151
|
Fresco-Cala B, López-Lorente ÁI, Batista AD, Dinc M, Bansmann J, Behm RJ, Cárdenas S, Mizaikoff B. Icosahedral gold nanoparticles decorated with hexon protein: a surrogate for adenovirus serotype 5. Anal Bioanal Chem 2022; 415:2081-2090. [PMID: 36274111 PMCID: PMC9589707 DOI: 10.1007/s00216-022-04368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Abstract The development of synthetic particles that emulate real viruses in size, shape, and chemical composition is vital to the development of imprinted polymer-based sorbent materials (molecularly imprinted polymers, MIPs). In this study, we address surrogates for adenovirus type 5 (Adv 5) via the synthesis and subsequent modification of icosahedral gold nanoparticles (iAuNPs) decorated with the most abundant protein of the Adv 5 (i.e., hexon protein) at the surface. CTAB-capped iAuNPs with dimensions in the range of 40–90 nm were synthesized, and then CTAB was replaced by a variety of polyethylene glycols (PEGs) in order to introduce suitable functionalities serving as anchoring points for the attachment of the hexon protein. The latter was achieved by non-covalent linking of the protein to the iAuNP surface using a PEG without reactive termination (i.e., methoxy PEG thiol, mPEG-SH, Mn=800). Alternatively, covalent anchoring points were generated by modifying the iAuNPs with a bifunctional PEG (i.e., thiol PEG amine, SH-PEG-NH2) followed by the addition of glutaraldehyde. X-ray photoelectron spectroscopy (XPS) confirmed the formation of the anchoring points at the iAuNP surface. Next, the amino groups present in the amino acids of the hexon protein interacted with the glutaraldehyde. iAuNPs before and after PEGylation were characterized using dynamic light scattering (DLS), XPS, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–Vis spectroscopy, confirming the CTAB–PEG exchange. Finally, the distinct red shift obtained in the UV–Vis spectra of the pegylated iAuNPs in the presence of the hexon protein, the increase in the hydrodynamic diameter, the change in the zeta potential, and the selective binding of the hexon-modified iAuNPs towards a hexon-imprinted polymer (HIP) confirmed success in both the covalent and non-covalent attachment at the iAuNP surface. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00216-022-04368-x.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081, Ulm, Germany. .,Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, España.
| | - Ángela I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, España
| | - Alex D Batista
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081, Ulm, Germany.
| | | | - Joachim Bansmann
- Institute for Surface Chemistry and Catalysis, Ulm University, 89081, Ulm, Germany
| | - R Jürgen Behm
- Institute for Surface Chemistry and Catalysis, Ulm University, 89081, Ulm, Germany.,Institute of Theoretical Chemistry and Catalysis, Ulm University, 89069, Ulm, Germany
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, España
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081, Ulm, Germany.,, Hahn-Schickard, 89077, Ulm, Germany
| |
Collapse
|
152
|
Gentili D, Ori G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. NANOSCALE 2022; 14:14385-14432. [PMID: 36169572 DOI: 10.1039/d2nr02640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.
Collapse
Affiliation(s)
- Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Guido Ori
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Rue du Loess 23, F-67034 Strasbourg, France.
| |
Collapse
|
153
|
Meesaragandla B, Komaragiri Y, Schlüter R, Otto O, Delcea M. The impact of cell culture media on the interaction of biopolymer-functionalized gold nanoparticles with cells: mechanical and toxicological properties. Sci Rep 2022; 12:16643. [PMID: 36198715 PMCID: PMC9534915 DOI: 10.1038/s41598-022-20691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding the nanoparticle-cell interactions in physiological media is vital in determining the biological fate of the nanoparticles (NPs). These interactions depend on the physicochemical properties of the NPs and their colloidal behavior in cell culture media (CCM). Furthermore, the impact of the bioconjugates made by nanoparticle with proteins from CCM on the mechanical properties of cells upon interaction is unknown. Here, we analyzed the time dependent stability of gold nanoparticles (AuNPs) functionalized with citrate, dextran-10, dextrin and chitosan polymers in protein poor- and protein rich CCM. Further, we implemented the high-throughput technology real-time deformability cytometry (RT-DC) to investigate the impact of AuNP-bioconjugates on the cell mechanics of HL60 suspension cells. We found that dextrin-AuNPs form stable bioconjugates in both CCM and have a little impact on cell mechanics, ROS production and cell viability. In contrast, positively charged chitosan-AuNPs were observed to form spherical and non-spherical aggregated conjugates in both CCM and to induce increased cytotoxicity. Citrate- and dextran-10-AuNPs formed spherical and non-spherical aggregated conjugates in protein rich- and protein poor CCM and induced at short incubation times cell stiffening. We anticipate based on our results that dextrin-AuNPs can be used for therapeutic purposes as they show lower cytotoxicity and insignificant changes in cell physiology.
Collapse
Affiliation(s)
- Brahmaiah Meesaragandla
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany.,ZIK HIKE-Zentrum Für Innovationskompetenz "Humorale Immunreaktionen Bei Kardiovaskulären Erkrankungen", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Yesaswini Komaragiri
- ZIK HIKE-Zentrum Für Innovationskompetenz "Humorale Immunreaktionen Bei Kardiovaskulären Erkrankungen", Fleischmannstraße 42, 17489, Greifswald, Germany.,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site, Greifswald, Germany.,Institute of Physics, University of Greifswald, Felix-Hausdorff-Strasse 6, 17489, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17489, Greifswald, Germany
| | - Oliver Otto
- ZIK HIKE-Zentrum Für Innovationskompetenz "Humorale Immunreaktionen Bei Kardiovaskulären Erkrankungen", Fleischmannstraße 42, 17489, Greifswald, Germany.,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site, Greifswald, Germany.,Institute of Physics, University of Greifswald, Felix-Hausdorff-Strasse 6, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany. .,ZIK HIKE-Zentrum Für Innovationskompetenz "Humorale Immunreaktionen Bei Kardiovaskulären Erkrankungen", Fleischmannstraße 42, 17489, Greifswald, Germany. .,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site, Greifswald, Germany.
| |
Collapse
|
154
|
Farooq MU, Sahin YM, Naz MY, Ijaz S, Shukrullah S, Makhlouf MM. Surface engineered AuNPs for paclitaxel-loaded bleomycin delivery as a supplementation therapy. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
155
|
Wang B, Zhang L, Yin G, Wang J, Wang P, Wang T, Tian J, Yu XA, Chen H. Arg-liposome-amplified colorimetric immunoassay for selective and sensitive detection of cystatin C to predict acute kidney injury. Anal Chim Acta 2022; 1236:340562. [DOI: 10.1016/j.aca.2022.340562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/01/2022]
|
156
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
157
|
Yañez-Aulestia A, Gupta NK, Hernández M, Osorio-Toribio G, Sánchez-González E, Guzmán-Vargas A, Rivera JL, Ibarra IA, Lima E. Gold nanoparticles: current and upcoming biomedical applications in sensing, drug, and gene delivery. Chem Commun (Camb) 2022; 58:10886-10895. [PMID: 36093914 DOI: 10.1039/d2cc04826d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (AuNPs) present unique physicochemical characteristics, low cytotoxicity, chemical stability, size/morphology tunability, surface functionalization capability, and optical properties which can be exploited for detection applications (colorimetry, surface-enhanced Raman scattering, and photoluminescence). The current challenge for AuNPs is incorporating these properties in developing more sensible and selective sensing methods and multifunctional platforms capable of controlled and precise drug or gene delivery. This review briefly highlights the recent progress of AuNPs in biomedicine as bio-sensors and targeted nano vehicles.
Collapse
Affiliation(s)
- Ana Yañez-Aulestia
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Nishesh Kumar Gupta
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico. .,University of Science and Technology (UST), Daejeon, Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Magali Hernández
- Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán Av. 1 de Mayo s/n, Cuautitlán Izcalli, Edo. de Méx, 54740, Mexico
| | - Génesis Osorio-Toribio
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Elí Sánchez-González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Ariel Guzmán-Vargas
- Instituto Politécnico Nacional - ESIQIE, Avenida IPN UPALM Edificio 7, Zacatenco, Mexico City, 07738, DF, Mexico.
| | - José L Rivera
- Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58000, Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Circuito Exterior S/N, CU, Del. Coyoacán, Ciudad de Mexico, 04510, Mexico.
| |
Collapse
|
158
|
Lin J, Li H, Guo J, Xu Y, Li H, Yan J, Wang Y, Chen H, Yuan Z. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine (Lond) 2022; 17:1191-1211. [PMID: 36154269 DOI: 10.2217/nnm-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is well known for its insidious nature, slow progression and high incidence as a neurodegenerative disease. In the past, diagnosis of AD mainly depended on analysis of a patient's cognitive ability and behavior. Without a unified standard for analysis methods, this is prone to produce incorrect diagnoses. Currently, definitive diagnosis mainly relies on histopathological examination. Because of the advantages of precision, noninvasiveness, low toxicity and high spatiotemporal resolution, fluorescent nanoprobes are suitable for the early diagnosis of AD. This review summarizes the research progress of different kinds of fluorescent nanoprobes for AD diagnosis and therapy in recent years and provides an outlook on the development prospects of fluorescent nanoprobes.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hanhan Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| |
Collapse
|
159
|
Zhao L, Gu X, Jiang F, Li B, Lu S, Wang F, Sun Y, Liu K, Li J. Long-Lasting Proteinaceous Nanoformulation for Tumor Imaging and Therapy. ACS OMEGA 2022; 7:31299-31308. [PMID: 36092568 PMCID: PMC9453795 DOI: 10.1021/acsomega.2c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nanodrugs have attracted increasing interest in drug delivery and disease treatment. However, the cumbersome preparation process and the poor biocompatibility of nanodrugs obstruct their clinical translation. In this study, we utilized a self-assembly strategy to develop a low-toxicity, long-lasting nanodrug for the effective treatment and real-time monitoring of bladder tumors. The accurate self-assembly of compatible raw materials allowed for an encapsulation rate of 43.7% for insoluble erdafitinib. Interestingly, robust therapeutic effects and reduced side effects could be realized simultaneously using this nanodrug, enabling broader scenarios for the clinical application of erdafitinib. Furthermore, the nanodrug exhibited a significantly prolonged in vivo half-life (14.4 h) and increased bioavailability (8.0 μg/mL·h), which were 8.3 times and 5.0 times higher than those of its nonformulated counterpart. Also, it is worth mentioning that the introduction of a fluorescent protein module into the nanodrug brought up a novel possibility for real-time feedback on the therapeutic response. In conclusion, this research revealed a versatile technique for developing low-toxicity, long-acting, and multifunctional nanoformulations, paving the way for multidimensional therapy of malignant tumors.
Collapse
Affiliation(s)
- Lai Zhao
- Department
of Urology, China-Japan Union Hospital of
Jilin University, Changchun 130033, China
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Xinquan Gu
- Department
of Urology, China-Japan Union Hospital of
Jilin University, Changchun 130033, China
| | - Fuquan Jiang
- Department
of Urology, China-Japan Union Hospital of
Jilin University, Changchun 130033, China
| | - Bo Li
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuang Lu
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Fan Wang
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Yao Sun
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| |
Collapse
|
160
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
161
|
Ko W, Kim SJ, Han GH, Lee D, Jeong D, Lee SJ, Han I, Hong JB, Sheen SH, Sohn S. Transplantation of neuron-inducing grafts embedding positively charged gold nanoparticles for the treatment of spinal cord injury. Bioeng Transl Med 2022; 7:e10326. [PMID: 36176600 PMCID: PMC9472004 DOI: 10.1002/btm2.10326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we aimed to investigate the recovery after traumatic spinal cord injury (SCI) by inducing cellular differentiation of transplanted neural stem cells (NSCs) into neurons. We dissociated NSCs from the spinal cords of Fisher 344 rat embryos. An injectable gel crosslinked with glycol chitosan and oxidized hyaluronate was used as a vehicle for NSC transplantation. The gel graft containing the NSC and positively charged gold nanoparticles (pGNP) was implanted into spinal cord lesions in Sprague-Dawley rats (NSC-pGNP gel group). Cellular differentiation of grafted NSCs into neurons (stained with β-tubulin III [also called Tuj1]) was significantly increased in the NSC-pGNP gel group (***p < 0.001) compared to those of two control groups (NSC and NSC gel groups) in the SCI conditions. The NSC-pGNP gel group showed the lowest differentiation into astrocytes (stained with glial fibrillary acidic protein). Regeneration of damaged axons (stained with biotinylated dextran amines) within the lesion was two-fold higher in the NSC-pGNP gel group than that in the NSC gel group. The highest locomotor scores were also found in the NSC-pGNP gel group. These outcomes suggest that neuron-inducing pGNP gel graft embedding embryonic spinal cord-derived NSCs can be a useful type of stem cell therapy after SCI.
Collapse
Affiliation(s)
- Wan‐Kyu Ko
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Seong Jun Kim
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Gong Ho Han
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Daye Lee
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Dabin Jeong
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of BiologyLawrence UniversityAppletonWisconsinUSA
| | - Sang Jin Lee
- Department of Dental Materials, School of DentistryKyung Hee UniversitySeoulRepublic of Korea
| | - In‐Bo Han
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Je Beom Hong
- Department of NeurosurgeryKangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Seung Hun Sheen
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Seil Sohn
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| |
Collapse
|
162
|
Wang C, Zhou HR, Zhao YT, Xiang ZQ, Pan K, Yang L, Miao AJ. A label-free technique to quantify and visualize gold nanoparticle accumulation at the single-cell level. CHEMOSPHERE 2022; 302:134857. [PMID: 35561767 DOI: 10.1016/j.chemosphere.2022.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Despite their wide bioapplications, potential health risks of gold nanoparticles (AuNPs) remain unclear. As a determinant of their risks, AuNP accumulation within a cell population is subject to cell-to-cell heterogeneity. Methods to simultaneously quantify and visualize intracellular AuNPs at the single-cell level are, however, lacking. Here we developed a novel label-free technique, based on hyperspectral imaging with enhanced darkfield microscopy (HSI-DFM), to visualize and quantify AuNP accumulation at the single-cell level. The identification ability of the hyperspectral libraries derived from extra- and intracellular AuNPs was compared. The spectral number in the libraries was optimized to maximize their identification ability while minimizing the identification time. In addition, a filtration method was established to merge spectral libraries from different cell lines based on their similarity. The intracellularly accumulated AuNPs as determined by HSI-DFM well correlated with those detected by inductively coupled plasma mass spectrometry. This validation allowed us to calculate the intracellular concentration of AuNPs at the single-cell level and to monitor the accumulation kinetics of AuNPs in living cells. The label-free method developed herein can be applied to other types of AuNPs differing in their physicochemical properties as well as other NPs, as long as they are detectable by HSI-DFM.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ya-Tong Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Zhi-Qian Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
163
|
Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules 2022; 27:5588. [PMID: 36080351 PMCID: PMC9457605 DOI: 10.3390/molecules27175588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ganesh Gollavelli
- Department of Humanities and Basic Sciences, Aditya Engineering College, Surampalem, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, Andhra Pradesh, India
| | - Anil V. Ghule
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
164
|
Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SHM, Eid NI. Neuroprotective Effect of Gold Nanoparticles and Alpha-Lipoic Acid Mixture against Radiation-Induced Brain Damage in Rats. Int J Mol Sci 2022; 23:ijms23179640. [PMID: 36077035 PMCID: PMC9456030 DOI: 10.3390/ijms23179640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity.
Collapse
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence: ; Tel.: +20-223624917
| | - Ahmed I. El-Batal
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Yara M. Amin
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Asrar M. Hawas
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Seham H. M. Hassan
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Nihad I. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
165
|
Li M, Wei J, Song Y, Chen F. Gold nanocrystals: optical properties, fine-tuning of the shape, and biomedical applications. RSC Adv 2022; 12:23057-23073. [PMID: 36090439 PMCID: PMC9380198 DOI: 10.1039/d2ra04242h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Noble metal nanomaterials with special physical and chemical properties have attracted considerable attention in the past decades. In particular, Au nanocrystals (NCs), which possess high chemical inertness and unique surface plasmon resonance (SPR), have attracted extensive research interest. In this study, we review the properties and preparation of Au NCs with different morphologies as well as their important applications in biological detection. The preparation of Au NCs with different shapes by many methods such as seed-mediated growth method, seedless synthesis, polyol process, ultrasonic method, and hydrothermal treatment has already been introduced. In the seed-mediated growth method, the influence factors in determining the final shape of Au NCs are discussed. Au NCs, which show significant size-dependent color differences are proposed for preparing biological probes to detect biomacromolecules such as DNA and protein, while probe conjugate molecules serves as unique coupling agents with a target. Particularly, Au nanorods (NRs) have some unique advantages in the application of biological probes and photothermal cancer therapy compared to Au nanoparticles (NPs).
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, Qilu Hospital Shandong University 107 Wenhua Xi Road Jinan 250012 P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| |
Collapse
|
166
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Samuel Raj V, Chang CM, Priyadarshini A. Synthesis and Biological Characterization of Phyto-Fabricated Silver Nanoparticles from Azadirachta indica. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) have garnered a lot of interest in sectors like medicine, cosmetics, food, and pharmaceuticals for antibacterial catalytic properties, reduced toxicity, and easy production. Biological synthesis of silver nanoparticle (AgNPs) is considered as green, eco-friendly,
and cost-effective approach; therefore, Azadirachta indica extracts were utilized for a dual role of fabrication and functionalization of AgNPs. Optical and physical characterizations were achieved for confirming the biosynthesized AgNPs. SEM images detected quasi-spherical AgNPs of
44.04 to 66.50 nm. Some of potent phytochemicals like flavonoids and proteins from Azadirachta indica formed a strong coating or capping on the AgNPs without affecting their secondary structure by interacting with Ag+ and NPs for the formation of AgNPs. AgNPs exhibited strong
antibacterial activity (MIC 10 μg/ml) against multidrug-resistant bacteria Enterococcus faecalis; at different concentrations, no IC50 values were recorded for AgNPs as well as Azadirachta indica signifying low cytotoxicity in the exposed concentration range. The DNA
degradation activity of AgNPs through the TUNEL assay revealed no significant increase in the overall FITC mean fluorescence intensity as well as a DNA fragmentation index with 5.45% DNA damage (10 μg/ml AgNPs). Drug uptake of AgNPs was also investigated through a permeability assay
via Caco-2 cell lines at test concentrations where apparent permeability was detected as moderate.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - V. Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist. Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| |
Collapse
|
167
|
Zhang L, Wang B, Yin G, Wang J, He M, Yang Y, Wang T, Tang T, Yu XA, Tian J. Rapid Fluorescence Sensor Guided Detection of Urinary Tract Bacterial Infections. Int J Nanomedicine 2022; 17:3723-3733. [PMID: 36061124 PMCID: PMC9428933 DOI: 10.2147/ijn.s377575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Urinary tract infections (UTI) are one of the most serious human bacterial infections affecting millions of people every year. Therefore, simple and reliable identification of the urinary tract pathogenic bacteria within a few minutes would be of great significance for diagnosis and treatment of clinical patients with UTIs. In this study, the fluorescence sensor was reported to guide the detection of urinary tract bacterial infections rapidly. Methods The Ami-AuNPs-DNAs sensor was fabricated by the amino-modified Au nanoparticles (Ami-AuNPs) and six DNAs signal molecules, which bound to the urinary tract pathogenic bacteria and generated corresponding response signals. Further, based on the collected response signals, identification was performed by principal component analysis (PCA) and linear discriminant analysis (LDA). The Ami-AuNPs and Ami-AuNPs-DNAs were characterized by transmission electron microscopy, UV−vis absorption spectrum, Fourier transform infrared spectrum, dynamic light scattering and zeta potentials. Thereafter, the Ami-AuNPs-DNAs sensor was used to discriminate and identify five kinds of urinary tract pathogenic bacteria. Moreover, the quantitative analysis performance towards individual bacteria at different concentrations were also evaluated. Results The Ami-AuNPs-DNAs sensor were synthesized successfully in terms of spherical, well-dispersed and uniform in size, which could well discriminate five main urinary tract pathogenic bacteria with unique fingerprint-like patterns and was sufficiently sensitive to determine individual bacteria with a detection limit to 1×107 cfu/mL. Furthermore, the sensor had also been successfully applied to identify bacteria in urine samples collected from clinical UTIs. Conclusion The developed fluorescence sensor could be applied to rapid and accurate discrimination of urinary tract pathogenic bacteria and holds great promise for the diagnosis of the disease caused by bacterial infection.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People’s Republic of China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Guo Yin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Jue Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Ming He
- Dermatology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550002, People’s Republic of China
| | - Yuqi Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550002, People’s Republic of China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Ting Tang
- Dermatology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550002, People’s Republic of China
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
- Correspondence: Xie-An Yu; Jiangwei Tian, Email ;
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People’s Republic of China
| |
Collapse
|
168
|
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
169
|
Ni N, Wang W, Sun Y, Sun X, Leong DT. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022; 287:121640. [PMID: 35772348 DOI: 10.1016/j.biomaterials.2022.121640] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
All intravenous delivered nanomedicine needs to escape from the blood vessel to exert their therapeutic efficacy at their designated site of action. Failure to do so increases the possibility of detrimental side effects and negates their therapeutic intent. Many powerful anticancer nanomedicine strategies rely solely on the tumor derived enhanced permeability and retention (EPR) effect for the only mode of escaping from the tumor vasculature. However, not all tumors have the EPR effect nor can the EPR effect be induced or controlled for its location and timeliness. In recent years, there have been exciting developments along the lines of inducing endothelial leakiness at the tumor to decrease the dependence of EPR. Physical disruption of the endothelial-endothelial cell junctions with coordinated biological intrinsic pathways have been proposed that includes various modalities like ultrasound, radiotherapy, heat and even nanoparticles, appear to show good progress towards the goal of inducing endothelial leakiness. This review explains the intricate and complex biological background behind the endothelial cells with linkages on how updated reported nanomedicine strategies managed to induce endothelial leakiness. This review will also end off with fresh insights on where the future of inducible endothelial leakiness holds.
Collapse
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yu Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
170
|
Wijesinghe KH, Oliver AG, Dass A. Crystal structure of bulky-ligand-protected Au 24(S-C 4H 9) 16. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:430-436. [DOI: 10.1107/s2053229622006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
Atomically precise thiolate-protected gold nanomolecules have attracted interest due to their distinct electronic and chemical properties. The structure of these nanomolecules is important for understanding their peculiar properties. Here, we report the X-ray crystal structure of a 24-atom gold nanomolecule protected by 16 tert-butylthiolate ligands. The composition of Au24(S-C4H9)16 {poly[hexadecakis(μ-tert-butylthiolato)tetracosagold]} was confirmed by X-ray crystallography and electrospray ionization mass spectrometry (ESI–MS). The nanomolecule was synthesized in a one-phase synthesis and crystallized from a hexane–ethanol layered solution. The X-ray structure confirms the 16-atom core protected by two monomeric and two trimeric staples with four bridging ligands. The Au24(S-C4H9)16 cluster follows the shell-closing magic number of 8.
Collapse
|
171
|
Preparation of multiple-spectra encoded polyphosphazene microspheres and application for antibody detection. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03811-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
172
|
Perli G, Bertuzzi DL, Souto DEP, Ramos MD, Braga CB, Aguiar SB, Ornelas C. Synthesis and Characterization of Dendronized Gold Nanoparticles Bearing Charged Peripheral Groups with Antimicrobial Potential. NANOMATERIALS 2022; 12:nano12152610. [PMID: 35957042 PMCID: PMC9370457 DOI: 10.3390/nano12152610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Dendronized gold nanoparticles (AuNPs) were synthesized bearing charged peripheral groups. Two novel AB3-type dendrons were synthesized with a thiol group at the focal point followed by their attachment to AuNPs. Dendrons were designed to have nine charged peripheral groups (carboxyl or amine), glycol solubilizing, units and one thiol moiety at the focal point. Both dendrons and all intermediates were synthesized in high yields and characterized by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The amine- and carboxyl-terminated dendrons were used to functionalize gold nanoparticles (AuNPs) previously stabilized with citrate. The nanoparticles’ diameters and their colloidal stability were investigated using dynamic light scattering (DLS). The size and morphology of the dendronized AuNPs were evaluated by scanning electron microscopy (SEM), which revealed individual particles with no aggregation after replacement of citrate by the dendrons, in agreement with the DLS data. The absorption spectroscopy reveals a prominent plasmonic band at 560 nm for all AuNPs. The zeta potential further confirmed the expected charged structures of the dendronized AuNPs. Considering all the physical–chemical properties of the charged dendronized AuNPs developed in this work, these AuNPs might be used as a weapon against multi-drug resistant bacterial infections.
Collapse
Affiliation(s)
- Gabriel Perli
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Diego L. Bertuzzi
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Dênio E. P. Souto
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
- Laboratorio de Espectrometria, Sensores e Biossensores, Departamento de Quimica, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Miguel D. Ramos
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Carolyne B. Braga
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Samile B. Aguiar
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Catia Ornelas
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
- Correspondence:
| |
Collapse
|
173
|
Core-shell structured gold nanoparticles as carrier for 166Dy/ 166Ho in vivo generator. EJNMMI Radiopharm Chem 2022; 7:16. [PMID: 35852733 PMCID: PMC9296738 DOI: 10.1186/s41181-022-00170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Radionuclide therapy (RNT) has become a very important treatment modality for cancer nowadays. Comparing with other cancer treatment options, sufficient efficacy could be achieved in RNT with lower toxicity. β− emitters are frequently used in RNT due to the long tissue penetration depth of the β− particles. The dysprosium-166/holmium-166 (166Dy/166Ho) in vivo generator shows great potential for treating large malignancies due to the long half-life time of the mother nuclide 166Dy and the emission of high energy β− from the daughter nuclide 166Ho. However, the internal conversion occurring after β− decay from 166Dy to 166Ho could cause the release of about 72% of 166Ho when 166Dy is bound to conventional chelators. The aim of this study is to develop a nanoparticle based carrier for 166Dy/166Ho in vivo generator such that the loss of the daughter nuclide 166Ho induced by internal conversion is prevented. To achieve this goal, we radiolabelled platinum-gold bimetallic nanoparticles (PtAuNPs) and core–shell structured gold nanoparticles (AuNPs) with 166Dy and studied the retention of both 166Dy and 166Ho under various conditions. Results The 166Dy was co-reduced with gold and platinum precursor to form the 166DyAu@AuNPs and 166DyPtAuNPs. The 166Dy radiolabelling efficiency was determined to be 60% and 70% for the two types of nanoparticles respectively. The retention of 166Dy and 166Ho were tested in MiliQ water or 2.5 mM DTPA for a period of 72 h. In both cases, more than 90% of both 166Dy and 166Ho was retained. The results show that the incorporation of 166Dy in AuNPs can prevent the escape of 166Ho released due to internal conversion. Conclusion We developed a chelator-free radiolabelling method for 166Dy with good radiolabelling efficiency and very high stability and retention of the daughter nuclide 166Ho. The results from this study indicate that to avoid the loss of the daughter radionuclides by internal conversion, carriers composed of electron-rich materials should be used. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-022-00170-3.
Collapse
|
174
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
175
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
176
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
177
|
Miller O, Park K, Vaia RA. Towards maximum optical efficiency of ensembles of colloidal nanorods. OPTICS EXPRESS 2022; 30:25061-25077. [PMID: 36237045 DOI: 10.1364/oe.462926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
Experimental and theoretical studies of colloidal nanoparticles have primarily focused on accurate characterization and simulation of observable characteristics, such as resonant wavelength. In this paper, we tackle the optimal design of colloidal-nanoparticle ensembles: what is the largest possible per-volume optical cross-section, which designs might achieve them, and can such response be experimentally demonstrated? We combine theory and experiment to answer each of these questions. We derive general bounds on the maximum cross-sections per volume, and we apply an analytical antenna model to show that resonant nanorods should nearly achieve such bounds. We use a modified seed-mediated synthesis approach to synthesize ensembles of gold nanorods with small polydispersity, i.e., small variations in size and aspect ratio. Polydispersity is the key determinant of how closely such ensembles can approach their respective bounds yet is difficult to characterize experimentally without near-field measurements. We show that a certain "extinction metric," connecting extinction cross-section per volume with the radiative efficiencies of the nanoparticles, offers a quantitative prediction of polydispersity via quantities that can be rapidly measured with far-field characterization tools. Our predictions apply generally across all plasmonic materials and offer a roadmap to the largest possible optical response of nanoparticle ensembles.
Collapse
|
178
|
Han GH, Ko WK, Kim SJ, Lee D, Jeong D, Han I, Sheen SH, Sohn S. Neuron-inducing therapy using embryonic neural progenitor cells embedding positively charged gold nanoparticles in rats with complete spinal cord injury. Clin Transl Med 2022; 12:e981. [PMID: 35839334 PMCID: PMC9286526 DOI: 10.1002/ctm2.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gong H Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seong J Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Daye Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dabin Jeong
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Biology, Lawrence University, Appleton, Wisconsin, USA
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung H Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
179
|
Muzzi B, Albino M, Gabbani A, Omelyanchik A, Kozenkova E, Petrecca M, Innocenti C, Balica E, Lavacchi A, Scavone F, Anceschi C, Petrucci G, Ibarra A, Laurenzana A, Pineider F, Rodionova V, Sangregorio C. Star-Shaped Magnetic-Plasmonic Au@Fe 3O 4 Nano-Heterostructures for Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29087-29098. [PMID: 35708301 PMCID: PMC9247976 DOI: 10.1021/acsami.2c04865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 05/19/2023]
Abstract
Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications.
Collapse
Affiliation(s)
- Beatrice Muzzi
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena 1240, I-53100 Siena, Italy
| | - Martin Albino
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Alessio Gabbani
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Alexander Omelyanchik
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Elena Kozenkova
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Michele Petrecca
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Claudia Innocenti
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
| | - Elena Balica
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lavacchi
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
| | - Francesca Scavone
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Cecilia Anceschi
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Gaia Petrucci
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Alfonso Ibarra
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Anna Laurenzana
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Francesco Pineider
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Valeria Rodionova
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Claudio Sangregorio
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
180
|
Co-Functionalization of Gold Nanoparticles with C7H2 and HuAL1 Peptides: Enhanced Antimicrobial and Antitumoral Activities. Pharmaceutics 2022; 14:pharmaceutics14071324. [PMID: 35890220 PMCID: PMC9317637 DOI: 10.3390/pharmaceutics14071324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
The functionalization of nanoparticles with therapeutic peptides has been pointed out as a promising strategy to improve the applications of these molecules in the field of health sciences. Peptides are highly bioactive but face several limitations such as low bioavailability due to the difficulty of overcoming the physiological barriers in the body and their degradation by enzymes. In this work, gold nanoparticles (AuNPs) were co-functionalized with two therapeutic peptides simultaneously. The peptides from the complementary determining region of monoclonal antibodies, composed of the amino acid sequences YISCYNGATSYNQKFK (C7H2) and RASQSVSSYLA (HuAL1) were chosen for having exhibited antitumor and antimicrobial activity before. The peptides-conjugated AuNPs were characterized regarding size, morphology, and metal concentration by using TEM, dynamic light scattering, and ICP-OES techniques. Then, peptides-conjugated AuNPs were evaluated regarding the antimicrobial activity against E. coli, P. aeruginosa, and C. albicans. The antitumoral activity was evaluated in vitro by cell viability assays with metastatic melanoma cell line (B16F10-Nex2) and the cytotoxicity was evaluated against human foreskin fibroblast (Hs68) cell line. Finally, in vivo assays were performed by using a syngeneic animal model of metastatic melanoma. Our findings have highlighted the potential application of the dual-peptide AuNPs in order to enhance the antitumor and antimicrobial activity of peptides.
Collapse
|
181
|
A Gold Nanoparticle-Based Molecular Self-Assembled Colorimetric Chemosensor Array for Monitoring Multiple Organic Oxyanions. Processes (Basel) 2022. [DOI: 10.3390/pr10071251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Determination of oxyanions is of paramount importance because of the essential role they play in metabolic processes involved in various aquatic environmental problems. In this investigation, a novel chemical sensor array has been developed by using gold nanoparticles modified with different chain lengths of aminothiols (AET-AuNPs) as sensing elements. The proposed sensor array provides a fingerprint-like response pattern originating from cross-reactive binding events and capable of targeting various anions, including the herbicide glyphosate. In addition, chemometric techniques, linear discrimination analysis (LDA) and the support vector machine (SVM) algorithm were employed for analyte classification and regression/prediction. The obtained sensor array demonstrates a remarkable ability to determine multiple oxyanions in both qualitative and quantitative analysis. The described methodology could be used as a simple, sensitive and fast routine analysis for oxyanions in both laboratory and field settings.
Collapse
|
182
|
Facile Synthesis of Fe3O4@Au/PPy-DOX Nanoplatform with Enhanced Glutathione Depletion and Controllable Drug Delivery for Enhanced Cancer Therapeutic Efficacy. Molecules 2022; 27:molecules27134003. [PMID: 35807249 PMCID: PMC9268512 DOI: 10.3390/molecules27134003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
The complex physiological environment and inherent self-healing function of tumors make it difficult to eliminate malignant tumors by single therapy. In order to enhance the efficacy of antitumor therapy, it is significant and challenging to realize multi-mode combination therapy by utilizing/improving the adverse factors of the tumor microenvironment (TME). In this study, a novel Fe3O4@Au/PPy nanoplatform loaded with a chemotherapy drug (DOX) and responsive to TME, near-infrared (NIR) laser and magnetic field was designed for the combination enhancement of eliminating the tumor. The Fe2+ released at the low pH in TME can react with endogenous H2O2 to induce toxic hydroxyl radicals (·OH) for chemodynamic therapy (CDT). At the same time, the generated Fe3+ could deplete overexpressed glutathione (GSH) at the tumor site to prevent reactive oxygen species (ROS) from being restored while producing Fe2+ for CDT. The designed Fe3O4@Au/PPy nanoplatform had high photothermal (PT) conversion efficiency and photodynamic therapy (PDT) performance under NIR light excitation, which can promote CDT efficiency and produce more toxic ROS. To maximize the cancer-killing efficiency, the nanoplatform can be successfully loaded with the chemotherapeutic drug DOX, which can be efficiently released under NIR excitation and induction of slight acidity at the tumor site. In addition, the nanoplatform also possessed high saturation magnetization (20 emu/g), indicating a potential magnetic targeting function. In vivo and in vitro results identified that the Fe3O4@Au/PPy-DOX nanoplatform had good biocompatibility and magnetic-targeted synergetic CDT/PDT/PTT/chemotherapy antitumor effects, which were much better than those of the corresponding mono/bi/tri-therapies. This work provides a new approach for designing intelligent TME-mediated nanoplatforms for synergistically enhancing tumor therapy.
Collapse
|
183
|
Yan H, Zhai B, Yang F, Chen Z, Zhou Q, Paiva-Santos AC, Yuan Z, Zhou Y. Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma. Front Pharmacol 2022; 13:908713. [PMID: 35721107 PMCID: PMC9201105 DOI: 10.3389/fphar.2022.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.
Collapse
Affiliation(s)
- Hui Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bo Zhai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhenliang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ana Cláudia Paiva-Santos
- Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
184
|
Tabatabaie F, Franich R, Feltis B, Geso M. Oxidative Damage to Mitochondria Enhanced by Ionising Radiation and Gold Nanoparticles in Cancer Cells. Int J Mol Sci 2022; 23:ijms23136887. [PMID: 35805905 PMCID: PMC9266628 DOI: 10.3390/ijms23136887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 01/19/2023] Open
Abstract
Gold nanoparticles (AuNP) can increase the efficacy of radiation therapy by sensitising tumor cells to radiation damage. When used in combination with radiation, AuNPs enhance the rate of cell killing; hence, they may be of great value in radiotherapy. This study assessed the effects of radiation and AuNPs on mitochondrial reactive oxygen species (ROS) generation in cancer cells as an adjunct therapeutic target in addition to the DNA of the cell. Mitochondria are considered one of the primary sources of cellular ROS. High levels of ROS can result in an intracellular state of oxidative stress, leading to permanent cell damage. In this study, human melanoma and prostate cancer cell lines, with and without AuNPs, were irradiated with 6-Megavolt X-rays at doses of 0–8 Gy. Indicators of mitochondrial stress were quantified using two techniques, and were found to be significantly increased by the inclusion of AuNPs in both cell lines. Radiobiological damage to mitochondria was quantified via increased ROS activity. The ROS production by mitochondria in cells was enhanced by the inclusion of AuNPs, peaking at ~4 Gy and then decreasing at higher doses. This increased mitochondrial stress may lead to more effectively kill of AuNP-treated cells, further enhancing the applicability of functionally-guided nanoparticles.
Collapse
Affiliation(s)
- Farnaz Tabatabaie
- School of Sciences, RMIT University, Melbourne, VIC 3000, Australia;
| | - Rick Franich
- School of Sciences, RMIT University, Melbourne, VIC 3000, Australia;
- Correspondence: (R.F.); (M.G.); Tel.: +61-401-730-320 (R.F.); +61-3-9925-7991 (M.G.)
| | - Bryce Feltis
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Moshi Geso
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
- Correspondence: (R.F.); (M.G.); Tel.: +61-401-730-320 (R.F.); +61-3-9925-7991 (M.G.)
| |
Collapse
|
185
|
Fang Q, Xu Y, Luo L, Liu C, Li Z, Lin J, Chen T, Wu A. Controllable synthesis of layered black bismuth oxidechloride nanosheets and their applications in internal tumor ablation. Regen Biomater 2022; 9:rbac036. [PMID: 35936552 PMCID: PMC9348552 DOI: 10.1093/rb/rbac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The recently emerging bismuth oxyhalide (BiOX) nanomaterials are promising indirect band gap photosensitizer for ultraviolet (UV) light triggered phototherapy due to their unique layered nanosheet structure. However, the low absorption and poor photothermal conversion efficiency have always impeded their further applications in cancer clinical therapy. Herein, BiOCl rich in oxygen vacancies has been reported to have full spectrum absorption properties, making it possible to achieve photothermal property under near-infrared (NIR) laser. Under 808 nm irradiation, the photothermal conversion efficiency of black BiOCl nanosheets (BBNs) is up to 40%. BBNs@PEG can effectively clear primary subcutaneous tumors and prevent recurrence, achieving good synergistic treatment effect. These results not only broke the limitation of ultraviolet on the BiOCl material and provided a good template for other semiconductor materials, also represent a promising approach to fabricate BBN@PEG a novel, potent and multi-functional theranostic platform for precise PTT and prognostic evaluation.
Collapse
Affiliation(s)
- Qianlan Fang
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Yu Xu
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Lijia Luo
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Chuang Liu
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Zihou Li
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- University of Chinese Academy of Sciences , Beijing, 100049, P.R. China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory , Huizhou, 516000, P.R. China
| | - Tianxiang Chen
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory , Huizhou, 516000, P.R. China
| | - Aiguo Wu
- Ningbo Institute of Materials Technology and Engineering,CAS Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, , Ningbo, 315201, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory , Huizhou, 516000, P.R. China
| |
Collapse
|
186
|
Jian C, Wang Y, Liu H, Yin Z. A biotin-modified and H 2O 2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy. Eur J Pharm Biopharm 2022; 177:24-38. [PMID: 35667614 DOI: 10.1016/j.ejpb.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Although synergistic effects of photothermal therapy (PTT) and chemotherapy for cancer have been extensively investigated in previous studies, more potential strategies need to be exploited to alleviate severe adverse effects. In this study, a biotin-modified and activatable nanotheranostic system is developed. This system (BPSP/DOX-CyBA) composed of H2O2-sensitive thioketal (TK) linker, hydrophilic biotin-decorated polyethylene glycol (PEG) segment, hydrophobic polycaprolactone (PCL) segment, could self-assemble into (99±1.3) nm nanoparticles and co-deliver H2O2-triggered photosensitizer CyBA and cytotoxic drugs DOX to tumor site. In vitro, DOX and CyBA could release rapidly from nanoparticles, CyBA accumulation in the mitochondria causes mitochondrial damage, leading to mitochondrial dysfunctions,while rising the level of ROS in B16F10 cells, and further to promote the micells to trigger release. CyBA could be activated into CyOH and the photothermal therapy was turn "off" into "on". In BPSP/DOX-CyBA group, the local temperature within tumor reached 50℃ and cell apoptosis rate reached 68.6% under Laser irradiation(650 nm, 1W/cm2). Fluorescence microscopy and flow cytometry analysis further demonstrated the better uptake efficiency on B16F10 cells with biotin decoration. In a mice B16F10 tumor model, the group with co-delivery CyBA and DOX had the best tumor retention effect, the maximal local temperature increasement and the minimum tumor growth with negligible side effects, suggesting the potential of BPSP/DOX-CyBA nanopalteform that synergistic photothermal therapy and chemotherapy and mitochondria damage as an effective melanoma treatment strategy.
Collapse
Affiliation(s)
- Chuanjiang Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huijun Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
187
|
Minh Ngo H, Drobnyh E, Sukharev M, Khuong Vo Q, Zyss J, Ledoux‐Rak I. High Yield Synthesis and Quadratic Nonlinearities of Gold Nanoprisms in Solution: the Role of Corner Sharpness. Isr J Chem 2022. [DOI: 10.1002/ijch.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hoang Minh Ngo
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Elena Drobnyh
- College of Integrative Science and Arts Arizona State University Mesa Arizona 85212 USA
| | - Maxim Sukharev
- College of Integrative Science and Arts Arizona State University Mesa Arizona 85212 USA
- Department of Physics Arizona State University Tempe Arizona 85287 USA
| | - Quoc Khuong Vo
- Faculty of Chemistry Ho Chi Minh City University of Science Vietnam National University 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
| | - Joseph Zyss
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Isabelle Ledoux‐Rak
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| |
Collapse
|
188
|
Probing and modulating the interactions of the DNAzyme with DNA-functionalized nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
189
|
David S, Patel DY, Cardona SM, Kirby N, Mayer KM. Cellular uptake and cytotoxicity of PEGylated gold nanoparticles in C33A cervical cancer cells. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac7738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Gold nanoparticles (GNPs) have served as an excellent candidate for biomedical applications. GNPs can be conjugated with carboxyl-polyethylene glycol-thiol (PEG) as a stealth coating which prolongs circulation time [Lipka J et al 2010 Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31 , 6574–6581, Janát-Amsbury M et al 2011 Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm, 77 , 417–423] and increases cellular uptake.[He B et al 2017 Increased cellular uptake of peptide-modified PEGylated gold nanoparticles. Biochem. Biophys. Res. Commun., 494 , 339–345, Soenen S. J et al 2014 , The cellular interactions of PEGylated gold nanoparticles: effect of PEGylation on cellular uptake and cytotoxicity. Part. Part. Syst. Charact., 31 , 794–800, Guo J et al 2016 Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int. J. Pharm., 509 , 16–27. Brandenberger C et al 2010 Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol‐coated gold nanoparticles. Small, 6 , 1669–1678. To examine the biological effects of PEG-coated GNPs, we investigated their cytotoxicity on human cervical cancer C33A cells as compared to citrate-capped GNPs. Our results indicated that PEGylated GNPs markedly induce apoptosis and necrosis causing cell shrinkage and cell membrane asymmetry. 30 nm citrate-capped GNPs were synthesized in aqueous solution using a citrate-reduction method. GNPs were functionalized with PEG (MW = 7500 g mol−1. The GNPs were characterized using scanning electron microscopy (SEM), confirming that the as-synthesized GNPs have a diameter of 30 nm. Dynamic light scattering (DLS) determined that the hydrodynamic diameter of PEGylated GNPs was 78.82 nm, and that of citrate-capped GNPs was 43.82 nm. Zeta potential measurements showed an increase in colloidal stability for PEGylated GNPs as compared to citrate GNPs, with a zeta potential of −33.33 mV observed for citrate-capped GNPs and a zeta potential of −43.38 mV observed for PEGylated GNPs. The PEGylated GNPs were found to effectively induce early and late-stage apoptosis in C33A cells with a significant reduction in total cell viability of 32.3%. Based on the apoptotic activity in C33A cells, PEGylated GNPs may serve as a promising radiosensitizer for cancer treatments.
Collapse
|
190
|
Pinho RA, Haupenthal DPS, Fauser PE, Thirupathi A, Silveira PCL. Gold Nanoparticle-Based Therapy for Muscle Inflammation and Oxidative Stress. J Inflamm Res 2022; 15:3219-3234. [PMID: 35668914 PMCID: PMC9166907 DOI: 10.2147/jir.s327292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory cytokines and reactive oxygen species are released after muscle damage, and although they are necessary for the muscle regeneration process, an excess of these substances leads to the destruction of biomolecules and impairment of the repair system. Several drugs have emerged in recent years to control the muscle inflammatory response, and studies have shown that gold nanoparticles (AuNPs) have anti-inflammatory and antioxidant properties. This review reveals the effects of AuNPs on the inflammatory and redox mechanisms of muscles. We assessed the results of several studies published in different journals over the last 20 years, with a focus on the effects of AuNPs on possible aspects of muscle regeneration or recovery, namely, inflammatory processes and redox system mechanisms. A systematic database search was conducted using PubMed, Medline, Bireme, Web of Science, and Google Scholar to identify peer-reviewed studies from the 2000s. Combinations of keywords related to muscle damage, regeneration or repair, AuNPs, oxidative stress, and antioxidants were used in the search. This review did not address other variables, such as specific diseases or other biological effects; however, these variables should be considered for a complete understanding of the effects of AuNPs on skeletal muscles.
Collapse
Affiliation(s)
- Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
- Faculty of Sports Science, Ningbo University, Ningbo, People’s Republic of China
| | - Daniela P S Haupenthal
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Emílio Fauser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo, People’s Republic of China
| | - Paulo C L Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
191
|
Na HK, Yoo CH, Choi JK, Ok JG, Chung CH, Wi JS. Nanoplasmonic Sensor Chip Readable in a Conventional Plate Reader. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
192
|
Wu R, Ai J, Ga L. Synthesis of fluorescent copper nanoparticles T (30)-base protection and its Mn 2+ detection and temperature sensing. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rihan Wu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, Hohhot, China
| | - Jun Ai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, Hohhot, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, China
| |
Collapse
|
193
|
Kowalik A, Majerek M, Mrowiec K, Solich J, Faron-Górecka A, Woźnicka O, Dziedzicka-Wasylewska M, Łukasiewicz S. Dopamine D 2 and Serotonin 5-HT 1A Dimeric Receptor-Binding Monomeric Antibody scFv as a Potential Ligand for Carrying Drugs Targeting Selected Areas of the Brain. Biomolecules 2022; 12:749. [PMID: 35740874 PMCID: PMC9221303 DOI: 10.3390/biom12060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.
Collapse
Affiliation(s)
- Agata Kowalik
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Mateusz Majerek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Krzysztof Mrowiec
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland;
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| |
Collapse
|
194
|
Srivastava I, Xue R, Jones J, Rhee H, Flatt K, Gruev V, Nie S. Biomimetic Surface-Enhanced Raman Scattering Nanoparticles with Improved Dispersibility, Signal Brightness, and Tumor Targeting Functions. ACS NANO 2022; 16:8051-8063. [PMID: 35471820 DOI: 10.1021/acsnano.2c01062] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of biocompatible and nontoxic surface-enhanced Raman scattering (SERS) nanoparticles is of considerable current interest because of their attractive biomedical applications such as ultrasensitive in vitro diagnostics, in vivo tumor imaging, and spectroscopy-guided cancer surgery. However, current SERS nanoparticles are prepared and stored in aqueous solution, have limited stability and dispersibility, and are not suitable for lyophilization and storage by freeze-drying or other means. Here, we report a simple but robust method to coat colloidal SERS nanoparticles by naturally derived biomimetic red blood cell membranes (RBCM), leading to a dramatic improvement in stability and dispersibility under freeze-thawing, lyophilization, heating, and physiological conditions. The results demonstrate that the lyophilized SERS nanoparticles in the solid form can be readily dissolved and dispersed in physiological buffer solutions. A surprising finding is that the RBCM-coated SERS particles are considerably brighter (by as much as 5-fold) than PEGylated SERS particles under similar experimental conditions. This additional enhancement is believed to arise from the hydrophobic nature of RBCM's hydrocarbon chains, which is known to reduce electronic dampening and boost electromagnetic field enhancement. A further advantage in using biomimetic membrane coatings is that the bilayer membrane structure allows nonvalent insertion of molecular ligands for tumor targeting. In particular, we show that cyclic-RGD, a tumor-targeting peptide, can be efficiently inserted into the membrane coatings of SERS nanoparticles for targeting the ανβ3 integrin receptors expressed on cancer cells. Thus, biomimetic RBCMs provide major advantages over traditional polyethylene glycols for preparing SERS nanoparticles with improved dispersibility, higher signal intensity, and more efficient biofunctionalization.
Collapse
|
195
|
Alhashmi Alamer F, Beyari RF. Overview of the Influence of Silver, Gold, and Titanium Nanoparticles on the Physical Properties of PEDOT:PSS-Coated Cotton Fabrics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1609. [PMID: 35564317 PMCID: PMC9105909 DOI: 10.3390/nano12091609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Metallic nanoparticles have been of interest to scientists, and they are now widely used in biomedical and engineering applications. The importance, categorization, and characterization of silver nanoparticles, gold nanoparticles, and titanium nanoparticles have been discussed. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) is the most practical and reliable conductive polymer used in the manufacturing of conductive textiles. The effects of metallic nanoparticles on the performance of PEDOT:PSS thin films are discussed. The results indicated that the properties of PEDOT:PSS significantly depended on the synthesis technique, doping, post-treatment, and composite material. Further, electronic textiles known as smart textiles have recently gained popularity, and they offer a wide range of applications. This review provides an overview of the effects of nanoparticles on the physical properties of PEDOT:PSS-coated cotton fabrics.
Collapse
Affiliation(s)
- Fahad Alhashmi Alamer
- Department of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia;
| | | |
Collapse
|
196
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
197
|
Kumar D, Lee JY, Moon MJ, Kim W, Jeong YY, Park CH, Kim CS. Nanogap-containing thermo-plasmonic nano-heaters for amplified photo-triggered tumor ablation at low laser power density. Biomater Sci 2022; 10:2394-2408. [PMID: 35384951 DOI: 10.1039/d2bm00129b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, nanogap amplified plasmonic heat-generators are fabricated by decorating Pt nanodots on gold nanospheres (GNSs@Pt@mPEG) by maintaining strategic nano-gaps (1-2 nm) and studied precisely for plasmonic photothermal therapy (PPTT) of colon cancer by passive tumor targeting. The surface modification of GNSs@Pt with poly(ethylene glycol) methyl ether thiol (mPEG) increases their accumulation in tumor cells and hence the GNSs@Pt@mPEG stay at the tumor site for a longer time. The nanogap amplified GNSs@Pt@mPEG (O.D. = 4.0) generated high plasmonic photothermal hyperthermia and utilized a low NIR power density (0.36 W cm-2) for the elimination of tumor cells in only 150 s of irradiation time and shows excellent colloidal and photo-stability. The predominant distribution of GNSs@Pt@mPEG caused effective tumor cell death and promoted uniform treatment on tumor sites. In vivo studies demonstrated that the GNSs@Pt@mPEG have very low toxicity, high biocompatibility, and thermal stability, stay longer at the tumor site, induce tumor cell death without side effects, and show significantly less uptake in other organs except for the spleen. The significant accumulations and longer stay suggested that they are favorable for tumor passive uptake and the possibility of enhanced PPTT after intravenous administration. The nano-particles were stable up to O.D. 200 and have at least 12 months shelf-life without losing colloidal stability or photothermal efficacy. These findings lay the groundwork for using GNSs@Pt@mPEG as a NIR light-responsive PPTT agent and demonstrated their potential for further use in clinical applications.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Ji Yeon Lee
- Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology - KAIST, Daejeon 34141, South Korea
| | - Myeong Ju Moon
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, 58128, South Korea.
| | - Wooju Kim
- Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, 58128, South Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea.,Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology - KAIST, Daejeon 34141, South Korea
| |
Collapse
|
198
|
Oziri OJ, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato SI, Yamamoto T. Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5286-5295. [PMID: 34878285 DOI: 10.1021/acs.langmuir.1c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Unique physical and chemical properties arising from a polymer topology recently draw significant attention. In this study, cyclic poly(ethylene glycol) (c-PEG) was found to significantly interact with bovine serum albumin (BSA), suggested by nuclear magnetic resonance, dynamic light scattering, and fluorescence spectroscopy. On the other hand, linear HO-PEG-OH and MeO-PEG-OMe showed no affinity. Furthermore, a complex of gold nanoparticles and c-PEG (AuNPs/c-PEG) attracted BSA to form aggregates, and the red color of the AuNPs dispersion evidently disappeared, whereas ones with linear PEG or without PEG did not demonstrate such a phenomenon. The interactions among BSA, AuNPs, and PEG were investigated by changing the incubation time and concentration of the components by using UV-Vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Onyinyechukwu Justina Oziri
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Shin-Ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
199
|
Zhang Q, Zhang Y, Chen H, Zhang L, Li P, Xiao H, Wu W. One-dimensional nanohybrids based on cellulose nanocrystals and their SERS performance. Carbohydr Polym 2022; 284:119140. [DOI: 10.1016/j.carbpol.2022.119140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
|
200
|
|