151
|
Mudd AT, Salcedo J, Alexander LS, Johnson SK, Getty CM, Chichlowski M, Berg BM, Barile D, Dilger RN. Porcine Milk Oligosaccharides and Sialic Acid Concentrations Vary Throughout Lactation. Front Nutr 2016; 3:39. [PMID: 27660754 PMCID: PMC5014862 DOI: 10.3389/fnut.2016.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Milk oligosaccharides (OSs) are bioactive components known to influence neonatal development. These compounds have specific physiological functions acting as prebiotics, immune system modulators, and enhancing intestine and brain development. OBJECTIVES The pig is a commonly used model for studying human nutrition, and there is interest in quantifying OS composition of porcine milk across lactation compared with human milk. In this study, we hypothesized that OS and sialic acid (SA) composition of porcine milk would be influenced by stage of lactation. METHODS Up to 250 mL of milk were collected from seven sows at each of three time points: day 0 (colostrum), days 7-9 (mature), and days 17-19 (weaning). Colostrum was collected within 6 h of farrowing and 3-day intervals were used for mature and weaning milk to ensure representative sampling. Milk samples were analyzed for OS profiles by Nano-LC Chip-QTOF MS, OS concentrations via HPAEC-PAD, and SA (total and free) was assessed by enzymatic reaction fluorescence detection. RESULTS Sixty unique OSs were identified in porcine milk. Neutral OSs were the most abundant at each lactation stage (69-81%), followed by acidic-sialylated OSs (16-29%) and neutral-fucosylated OSs (2-4%). As lactation progressed, acidic OSs decreased (P = 0.003), whereas neutral-fucosylated (P < 0.001) and neutral OSs (P = 0.003) increased throughout lactation. Six OSs were present in all samples analyzed across lactation [lacto-N-difucohexaose I (LNDFH-I), 2'-fucosyllactose (2'-FL), lacto-N-fucopentaose I (LNFP-I), lacto-N-neohexaose (LNnH), α1-3,β-4-d-galactotriose (3-Hex), 3'-sialyllactose (3'-SL)], while LDFT was present only in colostrum samples. Analysis of individual OS concentrations indicated differences (P = 0.023) between days 0 and 7. Conversely, between days 7 and 18, OS concentrations remained stable with only LNnH (P < 0.001) and LNDFH-I (P = 0.002) decreasing over this period. Analysis of free SA indicated a decrease (P < 0.001) as lactation progressed, while bound (P < 0.001) and total (P < 0.001) SA increased across lactation. CONCLUSION Concentrations of OS differ between colostrum and mature milk in the pig, and SA concentrations shift from free to bound forms as lactation progresses. Our results suggest that although porcine milk OS concentration and the number of structures is lower than human milk, the OS profile appears to be closer to human milk rather than to bovine milk, based on previously published profiles.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory, University of Illinois , Urbana, IL , USA
| | - Jaime Salcedo
- Department of Food Science and Technology, University of California Davis , Davis, CA , USA
| | - Lindsey S Alexander
- Piglet Nutrition and Cognition Laboratory, University of Illinois , Urbana, IL , USA
| | - Stacey K Johnson
- Piglet Nutrition and Cognition Laboratory, University of Illinois , Urbana, IL , USA
| | - Caitlyn M Getty
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Brian M Berg
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
152
|
Wen L, Zheng Y, Jiang K, Zhang M, Kondengaden SM, Li S, Huang K, Li J, Song J, Wang PG. Two-Step Chemoenzymatic Detection of N-Acetylneuraminic Acid-α(2-3)-Galactose Glycans. J Am Chem Soc 2016; 138:11473-6. [PMID: 27554522 DOI: 10.1021/jacs.6b07132] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sialic acids are typically linked α(2-3) or α(2-6) to the galactose that located at the non-reducing terminal end of glycans, playing important but distinct roles in a variety of biological and pathological processes. However, details about their respective roles are still largely unknown due to the lack of an effective analytical technique. Herein, a two-step chemoenzymatic approach for the rapid and sensitive detection of N-acetylneuraminic acid-α(2-3)-galactose glycans is described.
Collapse
Affiliation(s)
| | | | - Kuan Jiang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University , Tianjin 300071, China
| | | | | | | | | | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University , Tianjin 300071, China
| | | | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University , Tianjin 300071, China
| |
Collapse
|
153
|
Jahan M, Wynn PC, Wang B. Molecular characterization of the level of sialic acids N-acetylneuraminic acid, N-glycolylneuraminic acid, and ketodeoxynonulosonic acid in porcine milk during lactation. J Dairy Sci 2016; 99:8431-8442. [PMID: 27423948 DOI: 10.3168/jds.2016-11187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
Abstract
Sialic acids (Sia) are key monosaccharide constituents of sialylated glycoproteins (Sia-GP), human sialylated milk oligosaccharide (Sia-MOS), and gangliosides. Human milk sialylated glycoconjugates (Sia-GC) are bioactive compounds known to act as prebiotics and promote neurodevelopment, immune function, and gut maturation in newborns. Only limited data are available on the Sia content of porcine milk. The objective of this study was to quantitatively determine the total level of Sia N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and ketodeoxynonulosonic acid (KDN) in porcine milk and to compare these levels in gilt and sow milk during lactation. Milk from 8 gilts and 22 sows was collected at 3 stages of lactation (colostrum, transition, and mature milk). Standard and experimental samples were derivatized using 1,2-diamino-4,5-methylenedioxy-benzene and analyzed by ultra-high-performance liquid chromatography using a fluorescence detector. The following new findings are reported: (1) Gilt and sow milk contained significant levels of total Sia, with the highest concentration in colostrum (1,238.5 mg/L), followed by transition milk (778.3 mg/L) and mature milk (347.2 mg/L); (2) during lactation, the majority of Sia was conjugated to Sia-GP (41-46%), followed by Sia-MOS (31-42%) and a smaller proportion in gangliosides (12-28%); (3) Neu5Ac was the major form of Sia (93-96%), followed by Neu5Gc (3-6%) and then KDN (1-2%), irrespective of milk fraction or stage of lactation; (4) the concentration of Sia in Sia-GP and Sia-MOS showed a significant decline during lactation, but the level of ganglioside Sia remained relatively constant; (5) mature gilt milk contained a significantly higher concentration of Sia-GP than sow milk. The high concentration of total Sia in porcine milk suggests that Sia-GC are important nutrients that contribute to the optimization of neurodevelopment, immune function, and growth and development in piglets. These findings provide an important rationale for the inclusion of Sia-GC in pig milk replacers to mimic porcine milk composition for the optimal growth and development of piglets.
Collapse
Affiliation(s)
- M Jahan
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - P C Wynn
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - B Wang
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
154
|
Characterization of a high-affinity sialic acid-specific CBM40 from Clostridium perfringens and engineering of a divalent form. Biochem J 2016; 473:2109-18. [DOI: 10.1042/bcj20160340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
Abstract
CBMs (carbohydrate-binding modules) are a class of polypeptides usually associated with carbohydrate-active enzymatic sites. We have characterized a new member of the CBM40 family, coded from a section of the gene NanI from Clostridium perfringens. Glycan arrays revealed its preference towards α(2,3)-linked sialosides, which was confirmed and quantified by calorimetric studies. The CBM40 binds to α(2,3)-sialyl-lactose with a Kd of ∼30 μM, the highest affinity value for this class of proteins. Inspired by lectins' structure and their arrangement as multimeric proteins, we have engineered a dimeric form of the CBM, and using SPR (surface plasmon resonance) we have observed 6–11-fold binding increases due to the avidity affect. The structures of the CBM, resolved by X-ray crystallography, in complex with α(2,3)- or α(2,6)-sialyl-lactose explain its binding specificity and unusually strong binding.
Collapse
|
155
|
Anti-Helicobacter pylori activity of crude N-acetylneuraminic acid isolated from glycomacropeptide of whey. Lab Anim Res 2016; 32:99-104. [PMID: 27382378 PMCID: PMC4931043 DOI: 10.5625/lar.2016.32.2.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa of about half of the world's population, causing chronic gastritis and gastric cancer. An increasing emergence of antibiotic-resistant H. pylori arouses demand on alternative non-antibiotic-based therapies. In this study, we freshly prepared crude N-acetylneuraminic acid obtained from glycomacropeptide (G-NANA) of whey through a neuraminidase-mediated reaction and evaluated its antibacterial ability against H. pylori and H. felis. Overnight cultures of the H. pylori were diluted with fresh media and different concentrations (1-150 mg/mL) of crude G-NANA were added directly to the culture tube. Bacterial growth was evaluated by measuring the optical density of the culture medium and the number of viable bacteria was determined by a direct count of the colony forming units (CFU) on agar plates. For the in vivo study, mice were orally infected with 100 µL (5×10(8) cfu/mL) of H. felis four times at a day's interval, accompanied by a daily administration of crude G-NANA or vehicle. A day after the last infection, the mice were daily administered the crude G-NANA (0, 75, and 300 mg/mL) for 10 days and euthanized. Their stomachs were collected and bacterial colonization was determined by quantitative real-time PCR. Crude G-NANA inhibited H. pylori's growth and reduced the number of viable bacteria in a dose-dependent manner. Furthermore, crude G-NANA inhibited bacterial colonization in the mice. These results showed that crude G-NANA has antibacterial activity against Helicobacter and demonstrated its therapeutic potential for the prevention of chronic gastritis and gastric carcinogenesis induced by Helicobacter infection in humans.
Collapse
|
156
|
Austin S, De Castro CA, Bénet T, Hou Y, Sun H, Thakkar SK, Vinyes-Pares G, Zhang Y, Wang P. Temporal Change of the Content of 10 Oligosaccharides in the Milk of Chinese Urban Mothers. Nutrients 2016; 8:E346. [PMID: 27338459 PMCID: PMC4924187 DOI: 10.3390/nu8060346] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
Breastfed infants tend to be less prone to infections and may have improved cognitive benefits compared to formula-fed infants. Human milk oligosaccharides (HMO) are the third most abundant component of human milk, but are absent from formulae. They may be partially responsible for the benefits of breastfeeding. In this cross-sectional observational study, the HMO composition of milk from Chinese mothers was studied to determine the impact of stage of lactation, mode of delivery and geographical location. The content of 10 HMO was measured by HPLC in 446 milk samples from mothers living in three different cities in China. Around 21% of the samples contained levels of 2'-fucosyllactose (2'-FL) below the limit of quantification, which is similar to the frequency of fucosyltransferase-2 non-secretors in other populations, but 2'-FL was detected in all samples. Levels of most of the HMO studied decreased during the course of lactation, but the level of 3-fucosyllactose increased. Levels of 2'-FL and 3-fucosyllactose seem to be strongly correlated, suggesting some sort of mechanism for co-regulation. Levels of 6'-sialyllactose were higher than those of 3'-sialyllactose at early stages of lactation, but beyond 2-4 months, 3'-sialyllactose was predominant. Neither mode of delivery nor geographical location had any impact on HMO composition.
Collapse
Affiliation(s)
- Sean Austin
- Nestlé Research Centre, Vers-Chez-Les-Blanc, Lausanne 1000, Switzerland.
| | - Carlos A De Castro
- Nestlé Research Centre, Vers-Chez-Les-Blanc, Lausanne 1000, Switzerland.
| | - Thierry Bénet
- Nestlé Research Centre, Vers-Chez-Les-Blanc, Lausanne 1000, Switzerland.
| | - Yangfeng Hou
- Nestlé Research Center Beijing, Beijing 100095, China.
| | - Henan Sun
- Nestlé Research Center Beijing, Beijing 100095, China.
| | - Sagar K Thakkar
- Nestlé Research Centre, Vers-Chez-Les-Blanc, Lausanne 1000, Switzerland.
| | | | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China.
| | - Peiyu Wang
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
157
|
Hernell O, Timby N, Domellöf M, Lönnerdal B. Clinical Benefits of Milk Fat Globule Membranes for Infants and Children. J Pediatr 2016; 173 Suppl:S60-5. [PMID: 27234413 DOI: 10.1016/j.jpeds.2016.02.077] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The milk fat globule membrane (MFGM) in breast milk contains many bioactive components. Infant formulas traditionally have been devoid of the MFGM fraction, but dairy technology now has made the addition of bovine MFGM technically feasible. We identified 6 double-blinded randomized controlled trials exploring the effects of MFGM supplementation on the diets of infants or children. Results suggest that supplementation is safe and indicate positive effects on both neurodevelopment and defense against infections. MFGM supplementation of infant formula may narrow the gap in cognitive performance and infection rates between breastfed and formula-fed infants. Because of the small number of studies and the heterogeneity of interventions, more high-quality double-blinded randomized controlled trials are needed, with well characterized and clearly defined MFGM fractions, before firm conclusions on the effects of MFGM supplementation on the health and development of infants can be drawn.
Collapse
Affiliation(s)
- Olle Hernell
- Department of Clinical Sciences, Umeå University, Umeå, Sweden.
| | - Niklas Timby
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA
| |
Collapse
|
158
|
van Karnebeek CDM, Bonafé L, Wen XY, Tarailo-Graovac M, Balzano S, Royer-Bertrand B, Ashikov A, Garavelli L, Mammi I, Turolla L, Breen C, Donnai D, Cormier-Daire V, Heron D, Nishimura G, Uchikawa S, Campos-Xavier B, Rossi A, Hennet T, Brand-Arzamendi K, Rozmus J, Harshman K, Stevenson BJ, Girardi E, Superti-Furga G, Dewan T, Collingridge A, Halparin J, Ross CJ, Van Allen MI, Rossi A, Engelke UF, Kluijtmans LAJ, van der Heeft E, Renkema H, de Brouwer A, Huijben K, Zijlstra F, Heise T, Boltje T, Wasserman WW, Rivolta C, Unger S, Lefeber DJ, Wevers RA, Superti-Furga A. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 2016; 48:777-84. [DOI: 10.1038/ng.3578] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022]
|
159
|
Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med 2016; 14:58. [PMID: 27090095 PMCID: PMC4836158 DOI: 10.1186/s12916-016-0604-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.
Collapse
Affiliation(s)
- Paul Forsythe
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada. .,Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Wolfgang Kunze
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - John Bienenstock
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
160
|
Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards. Glycoconj J 2016; 33:219-26. [DOI: 10.1007/s10719-016-9659-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
161
|
Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. Cell 2016; 164:859-71. [PMID: 26898329 DOI: 10.1016/j.cell.2016.01.024] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/26/2015] [Accepted: 01/15/2016] [Indexed: 01/18/2023]
Abstract
Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion.
Collapse
|
162
|
Reis MM, Bermingham EN, Reis MG, Deb-Choudhury S, MacGibbon A, Fong B, McJarrow P, Bibiloni R, Bassett SA, Roy NC. Effect of Dietary Complex Lipids on the Biosynthesis of Piglet Brain Gangliosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1245-1255. [PMID: 26808587 DOI: 10.1021/acs.jafc.5b05211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gangliosides, found in mammalian milk, are known for their roles in brain development of the newborn. However, the mechanism involved in the impact of dietary gangliosides on brain metabolism is not fully understood. The impact of diets containing complex lipids rich in milk-derived ganglioside GD3 on the biosynthesis of gangliosides (assessed from the incorporation of deuterium) in the frontal lobe of a piglet model is reported. Higher levels of incorporation of deuterium was observed in the GM1 and GD1a containing stearic acid in samples from piglets fed milk containing 18.2 μg/mL of GD3 compared to that in those fed milk containing 25 μg/mL of GD3. This could suggest that the gangliosides from the diet may be used as a precursor for de novo biosynthesis of brain gangliosides or lead to the reduction of de novo biosynthesis of these gangliosides. This effect was more pronounced in the left compared to that in the right brain hemisphere.
Collapse
Affiliation(s)
- Marlon M Reis
- Food Assurance & Meat Quality Team, Food & Bio-Based Products Group, AgResearch Ruakura , Hamilton 3240, New Zealand
| | - Emma N Bermingham
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Mariza G Reis
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura , Hamilton 3240, New Zealand
| | | | - Alastair MacGibbon
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Bertram Fong
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Rodrigo Bibiloni
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Shalome A Bassett
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| |
Collapse
|
163
|
Enzymatic synthesis of lactosylated and sialylated derivatives of epothilone A. Glycoconj J 2016; 33:137-46. [DOI: 10.1007/s10719-015-9646-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
164
|
Claps S, Di Napoli MA, Caputo AR, Rufrano D, Sepe L, Di Trana A. Factor affecting the 3′ sialyllactose, 6′ sialyllactose and disialyllactose content in caprine colostrum and milk: Breed and parity. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
165
|
Mudd AT, Alexander LS, Berding K, Waworuntu RV, Berg BM, Donovan SM, Dilger RN. Dietary Prebiotics, Milk Fat Globule Membrane, and Lactoferrin Affects Structural Neurodevelopment in the Young Piglet. Front Pediatr 2016; 4:4. [PMID: 26870719 PMCID: PMC4740374 DOI: 10.3389/fped.2016.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Milk fat globule membrane (MFGM) and lactoferrin have been identified as two components that have potential to affect neurodevelopment. While concentrations of some MFGM constituents in infant formulas are within human milk range, they may not be present at optimal or clinically effective levels. However, lactoferrin levels of infant formulas are consistently reported to be lower than human milk. This study sought to provide a novel combination of prebiotics, bovine-derived MFGM, and lactoferrin and assess their influence on neurodevelopment. METHODS Twenty-four male piglets were provided either TEST (n = 12) or CONT (n = 12) diet from 2 to 31 days of age. Piglets underwent spatial T-maze assessment starting at 17 days of age, were subjected to magnetic resonance imaging at 30 days of age, and were euthanized for tissue collection at 31 days of age. RESULTS Diffusion tensor imaging revealed differences in radial (P = 0.032) and mean (P = 0.028) diffusivities in the internal capsule, where CONT piglets had higher rates of diffusion compared with TEST piglets. Voxel-based morphometry indicated larger (P < 0.05) differences in cortical gray and white matter concentrations, with CONT piglets having larger tissue clusters in these regions compared with TEST piglets. In the spatial T-maze assessment, CONT piglets exhibited shorter latency to choice compared with TEST piglets on day 2 of acquisition and days 3 and 4 of reversal. CONCLUSION Observed differences in microstructure maturation of the internal capsule and cortical tissue concentrations suggest that piglets provided TEST diet were more advanced developmentally than piglets provided CONT diet. Therefore, supplementation of infant formula with prebiotics, MFGM, and lactoferrin may support neurodevelopment in human infants.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Lindsey S Alexander
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois , Urbana, IL , USA
| | - Kirsten Berding
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | | | - Brian M Berg
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Neuroscience Program, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
166
|
Banerjee A, Senthilkumar S, Baskaran S. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids. Chemistry 2015; 22:902-6. [PMID: 26572799 DOI: 10.1002/chem.201503998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 02/05/2023]
Abstract
Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.
Collapse
Affiliation(s)
- Amit Banerjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India
| | | | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India.
| |
Collapse
|
167
|
Yida Z, Imam MU, Ismail M, Wong W, Abdullah MA, Ideris A, Ismail N. N-Acetylneuraminic acid attenuates hypercoagulation on high fat diet-induced hyperlipidemic rats. Food Nutr Res 2015; 59:29046. [PMID: 26642300 PMCID: PMC4671315 DOI: 10.3402/fnr.v59.29046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 12/30/2022] Open
Abstract
Background and objective N-Acetylneuraminic acid (Neu5Ac), a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD)-induced hyperlipidemic rats were evaluated in this study. Methods Sprague Dawley male rats were divided into five different groups and fed with HFD alone, HFD low-dose Neu5Ac, HFD high-dose Neu5Ac, HFD simvastatin (10 mg/kg day), and normal pellet alone. Food was given ad libitum while body weight of rats was measured weekly. After 12 weeks of intervention, rats were sacrificed and serum and tissue samples were collected for biochemistry and gene expression analysis, respectively. Results The results showed that Neu5Ac could improve lipid metabolism and hyperlipidemia-associated coagulation. Neu5Ac exerted comparable or sometimes better physiological effects than simvastatin, at biochemical and gene expression levels. Conclusions The data indicated that Neu5Ac prevented HFD-induced hyperlipidemia and associated hypercoagulation in rats through regulation of lipid-related and coagulation-related genes and, by extension, induced metabolite and protein changes. The implications of the present findings are that Neu5Ac may be used to prevent coagulation-related cardiovascular events in hyperlipidemic conditions. These findings are worth studying further.
Collapse
Affiliation(s)
- Zhang Yida
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Cardiology Department, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Mustapha Umar Imam
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia;
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia;
| | - WaiTeng Wong
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aini Ideris
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norsharina Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
168
|
Thum C, Roy NC, McNabb WC, Otter DE, Cookson AL. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Gut Microbes 2015; 6:352-63. [PMID: 26587678 PMCID: PMC4826140 DOI: 10.1080/19490976.2015.1105425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study was conducted to investigate the catabolism and fermentation of caprine milk oligosaccharides (CMO) by selected bifidobacteria isolated from 4 breast-fed infants. Seventeen bifidobacterial isolates consisting of 3 different species (Bifidobacterium breve, Bifidobacterium longum subsp. longum and Bifidobacterium bifidum) were investigated. A CMO-enriched fraction (CMOF) (50% oligosaccharides, 10% galacto-oligosaccharides (GOS), 20% lactose, 10% glucose and 10% galactose) from caprine cheese whey was added to a growth medium as a sole source of fermentable carbohydrate. The inclusion of the CMOF was associated with increased bifidobacterial growth for all strains compared to glucose, lactose, GOS, inulin, oligofructose, 3'-sialyl-lactose and 6'-sialyl-lactose. Only one B. bifidum strain (AGR2166) was able to utilize the sialyl-CMO, 3'-sialyl-lactose and 6'-sialyl-lactose, as carbohydrate sources. The inclusion of CMOF increased the production of acetic and lactic acid (P < 0.001) after 36 h of anaerobic fermentation at 37 °C, when compared to other fermentable substrates. Two B. bifidum strains (AGR2166 and AGR2168) utilised CMO, contained in the CMOF, to a greater extent than B. breve or B. longum subsp longum isolates, and this increased CMO utilization was associated with enhanced sialidase activity. CMOF stimulated bifidobacterial growth when compared to other tested fermentable carbohydrates and also increased the consumption of mono- and disaccharides, such as galactose and lactose present in the CMOF. These findings indicate that the dietary consumption of CMO may stimulate the growth and metabolism of intestinal Bifidobacteria spp. including B. bifidum typically found in the large intestine of breast-fed infants.
Collapse
Affiliation(s)
- Caroline Thum
- Food Nutrition & Health Team; Food and Bio-based Products Group; AgResearch Grasslands; Palmerston North, New Zealand,Riddet Institute; Massey University; Palmerston North, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team; Food and Bio-based Products Group; AgResearch Grasslands; Palmerston North, New Zealand,Riddet Institute; Massey University; Palmerston North, New Zealand,Gravida; National Centre for Growth and Development; The University of Auckland; Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute; Massey University; Palmerston North, New Zealand,Director of Research Office; AgResearch Grasslands; Palmerston North, New Zealand
| | - Don E Otter
- Food Nutrition & Health Team; Food and Bio-based Products Group; AgResearch Grasslands; Palmerston North, New Zealand
| | - Adrian L Cookson
- Riddet Institute; Massey University; Palmerston North, New Zealand,Food Assurance & Meat Quality Team; Food and Bio-based Products Group; Hopkirk Institute; Palmerston North, New Zealand,Correspondence to: Adrian L Cookson;
| |
Collapse
|
169
|
The prebiotics 3'Sialyllactose and 6'Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav Immun 2015; 50:166-177. [PMID: 26144888 PMCID: PMC4631662 DOI: 10.1016/j.bbi.2015.06.025] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
There are extensive bidirectional interactions between the gut microbiota and the central nervous system (CNS), and studies demonstrate that stressor exposure significantly alters gut microbiota community structure. We tested whether oligosaccharides naturally found in high levels in human milk, which have been reported to impact brain development and enhance the growth of beneficial commensal microbes, would prevent stressor-induced alterations in gut microbial community composition and attenuate stressor-induced anxiety-like behavior. Mice were fed standard laboratory diet, or laboratory diet containing the human milk oligosaccharides 3'Sialyllactose (3'SL) or 6'Sialyllactose (6'SL) for 2 weeks prior to being exposed to either a social disruption stressor or a non-stressed control condition. Stressor exposure significantly changed the structure of the colonic mucosa-associated microbiota in control mice, as indicated by changes in beta diversity. The stressor resulted in anxiety-like behavior in both the light/dark preference and open field tests in control mice. This effect was associated with a reduction in immature neurons in the dentate gyrus as indicated by doublecortin (DCX) immunostaining. These effects were not evident in mice fed milk oligosaccharides; stressor exposure did not significantly change microbial community structure in mice fed 3'SL or 6'SL. In addition, 3'SL and 6'SL helped maintain normal behavior on tests of anxiety-like behavior and normal numbers of DCX+ immature neurons. These studies indicate that milk oligosaccharides support normal microbial communities and behavioral responses during stressor exposure, potentially through effects on the gut microbiota-brain axis.
Collapse
|
170
|
Silanikove N, Leitner G, Merin U. The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients 2015; 7:7312-31. [PMID: 26404364 PMCID: PMC4586535 DOI: 10.3390/nu7095340] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Humans learned to exploit ruminants as a source of milk about 10,000 years ago. Since then, the use of domesticated ruminants as a source of milk and dairy products has expanded until today when the dairy industry has become one of the largest sectors in the modern food industry, including the spread at the present time to countries such as China and Japan. This review analyzes the reasons for this expansion and flourishing. As reviewed in detail, milk has numerous nutritional advantages, most important being almost an irreplaceable source of dietary calcium, hence justifying the effort required to increase its consumption. On the other hand, widespread lactose intolerance among the adult population is a considerable drawback to dairy-based foods consumption. Over the centuries, three factors allowed humans to overcome limitations imposed by lactose intolerance: (i) mutations, which occurred in particular populations, most notably in the north European Celtic societies and African nomads, in which carriers of the lactose intolerance gene converted from being lactose intolerant to lactose tolerant; (ii) the ability to develop low-lactose products such as cheese and yogurt; and (iii) colon microbiome adaptation, which allow lactose intolerant individuals to overcome its intolerance. However, in a few examples in the last decade, modern dairy products, such as the popular and widespread bio-cultured yogurts, were suspected to be unsuitable for lactose intolerant peoples. In addition, the use of lactose and milk-derived products containing lactose in non-dairy products has become widespread. For these reasons, it is concluded that it might be important and helpful to label food that may contain lactose because such information will allow lactose intolerant groups to control lactose intake within the physiological limitations of ~12 g per a single meal.
Collapse
Affiliation(s)
- Nissim Silanikove
- Biology of Lactation Laboratory, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Gabriel Leitner
- National Mastitis Reference Center, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | - Uzi Merin
- Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
171
|
Li H, Rasmussen MI, Larsen MR, Guo Y, Jers C, Palmisano G, Mikkelsen JD, Kirpekar F. AutomatedN-glycan profiling of a mutantTrypanosoma rangelisialidase expressed inPichia pastoris, using tandem mass spectrometry and bioinformatics. Glycobiology 2015; 25:1350-61. [DOI: 10.1093/glycob/cwv063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
|
172
|
Badr HA, AlSadek DMM, Mathew MP, Li CZ, Djansugurova LB, Yarema KJ, Ahmed H. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials 2015; 70:23-36. [PMID: 26295436 DOI: 10.1016/j.biomaterials.2015.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 01/23/2023]
Abstract
Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, 400 North Broadway Street, Baltimore, MD 21231, USA
| | - Chen-Zhong Li
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
| | - Leyla B Djansugurova
- Institute of General Genetics and Cytology, Al-Farabi Ave, 93, Almaty 050060, Kazakhstan
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, 400 North Broadway Street, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
173
|
de Sousa YRF, da Silva Vasconcelos MA, Costa RG, de Azevedo Filho CA, de Paiva EP, Queiroga RDCRDE. Sialic acid content of goat milk during lactation. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
174
|
Affiliation(s)
- Diana L Oliveira
- Department of Food and Nutritional Sciences; University of Reading; Whiteknights Reading RG6 6AP UK
- Laboratório Nacional de Energia e Geologia (LNEG); Unidade de Bioenergia; Edifício K2, Estrada do Paço do Lumiar 22 Lisboa 1649-036 Portugal
| | - R Andrew Wilbey
- Department of Food and Nutritional Sciences; University of Reading; Whiteknights Reading RG6 6AP UK
| | - Alistair S Grandison
- Department of Food and Nutritional Sciences; University of Reading; Whiteknights Reading RG6 6AP UK
| | - Luísa B Roseiro
- Laboratório Nacional de Energia e Geologia (LNEG); Unidade de Bioenergia; Edifício K2, Estrada do Paço do Lumiar 22 Lisboa 1649-036 Portugal
| |
Collapse
|
175
|
Orczyk-Pawiłowicz M, Berghausen-Mazur M, Hirnle L, Kątnik-Prastowska I. O-glycosylation of α-1-acid glycoprotein of human milk is lactation stage related. Breastfeed Med 2015; 10:270-6. [PMID: 26057552 PMCID: PMC4490631 DOI: 10.1089/bfm.2015.0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human milk provides a multitude of glycoproteins, including highly glycosylated α-1-acid glycoprotein (AGP), which elicits anti-inflammatory and immunomodulatory properties. The milk AGP glycoforms may provide the breastfed infant with a wide range of biological benefits. Here, we analyzed the reactivity of O-linked sugar-specific lectins with human milk AGP over the process of lactation and compared the results with those of the lactating mother's plasma. MATERIALS AND METHODS Relative amounts of human skim milk AGP O-glycans were analyzed in early colostrum, colostrum, and transitional and mature milk samples of 127 healthy mothers by lectin-AGP enzyme-linked immunosorbent assay using sialyl T (sialyl-α2,3/α2,6 Galβ1,3GalNAc-), asialyl T (Galβ1,3GalNAc-), and Tn (GalNAc-) antigen-specific biotinylated Artocarpus integrifolia (Jacalin), Arachis hypogaea (PNA), and Vicia villosa (VVA) lectins, respectively. RESULTS Milk AGP elicited high expression of Jacalin- and PNA-reactive glycotopes and low expression of VVA-reactive glycotopes, which were absent on plasma AGP of lactating mothers and healthy individuals. The expression of sialyl, asialyl T, and Tn glycotopes of human milk AGP was lactation stage related. The relative amount of Jacalin-reactive AGP glycotope was highest in the colostrum samples and then decreased starting from Day 8 of lactation. In contrast, an increase of the relative amount of PNA-reactive glycotope with milk maturation was observed. The relative amount of VVA-reactive glycotope remained almost constant over the development of lactation. CONCLUSIONS Milk AGP differs from mother's plasma AGP by the presence of O-linked sialylated and asialylated T as well as Tn antigens. The variation of the expression of sialylated and asialylated T and Tn antigens on AGP is associated with milk maturation.
Collapse
Affiliation(s)
| | - Marta Berghausen-Mazur
- 2 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University , Wrocław, Poland
| | - Lidia Hirnle
- 2 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University , Wrocław, Poland
| | | |
Collapse
|
176
|
Iyalomhe O, Chen Y, Allard J, Ntekim O, Johnson S, Bond V, Goerlitz D, Li J, Obisesan TO. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes. Exp Gerontol 2015; 69:159-69. [PMID: 25981742 DOI: 10.1016/j.exger.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - Yuanxiu Chen
- Clinical Translational Science Center, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - Joanne Allard
- Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Oyonumo Ntekim
- Department of Health, Human Performance, and Leisure Studies, College of Arts and Science, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Sheree Johnson
- Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Vernon Bond
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - David Goerlitz
- Department of Molecular Biology and Informatics, Georgetown University Medical Center, 400 Reservoir Rd NW, Washington, DC 20057, USA
| | - James Li
- Department of Molecular Biology and Informatics, Georgetown University Medical Center, 400 Reservoir Rd NW, Washington, DC 20057, USA
| | - Thomas O Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA; Clinical Translational Science Center, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA.
| |
Collapse
|
177
|
Kaya I, Citil M, Sozmen M, Karapehlivan M, Cigsar G. Investigation of protective effect of L-carnitine on L-asparaginase-induced acute pancreatic injury in male Balb/c mice. Dig Dis Sci 2015; 60:1290-6. [PMID: 25502333 DOI: 10.1007/s10620-014-3461-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 11/21/2014] [Indexed: 12/09/2022]
Abstract
INTRODUCTION The present analysis deals with the biochemical and histopathological effects of L-carnitine in mice with L-asparaginase (ASNase)-induced experimental acute pancreatic injury (API). METHODS A total of 32 male Balb/c mice were divided into four groups as follows. Group I (control) was injected with single saline via the intraperitoneal route. Group II received 500 mg/kg of L-carnitine daily with the injected volume of 62.5-75 μl for 25-30 g mice using a Hamilton microinjector applied for 5 days. Group III received a single 10,000 IU Escherichia coli ASNase/kg body weight dose of ASNase at a dose of 500 mg/kg. Group IV received 500 mg/kg of L-carnitine daily and a single dose of 500 mg/kg of ASNase and were decapitated on the fifth day following the injection. Blood and pancreatic tissue samples were obtained for evaluation of histopathological structure and levels of malondialdehyde (MDA), reduced glutathione (GSH), total sialic acid (TSA), glucose, amylase and triglyceride. RESULTS In group III, compared to group IV and group I it was determined that levels of GSH and amylase were significantly lower while levels of MDA, TSA, glucose and triglyceride were higher. Levels of GSH, MDA, TSA, glucose, triglyceride and amylase, especially in group IV, approached that of group I. As a result, L-carnitine for ASNase-induced API mice may be protective against pancreatic tissue degeneration and oxidative stress or lipid peroxidation.
Collapse
Affiliation(s)
- Inan Kaya
- Department of Biology, Faculty of Science, Kafkas University, 36100, Kars, Turkey,
| | | | | | | | | |
Collapse
|
178
|
Musilova S, Rada V, Vlkova E, Bunesova V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef Microbes 2015; 5:273-83. [PMID: 24913838 DOI: 10.3920/bm2013.0080] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human milk is the gold standard for nourishment of early infants because it contains a number of bioactive components, such as human milk oligosaccharides (HMOs). The high concentration and structural diversity of HMOs are unique to humans. HMOs are a group of complex and diverse glycans that are resistant to gastrointestinal digestion and reach the infant colon as the first prebiotics. N-acetyl-glucosamine containing oligosaccharides were first identified 50 years ago as the 'bifidus factor', a selective growth substrate for intestinal bifidobacteria, thus providing a conceptual basis for HMO-specific bifidogenic activity. Bifidobacterial species are the main utilisers of HMOs in the gastrointestinal tract and represent the dominant microbiota of breast-fed infants, and they may play an important role in maintaining the general health of newborn children. Oligosaccharides are also known to directly interact with the surface of pathogenic bacteria, and various oligosaccharides in milk are believed to inhibit the binding of pathogens and toxins to host cell receptors. Furthermore, HMOs are thought to contribute to the development of infant intestine and brain. Oligosaccharides currently added to infant formula are structurally different from the oligosaccharides naturally occurring in human milk and, therefore, they are unlikely to mimic some of the structure-specific effects. In this review, we describe how HMOs can modulate gut microbiota. This article summarises information up to date about the relationship between the intestinal microbiota and HMOs, and other possible indirect effects of HMOs on intestinal environment.
Collapse
Affiliation(s)
- S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6, Czech Republic
| | - V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6, Czech Republic
| |
Collapse
|
179
|
Orczyk-Pawiłowicz M, Hirnle L, Berghausen-Mazur M, Kątnik-Prastowska I. Terminal glycotope expression on milk fibronectin differs from plasma fibronectin and changes over lactation. Clin Biochem 2015; 48:167-73. [DOI: 10.1016/j.clinbiochem.2014.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/13/2014] [Accepted: 11/08/2014] [Indexed: 01/28/2023]
|
180
|
Berg TO, Gurung MK, Altermark B, Smalås AO, Ræder ILU. Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr Res 2015; 402:133-45. [DOI: 10.1016/j.carres.2014.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
|
181
|
Gantner M, Schwarzmann G, Sandhoff K, Kolter T. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification. J Lipid Res 2014; 55:2692-704. [PMID: 25341943 DOI: 10.1194/jlr.d054734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies.
Collapse
Affiliation(s)
- Martin Gantner
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| | - Günter Schwarzmann
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| | - Konrad Sandhoff
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| | - Thomas Kolter
- Life & Medical Sciences, Membrane Biology and Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
182
|
Claps S, Di Napoli M, Sepe L, Caputo A, Rufrano D, Di Trana A, Annicchiarico G, Fedele V. Sialyloligosaccharides content in colostrum and milk of two goat breeds. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2013.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
183
|
Srimontri P, Endo S, Sakamoto T, Nakayama Y, Kurosaka A, Itohara S, Hirabayashi Y, Kato K. Sialyltransferase ST3Gal IV deletion protects against temporal lobe epilepsy. J Neurochem 2014; 131:675-87. [PMID: 25066807 DOI: 10.1111/jnc.12838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
Abstract
Temporal lobe epilepsy (TLE) often becomes refractory, and patients with TLE show a high incidence of psychiatric symptoms, including anxiety and depression. Therefore, it is necessary to identify molecules that were previously unknown to contribute to epilepsy and its associated disorders. We previously found that the sialyltransferase ST3Gal IV is up-regulated within the neural circuits through which amygdala-kindling stimulation propagates epileptic seizures. In contrast, this study demonstrated that kindling stimulation failed to evoke epileptic seizures in ST3Gal IV-deficient mice. Furthermore, approximately 80% of these mice failed to show tonic-clonic seizures with stimulation, whereas all littermate wild-type mice showed tonic-clonic seizures. This indicates that the loss of ST3Gal IV does not cause TLE in mice. Meanwhile, ST3Gal IV-deficient mice exhibited decreased acclimation in the open field test, increased immobility in the forced swim test, enhanced freezing during delay auditory fear conditioning, and sleep disturbances. Thus, the loss of ST3Gal IV modulates anxiety-related behaviors. These findings indicate that ST3Gal IV is a key molecule in the mechanisms underlying anxiety - a side effect of TLE - and may therefore also be an effective target for treating epilepsy, acting through the same circuits.
Collapse
Affiliation(s)
- Paitoon Srimontri
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Orczyk-Pawiłowicz M, Hirnle L, Berghausen-Mazur M, Kątnik-Prastowska IM. Lactation stage-related expression of sialylated and fucosylated glycotopes of human milk α-1-acid glycoprotein. Breastfeed Med 2014; 9:313-9. [PMID: 24892765 PMCID: PMC4074750 DOI: 10.1089/bfm.2014.0011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Because terminal sugars of α-1-acid glycoprotein (AGP) are reported to be involved in anti-inflammatory and immunomodulatory processes, their expressions might have an influence on the proper function of immune system of newborns. Here, relative amounts of sialylated and fucosylated glycotopes on human milk AGP over normal lactation were investigated. MATERIALS AND METHODS AGP concentration and relative amounts of its sialylated and fucosylated glycovariants were analyzed in early colostrum, colostrum, and transitional and mature milk samples of 127 healthy mothers by lectin-AGP enzyme-linked immunosorbent assay using α2,3- and α2,6-sialic acid and α1,2-, α1,3-, and α1,6-fucose specific biotinylated Maackia amurensis, Sambucus nigra, Ulex europaeus, Tetragonolobus purpureus, and Lens culinaris lectins, respectively. RESULTS AGP concentration in human milk was about 30 times lower than in plasma of lactating mothers and decreased gradually over lactation. Milk AGP showed significantly higher expression of sialylated and fucosylated glycotopes in comparison with those of plasma AGP. Milk AGP glycovariants containing α2,6-sialylated and α1,6- and α1,2-fucosylated glycotopes showed the highest relative amounts in early colostrums. With progression of lactation, the expressions of glycotopes α1,2-fucosylated decreased starting from Day 4 and those of α2,6-sialylated and α1,6-fucosylated from Day 8 of lactation, whereas the level of α2,3-sialyl-glycotope was almost constant over 45 days of lactation. In contrast, the expression of α1,3-linked fucose on AGP was low in colostrums and significantly higher in transitional and mature milk. CONCLUSIONS The relative amounts of sialylated and fucosylated glycovariants of human hindmilk AGP significantly varied between Days 2 and 45 of normal lactation.
Collapse
|
185
|
Milk oligosaccharides over time of lactation from different dog breeds. PLoS One 2014; 9:e99824. [PMID: 24924915 PMCID: PMC4068735 DOI: 10.1371/journal.pone.0099824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/17/2014] [Indexed: 01/29/2023] Open
Abstract
The partnership of humans and dogs goes back to over 10'000 years, yet relatively little is known about a dog's first extra-uterine nutrition particularly when it comes to milk oligosaccharides. We set out to identify and quantify milk oligosaccharides over the course of lactation from different dog breeds (Labrador retriever, Schnauzer and 3 Alaskan husky crossbreeds). To this end, 2 different chromatographic methods with fluorescence and mass spectrometry detection were developed and one was validated for quantification. Besides lactose and lactose-sulphate, we identified 2 different trisaccharides composed of 3 hexose units, 3'sialyllactose (3'SL), 6'sialyllactose (6'SL), 2'fucosyllactose (2'FL), and a tetrasaccharide composed of 2 hexoses, an N-acetylhexosamine and a deoxyhexose. 3'SL was present at the highest levels in milk of all dog breeds starting at around 7.5 g/L and dropping to about 1.5 g/L in the first 10 days of lactation. 6'SL was about 10 times less abundant and 2'FL and the tetrasaccharide had rather varying levels in the milk of the different breeds with the tetrasaccharide only detectable in the Alaskan husky crossbreeds. The longitudinal and quantitative data of milk oligosaccharides from different dog breeds are an important basis to further our understanding on their specific biological roles and also on the specific nutritional requirements of lactating puppies.
Collapse
|
186
|
Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience 2014; 275:113-24. [PMID: 24924144 DOI: 10.1016/j.neuroscience.2014.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022]
Abstract
Sialic acid binding immunoglobulin-like lectins (Siglecs) are cell surface receptors of microglia and oligodendrocytes that recognize the sialic acid cap of healthy neurons and neighboring glial cells. Upon ligand binding, Siglecs typically signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) to keep the cell in a homeostatic status and support healthy neighboring cells. Siglecs can be divided into two groups; the first, being conserved among different species. The conserved Siglec-4/myelin-associated glycoprotein is expressed on oligodendrocytes and Schwann cells. Siglec-4 protects neurons from acute toxicity via interaction with sialic acids bound to neuronal gangliosides. The second group of Siglecs, named CD33-related Siglecs, is almost exclusively expressed on immune cells and is highly variable among different species. Microglial expression of Siglec-11 is human lineage-specific and prevents neurotoxicity via interaction with α2.8-linked sialic acid oligomers exposed on the neuronal glycocalyx. Microglial Siglec-E is a mouse CD33-related Siglec member that prevents microglial phagocytosis and the associated oxidative burst. Mouse Siglec-E of microglia binds to α2.8- and α2.3-linked sialic acid residues of the healthy glycocalyx of neuronal and glial cells. Recently, polymorphisms of the human Siglec-3/CD33 were linked to late onset Alzheimer's disease by genome-wide association studies. Human Siglec-3 is expressed on microglia and produces inhibitory signaling that decreases uptake of particular molecules such as amyloid-β aggregates. Thus, glial ITIM-signaling Siglecs recognize the intact glycocalyx of neurons and are involved in the modulation of neuron-glia interaction in healthy and diseased brain.
Collapse
|
187
|
Abstract
Despite heroic efforts to prevent the emergence of an influenza pandemic, avian influenza A virus has prevailed by crossing the species barriers to infect humans worldwide, occasionally with morbidity and mortality at unprecedented levels, and the virus later usually continues circulation in humans as a seasonal influenza virus, resulting in health-social-economic problems each year. Here, we review current knowledge of influenza viruses, their life cycle, interspecies transmission, and past pandemics and discuss the molecular basis of pandemic acquisition, notably of hemagglutinin (lectin) acting as a key contributor to change in host specificity in viral infection.
Collapse
Affiliation(s)
- Jun Hirabayashi
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
188
|
ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Feitsma AL, van Hoffen E, Schoterman MHC. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr Rev 2014; 72:377-89. [PMID: 24828428 DOI: 10.1111/nure.12106] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human milk is a rich source of oligosaccharides. Acidic oligosaccharides, such as sialyllactose (SL), contain sialic acid (SA) residues. In human milk, approximately 73% of SA is bound to oligosaccharides, whereas only 3% is present in free form. Oligosaccharides are highly resistant to hydrolysis in the gastrointestinal tract. Only a small portion of the available oligosaccharides in breast milk is absorbed in the neonatal small intestine. SL and sialylated oligosaccharides are thought to have significant health benefits for the neonate, because of their roles in supporting resistance to pathogens, gut maturation, immune function, and cognitive development. The need for SA to allow proper development during the neonatal period is thought to exceed the endogenous synthesis. Therefore, these structures are important nutrients for the neonate. Based on the potential benefits, SL and sialylated oligosaccharides may be interesting components for application in infant nutrition. Once the hurdle of limited availability of these oligosaccharides has been overcome, their functionality can be explored in more detail, and supplementation of infant formula may become feasible.
Collapse
|
189
|
Alves ADA, Belian MF, Lavorante AF. Luminescent solid phase for sialic acid determination: a promising sensor for milk-adulterated samples. LUMINESCENCE 2014; 29:779-83. [PMID: 24425363 DOI: 10.1002/bio.2620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 11/06/2022]
Abstract
This article presents the synthesis, characterization and spectroscopic study of silica modified with thenoyltrifluoroacetonate (SilTTA) and coordinated to an europium (III) ion, for the determination of sialic acid (NANA). Elemental analysis and infrared spectroscopy suggest silica functionalization, as well as coordination of beta-diketone to the lanthanide ion. The emission spectra of compound-free and coordinated Eu-SilTTA to NANA showed significant changes with respect to the maximum emission and spectral profile, suggesting that the NANA ion is coordinated to the Eu(III). The values of the phenomenological intensity parameters show an increase in polarizability around the Eu(III) in the case of Eu-SilTTA coordinated to NANA, as expected, since water molecules are less polarizable than sialic acid. The results of the batch assay showed that luminescent silica can be used for sialic acid determination in milk-adulterated samples, with a correlation coefficient of 0.9992; and a detection limit of 0.4 mg/L; relative standard deviation (RSD%) = 0.0028.
Collapse
Affiliation(s)
- Aline de A Alves
- Departamento de Ciências Moleculares, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
190
|
O'Riordan N, Kane M, Joshi L, Hickey RM. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 2014; 24:220-36. [PMID: 24398766 DOI: 10.1093/glycob/cwt162] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Most secreted and cell membrane proteins in mammals are glycosylated. Many of these glycoproteins are also prevalent in milk and play key roles in the biomodulatory properties of milk and ultimately in determining milk's nutritional quality. Although a significant amount of information exists on the types and roles of free oligosaccharides in milk, very little is known about the glycans associated with milk glycoproteins, in particular, the biological properties that are linked to their presence. The main glycoproteins found in bovine milk are lactoferrin, the immunoglobulins, glycomacropeptide, a glycopeptide derived from κ-casein, and the glycoproteins of the milk fat globule membrane. Here, we review the glycoproteins present in bovine milk, the information currently available on their glycosylation and the biological significance of their oligosaccharide chains.
Collapse
Affiliation(s)
- Noelle O'Riordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | | | | |
Collapse
|
191
|
Li H, Fan X. Quantitative analysis of sialic acids in Chinese conventional foods by HPLC-FLD. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojpm.2014.42009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
192
|
Ryan JM, Rice GE, Mitchell MD. The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res 2013; 33:877-87. [PMID: 24176227 DOI: 10.1016/j.nutres.2013.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
Abstract
The maternal diet provides critical nutrients that can influence fetal and infant brain development and function. This review highlights the potential benefits of maternal dietary ganglioside supplementation on fetal and infant brain development. English-language systematic reviews, preclinical studies, and clinical studies were obtained through searches on PubMed. Reports were selected if they included benefits and harms of maternal ganglioside supplementation during pregnancy or ganglioside-supplemented formula after pregnancy. The potential benefits of ganglioside supplementation were explored by investigating the following: (1) their role in neural development, (2) their therapeutic use in neural injury and disease, (3) their presence in human breast milk, and (4) their use as a dietary supplement during or after pregnancy. Preclinical studies indicate that ganglioside supplementation at high doses (1% of total dietary intake) can significantly increase cognitive development and body weight when given prenatally. However, lower ganglioside supplementation doses have no beneficial cognitive effects, even when given throughout pregnancy and lactation. In human clinical trials, infants given formula supplemented with gangliosides showed increased cognitive development and an increase in ganglioside content. Ganglioside supplementation may promote brain development and function in offspring when administered at the optimum dosage. We propose that prenatal maternal dietary supplementation with gangliosides throughout pregnancy may promote greater long-term effects on brain development and function. Before this concept can be encouraged in preconception clinics, future research and clinical trials are needed to confirm the ability of dietary gangliosides to improve cognitive development, but available results already encourage this area of research.
Collapse
Affiliation(s)
- Jennifer M Ryan
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
193
|
LC-MS/MS quantification of N-acetylneuraminic acid, N-glycolylneuraminic acid and ketodeoxynonulosonic acid levels in the urine and potential relationship with dietary sialic acid intake and disease in 3- to 5-year-old children. Br J Nutr 2013; 111:332-41. [PMID: 23915700 DOI: 10.1017/s0007114513002468] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Red meat and dairy products contain high sialic acid (Sia) levels, but the metabolic fate and health impact in children remain unknown. The aims of the present study were to quantify the levels of urinary Sia N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) and ketodeoxynonulosonic acid (KDN) and to determine their relationship with dietary Sia intake. Spot urine samples were collected from 386 healthy children aged 3 (n 108), 4 (n 144) and 5 (n 134) years at 06.30-07.00, 11.30-12.00 and 16.30-17.00 hours. Food intake levels were recorded on the day of urine sample collection. Sia levels were quantified using LC-MS/MS with [13C3]Sia as an internal standard. We found that (1) total urinary Sia levels in healthy pre-school children ranged from 40 to 79 mmol Sia/mol creatinine; (2) urinary Sia levels were independent of age and consisted of conjugated Neu5Ac (approximately 70·8 %), free Neu5Ac (approximately 21·3 %), conjugated KDN (approximately 4·2 %) and free KDN (approximately 3·7 %); Neu5Gc was detected in the urine of only one 4-year-old girl; (3) total urinary Sia levels were highest in the morning and declined over time in 4- and 5-year-old children (P< 0·05), but not in 3-year-old children; (4) Sia intake levels at breakfast and lunch were approximately 2·5 and 0·16 mg Sia/kg body weight; and (5) there was no significant correlation between dietary Sia intake levels and urinary Sia levels. Urinary Sia levels varied with age and time of day, but did not correlate with Sia intake in 3- to 5-year-old children. The difference in urinary Sia levels in children of different age groups suggests that the metabolism and utilisation rates of dietary Sia are age dependent.
Collapse
|
194
|
Georgi G, Bartke N, Wiens F, Stahl B. Functional glycans and glycoconjugates in human milk. Am J Clin Nutr 2013; 98:578S-85S. [PMID: 23783293 DOI: 10.3945/ajcn.112.039065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human milk contains complex carbohydrates that are important dietary factors with multiple functions during early life. Several aspects of these glycostructures are human specific; some aspects vary between lactating women, and some change during the course of lactation. This review outlines how variability of complex glycostructures present in human milk is linked to changing infants' needs.
Collapse
Affiliation(s)
- Gilda Georgi
- Danone Research–Centre for Specialised Nutrition, Friedrichsdorf, Germany
| | | | | | | |
Collapse
|
195
|
Dallas DC, Lee H, Parc AL, de Moura Bell JMLN, Barile D. Coupling Mass Spectrometry-Based "Omic" Sciences with Bioguided Processing to Unravel Milk's Hidden Bioactivities. JOURNAL OF ADVANCES IN DAIRY RESEARCH 2013; 1:104. [PMID: 24818172 PMCID: PMC4012335 DOI: 10.4172/2329-888x.1000104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many of milk's functional molecules could not be discovered until the right concordance of novel separation and analytical technologies were developed and applied. Many health-promoting components still await discovery due to technical challenges in their identification, isolation and testing. As new analytical technologies are assembled, new functional milk molecules will be discovered. Bovine milk is a source of a wide array of known bioactive compounds from a variety of molecular classes, including free glycans, lipids, glycolipids, peptides, proteins, glycoproteins, stem cells and microRNA. Because milk is such a complex mixture, when analyzed without fractionation or purification, many components mask the analytical signal of others, so some components cannot be detected. Modern analytics allow for the discovery and characterization of hundreds of novel milk compounds with high-resolution and high-accuracy. Liquid chromatography paired with electrospray ionization allows the separation of peptides, glycans and glycolipids for improved mass spectrometric detection. Target proteins and glycoproteins can now be purified from intact milk or other dairy streams by chromatography in order to better characterize these proteins for new bioactivities. The combination of advanced analytics with the new engineering capabilities will allow for high molecular resolution and separation techniques that can be scaled-up to semi-industrial and industrial scale for translation of lab-based discoveries. Bioguided analysis and design of dairy processing side streams will result in the transformation of waste into isolated functional ingredients to add value to dietary products.
Collapse
Affiliation(s)
- David C Dallas
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, CA 95616, USA ; Foods for Health Institute, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hyeyoung Lee
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, CA 95616, USA ; Foods for Health Institute, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Annabelle Le Parc
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | - Daniela Barile
- Department of Food Science & Technology, University of California, One Shields Avenue, Davis, CA 95616, USA ; Foods for Health Institute, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
196
|
The effect of dietary intake of the acidic protein fraction of bovine colostrum on influenza A (H1N1) virus infection. J Microbiol 2013; 51:389-93. [PMID: 23620352 PMCID: PMC7090844 DOI: 10.1007/s12275-013-2683-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Acidic protein levels in the milk decrease markedly as lactation progresses, suggesting that it is an important part of the colostrum. However, little attention has been paid to their biological function. In this study, we isolated the acidic protein fraction of bovine colostrum (AFC, isoelectric point <5) by anion-exchange chromatography, and investigated the effect of its dietary intake on influenza A (H1N1) virus infection. 100% of mice infected with 1 LD50 of the virus survived when administered AFC for 14 days prior to infection, compared with 33% survival when administered phosphate buffered saline (PBS). Moreover, consumption of AFC reduced the weight loss associated with infection. We propose that dietary intake of AFC has a prophylactic effect on influenza A virus infection.
Collapse
|
197
|
Gurung MK, Ræder ILU, Altermark B, Smalås AO. Characterization of the sialic acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial synthesis of 7-O-acetylated sialic acids. Glycobiology 2013; 23:806-19. [PMID: 23481098 DOI: 10.1093/glycob/cwt018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resolving the enzymatic pathways leading to sialic acids (Sias) in bacteria are vitally important for understanding their roles in pathogenesis and for subsequent development of tools to combat infections. A detailed characterization of the involved enzymes is also essential due to the highly applicable properties of Sias, i.e., as used in a wide range of medical applications and human nutrition. Bacterial strains that produce Sias display them mainly on their cell surface to mimic animal cells thereby evading the host's immune system. Despite several studies, little is known about the virulence mechanisms of the fish pathogen Aliivibrio salmonicida. The genome of A. salmonicida LFI1238 contains a gene cluster homologous to the Escherichia coli neuraminic acid (Neu) gene cluster involved in biosynthesis of Sias found in the E. coli capsule. This cluster is probably responsible for the biosynthesis of Neu found in A. salmonicida. In this work, we have produced and characterized the sialic acid (Sia) synthase NeuB1, the key enzyme in the pathway. The Sia synthase is an enzyme producing N-acetylneuraminic acid by the condensation of N-acetylmannosamine and phosphoenolpyruvate. Genome content, kinetic data obtained, together with structural considerations, have led us to the prediction that the substrate for NeuB1 from A. salmonicida, E. coli and Streptococcus agalactiae among others, is 4-O-acetyl-N-acetylmannosamine. This means that the product of its enzymatic reaction is 7-O-acetyl-N-acetylneuraminic acid. We propose a pathway for production of this Sia in A. salmonicida, and present evidence for the presence of diacetylated Neu in the bacterium.
Collapse
Affiliation(s)
- Man K Gurung
- Department of Chemistry, The Norwegian Structural Biology Center NorStruct, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
198
|
Orozco-Solano M, Priego-Capote F, Luque de Castro M. Ultrasound-assisted hydrolysis and chemical derivatization combined to lab-on-valve solid-phase extraction for the determination of sialic acids in human biofluids by μ-liquid chromatography-laser induced fluorescence. Anal Chim Acta 2013; 766:69-76. [DOI: 10.1016/j.aca.2012.12.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/12/2012] [Accepted: 12/23/2012] [Indexed: 10/27/2022]
|
199
|
QIAO Y, FENG J, YANG J, GU G. The Relationship between Dietary Vitamin A Intake and the Levels of Sialic Acid in the Breast Milk of Lactating Women. J Nutr Sci Vitaminol (Tokyo) 2013; 59:347-51. [DOI: 10.3177/jnsv.59.347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
200
|
Direct estimation of sialic acid in milk and milk products by fluorimetry and its application in detection of sweet whey adulteration in milk. J DAIRY RES 2012; 79:495-501. [DOI: 10.1017/s0022029912000441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sialic acid, being a biologically active compound, is recognised as an important component of milk and milk products. Almost all the sialic acid estimation protocols in milk require prior hydrolysis step to release the bound sialic acid followed by its estimation. The objective of this work was to estimate sialic acid in milk and milk products by fluorimetric assay which does not require a prior hydrolysis step thus decreasing the estimation time. The recovery of added sialic acid in milk was 91·6 to 95·8%. Sialic acid in milk was found to be dependent on cattle breed and was in the range of 1·68–3·93 g/kg (dry matter basis). The assay was further extended to detect adulteration of milk with sweet whey which is based on the detection of glycomacropeptide (GMP) bound sialic acid in adulterated milk. GMP is the C-terminal part of κ-casein which is released into the whey during cheese making. For detection of adulteration, selective precipitation of GMP was done using trichloroacetic acid (TCA). TCA concentration in milk was first raised to 5% to precipitate milk proteins, especially κ-casein, followed by raising the TCA concentration to 14% to precipitate out GMP. In the precipitates GMP bound sialic acid was estimated using fluorimetric method and the fluorescence intensity was found to be directly proportional to the level of sweet whey in adulterated milk samples. The method was found to detect the presence of 5% sweet whey in milk.
Collapse
|