151
|
Li A, Wang J, Zhu D, Zhang X, Pan R, Wang R. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial–mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells. Free Radic Res 2015; 49:1095-113. [DOI: 10.3109/10715762.2015.1038258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
152
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
153
|
Wang C, Blough E, Arvapalli R, Dai X, Triest WE, Leidy JW, Masannat Y, Wu M. Acetaminophen attenuates glomerulosclerosis in obese Zucker rats via reactive oxygen species/p38MAPK signaling pathways. Free Radic Biol Med 2015; 81:47-57. [PMID: 25614458 DOI: 10.1016/j.freeradbiomed.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/05/2014] [Accepted: 01/11/2015] [Indexed: 01/09/2023]
Abstract
Focal segmental glomerulosclerosis is a critical pathological lesion in metabolic syndrome-associated kidney disease that, if allowed to proceed unchecked, can lead to renal failure. However, the exact mechanisms underlying glomerulosclerosis remain unclear, and effective prevention strategies against glomerulosclerosis are currently limited. Herein, we demonstrate that chronic low-dose ingestion of acetaminophen (30 mg/kg/day for 6 months) attenuates proteinuria, glomerulosclerosis, podocyte injury, and inflammation in the obese Zucker rat model of metabolic syndrome. Moreover, acetaminophen treatment attenuated renal fibrosis and the expression of profibrotic factors (fibronectin, connective tissue growth factor, transforming growth factor β), reduced inflammatory cell infiltration into the glomeruli, and decreased the expression of monocyte chemoattractant protein, glutathione (GSH) reductase, and nuclear factor erythroid 2-related factor 2, but increased the level of GSH synthetase in obese animals. Further in vivo and in vitro studies using human renal mesangial cells exposed to high glucose or hydrogen peroxide suggested that the renoprotective effects of acetaminophen are characterized by diminished renal oxidative stress and p38MAPK hyperphosphorylation.
Collapse
Affiliation(s)
- Cuifen Wang
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Southeast University, Nanjing, Jiangsu, China
| | - Eric Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA.
| | - Ravikumar Arvapalli
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA
| | - Xiaoniu Dai
- Southeast University, Nanjing, Jiangsu, China
| | | | - John W Leidy
- Huntington VA Medical Center, Huntington, WV 25704, USA
| | - Yanal Masannat
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Huntington, WV 25755, USA
| | - Miaozong Wu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Department of Internal Medicine, Joan C. Edwards School of Medicine, Huntington, WV 25755, USA.
| |
Collapse
|
154
|
Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48:730-42. [PMID: 25273317 DOI: 10.1007/s12020-014-0437-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end stage renal failure and there is an urgent need to identify new clinical biomarkers and targets for treatment to effectively prevent and slow the progression of the complication. Many lines of evidence show that inflammation is a cardinal pathogenetic mechanism in DN. Studies in animal models of experimental diabetes have demonstrated that there is a low-grade inflammation in the diabetic kidney. Both pharmacological and genetic strategies targeting inflammatory molecules have been shown to be beneficial in experimental DN. In vitro studies have cast light on the cellular mechanisms whereby diabetes triggers inflammation and in turn inflammation magnifies the kidney injury. Translation of this basic science knowledge into potential practical clinical applications is matter of great interest for researchers today. This review focuses on key pro-inflammatory systems implicated in the development of DN: the tumor necrosis factor(TNF)-α/TNF-α receptor system, the monocyte chemoattractant protein-1/CC-chemokine receptor-2 system, and the Endocannabinoid system that have been selected as they appear particularly promising for future clinical applications.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, C/so AM Dogliotti 14, Turin, Italy
| | | | | | | |
Collapse
|
155
|
Serum amyloid A and inflammation in diabetic kidney disease and podocytes. J Transl Med 2015; 95:250-62. [PMID: 25531567 PMCID: PMC4346621 DOI: 10.1038/labinvest.2014.163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022] Open
Abstract
Inflammatory pathways are central mechanisms in diabetic kidney disease (DKD). Serum amyloid A (SAA) is increased by chronic inflammation, but SAA has not been previously evaluated as a potential DKD mediator. The aims of this study were to determine whether SAA is increased in human DKD and corresponding mouse models and to assess effects of SAA on podocyte inflammatory responses. SAA was increased in the plasma of people with DKD characterized by overt proteinuria and inversely correlated with estimated glomerular filtration rate (creatinine-based CKD-EPI). SAA was also elevated in plasma of diabetic mouse models including type 1 diabetes (streptozotocin/C57BL/6) and type 2 diabetes (BTBR-ob/ob). SAA mRNA (Nephromine) was increased in human DKD compared with non-diabetic and/or glomerular disease controls (glomerular fold change 1.5, P=0.017; tubulointerstitium fold change 1.4, P=0.021). The kidneys of both diabetic mouse models also demonstrated increased SAA mRNA (quantitative real-time PCR) expression compared with non-diabetic controls (type 1 diabetes fold change 2.9; type 2 diabetes fold change 42.5, P=0.009; interaction by model P=0.57). Humans with DKD and the diabetic mouse models exhibited extensive SAA protein deposition in the glomeruli and tubulointerstitium in similar patterns by immunohistochemistry. SAA localized within podocytes of diabetic mice. Podocytes exposed to advanced glycation end products, metabolic mediators of inflammation in diabetes, increased expression of SAA mRNA (fold change 15.3, P=0.004) and protein (fold change 38.4, P=0.014). Podocytes exposed to exogenous SAA increased NF-κB activity, and pathway array analysis revealed upregulation of mRNA for NF-κB-dependent targets comprising numerous inflammatory mediators, including SAA itself (fold change 17.0, P=0.006). Inhibition of NF-κB reduced these pro-inflammatory responses. In conclusion, SAA is increased in the blood and produced in the kidneys of people with DKD and corresponding diabetic mouse models. Podocytes are likely to be key responder cells to SAA-induced inflammation in the diabetic kidney. SAA is a compelling candidate for DKD therapeutic and biomarker discovery.
Collapse
|
156
|
dos Santos TEDJ, Gonçalves RP, Barbosa MC, da Silva GB, Daher EDF. Monocyte chemoatractant protein-1: A potential biomarker of renal lesion and its relation with oxidative status in sickle cell disease. Blood Cells Mol Dis 2015; 54:297-301. [DOI: 10.1016/j.bcmd.2014.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/15/2014] [Indexed: 12/31/2022]
|
157
|
Chung CH, Fan J, Lee EY, Kang JS, Lee SJ, Pyagay PE, Khoury CC, Yeo TK, Khayat MF, Wang A, Chen S. Effects of Tumor Necrosis Factor-α on Podocyte Expression of Monocyte Chemoattractant Protein-1 and in Diabetic Nephropathy. NEPHRON EXTRA 2015; 5:1-18. [PMID: 25852733 PMCID: PMC4369122 DOI: 10.1159/000369576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background/Aims Tumor necrosis factor (TNF)-α is believed to play a role in diabetic kidney disease. This study explores the specific effects of TNF-α with regard to nephropathy-relevant parameters in the podocyte. Methods Cultured mouse podocytes were treated with recombinant TNF-α and assayed for production of monocyte chemoattractant protein-1 (MCP-1) by enzyme-linked immunosorbent assay (ELISA). TNF-α signaling of MCP-1 was elucidated by antibodies against TNF receptor (TNFR) 1 or TNFR2 or inhibitors of nuclear factor-kappaB (NF-κB), phosphatidylinositol 3-kinase (PI3K) or Akt. In vivo studies were done on male db/m and type 2 diabetic db/db mice. Levels of TNF-α and MCP-1 were measured by RT-qPCR and ELISA in the urine, kidney and plasma of the two cohorts and correlated with albuminuria. Results Podocytes treated with TNF-α showed a robust increase (∼900%) in the secretion of MCP-1, induced in a dose- and time-dependent manner. Signaling of MCP-1 expression occurred through TNFR2, which was inducible by TNF-α ligand, but did not depend on TNFR1. TNF-α then proceeded via the NF-κB and the PI3K/Akt systems, based on the effectiveness of the inhibitors of those pathways. For in vivo relevance to diabetic kidney disease, TNF-α and MCP-1 levels were found to be elevated in the urine of db/db mice but not in the plasma. Conclusion TNF-α potently stimulates podocytes to produce MCP-1, utilizing the TNFR2 receptor and the NF-κB and PI3K/Akt pathways. Both TNF-α and MCP-1 levels were increased in the urine of diabetic db/db mice, correlating with the severity of diabetic albuminuria.
Collapse
Affiliation(s)
- Choon Hee Chung
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA ; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jingyi Fan
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA ; Pediatric Department, Wuhan University School of Medicine, Zhongnan Affiliated Hospital, Wuhan, P.R. China
| | - Eun Young Lee
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA ; Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Seung Joo Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Petr E Pyagay
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA
| | - Charbel C Khoury
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA
| | - Tet-Kin Yeo
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA
| | - Mark F Khayat
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA
| | - Amy Wang
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA
| | - Sheldon Chen
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Ill., USA ; Section of Nephrology, MD Anderson Cancer Center, Houston, Tex., USA
| |
Collapse
|
158
|
Yamagishi SI, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc Diabetol 2015; 14:2. [PMID: 25582643 PMCID: PMC4298871 DOI: 10.1186/s12933-015-0176-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) consist of heterogenous group of macroprotein derivatives, which are formed by non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids, and whose process has progressed at an accelerated rate under diabetes. Non-enzymatic glycation and cross-linking of protein alter its structural integrity and function, contributing to the aging of macromolecules. Furthermore, engagement of receptor for AGEs (RAGE) with AGEs elicits oxidative stress generation and subsequently evokes proliferative, inflammatory, and fibrotic reactions in a variety of cells. Indeed, accumulating evidence has suggested the active involvement of accumulation of AGEs in diabetes-associated disorders such as diabetic microangiopathy, atherosclerotic cardiovascular diseases, Alzheimer's disease and osteoporosis. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins, gut hormones secreted from the intestine in response to food intake, both of which augment glucose-induced insulin release, suppress glucagon secretion, and slow gastric emptying. Since GLP-1 and GIP are rapidly degraded and inactivated by dipeptidyl peptidase-4 (DPP-4), inhibition of DPP-4 and/or DPP-4-resistant GLP-1 analogues have been proposed as a potential target for the treatment of diabetes. Recently, DPP-4 has been shown to cleave multiple peptides, and blockade of DPP-4 could exert diverse biological actions in GLP-1- or GIP-independent manner. This article summarizes the crosstalk between AGEs-RAGE axis and DPP-4-incretin system in the development and progression of diabetes-associated disorders and its therapeutic intervention, especially focusing on diabetic vascular complications.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
159
|
LIU LIHUA, LIAO PINGPING, WANG BIN, FANG XIN, LI WEI, GUAN SIMING. Baicalin inhibits the expression of monocyte chemoattractant protein-1 and interleukin-6 in the kidneys of apolipoprotein E-knockout mice fed a high cholesterol diet. Mol Med Rep 2015; 11:3976-80. [DOI: 10.3892/mmr.2015.3186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/25/2014] [Indexed: 11/06/2022] Open
|
160
|
Biomarkers of renal function, which and when? Clin Chim Acta 2015; 438:350-7. [DOI: 10.1016/j.cca.2014.08.039] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022]
|
161
|
Sancar-Bas S, Gezginci-Oktayoglu S, Bolkent S. Exendin-4 attenuates renal tubular injury by decreasing oxidative stress and inflammation in streptozotocin-induced diabetic mice. Growth Factors 2015; 33:419-29. [PMID: 26728502 DOI: 10.3109/08977194.2015.1125349] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, we aimed to research the restorative effects of exendin-4, a GLP-1 analog, on renal tubular injury in streptozotocin-induced diabetes model. BALB/c male mice were divided into four groups: non-diabetic, non-diabetic + exendin-4 (3 μg/kg), diabetic and diabetic + exendin-4. In our diabetic model, we observed renal injury mainly in tubular area rather than glomeruli and exendin-4 decreased tubular injury with its glucose lowering effect. Besides, PCNA positive tubular cells, activities of LDH and Na(+)-K(+)-ATPase were also significantly declined by the administration of exendin-4. Furthermore, exendin-4 attenuated the levels of ROS, MDA, 8-OHdG, proinflammatory cytokines (TNF-α, IL-1β), chemokine MCP-1, ICAM-1, and fibrosis-related molecules (transforming growth factor β1 and fibronectin). In consistent with reducing tubular injury, macrophage infiltration and both MCP-1 and ICAM-1 production in tubular cells were decreased. These results indicate that exendin-4 may decrease renal tubular injury seen in the beginning of diabetic nephropathy by decreasing ROS production and inflammation.
Collapse
Affiliation(s)
- Serap Sancar-Bas
- a Biology Department, Molecular Biology Section , Faculty of Science, Istanbul University , Istanbul , Turkey
| | - Selda Gezginci-Oktayoglu
- a Biology Department, Molecular Biology Section , Faculty of Science, Istanbul University , Istanbul , Turkey
| | - Sehnaz Bolkent
- a Biology Department, Molecular Biology Section , Faculty of Science, Istanbul University , Istanbul , Turkey
| |
Collapse
|
162
|
Ma ZJ, Zhang XN, Li L, Yang W, Wang SS, Guo X, Sun P, Chen LM. Tripterygium Glycosides Tablet Ameliorates Renal Tubulointerstitial Fibrosis via the Toll-Like Receptor 4/Nuclear Factor Kappa B Signaling Pathway in High-Fat Diet Fed and Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2015; 2015:390428. [PMID: 26347890 PMCID: PMC4549548 DOI: 10.1155/2015/390428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 11/18/2022] Open
Abstract
Tripterygium glycosides tablet (TGT) is a Chinese traditional medicine that has been shown to protect podocytes from injury and reduce the proteinuria. The aim of this study was to assess the effect of TGT on renal tubulointerstitial fibrosis and its potential mechanism in high-fat diet fed and STZ-induced diabetic rats. Rats were randomly divided into normal control rats (NC group), diabetic rats without drug treatment (DM group), and diabetic rats treated with TGT (1, 3, or 6 mg/kg/day, respectively) for 8 weeks. The results showed that 24 h proteinuria and urinary N-acetyl-glucosaminidase (NAG) in diabetic rats were decreased by TGT treatment without affecting blood glucose. Masson's trichrome stains showed that apparent renal tubulointerstitial fibrosis was found in DM group, which was ameliorated by TGT treatment. The expression of α-SMA was significantly decreased, accompanied by increased expression of E-cadherin in TGT-treated rats, but not in untreated DM rats. Further studies showed that TGT administration markedly reduced expression of TLR4, NF-κB, IL-1β, and MCP-1 in TGT-treated diabetic rats. These results showed that TGT could ameliorate renal tubulointerstitial fibrosis, the mechanism which may be at least partly associated with the amelioration of EMT through suppression of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Ze-jun Ma
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-na Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Li Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Shan-shan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Xin Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Pei Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Li-ming Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
- *Li-ming Chen:
| |
Collapse
|
163
|
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015; 2015:948417. [PMID: 25785280 PMCID: PMC4345080 DOI: 10.1155/2015/948417] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/17/2015] [Accepted: 01/31/2015] [Indexed: 12/12/2022] Open
Abstract
Probably, the most paradigmatic example of diabetic complication is diabetic nephropathy, which is the largest single cause of end-stage renal disease and a medical catastrophe of worldwide dimensions. Metabolic and hemodynamic alterations have been considered as the classical factors involved in the development of renal injury in patients with diabetes mellitus. However, the exact pathogenic mechanisms and the molecular events of diabetic nephropathy remain incompletely understood. Nowadays, there are convincing data that relate the diabetes inflammatory component with the development of renal disease. This review is focused on the inflammatory processes that develop diabetic nephropathy and on the new therapeutic approaches with anti-inflammatory effects for the treatment of chronic kidney disease in the setting of diabetic nephropathy.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- *Javier Donate-Correa: and
| | - Ernesto Martín-Núñez
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Mercedes Muros-de-Fuentes
- Clinical Biochemistry Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Juan F. Navarro-González
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Nephrology Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- *Juan F. Navarro-González:
| |
Collapse
|
164
|
Wu Y, Wang Y, Qi X, Zhang P, Zhang C, Zhang W. Increased macrophage activation inhibited by tacrolimus in the kidney of diabetic rats. Nephron Clin Pract 2014; 128:46-56. [PMID: 25376933 DOI: 10.1159/000366446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Accumulating evidence suggests that macrophage-induced inflammation may be the mechanism of development and progression of diabetic nephropathy. A previous study by our group has shown that tacrolimus, like cyclosporin A, has a renoprotective effect in diabetic rats. The present study aimed to elucidate the underlying molecular events. METHODS Diabetic rats were induced by using streptozotocin. Diabetic rats were subjected to oral tacrolimus treatment at a dose of 0.5 or 1.0 mg/kg daily for 4 weeks. Body weight, blood glucose, hemoglobin A(1c) (HbA(1c)) and renal pathology were assessed, followed by analyses of renal calcineurin (CaN) expression, changes in renal macrophage infiltration, proliferation and activation, and detection of renal TLR2+ and TLR4+ as well as NF-κB-p-p65+ in macrophages. RESULTS Diabetic rats had a reduced body weight and increased blood glucose and HbA(1c) levels, whereas tacrolimus treatment did not affect body weight or blood glucose and HbA(1c). Increased relative kidney weight was only significantly reduced by tacrolimus treatment at a dose of 1.0 mg/kg, while the elevated albumin excretion rate was markedly attenuated after treatment with tacrolimus (0.5 and 1.0 mg/kg) in diabetic rats. Elevated glomerular volume was significantly attenuated by tacrolimus treatment with 0.5 and 1.0 mg/kg, and increased indices for tubulointerstitial injury were only ameliorated by tacrolimus treatment with 1.0 mg/kg. Western blot data showed that expression of CaN protein was induced 2.4-fold in the kidneys of positive control diabetic rats, whereas tacrolimus treatment at 0.5 and 1.0 mg/kg doses reduced the increased expression of CaN protein by 38.0 and 73.2%, respectively. Histologically there was a marked accumulation of ED-1+ cells (macrophages) in diabetic kidneys and tacrolimus treatment failed to inhibit it. In contrast, tacrolimus treatment at 0.5 and 1.0 mg/kg doses significantly inhibited the elevated ED-1+/PCNA+ cells and ED-1+/iNOS+ cells in the kidneys of diabetic rats, while tacrolimus treatment at a dose of 0.5 or 1.0 mg/kg significantly suppressed the increased ED-1+/TLR2+ cells, ED-1+/TLR4+ cells and ED-1+/NF-κB-p-p65+ cells in the kidneys of diabetic rats. CONCLUSION The data from the current study demonstrated that tacrolimus could ameliorate early renal injury through a mechanism to suppress macrophage activation.
Collapse
Affiliation(s)
- Yonggui Wu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | | | | | | | | | | |
Collapse
|
165
|
Gentile G, Mastroluca D, Ruggenenti P, Remuzzi G. Novel effective drugs for diabetic kidney disease? or not? Expert Opin Emerg Drugs 2014; 19:571-601. [PMID: 25376947 DOI: 10.1517/14728214.2014.979151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Diabetes mellitus is increasingly common worldwide and is expected to affect 592 million people by 2035. The kidney is often involved. A key goal in treating diabetes is to reduce the risk of development of kidney disease and, if kidney disease is already present, to delay the progression to end-stage renal disease (ESRD). This represents a social and ethical issue, as a significant proportion of patients reaching ESRD in developing countries do not have access to renal replacement therapy. AREAS COVERED The present review focuses on novel therapeutic approaches for diabetic nephropathy (DN), implemented on the basis of recent insights on its pathophysiology, which might complement the effects of single inhibition of the renin-angiotensin-aldosterone system (RAAS), the cornerstone of renoprotective interventions in diabetes, along with glycemic and blood pressure control. EXPERT OPINION Although a plethora of new treatment options has arisen from experimental studies, the number of novel renoprotective molecules successfully implemented in clinical practice over the last two decades is disappointingly low. Thus, new investigational strategies and diagnostic tools - including the appropriate choice of relevant renal end points and the study of urinary proteome of patients - will be as important as new therapeutic interventions to fight DN. Finally, in spite of huge financial interests in replacing the less expensive ACE inhibitors and angiotensin II receptor blockers with newer drugs, any future therapeutic approach has to be tested on top of - rather than instead of - optimal RAAS blockade.
Collapse
Affiliation(s)
- Giorgio Gentile
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Center for Rare Diseases "Aldo e Cele Daccò" , Villa Camozzi, Via Giambattista Camozzi 3, 24020, Ranica, Bergamo , Italy +39 03545351 ; +39 0354535371 ;
| | | | | | | |
Collapse
|
166
|
Yanagisawa K, Ashihara J, Obara S, Wada N, Takeuchi M, Nishino Y, Maeda S, Ishibashi Y, Yamagishi SI. Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargine-injected diabetic patients. Diabetes Metab Res Rev 2014; 30:693-700. [PMID: 24639403 DOI: 10.1002/dmrr.2537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Basal and bolus insulin therapy is required for strict blood control in diabetic patients, which could lead to prevention of vascular complications in diabetes. However, the optimal combination regimen is not well established. METHODS Fifty-nine diabetic patients (49 type 1 and 10 type 2; 52.9 ± 13.3 years old) whose blood glucose levels were uncontrolled (HbA1c > 6.2%) by combination treatment of basal insulin glargine with multiple daily pre-meal injections of bolus short-acting insulin [aspart (n = 19), lispro (n = 37) and regular human insulin (n = 3)] for at least 8 weeks were enrolled in this study. We examined whether glycaemic control and vascular injury were improved by replacement of short-acting insulin with glulisine. Patient satisfaction was assessed with Diabetes Treatment Satisfaction Questionnaire. RESULTS Although bolus and basal insulin doses were almost unchanged before and after replacement therapy, switching to glulisine insulin for 24 weeks significantly decreased level of HbA1c , advanced glycation end products (AGEs), soluble receptor for AGEs (sRAGE), monocyte chemoattractant protein-1 (MCP-1) and urinary albumin excretion. In multiple stepwise regression analysis, change in MCP-1 values from baseline (ΔMCP-1) was a sole determinant of log urinary albumin excretion. ΔAGEs and ΔsRAGE were independently correlated with each other. The relationship between ΔMCP-1 and ΔsRAGE was marginally significant (p = 0.05). Replacement of short-acting insulin by glulisine significantly increased Diabetes Treatment Satisfaction Questionnaire scores. CONCLUSIONS Our present study suggests that combination therapy of glargine with multiple daily pre-meal injections of glulisine might show superior efficacy in controlling blood glucose, preventing vascular damage and improving treatment satisfaction in diabetic patients.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers/blood
- Biomarkers/urine
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/urine
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/urine
- Diabetic Angiopathies/prevention & control
- Drug Administration Schedule
- Drug Resistance
- Drug Therapy, Combination/adverse effects
- Female
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Injections, Subcutaneous
- Insulin/administration & dosage
- Insulin/adverse effects
- Insulin/analogs & derivatives
- Insulin/therapeutic use
- Insulin Glargine
- Insulin, Long-Acting/administration & dosage
- Insulin, Long-Acting/adverse effects
- Insulin, Long-Acting/therapeutic use
- Japan
- Male
- Middle Aged
- Patient Satisfaction
Collapse
Affiliation(s)
- Katsuyuki Yanagisawa
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Sun LN, Yang ZY, Lv SS, Liu XC, Guan GJ, Liu G. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation. Int Immunopharmacol 2014; 23:236-46. [DOI: 10.1016/j.intimp.2014.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
|
168
|
Agrawal NK, Kant S. Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes 2014; 5:697-710. [PMID: 25317247 PMCID: PMC4138593 DOI: 10.4239/wjd.v5.i5.697] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/24/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications.
Collapse
|
169
|
Muthenna P, Raghu G, Kumar PA, Surekha M, Reddy GB. Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats. Chem Biol Interact 2014; 222:68-76. [DOI: 10.1016/j.cbi.2014.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 01/17/2023]
|
170
|
Renal denervation prevents long-term sequelae of ischemic renal injury. Kidney Int 2014; 87:350-8. [PMID: 25207878 PMCID: PMC4312521 DOI: 10.1038/ki.2014.300] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/09/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023]
Abstract
Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury.
Collapse
|
171
|
Tesch G, Sourris KC, Summers SA, McCarthy D, Ward MS, Borg DJ, Gallo LA, Fotheringham AK, Pettit AR, Yap FYT, Harcourt BE, Tan ALY, Kausman JY, Nikolic-Paterson D, Kitching AR, Forbes JM. Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes. Diabetologia 2014; 57:1977-85. [PMID: 24957662 DOI: 10.1007/s00125-014-3291-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. METHODS Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. RESULTS Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-β were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. CONCLUSIONS/INTERPRETATION These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.
Collapse
Affiliation(s)
- Greg Tesch
- Department of Nephrology, Monash Medical Centre, Monash Health, Clayton, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Liu P, Li F, Qiu M, He L. Expression and cellular distribution of TLR4, MyD88, and NF-κB in diabetic renal tubulointerstitial fibrosis, in vitro and in vivo. Diabetes Res Clin Pract 2014; 105:206-16. [PMID: 24894085 DOI: 10.1016/j.diabres.2014.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/20/2014] [Accepted: 04/19/2014] [Indexed: 12/01/2022]
Abstract
AIM Inflammation and extracellular matrix hyperplasia are crucial in the pathogenesis of tubulointerstitial fibrosis (TIF) involved in diabetic nephropathy (DN). Macrophage accumulation plays a major role, but whether immune factors contribute to DN pathogenesis is not well understood. This study aimed to investigate TLR4-MyD88-NF-κB-dependent pathway's involvement in TIF pathogenesis. METHODS STZ-induced diabetic rats and rat renal tubular epithelial NRK-52E cells cultured under high glucose conditions were used as in vivo and in vitro models, respectively. Real-time RT-PCR, western blot, immunohistochemistry and immunofluorescence were performed to examine the mRNA and protein levels of TLR4, MyD88, NF-κB, MCP-1, and α-SMA. RESULTS Compared with 5.5 mmol/L glucose, treatment of NRK-52E cells with 25 and 50 mmol/L d-glucose resulted in significantly increased TLR4 and MyD88 mRNA and protein levels (P<0.05). TLR4 and MyD88 were detected in the cytoplasm of most NRK-52E cells cultured under high glucose. Pronounced damage in the renal tubulointerstitium was observed in diabetic rats (scores: 3.82 ± 0.65 vs. 0.38 ± 0.08, P<0.01). Compared with the normal controls, a sharp upregulation of TLR4, MyD88, NF-κB p65, MCP-1, and α-SMA mRNA and protein levels was observed in diabetic rat kidneys (P<0.05). In diabetic animals, TLR4 and MyD88 were strongly expressed in the cytoplasm, while NF-κB p65 was widely expressed in cytoplasm and nuclei of renal tubular epithelial cells. CONCLUSION The inflammatory reaction and epithelial-mesenchymal transformation observed in renal tubulointerstitium may be the result of overactivation of the TLR4-MyD88-NF-κB-dependent innate immunity under high glucose, and may be involved in DN occurrence and progression.
Collapse
Affiliation(s)
- Ping Liu
- Department of endocrinology, General hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China
| | - Feng'ao Li
- Department of endocrinology, General hospital of Tianjin Medical University, Tianjin 300052, China
| | - Mingcai Qiu
- Department of endocrinology, General hospital of Tianjin Medical University, Tianjin 300052, China
| | - Lanjie He
- Cardiovascular and Cerebrovascular Disease Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Province, China.
| |
Collapse
|
173
|
Li Z, Zhang L, He W, Zhu C, Yang J, Sheng M. Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in rats submitted to peritoneal dialysis. Int J Mol Sci 2014; 15:12959-71. [PMID: 25054320 PMCID: PMC4139885 DOI: 10.3390/ijms150712959] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 01/02/2023] Open
Abstract
Inflammation and transforming growth factor-β1 (TGF-β1) contribute to the development of peritoneal fibrosis (PF), which is associated with peritoneal dialysis (PD). Astragalus membranaceus (Astragalus) has anti-inflammatory and anti-fibrotic effects in many diseases. The goal of this study was to determine the anti-fibrotic effects of Astragalus on the PF response to PD. A rat model of PD was induced using standard PD fluid, and PF was verified by HE and Masson’s staining, as well as through the expression of fibroblast surface protein (FSP) and collagen III. The expression levels of monocyte chemoattractant protein (MCP)-1, F4/80 (macrophage/monocyte marker in rat), TGF-β1 and the downstream proteins phospho-SMAD 2/3 in dialyzed peritoneal tissue treated with or without Astragalus was evaluated using immunohistochemistry analysis. Overall correlations between MCP-1 and TGF-β1 staining were analyzed using both the Spearman and Pearson methods. The results showed that Astragalus could inhibit the recruitment and activation of monocytes/macrophages, thereby reducing the production of TGF-β1 in the dialyzed peritoneal membrane. PF was also significantly decreased following treatment with Astragalus. MCP-1 expression had a strong positive correlation with TGF-β1 sensitivity, suggesting that the anti-fibrotic function of Astragalus was mediated by MCP-1 and the TGF-β1 pathway. Our results indicate that Astragalus could be a useful agent against PD-induced PF.
Collapse
Affiliation(s)
- Zhenghong Li
- Department of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Baixia Hanzhong Road 155, Nanjing 210029, China.
| | - Lu Zhang
- Department of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Baixia Hanzhong Road 155, Nanjing 210029, China.
| | - Weiming He
- Department of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Baixia Hanzhong Road 155, Nanjing 210029, China.
| | - Changle Zhu
- Department of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Baixia Hanzhong Road 155, Nanjing 210029, China.
| | - Jinsong Yang
- Department of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Baixia Hanzhong Road 155, Nanjing 210029, China.
| | - Meixiao Sheng
- Department of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Baixia Hanzhong Road 155, Nanjing 210029, China.
| |
Collapse
|
174
|
Abstract
Many types of kidney injury induce inflammation as a protective response. However, unresolved inflammation promotes progressive renal fibrosis, which can culminate in end-stage renal disease. Kidney inflammation involves cells of the immune system as well as activation of intrinsic renal cells, with the consequent production and release of profibrotic cytokines and growth factors that drive the fibrotic process. In glomerular diseases, the development of glomerular inflammation precedes interstitial fibrosis; although the mechanisms linking these events are poorly understood, an important role for tubular epithelial cells in mediating this link is gaining support. Data have implicated macrophages in promoting both glomerular and interstitial fibrosis, whereas limited evidence suggests that CD4(+) T cells and mast cells are involved in interstitial fibrosis. However, macrophages can also promote renal repair when the cause of renal injury can be resolved, highlighting their plasticity. Understanding the mechanisms by which inflammation drives renal fibrosis is necessary to facilitate the development of therapeutics to halt the progression of chronic kidney disease.
Collapse
|
175
|
Shikata K, Makino H. Microinflammation in the pathogenesis of diabetic nephropathy. J Diabetes Investig 2014; 4:142-9. [PMID: 24843643 PMCID: PMC4019266 DOI: 10.1111/jdi.12050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy is the leading cause of end‐stage renal failure in developed countries. Furthermore, diabetic nephropathy is related to the risk of cardiovascular diseases and an increase in mortality of diabetic patients. Several factors are involved in the development of nephropathy, including glomerular hyperfiltration, oxidative stress, accumulation of advanced glycation end‐products, activation of protein kinase C, acceleration of the polyol pathway and over‐expression of transforming growth factor‐β. Recently, accumulated data have emphasized the critical roles of chronic low‐grade inflammation, ‘microinflammation’, in the pathogenesis of diabetic nephropathy, suggesting that microinflammation is a common mechanism in the development of diabetic vascular complications. Expression of cell adhesion molecules, chemokines and pro‐inflammatory cytokines are increased in the renal tissues of diabetic patients and animals. Deficiency of pro‐inflammatory molecules results in amelioration of renal injuries after induction of diabetes in mice. Plasma and urinary levels of cytokines, chemokines and cell adhesion molecules, are elevated and correlated with albuminuria. Several kinds of drugs that have anti‐inflammatory actions as their pleiotropic effects showed renoprotective effects on diabetic animals. Modulation of the inflammatory process prevents renal insufficiency in diabetic animal models, suggesting that microinflammation is one of the promising therapeutic targets for diabetic nephropathy, as well as for cardiovascular diseases.
Collapse
Affiliation(s)
- Kenichi Shikata
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan ; Department of Medicine and Clinical Science Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Science Okayama Japan
| | - Hirofumi Makino
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan ; Department of Medicine and Clinical Science Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Science Okayama Japan
| |
Collapse
|
176
|
Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int 2014; 86:1229-43. [PMID: 24786705 DOI: 10.1038/ki.2014.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/08/2014] [Accepted: 03/06/2014] [Indexed: 01/01/2023]
Abstract
Toll-like receptor 4 (TLR4), a component of the innate immune system, is recognized to promote tubulointerstitial inflammation in overt diabetic nephropathy (DN). However, there is no information on immune activation in resident renal cells at an early stage of human DN. In order to investigate this, we studied TLR4 gene and protein expression and TLR4 downward signaling in kidney biopsies of 12 patients with type 2 diabetes and microalbuminuria, and compared them with 11 patients with overt DN, 10 with minimal change disease (MCD), and control kidneys from 13 patients undergoing surgery for a small renal mass. Both in microalbuminuria and in overt DN, TLR4 mRNA and protein were overexpressed 4- to 10-fold in glomeruli and tubules compared with the control kidney and in MCD. In addition, NF-κB signaling was about fourfold higher in the glomeruli. TNF-α, IL6, CCR2, CCL5, and CCR5 mRNAs were markedly (about three- to fivefold) upregulated in microdissected glomeruli. While IL6, CCL2 and CCR5-mRNA, and CD68 were overexpressed in the tubulointerstitial compartment in clinical DN, they were not expressed in microalbuminuria. In a 6-year follow-up of microalbuminuric patients, glomerular TLR4 gene expression was associated with the subsequent loss of kidney function. Thus, innate immunity is activated in the glomeruli of patients with diabetic microalbuminuria. Enhanced TLR4 signaling may contribute to the progression occurring after the incipient, microalbuminuric form of nephropathy evolves to overt disease.
Collapse
|
177
|
Marques C, Mega C, Gonçalves A, Rodrigues-Santos P, Teixeira-Lemos E, Teixeira F, Fontes-Ribeiro C, Reis F, Fernandes R. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm 2014; 2014:538737. [PMID: 24817793 PMCID: PMC4000968 DOI: 10.1155/2014/538737] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 02/08/2023] Open
Abstract
This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF) rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks. Glycaemia and blood HbA1c levels were monitored, as well as kidney function and lesions. Kidney mRNA and/or protein content/distribution of DPP-IV, GLP-1, GLP-1R, TNF-α, IL-1β, BAX, Bcl-2, and Bid were evaluated by RT-PCR and/or western blotting/immunohistochemistry. Sitagliptin treatment improved glycaemic control, as reflected by the significantly reduced levels of glycaemia and HbA1c (by about 22.5% and 1.2%, resp.) and ameliorated tubulointerstitial and glomerular lesions. Sitagliptin prevented the diabetes-induced increase in DPP-IV levels and the decrease in GLP-1 levels in kidney. Sitagliptin increased colocalization of GLP-1 and GLP-1R in the diabetic kidney. Sitagliptin also decreased IL-1β and TNF-α levels, as well as, prevented the increase of BAX/Bcl-2 ratio, Bid protein levels, and TUNEL-positive cells which indicates protective effects against inflammation and proapoptotic state in the kidney of diabetic rats, respectively. In conclusion, sitagliptin might have a major role in preventing diabetic nephropathy evolution due to anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Catarina Marques
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cristina Mega
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- ESAV, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
- Educational Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Andreia Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Immunology and Oncology Laboratory, CNC, 3004-517 Coimbra, Portugal
| | - Edite Teixeira-Lemos
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- ESAV, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
178
|
Kojima H, Kim J, Chan L. Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends Endocrinol Metab 2014; 25:178-87. [PMID: 24507996 PMCID: PMC3975817 DOI: 10.1016/j.tem.2014.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/21/2013] [Accepted: 01/09/2014] [Indexed: 02/08/2023]
Abstract
Diabetic complications encompass macrovascular events, mainly the result of accelerated atherosclerosis, and microvascular events that strike the eye (retinopathy), kidney (nephropathy), and nervous system (neuropathy). The traditional view is that hyperglycemia-induced dysregulated biochemical pathways cause injury and death of cells intrinsic to the organs affected. There is emerging evidence that diabetes compromises the function of the bone marrow (BM), producing a stem cell niche-dependent defect in hematopoietic stem cell mobilization. Furthermore, dysfunctional BM-derived hematopoietic cells contribute to diabetic complications. Thus, BM cells are not only a victim but also an accomplice in diabetes and diabetic complications. Understanding the underlying molecular mechanisms may lead to the development of new therapies to prevent and/or treat diabetic complications by specifically targeting these perpetrators.
Collapse
Affiliation(s)
- Hideto Kojima
- Departments of Medicine and Molecular and Cellular Biology, and the Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Jongoh Kim
- Departments of Medicine and Molecular and Cellular Biology, and the Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lawrence Chan
- Departments of Medicine and Molecular and Cellular Biology, and the Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
179
|
Kolaviron improved resistance to oxidative stress and inflammation in the blood (erythrocyte, serum, and plasma) of streptozotocin-induced diabetic rats. ScientificWorldJournal 2014; 2014:921080. [PMID: 24795542 PMCID: PMC3982470 DOI: 10.1155/2014/921080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022] Open
Abstract
AIMS Bitter kola seed (Garcinia kola, family: Guttiferae) has been used as a social masticatory agent in Africa for several years and is believed to possess many useful medicinal properties. The present study evaluates the antioxidative, anti-inflammatory, and antilipidemic effects of kolaviron (an extract from the Garcinia kola seeds) in the blood of streptozotocin- (STZ) induced diabetic rats. METHODS. Diabetic rats were treated with kolaviron (100 mg/kg b·wt) orally, five times a week for a period of six weeks. Serum glucose and HBA(1C) concentrations were estimated in experimental groups. The activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) (in erythrocytes) as well as plasma concentration of malondialdehyde (MDA), a product of lipid peroxidation, oxygen radical absorbing capacity (ORAC) and ferric-reducing antioxidant power (FRAP) were investigated. Serum levels of proinflammatory cytokines and growth factor: interleukin- (IL-) 1, monocyte chemotactic protein-1 (MCP-1), and vascular endothelial growth factor (VEGF), respectively, were also analyzed. RESULTS Kolaviron treatment markedly improved antioxidant status and abated inflammatory response evidenced by reduction in the levels of proinflammatory cytokines and growth factor, lipid peroxidation product, and the restoration of activities of erythrocyte antioxidant enzymes in the blood of diabetic rats. CONCLUSION Kolaviron improved antioxidant status, reduced inflammation, and protected against hyperglycemic-induced oxidative damage in the blood of diabetic rats.
Collapse
|
180
|
Tang WH, Lin FH, Lee CH, Kuo FC, Hsieh CH, Hsiao FC, Hung YJ. Cilostazol effectively attenuates deterioration of albuminuria in patients with type 2 diabetes: a randomized, placebo-controlled trial. Endocrine 2014; 45:293-301. [PMID: 23775007 DOI: 10.1007/s12020-013-0002-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/08/2013] [Indexed: 01/25/2023]
Abstract
Cilostazol is an antiplatelet, antithrombotic agent with anti-inflammatory properties. To date, no clinical study has specifically evaluated the efficacy of cilostazol in patients with diabetic nephropathy (DN). We hypothesized that cilostazol might delay renal deterioration in DN patients at high risk of progression. Between April 2008 and April 2010, we screened 156 consecutive patients aged 35-80 years who were first diagnosed with type 2 diabetes after the age of 30 years. Of these, 90 patients with DN, as defined by morning spot urine microalbuminuria (MAU) >20 mg/L or an albumin-to-creatinine ratio (ACR) >30 μg/mg on at least two consecutive occasions within the prior 3 months, were enrolled into a 52-week randomized, single-blinded, placebo-controlled trial of oral cilostazol 100 mg twice daily or placebo (45 subjects in each group). Morning spot urine samples were collected to determine MAU and ACR. Fasting plasma levels of metabolic, endothelial variables, and inflammatory markers were examined. Following 52 weeks of treatment, urinary MAU and ACR were significantly reduced in the cilostazol group compared with the placebo group (P = 0.024 and P = 0.02, respectively). In regression analyses, changes in monocyte chemotactic protein-1, E-selectin, and soluble vascular cell adhesion molecule-1 (sVCAM-1) were significantly associated with changes in MAU and ACR. Net changes of E-selectin (P < 0.001) and sVCAM-1 (P < 0.05) were independent predictors of change in MAU and ACR, respectively. Our results suggest that cilostazol may effectively attenuate deterioration of albuminuria in patients with type 2 diabetes. This effect is likely mediated by an improvement of adhesion molecules.
Collapse
Affiliation(s)
- Wen-Hao Tang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chen-Kung Rd., Nei-Hu, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
181
|
Yoshida S, Ishizawa K, Ayuzawa N, Ueda K, Takeuchi M, Kawarazaki W, Fujita T, Nagase M. Local mineralocorticoid receptor activation and the role of Rac1 in obesity-related diabetic kidney disease. Nephron Clin Pract 2014; 126:16-24. [PMID: 24603367 DOI: 10.1159/000358758] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 01/14/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND/AIMS Obesity and diabetes are intimately interrelated, and are independent risk factors for kidney disease. Overactivation of mineralocorticoid receptor (MR) is implicated in end organ damage of both pathologies. But the underlying mechanism of MR activation in kidney remains uncertain. We explored the involvement of Rac1, which we previously identified as a ligand-independent MR activator, in renal MR activation in vitro and in vivo. METHODS We evaluated the MR activity and Rac1 activity under high-glucose stimulation using luciferase reporter system and glutathione S-transferase pull-down assay in cultured mesangial cells. To elucidate the role of Rac1 in vivo, we employed KKA(y), a mouse model of obesity-related type 2 diabetes, which spontaneously developed massive albuminuria and distinct glomerular lesions accompanied by increased plasma aldosterone concentration. RESULTS High-glucose stimulation increased Rac1 activity and MR transcriptional activity in cultured mesangial cells. Overexpression of constitutively active Rac1 activated MR, and glucose-induced MR activation was suppressed by overexpression of dominant negative Rac1 or Rac inhibitor EHT1864. In KKA(y), renal Rac1 was activated, and nuclear MR was increased. EHT1864 treatment suppressed renal Rac1 and MR activity and mitigated renal pathology of KKA(y) without changing plasma aldosterone concentration. CONCLUSION Our results suggest that MR activation plays an important role in the nephropathy of KKA(y) mice, and that glucose-induced Rac1 activation, in addition to hyperaldosteronemia, contributes to their renal MR activation. Along with MR blockade, Rac inhibition may potentially be a preferred option in the treatment of nephropathy in obesity-related diabetic patients.
Collapse
Affiliation(s)
- Shigetaka Yoshida
- Department of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.
Collapse
|
183
|
Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F, Touyz RM, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 2014; 25:1237-54. [PMID: 24511132 DOI: 10.1681/asn.2013070810] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)-forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE(-/-) mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE(-/-) mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure.
Collapse
Affiliation(s)
- Jay C Jha
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Stephen P Gray
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - David Barit
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Jun Okabe
- Human Epigenetics Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Human Epigenetics Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Tamehachi Namikoshi
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Vicki Thallas-Bonke
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, The Netherlands
| | | | | | - Rhian M Touyz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark E Cooper
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Karin A Jandeleit-Dahm
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia;
| |
Collapse
|
184
|
Ran J, Ma J, Liu Y, Tan R, Liu H, Lao G. Low protein diet inhibits uric acid synthesis and attenuates renal damage in streptozotocin-induced diabetic rats. J Diabetes Res 2014; 2014:287536. [PMID: 24772444 PMCID: PMC3976836 DOI: 10.1155/2014/287536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/17/2022] Open
Abstract
AIM Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN). Meanwhile, low protein diet (LPD) retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ-) induced diabetic rats. METHODS STZ-induced and control rats were both fed with LPD (5%) and normal protein diet (18%), respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. RESULTS Diabetic rats developed into constantly high levels of serum UA (SUA), creatinine (SCr) and 24 h amounts of urinary albumin excretion (UAE), creatinine (UCr), urea nitrogen (UUN), and uric acid (UUA). LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. CONCLUSION LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Jianmin Ran
- Department of Endocrinology, Guangzhou Red Cross Hospital, Medical College of Jinan University, No. 396 Tong Fu Zhong Road, Guangzhou 510220, China
- *Jianmin Ran:
| | - Jing Ma
- Department of Endocrinology, Guangzhou Red Cross Hospital, Medical College of Jinan University, No. 396 Tong Fu Zhong Road, Guangzhou 510220, China
| | - Yan Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Medical College of Jinan University, No. 396 Tong Fu Zhong Road, Guangzhou 510220, China
| | - Rongshao Tan
- Clinical Institute of Nutrition, Guangzhou Red Cross Hospital, Medical College of Jinan University, No. 396 Tong Fu Zhong Road, Guangzhou 510220, China
| | - Houqiang Liu
- Department of Endocrinology, Guangzhou Red Cross Hospital, Medical College of Jinan University, No. 396 Tong Fu Zhong Road, Guangzhou 510220, China
| | - Gancheng Lao
- Department of Endocrinology, Guangzhou Red Cross Hospital, Medical College of Jinan University, No. 396 Tong Fu Zhong Road, Guangzhou 510220, China
| |
Collapse
|
185
|
Huang C, Day ML, Poronnik P, Pollock CA, Chen XM. Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. Int J Biochem Cell Biol 2013; 47:1-10. [PMID: 24291552 DOI: 10.1016/j.biocel.2013.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022]
Abstract
It is well known that TGF-β1 plays a central role in renal fibrosis due in large part to stimulation of inflammatory responses. KCa3.1, a potassium channel protein, has been suggested as a potential therapeutic target for diseases such as sickle cell anemia, autoimmunity, atherosclerosis and more recently, kidney fibrosis. Blockade of KCa3.1 has been shown to ameliorate renal fibrosis in diabetic mice in association with reduced TGF-β1 signaling. However, the centrality of KCa3.1 activation to TGF-β1 induced inflammation remains unknown. In this study, human proximal tubular cells (HK2 cells) were incubated with TGF-β1 (2 ng/ml) for 48 h in the presence or absence of KCa3.1 siRNA or the KCa3.1 inhibitor TRAM34. HK2 cells overexpressing KCa3.1 were studied in parallel. The mRNA and protein expression of monocyte chemoattractant protein-1 (MCP-1) were measured by qRT-PCR and ELISA. Downstream TGF-β1 signaling molecules Smad3, p38 and ERK1/2 were measured by Western blot analysis. Using whole-cell patch clamp techniques we found that TGFβ-1 induced a large KCa3.1 K-current that was inhibited by TRAM34. TGF-β1 also increased MCP-1 mRNA and protein expression in HK2 cells compared to control, an effect that was reversed by in the presence of KCa3.1 siRNA. Similarly, TRAM34 significantly reduced the TGF-β1-mediated increase in MCP-1 at both the mRNA and protein levels. Inhibition of KCa3.1 with KCa3.1 siRNA or TRAM34 also reduced TGF-β1-induced phosphorylation of Smad3, p38 and ERK1/2 MAPK pathways. Conversely overexpression of KCa3.1 induced TGF-β1 signaling cascades and expression of MCP-1. The present study is consistent with a key role for KCa3.1 renal proximal tubular cells in mediating the TGF-β1 induction of MCP-1 expression in HK2 cells via Smad3, p38 and ERK1/2 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chunling Huang
- Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Xiamen Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Margot L Day
- School of Medical Sciences, Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Philip Poronnik
- School of Medical Sciences, Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Carol A Pollock
- Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| | - Xin-Ming Chen
- Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
186
|
Zhang H, Zhao T, Gong Y, Dong X, Zhang W, Sun S, Wang H, Gu Y, Lu X, Yan M, Li P. Attenuation of diabetic nephropathy by Chaihuang-Yishen granule through anti-inflammatory mechanism in streptozotocin-induced rat model of diabetics. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:556-564. [PMID: 24269779 DOI: 10.1016/j.jep.2013.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/30/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medical herbs have been used in China for a long time to treat different diseases. Based on traditional Chinese medicine (TCM) principle, Chaihuang-Yishen granule (CHYS) was developed and has been employed clinically to treat chronic kidney disease including diabetic nephropathy (DN). The present study was designed to investigate its mechanism of action in treatment of DN. MATERIALS AND METHODS Diabetic rats were established by having a right uninephrectomy plus a single intraperitoneal injection of STZ. Rats were divided into four groups of sham, diabetes, diabetes with CHYS and diabetes with fosinopril. CHYS and fosinopril were given to rats by gavage for 20 weeks. Samples from blood, urine and kidney were collected for biochemical, histological, immunohistochemical and molecular analyses. RESULTS Rats treated with CHYS showed reduced 24h urinary protein excretion, decreased serum TC and TG levels, but CHYS treatment did not affect blood glucose level. Glomerular mesangial expansion and tubulointerstitial fibrosis in diabetic rats were significantly alleviated by CHYS treatment. Moreover, CHYS administration markedly reduced mRNA levels of NF-κB p65 and TGF-β1, as well as decreased protein levels of NF-κB p65, MCP-1, TNF-α and TGF-β1 in the kidney of diabetic rats. CONCLUSIONS CHYS ameliorates renal injury in diabetic rats through reduction of inflammatory cytokines and their intracellular signaling.
Collapse
Affiliation(s)
- Haojun Zhang
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tingting Zhao
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuewen Gong
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Xi Dong
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weiku Zhang
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Sifan Sun
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hua Wang
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanting Gu
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoguang Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meihua Yan
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
187
|
Zhang MH, Feng L, Zhu MM, Gu JF, Jiang J, Cheng XD, Ding SM, Wu C, Jia XB. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and High-glucose-fat diet and streptozotocin-induced diabetic nephropathy rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:591-600. [PMID: 24269777 DOI: 10.1016/j.jep.2013.11.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/15/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC, family: Paeonia suffruticosa Andr.) is a well-known traditional herbal medicine that has been shown to hold a protective effect on inflammation in several diseases. However, its anti-inflammatory activity on diabetic nephropathy (DN) has been less reported. The present study was conducted to evaluate the potential attenuation activities of MC on inflammation in AGEs-induced rat mesangial cells dysfunction and high-glucose-fat diet and streptozotocin (STZ)-induced DN rats and explore the possible mechanism underlying its DN effect. MATERIALS AND METHODS The inflammation in mesangial cells (HBZY-1) was induced by 200 μg/ml advanced glycation end products (AGEs). DN rats model was established by an administration high-glucose-fat diet and an intraperitoneal injection of STZ (30 mg/kg). Interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) level in cell supernatant and rats serum were detected by appropriate kits. A co-culture system of mesangial cells and macrophages was performed to evaluate the migration of macrophages. Immunohistochemical assay was applied to examine transforming growth factor beta1 (TGF-β1), IL-6, MCP-1 and intercellular adhesion molecule-1 (ICAM-1) expression in kidney tissues of rats. Furthermore, western blot analysis was carried out to examine TGF-β1, IL-6, MCP-1, ICAM-1 and RAGE protein expressions in mesangial cells. RESULTS Pretreatment with MC could significantly inhibit AGEs-induced migration of macrophages in the co-culture system of mesangial cell and macrophage. MC could decrease IL-6 and MCP-1 levels in serum of DN rats in a dose-dependent manner. Furthermore, MC also improved the blood glucose, serum creatinine and urine protein levels. Both immunocytochemistry analysis and western blot analysis showed that MC decreased significantly the over-expression of IL-6, MCP-1, TGF-β1, ICAM-1 and RAGE in mesangial cells or kidney tissues. Additionally, the protein expression of proinflammatory cytokine could also be down-regulated by the pretreatment of RAGE-Ab (5 μg/ml). CONCLUSION These findings indicated that the extract of MC had an amelioration activity on the inflammation in AGEs-induced mesangial cells dysfunction and high-glucose-fat diet and STZ-induced DN rats. The protective effect might be associated with the intervention of MC via target of RAGE. These findings suggested that MC might be a benefit agent for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Ming-hua Zhang
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Department of Pharmaceutics, Jiangsu University, Jiangsu, Zhenjiang 212013, PR China
| | - Liang Feng
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| | - Mao-mao Zhu
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Nanjing Institute of Supervision & Testing on Product Quality, Jiangsu, Nanjing 210028, PR China
| | - Jun-fei Gu
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, PR China
| | - Jun Jiang
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Nanjing Institute of Supervision & Testing on Product Quality, Jiangsu, Nanjing 210028, PR China; College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, PR China
| | - Xu-dong Cheng
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, PR China
| | - Shu-ming Ding
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, PR China
| | - Chan Wu
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, PR China
| | - Xiao-bin Jia
- Key Laboratory of New Drug Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Department of Pharmaceutics, Jiangsu University, Jiangsu, Zhenjiang 212013, PR China; College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, PR China.
| |
Collapse
|
188
|
Otoni A, Teixeira AL, Voieta I, Antunes CM, Costa Melo VL, Drummond SC, Rodrigues VL, Lambertucci JR. Chemokine profile in the sera and urine of patients with schistosomal glomerulopathy. Am J Trop Med Hyg 2013; 90:48-53. [PMID: 24189364 DOI: 10.4269/ajtmh.13-0270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the serum and urine chemokine levels of patients with schistosomal mansoni glomerulonephritis. This cross-sectional study was conducted in the Southeast of Brazil. Overall, 160 subjects were enrolled and divided into five groups: 1) hepatosplenic schistosomiasis with renal disease (N = 12); 2) hepatosplenic schistosomiasis without renal disease (N = 68); 3) hepatointestinal schistosomiasis (N = 27); 4) glomerulopathy caused by other diseases (N = 22); and 5) healthy controls (N = 31). The patients with microalbuminuria > 30 mg in 24 hours were considered to have renal disease. The sera and urine chemokines CCL2, CCL3, CCL5, CCL11, and CXCL8 were measured using an enzyme-linked immunosorbent assay test. A similar profile was observed between the patients with schistosomal glomerulopathy and the patients with glomerulopathy caused by other diseases, with the exception of serum CCL2 ≤ 634.3 pg/mL. In cases with sera CCL2 > 634.3 pg/mL, the diagnosis of schistosomal glomerulopathy should be considered.
Collapse
Affiliation(s)
- Alba Otoni
- Department of Infectology and Tropical Medicine, Federal University of Minas Gerais, Brazil; Department of Imunology, Federal University of Minas Gerais, Brazil; Department of Epidemiology, Federal University of Minas Gerais, Brazil; Department of Nephrology, Federal University of Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
189
|
González-Guerrero C, Ocaña-Salceda C, Berzal S, Carrasco S, Fernández-Fernández B, Cannata-Ortiz P, Egido J, Ortiz A, Ramos AM. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells. Toxicol Appl Pharmacol 2013; 272:825-41. [DOI: 10.1016/j.taap.2013.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 01/29/2023]
|
190
|
You H, Gao T, Cooper TK, Brian Reeves W, Awad AS. Macrophages directly mediate diabetic renal injury. Am J Physiol Renal Physiol 2013; 305:F1719-27. [PMID: 24173355 DOI: 10.1152/ajprenal.00141.2013] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN), yet their direct role is not clear. We hypothesized that macrophages contribute to direct podocyte injury and/or an abnormal podocyte niche leading to DN. Experiments were conducted in CD11b-DTR mice treated with diphtheria toxin (DT) to deplete macrophages after streptozotocin-induced diabetes. Additional experiments were conducted in bone marrow chimeric (CD11b-DTR→ C57BL6/J) mice. Diabetes was associated with an increase in the M1-to-M2 ratio by 6 wk after the induction of diabetes. Macrophage depletion in diabetic CD11b-DTR mice significantly attenuated albuminuria, kidney macrophage recruitment, and glomerular histological changes and preserved kidney nephrin and podocin expression compared with diabetic CD11b-DTR mice treated with mutant DT. These data were confirmed in chimeric mice indicating a direct role of bone marrow-derived macrophages in DN. In vitro, podocytes grown in high-glucose media significantly increased macrophage migration compared with podocytes grown in normal glucose media. In addition, classically activated M1 macrophages, but not M2 macrophages, induced podocyte permeability. These findings provide evidence showing that macrophages directly contribute to kidney injury in DN, perhaps by altering podocyte integrity through the proinflammatory M1 subset of macrophages. Attenuating the deleterious effects of macrophages on podocytes could provide a new therapeutic approach to the treatment of DN.
Collapse
Affiliation(s)
- Hanning You
- Penn State Univ., Hershey Medical Center, College of Medicine, Division of Nephrology, H040, 500 Univ. Drive, PO Box 850, BMR Bldg., C5830, Hershey, PA 17033.
| | | | | | | | | |
Collapse
|
191
|
Neff KJ, Frankel AH, Tam FWK, Sadlier DM, Godson C, le Roux CW. The effect of bariatric surgery on renal function and disease: a focus on outcomes and inflammation. Nephrol Dial Transplant 2013; 28 Suppl 4:iv73-82. [PMID: 24071659 DOI: 10.1093/ndt/gft262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Renal dysfunction and disease, including hyperfiltration, proteinuria and hypofiltration, are commonly associated with obesity. Diabetic kidney disease is also common in obese cohorts. Weight loss interventions, including bariatric surgery, can effectively reduce weight and improve renal outcomes. Some of this effect may be due to the remission of Type 2 diabetes and hypertension. However, other mechanisms, including the resolution of inflammatory processes, may also contribute. The effect of bariatric surgery on renal function has only recently become a focus of particular investigation. In this study, we will review the effects of bariatric surgery on obesity-associated kidney disease. We will discuss the pitfalls in assessing renal function in obese cohorts and will examine the effect of bariatric surgery on renal function and urinary protein excretion using different mechanisms. We will give particular attention to the evidence for bariatric surgery in cohorts with established renal disease and suggest future directions. In particular, we will outline the evidence for inflammation as an important therapeutic target, and the emerging medical therapies being considered to exploit this target in obesity- and diabetes-related kidney disease.
Collapse
Affiliation(s)
- Karl J Neff
- Diabetic Complication Research Centre, UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
192
|
Mao S, Huang S. Monocyte chemoattractant protein-1 -2518G/A gene polymorphism and the risk of nephropathy in type 2 diabetes mellitus among Asians: a meta-analysis. Ren Fail 2013; 36:139-44. [DOI: 10.3109/0886022x.2013.832690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
193
|
Verhave JC, Bouchard J, Goupil R, Pichette V, Brachemi S, Madore F, Troyanov S. Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study. Diabetes Res Clin Pract 2013; 101:333-40. [PMID: 23880038 DOI: 10.1016/j.diabres.2013.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022]
Abstract
AIMS The evolution of diabetic nephropathy is incompletely accounted by current clinical tools. New biomarkers may refine patient assessment and help monitor therapy. We compared the added predictive value of 7 candidate inflammatory urinary biomarkers to known risk factors of progression. METHODS We prospectively followed 83 patients with overt diabetic nephropathy for a median 2.1 years and obtained repeated measurements of proteinuria, IL-1β, IL-6, IL-8, MCP-1, TNF-α, TGF-β1, and PAI-1. RESULTS Patients had an initial estimated glomerular filtration rate of 25 ± 9 mL/min/1.73 m(2), blood pressure of 142/69 mmHg and used a median of 4 anti-hypertensive medications over the course of the study. The observed rate of renal function decline was 2.9 ± 3.0 mL/min/1.73 m(2)/year. All urinary biomarkers levels were collinear and for each one except IL-1β, elevated levels predicted a more rapid progression. MCP-1 was the only biomarker increasing during follow-up, which also correlated with a worst outcome. Using multivariate linear regression adjusting for clinical risk factors of progression, urinary MCP-1 and TGF-β1 predicted progression independently and additively to the degree of proteinuria. We dichotomized these 3 biomarkers and observed a renal function decline with 0, 1, 2 or 3 elevated biomarkers of -0.8 ± 1.4, -2.1 ± 2.1, -4.2 ± 2.8 and -6.0 ± 2.8 mL/min/1.73 m(2)/year, respectively (p<0.001). CONCLUSIONS Multiple urinary biomarkers predict outcome in overt diabetic nephropathy. However, urinary MCP-1 and TGF-β1 are also independent and additive to proteinuria in predicting the rate of renal function decline and could serve as useful clinical tools in patient risk stratification.
Collapse
Affiliation(s)
- Jacobien C Verhave
- Nephrology Division, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
194
|
Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, Baumgart T, Ertl LS, Pennell A, Seitz L, Powers J, Zhao R, Ungashe S, Wei Z, Boring L, Tsou CL, Charo I, Berahovich RD, Schall TJ, Jaen JC. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Renal Physiol 2013; 305:F1288-97. [PMID: 23986513 DOI: 10.1152/ajprenal.00316.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function.
Collapse
|
195
|
Hickey FB, Martin F. Diabetic kidney disease and immune modulation. Curr Opin Pharmacol 2013; 13:602-12. [DOI: 10.1016/j.coph.2013.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
|
196
|
Gonzalez J, Mouttalib S, Delage C, Calise D, Maoret JJ, Pradère JP, Klein J, Buffin-Meyer B, Van der Veen B, Charo IF, Heeringa P, Duchene J, Bascands JL, Schanstra JP. Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochem Biophys Res Commun 2013; 438:257-63. [PMID: 23872063 DOI: 10.1016/j.bbrc.2013.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/15/2022]
Abstract
Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0-8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0-3 days) decrease of inflammatory cell infiltration followed (3-8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10-14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.
Collapse
Affiliation(s)
- Julien Gonzalez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Alikhan MA, Ricardo SD. Mononuclear phagocyte system in kidney disease and repair. Nephrology (Carlton) 2013. [PMID: 23194390 DOI: 10.1111/nep.12014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mononuclear phagocyte system is comprised of circulating monocytes, tissue macrophages and dendritic cells (DCs) that play key roles in tissue homeostasis, immune surveillance, and immune and non-immune-mediated tissue injury and repair. This review summarizes the various subsets within this system that exhibit significant functional and phenotypic diversity that can adapt to their surrounding microenvironments during inflammation and in response to colony-stimulating factor (CSF)-1. The current understanding of the co-ordination of monocyte infiltration into the homeostatic and diseased kidney through adhesion molecules, chemokines and chemokine receptors, and cytokines are described. Furthermore, the significant confusion and controversy associated with monocyte differentiation into renal macrophages and DCs following infiltration into the kidney, the considerable functional and phenotypic overlap between both tissue populations and their respective roles in immune and non-immune-mediated renal is also discussed. Understanding the factors that control the activation and recruitment of cells from the mononuclear phagocyte system during renal injury may offer an avenue for the development of new cellular and growth factor-based therapies in combination with existing therapies as an alternative treatment option for patients with renal disease.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
198
|
Becker GJ, Hewitson TD. Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 2013; 28:2432-8. [PMID: 23817139 DOI: 10.1093/ndt/gft071] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal models of chronic kidney disease (CKD) approximate the human condition and are keys to understanding its pathogenesis and to developing rational treatment strategies. The ethical use of animals requires a detailed understanding of the strengths and limitations of each species and the disease model, and the way in which findings can be translated from animals to humans. While not perfect, the careful use of animal experiments offers the opportunity to examine individual mechanisms in an accelerated time frame.
Collapse
Affiliation(s)
- Gavin J Becker
- Department of Nephrology, The Royal Melbourne Hospital and Department of Medicine, University of Melbourne, Melbourne, Vic, Australia
| | | |
Collapse
|
199
|
Whitney JL, Bilkan CM, Sandberg K, Myers AK, Mulroney SE. Growth hormone exacerbates diabetic renal damage in male but not female rats. Biol Sex Differ 2013; 4:12. [PMID: 23805912 PMCID: PMC3698039 DOI: 10.1186/2042-6410-4-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Human and animal studies support the idea that there are sex differences in the development of diabetic renal disease. Our lab and others have determined that in addition to Ang II (through the AT1R), growth hormone (GH) contributes to renal damage in models of renal failure; however, the impact of sex and GH on the mechanisms initiating diabetic renal disease is not known. This study examined the effect of sex and GH on parameters of renal damage in early, uncontrolled streptozotocin (STZ)-induced diabetes. METHODS Adult male and female Sprague-Dawley rats were injected with vehicle (control), STZ, or STZ + GH and euthanized after 8 weeks. RESULTS Mild but significant glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) was observed in both kidneys from male and female diabetic rats, with GH significantly increasing GS and TIF by 30% and 25% in male rats, but not in female rats. STZ increased TGF-β expression in both kidneys from male and female rats; however, while GH had no further effect on TGF-β protein in diabetic females, GH increased TGF-β protein in the male rat's kidneys by an additional 30%. This sex-specific increase in renal injury following GH treatment was marked by increased MCP-1 and CD-68+ cell density. STZ also reduced renal MMP-2 and MMP-9 protein expression in both kidneys from male and female rats, but additional decreases were only observed in GH-treated diabetic male rats. The sex differences were independent of AT1R activity. CONCLUSIONS These studies indicate that GH affects renal injury in diabetes in a sex-specific manner and is associated with an increase in pro-inflammatory mediators.
Collapse
Affiliation(s)
- Jennifer L Whitney
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
| | - Christine Maric Bilkan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathryn Sandberg
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Adam K Myers
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| | - Susan E Mulroney
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057-1640, USA
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
200
|
Seok SJ, Lee ES, Kim GT, Hyun M, Lee JH, Chen S, Choi R, Kim HM, Lee EY, Chung CH. Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrol Dial Transplant 2013; 28:1700-10. [PMID: 23794669 DOI: 10.1093/ndt/gfs555] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND CCL2/C-C chemokine receptor 2 (CCR2) signalling is suggested to play a significant role in various kidney diseases including diabetic nephropathy. We investigated the renoprotective effect of a CCR2 antagonist, RS102895, on the development of diabetic nephropathy in a type 2 diabetic mouse model. METHODS Six-week-old diabetic db/db and non-diabetic db/m mice were fed either normal chow or chow mixed with 2 mg/kg/day of RS102895 for 9 weeks. We investigated the effects of CCR2 antagonism on blood glucose, blood pressure, albuminuria and the structure and ultrastructure of the kidney. RESULTS Diabetes-induced albuminuria was significantly improved after CCR2 antagonist treatment, and glucose intolerance was improved in the RS102895-treated diabetic mice. RS102895 did not affect blood pressure, body weight or kidney weight. Mesangial expansion, glomerular basement membrane thickening and increased desmin staining in the diabetic kidney were significantly improved after RS102895 treatment. The up-regulation of vascular endothelial growth factor mRNA expression and the down-regulation of nephrin mRNA expression were markedly improved in the kidneys of RS102895-treated diabetic mice. Increased renal CD68 and arginase II and urinary malondialdehyde in diabetes were effectively attenuated by RS102895 treatment. CONCLUSION Blockade of CCL2/CCR2 signalling by RS102895 ameliorates diabetic nephropathy not only by improving blood glucose levels but also by preventing CCL2/CCR2 signalling from altering renal nephrin and VEGF expressions through blocking macrophage infiltration, inflammation and oxidative stress in type 2 diabetic mice.
Collapse
Affiliation(s)
- Su Jin Seok
- Department of Internal Medicine, Soon Chun Hyang University Cheonan Hospital, Cheonan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|