose-dependent manner, suggesting a pronounced protective effect against H₂O₂-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Li Ping Zheng
- Department of Horticulture, School of Architecture, Soochow University, Suzhou 215123, China.
| | - Tin Zou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yu Qing Zhang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
187
|
Xiao H, Li P, Zhang S, Zhang W, Zhang W, Tang B. Simultaneous fluorescence visualization of mitochondrial hydrogen peroxide and zinc ions in live cells and in vivo. Chem Commun (Camb) 2016; 52:12741-12744. [DOI: 10.1039/c6cc07182a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed two new fluorescent probes termedM-H2O2andM-Znfor simultaneous imaging of hydrogen peroxide and zinc ions in mitochondria.
Collapse
Affiliation(s)
- Haibin Xiao
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Ping Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Shan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Wei Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Wen Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Institute of Biomedical Sciences
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
| |
Collapse
|
188
|
Dash SK, Chattopadhyay S, Dash SS, Tripathy S, Das B, Mahapatra SK, Bag BG, Karmakar P, Roy S. Self assembled nano fibers of betulinic acid: A selective inducer for ROS/TNF-alpha pathway mediated leukemic cell death. Bioorg Chem 2015; 63:85-100. [DOI: 10.1016/j.bioorg.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/26/2015] [Indexed: 12/23/2022]
|
189
|
Zhang Y, Shao X, Wang Y, Pan F, Kang R, Peng F, Huang Z, Zhang W, Zhao W. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem Commun (Camb) 2015; 51:4245-8. [PMID: 25670526 DOI: 10.1039/c4cc08687b] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new selective fluorescent and colorimetric chemosensor for the detection of GSH was developed. The discrimination of GSH from Cys and Hcy is achieved through two emission channel detection. The detection limit of probe 1 for GSH reached 10 nM (3 ppb). The excellent sensitivity and selectivity of probe 1 allow the selective detection of GSH over Cys and Hcy, which can be visualized colorimetrically and/or fluorescently. The sensitive detection of GSH allowed for convenient measurement of the GSH content in human plasma. The presence of GSH in cells was demonstrated through cell imaging.
Collapse
Affiliation(s)
- Yuanlin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Suhail N, Bilal N, Hasan S, Ahmad A, Ashraf GM, Banu N. Chronic unpredictable stress (CUS) enhances the carcinogenic potential of 7,12-dimethylbenz(a)anthracene (DMBA) and accelerates the onset of tumor development in Swiss albino mice. Cell Stress Chaperones 2015; 20:1023-36. [PMID: 26272695 PMCID: PMC4595425 DOI: 10.1007/s12192-015-0632-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Social stressors evolving from individual and population interactions produce stress reactions in many organisms (including humans), influencing homeostasis, altering the activity of the immunological system, and thus leading to various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) in cancer promotion and to assess oxidative stress outcomes in terms of various in vivo biochemical parameters, oxidative stress markers, DNA damage, and the development of skin tumors in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz(a)anthracene (DMBA) alone (topical), and DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical) and exposure to CUS prior to DMBA or DMBA-TPA treatments and sacrificed after 16 weeks of treatment. Prior exposure to CUS significantly increased the pro-oxidant effect of carcinogen, depicted by compromised levels of antioxidants in the circulation and skin, accompanied by enhanced lipid peroxidation, plasma corticosterone, and marker enzymes as compared to DMBA-alone or DMBA-TPA treatments. DNA damage results corroborated the above biochemical outcomes. Also, the development of skin tumors (in terms of their incidence, tumor yield, and tumor burden) in mice in the presence and absence of stress further strongly supported our above biochemical measurements. CUS may work as a promoter of carcinogenesis by enhancing the pro-oxidant potential of carcinogens. Further studies may be aimed at the development of interventions for disease prevention by identifying the relations between psychological factors and DNA damage.
Collapse
Affiliation(s)
- Nida Suhail
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh (U.P.), India.
- Department of Biochemistry, Faculty of Medicine and Applied Medical Sciences, Northern Borders University, Arar, Kingdom of Saudi Arabia.
| | - Nayeem Bilal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh (U.P.), India
| | - Shirin Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh (U.P.), India
- Department of Surgery, Loyola University Medical Center, Maywood, Illinois, USA
| | - Ausaf Ahmad
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh (AUUP), Lucknow, Uttar Pradesh (U.P.), 226010, India
| | - Ghulam Md Ashraf
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh (U.P.), India
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naheed Banu
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh (U.P.), India
- College of Medical Rehabilitation, Qassim University, Qassim, P.O. Box 2100, Buraydah, 51451, Saudi Arabia
| |
Collapse
|
191
|
Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles. Int J Mol Sci 2015; 16:24417-50. [PMID: 26501258 PMCID: PMC4632758 DOI: 10.3390/ijms161024417] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Increasing biomedical applications of iron oxide nanoparticles (IONPs) in academic and commercial settings have alarmed the scientific community about the safety and assessment of toxicity profiles of IONPs. The great amount of diversity found in the cytotoxic measurements of IONPs points toward the necessity of careful characterization and quantification of IONPs. The present document discusses the major developments related to in vitro and in vivo toxicity assessment of IONPs and its relationship with the physicochemical parameters of IONPs. Major discussion is included on the current spectrophotometric and imaging based techniques used for quantifying, and studying the clearance and biodistribution of IONPs. Several invasive and non-invasive quantification techniques along with the pitfalls are discussed in detail. Finally, critical guidelines are provided to optimize the design of IONPs to minimize the toxicity.
Collapse
Affiliation(s)
- Ujwal S Patil
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | - Shiva Adireddy
- Department of Physics and Engineering Physics, Tulane University, 5050 Percival Stern Hall, New Orleans, LA 70118, USA.
| | - Ashvin Jaiswal
- Department of Immunology, the University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Houston, TX 77054, USA.
| | - Sree Mandava
- Department of Urology, Tulane University School of Medicine, 1430 Tulane avenue, SL-42, New Orleans, LA 70112, USA.
| | - Benjamin R Lee
- Department of Urology, Tulane University School of Medicine, 1430 Tulane avenue, SL-42, New Orleans, LA 70112, USA.
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, 5050 Percival Stern Hall, New Orleans, LA 70118, USA.
| |
Collapse
|
192
|
Chhabria SV, Akbarsha MA, Li AP, Kharkar PS, Desai KB. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis 2015; 20:1388-409. [PMID: 26286853 DOI: 10.1007/s10495-015-1159-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of substrate alliin with the enzyme alliinase (EC 4.4.1.4). Allicin has been shown to be toxic to several mammalian cells in vitro in a dose-dependent manner. In the present study this cytotoxicity was taken to advantage to develop a novel approach to cancer treatment, based on site directed generation of allicin. Alliinase was chemically conjugated to a monoclonal antibody (mAb) which was directed against a specific pancreatic cancer marker, CA19-9. After the CA19-9 mAb-alliinase conjugate was bound to targeted pancreatic cancer cells (MIA PaCa-2 cells), on addition of alliin, the cancer cell-localized alliinase produced allicin, which effectively induced apoptosis in MIA PaCa-2 cells. Specificity of anticancer activity of in situ generated allicin was demonstrated using a novel in vitro system-integrated discrete multiple organ co-culture technique. Further, allicin-induced caspase-3 expression, DNA fragmentation, cell cycle arrest, p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression, ROS generation, GSH depletion, and led to various epigenetic modifications which resulted in stimulation of apoptosis. This approach offers a new therapeutic strategy, wherein alliin and alliinase-bound antibody work together to produce allicin at targeted locations which would reverse gene silencing and suppress cancer cell growth, suggesting that combination of these targeted agents may improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Sagar V Chhabria
- Department of Biological Sciences, School of Science, SVKM's NMIMS University, Vile Parle (W), Mumbai, 400056, India
| | | | | | | | | |
Collapse
|
193
|
Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2015; 79:1562-83. [PMID: 25749165 DOI: 10.1134/s0006297914130082] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia, Moscow, 117198, Russia.
| | | | | |
Collapse
|
194
|
Ahmed T, Banerjee BD. HSP27 modulates survival signaling in endosulfan-exposed human peripheral blood mononuclear cells treated with curcumin. Hum Exp Toxicol 2015; 35:695-704. [PMID: 26242398 DOI: 10.1177/0960327115597986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endosulfan, a well-known organochlorine pesticide, induces apoptosis and depletion of reduced glutathione (GSH) in human peripheral blood mononuclear cells (PBMC). Thus, for the amelioration of its effect, antioxidant and antiapoptotic potential of curcumin was evaluated. For ascertaining the attenuating effect of curcumin, various biochemical indices of cell damage such as cytotoxicity, oxidative stress, apoptosis (phosphatidylserine externalization, DNA fragmentation, and cytochrome c) in human PBMC was evaluated following endosulfan exposure (0-100 µM). To assess the role of HSP27 on endosulfan-induced apoptosis, the expression of HSP27 was examined. Curcumin (25 µM) increased cell viability significantly. As evident from the restoration of GSH, antiapoptotic potential was directly proportional to their antioxidant nature of curcumin. The present study indicates that the beneficial effect of curcumin on endosulfan-induced cytotoxicity is related to the induced synthesis of HSP27, emphasizing its antioxidant and therapeutic potential as well as underscoring the mechanism of pesticide-induced toxicity at cellular level. Taken together, these findings suggest that curcumin protects against endosulfan-induced immunotoxicity in human PBMC by attenuating apoptosis.
Collapse
Affiliation(s)
- T Ahmed
- School of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, India
| | - B D Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, Delhi, India
| |
Collapse
|
195
|
Lee GJ, Ryu K, Kim K, Choi JY, Kim TI. Crosslinked Polypropylenimine Dendrimers With Bioreducible Linkages for Gene Delivery Systems and Their Reductive Degradation Behaviors. Macromol Biosci 2015; 15:1595-604. [DOI: 10.1002/mabi.201500141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Kitae Ryu
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Kyunghwan Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Ji-yeong Choi
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
- Research Institute of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| |
Collapse
|
196
|
Genotoxic effect of ethacrynic acid and impact of antioxidants. Toxicol Appl Pharmacol 2015; 286:17-26. [DOI: 10.1016/j.taap.2015.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/30/2015] [Accepted: 03/14/2015] [Indexed: 01/15/2023]
|
197
|
Roberts RL, Barclay ML. Update on thiopurine pharmacogenetics in inflammatory bowel disease. Pharmacogenomics 2015; 16:891-903. [PMID: 26067482 DOI: 10.2217/pgs.15.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Azathioprine and 6-mercaptopurine remain pivotal therapies for the maintenance of disease remission in patients with Crohn's disease and ulcerative colitis. While thiopurine S-methyltransferase deficiency was the first pharmacogenetic phenomenon to be recognized to influence thiopurine toxicity and reliably predict leukopenia, it does not predict other adverse effects, nor does it explain most cases of thiopurine resistance. In recent years, a number of other genetic polymorphisms have received increasing attention in the literature. In particular, SNPs in NUDT15 and in the class II HLA locus have been shown to predict thiopurine-related leukopenia and pancreatitis. The aim of this review is to provide a concise update of genetic variability which may influence patient response to azathioprine and 6-mercaptopurine.
Collapse
Affiliation(s)
- Rebecca L Roberts
- Department of Surgical Sciences, Dunedin School of Medicine, PO Box 56, Dunedin, New Zealand
| | - Murray L Barclay
- Department of Medicine, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand.,Department of Gastroenterology, Christchurch Hospital, Private Bag 4710, Christchurch, New Zealand
| |
Collapse
|
198
|
Shen K, Xie J, Wang H, Zhang H, Yu M, Lu F, Tan H, Xu H. Cambogin Induces Caspase-Independent Apoptosis through the ROS/JNK Pathway and Epigenetic Regulation in Breast Cancer Cells. Mol Cancer Ther 2015; 14:1738-49. [PMID: 25976678 DOI: 10.1158/1535-7163.mct-14-1048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
Abstract
Cambogin is a polycyclic polyprenylated acylphoroglucinol (PPAP) from the Garcinia genus, which has been used traditionally for cancer treatment across Southeastern Asia. In this study, we found that cambogin inhibited breast cancer cell proliferation and induced cell apoptosis in vitro. Cambogin induced the activation of the caspase-independent mitochondrial apoptotic pathway, as indicated by an increase in the ratio of Bax/Bcl-2 and the nuclear translocation of apoptosis inducing factor (AIF). Two-dimensional gel electrophoresis and mass spectrometry revealed that the expression of proteins involving in the radical oxygen species (ROS) pathway was among the most affected upon cambogin treatment. Cambogin enhanced cellular ROS production, and induced the activation of the ASK1-MKK4/MKK7-JNK/SAPK signaling pathway. Pretreatment with ROS scavenger N-acetylcysteine (NAC), an antioxidant, or the JNK inhibitor SP600125 was able to restore cell viability in the presence of cambogin. Importantly, cambogin treatment led to the activation of activating transcription factor-2 (ATF-2) and the trimethylation of histone H3K9 in the activator protein 1 (AP-1) binding region of the Bcl-2 gene promoter. Finally, cambogin exhibited a potential antitumor effect in MCF-7 breast cancer xenografts without apparent toxicity. Taken in conjunction, the present study indicates that cambogin can induce breast adenocarcinoma cell apoptosis and therefore represents therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Kaikai Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianling Xie
- South Australian Health & Medical Research Institute, North Terrace, Adelaide, Australia. Centre for Biological Sciences, Life Science Building, University of Southampton, Southampton, United Kingdom
| | - Hua Wang
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengyuan Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangfang Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
199
|
Pelin M, De Iudicibus S, Fusco L, Taboga E, Pellizzari G, Lagatolla C, Martelossi S, Ventura A, Decorti G, Stocco G. Role of oxidative stress mediated by glutathione-s-transferase in thiopurines' toxic effects. Chem Res Toxicol 2015; 28:1186-95. [PMID: 25928802 DOI: 10.1021/acs.chemrestox.5b00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azathioprine (AZA), 6-mercaptopurine (6-MP), and 6-thioguanine (6-TG) are antimetabolite drugs, widely used as immunosuppressants and anticancer agents. Despite their proven efficacy, a high incidence of toxic effects in patients during standard-dose therapy is recorded. The aim of this study is to explain, from a mechanistic point of view, the clinical evidence showing a significant role of glutathione-S-transferase (GST)-M1 genotype on AZA toxicity in inflammatory bowel disease patients. To this aim, the human nontumor IHH and HCEC cell lines were chosen as predictive models of the hepatic and intestinal tissues, respectively. AZA, but not 6-MP and 6-TG, induced a concentration-dependent superoxide anion production that seemed dependent on GSH depletion. N-Acetylcysteine reduced the AZA antiproliferative effect in both cell lines, and GST-M1 overexpression increased both superoxide anion production and cytotoxicity, especially in transfected HCEC cells. In this study, an in vitro model to study thiopurines' metabolism has been set up and helped us to demonstrate, for the first time, a clear role of GST-M1 in modulating AZA cytotoxicity, with a close dependency on superoxide anion production. These results provide the molecular basis to shed light on the clinical evidence suggesting a role of GST-M1 genotype in influencing the toxic effects of AZA treatment.
Collapse
Affiliation(s)
- Marco Pelin
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara De Iudicibus
- ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Laura Fusco
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Eleonora Taboga
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giulia Pellizzari
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Cristina Lagatolla
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Stefano Martelossi
- ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Alessandro Ventura
- ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy.,§Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Stocco
- †Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
200
|
Self-assembled betulinic acid protects doxorubicin induced apoptosis followed by reduction of ROS–TNF-α–caspase-3 activity. Biomed Pharmacother 2015; 72:144-57. [DOI: 10.1016/j.biopha.2015.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 04/15/2015] [Indexed: 01/11/2023] Open
|