151
|
Chan V, Neal DM, Uzel SGM, Kim H, Bashir R, Asada HH. Fabrication and characterization of optogenetic, multi-strip cardiac muscles. LAB ON A CHIP 2015; 15:2258-2268. [PMID: 25857537 DOI: 10.1039/c5lc00222b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cardiac tissue engineering aims to recreate functional tissue constructs similar to the structure and function of the native myocardium. To date, in vitro tissue constructs lack the architectural complexity of a vascular network and the precise motor unit control of muscle fibers. Here, we present a method to construct engineered multi-strip cardiac muscle that simulates the bundle-like architecture of the native myocardium. Densely packed primary myocytes and cardiac fibroblasts were co-cultured with optogenetic, non-excitable cells. The resulting 3D syncytium triggered contraction upon localized blue light illumination to selectively activate and pace the multi-strip cardiac muscles, similar to the activity of pacemaker cells. Acting on a single load, we demonstrated graded force production through light-modulated multi-strip recruitment. These results demonstrate an in vitro platform of optogenetic, multi-strip cardiac muscles that can be used in a wide variety of applications, such as drug discovery, tissue engineering, and bio-hybrid robotic systems.
Collapse
Affiliation(s)
- Vincent Chan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 02139.
| | | | | | | | | | | |
Collapse
|
152
|
Neal D, Sakar MS, Bashir R, Chan V, Asada HH. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli. Tissue Eng Part A 2015; 21:1848-58. [PMID: 25714129 DOI: 10.1089/ten.tea.2014.0317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.
Collapse
Affiliation(s)
- Devin Neal
- 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mahmut Selman Sakar
- 2Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Rashid Bashir
- 3Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vincent Chan
- 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Haruhiko Harry Asada
- 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
153
|
Stanton MM, Trichet-Paredes C, Sánchez S. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. LAB ON A CHIP 2015; 15:1634-1637. [PMID: 25632887 DOI: 10.1039/c5lc90019k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.
Collapse
Affiliation(s)
- M M Stanton
- Max-Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
154
|
Abstract
Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades.
Collapse
Affiliation(s)
- Roshan James
- Institute for Regenerative Engineering, University of Connecticut
Health Center, Farmington, Connecticut 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and
Engineering Sciences, University of Connecticut Health Center, Connecticut 06030,
USA
- Department of Orthopaedic Surgery, University of Connecticut Health
Center, Farmington, Connecticut 06030, USA
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut
Health Center, Farmington, Connecticut 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and
Engineering Sciences, University of Connecticut Health Center, Connecticut 06030,
USA
- Department of Orthopaedic Surgery, University of Connecticut Health
Center, Farmington, Connecticut 06030, USA
- Connecticut Institute for Clinical and Translational Science,
Farmington, Connecticut 06030, USA
- Department of Chemical, Materials and Biomolecular Engineering,
University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
155
|
Shimizu K, Araki H, Sakata K, Tonomura W, Hashida M, Konishi S. Microfluidic devices for construction of contractile skeletal muscle microtissues. J Biosci Bioeng 2015; 119:212-6. [DOI: 10.1016/j.jbiosc.2014.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 01/03/2023]
|
156
|
Sasaki M, Karikkineth BC, Nagamine K, Kaji H, Torimitsu K, Nishizawa M. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Adv Healthc Mater 2014; 3:1919-27. [PMID: 24912988 DOI: 10.1002/adhm.201400209] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Hydrogel-based, molecular permeable electronic devices are considered to be promising for electrical stimulation and recording of living tissues, either in vivo or in vitro. This study reports the fabrication of the first hydrogel-based devices that remain highly electrically conductive under substantial stretch and bending. Using a simple technique involving a combination of chemical polymerization and electropolymerization of poly (3,4-ethylenedioxythiophene) (PEDOT), a tight bonding of a conductive composite of PEDOT and polyurethane (PU) to an elastic double-network hydrogel is achieved to make fully organic PEDOT/PU-hydrogel hybrids. Their response to repeated bending, mechanical stretching, hydration-dessication cycles, storage in aqueous condition for up to 6 months, and autoclaving is assessed, demonstrating excellent stability, without any mechanical or electrical damage. The hybrids exhibit a high electrical conductivity of up to 120 S cm(-1) at 100% elongation. The adhesion, proliferation, and differentiation of neural and muscle cells cultured on these hybrids are demonstrated, as well as the fabrication of 3D hybrids, advancing the field of tissue engineering with integrated electronics.
Collapse
Affiliation(s)
- Masato Sasaki
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Bijoy Chandapillai Karikkineth
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Kuniaki Nagamine
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Keiichi Torimitsu
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
- JST-CREST, Sanbancho; Chiyoda-ku Tokyo 102-0075 Japan
| |
Collapse
|
157
|
Carlsen RW, Sitti M. Bio-hybrid cell-based actuators for microsystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3831-51. [PMID: 24895215 DOI: 10.1002/smll.201400384] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Indexed: 05/25/2023]
Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.
Collapse
Affiliation(s)
- Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
158
|
Novak MT, Yuan F, Reichert WM. Macrophage embedded fibrin gels: an in vitro platform for assessing inflammation effects on implantable glucose sensors. Biomaterials 2014; 35:9563-72. [PMID: 25175597 DOI: 10.1016/j.biomaterials.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 11/28/2022]
Abstract
The erroneous and unpredictable behavior of percutaneous glucose sensors just days following implantation has limited their clinical utility for diabetes management. Recent research has implicated the presence of adherent inflammatory cells as the key mitigating factor limiting sensor functionality in this period of days post-implantation. Here we present a novel in vitro platform to mimic the cell-embedded provisional matrix that forms adjacent to the sensor immediately after implantation for the focused investigation of the effects of early stage tissue response on sensor function. This biomimetic surrogate is formed by imbibing fibrin-based gels with physiological densities of inflammatory RAW 264.7 macrophages. When surrounding functional sensors, macrophage-embedded fibrin gels contribute to sensor signal declines that are similar in both shape and magnitude to those observed in previous whole blood and small animal studies. Signal decline in the presence of gels is both metabolically-mediated and sensitive to cell type and activation. Computational modeling of the experimental setup is also presented to validate the design by showing that the cellular glucose uptake parameters necessary to achieve such experimental declines align well with literature values. Together, these data suggest this in vitro provisional matrix surrogate may serve as an effective screening tool for testing the biocompatibility of future glucose sensor designs.
Collapse
Affiliation(s)
- Matthew T Novak
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - William M Reichert
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
159
|
Uzel SGM, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The relatively recent development of microfluidic systems with wide-ranging capabilities for generating realistic 2D or 3D systems with single or multiple cell types has given rise to an extensive collection of platform technologies useful in muscle tissue engineering. These new systems are aimed at (i) gaining fundamental understanding of muscle function, (ii) creating functional muscle constructs in vitro, and (iii) utilizing these constructs a variety of applications. Use of microfluidics to control the various stimuli that promote differentiation of multipotent cells into cardiac or skeletal muscle is first discussed. Next, systems that incorporate muscle cells to produce either 2D sheets or 3D tissues of contractile muscle are described with an emphasis on the more recent 3D platforms. These systems are useful for fundamental studies of muscle biology and can also be incorporated into drug screening assays. Applications are discussed for muscle actuators in the context of microrobotics and in miniaturized biological pumps. Finally, an important area of recent study involves coculture with cell types that either activate muscle or facilitate its function. Limitations of current designs and the potential for improving functionality for a wider range of applications is also discussed, with a look toward using current understanding and capabilities to design systems of greater realism, complexity and functionality.
Collapse
Affiliation(s)
- Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Pavesi
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
160
|
Mertens JP, Sugg KB, Lee JD, Larkin LM. Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 2014; 9:89-100. [PMID: 24351009 DOI: 10.2217/rme.13.81] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Volumetric muscle loss (VML) is a disabling condition in which current clinical procedures are suboptimal. The field of tissue engineering has many promising strategies for the creation of functional skeletal muscle in vitro. However, there are still two key limitations that prevent it from becoming a solution for treating VML. First, engineered muscle tissue must be biocompatible to facilitate muscle tissue regrowth without generating an immune response. Second, engineered muscle constructs must be scaled up to facilitate replacement of clinically relevant volumes of tissue (centimeters in diameter). There are currently no tissue engineering strategies to produce tissue constructs that are both biocompatible and large enough to facilitate clinical repair. However, recent advances in tissue engineering using synthetic scaffolds, native scaffolds, or scaffold-free approaches may lead to a solution for repair of VML injuries.
Collapse
Affiliation(s)
- Jacob P Mertens
- Molecular & Integrative Physiology, University of Michigan, MI, USA
| | | | | | | |
Collapse
|
161
|
Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci U S A 2014; 111:10125-30. [PMID: 24982152 DOI: 10.1073/pnas.1401577111] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design.
Collapse
|
162
|
Cheng CS, Davis BNJ, Madden L, Bursac N, Truskey GA. Physiology and metabolism of tissue-engineered skeletal muscle. Exp Biol Med (Maywood) 2014; 239:1203-14. [PMID: 24912506 DOI: 10.1177/1535370214538589] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle is a major target for tissue engineering, given its relative size in the body, fraction of cardiac output that passes through muscle beds, as well as its key role in energy metabolism and diabetes, and the need for therapies for muscle diseases such as muscular dystrophy and sarcopenia. To date, most studies with tissue-engineered skeletal muscle have utilized murine and rat cell sources. On the other hand, successful engineering of functional human muscle would enable different applications including improved methods for preclinical testing of drugs and therapies. Some of the requirements for engineering functional skeletal muscle include expression of adult forms of muscle proteins, comparable contractile forces to those produced by native muscle, and physiological force-length and force-frequency relations. This review discusses the various strategies and challenges associated with these requirements, specific applications with cultured human myoblasts, and future directions.
Collapse
Affiliation(s)
- Cindy S Cheng
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brittany N J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
163
|
Neal D, Sakar MS, Ong LLS, Harry Asada H. Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. LAB ON A CHIP 2014; 14:1907-1916. [PMID: 24744046 DOI: 10.1039/c4lc00023d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The majority of muscles, nerves, and tendons are composed of fiber-like fascicle morphology. Each fascicle has a) elongated cells highly aligned with the length of the construct, b) a high volumetric cell density, and c) a high length-to-width ratio with a diameter small enough to facilitate perfusion. Fiber-like fascicles are important building blocks for forming tissues of various sizes and cross-sectional shapes, yet no effective technology is currently available for producing long and thin fascicle-like constructs with aligned, high-density cells. Here we present a method for molding cell-laden hydrogels that generate cylindrical tissue structures that are ~100 μm in diameter with an extremely high length to diameter ratio (>100 : 1). Using this method we have successfully created skeletal muscle tissue with a high volumetric density (~50%) and perfect cell alignment along the axis. A new molding technique, sacrificial outer molding, allows us to i) create a long and thin cylindrical cavity of the desired size in a sacrificial mold that is solid at a low temperature, ii) release gelling agents from the sacrificial mold material after the cell-laden hydrogel is injected into fiber cavities, iii) generate a uniform axial tension between anchor points at both ends that promotes cell alignment and maturation, and iv) perfuse the tissue effectively by exposing it to media after melting the sacrificial outer mold at 37 °C. The effects of key parameters and conditions, including initial cavity diameter, axial tension, and concentrations of the hydrogel and gelling agent upon tissue compaction, volumetric cell density, and cell alignment are presented.
Collapse
Affiliation(s)
- Devin Neal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-007, MA 02139, USA.
| | | | | | | |
Collapse
|
164
|
Smith AST, Long CJ, Pirozzi K, Najjar S, McAleer C, Vandenburgh HH, Hickman JJ. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro. J Biotechnol 2014; 185:15-8. [PMID: 24909944 DOI: 10.1016/j.jbiotec.2014.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/24/2022]
Abstract
This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens.
Collapse
Affiliation(s)
- A S T Smith
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - C J Long
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - K Pirozzi
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - S Najjar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - C McAleer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA
| | - J J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
165
|
Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1494-533. [PMID: 24339188 PMCID: PMC4076293 DOI: 10.1002/adma.201304431] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/11/2013] [Indexed: 04/14/2023]
Abstract
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed.
Collapse
Affiliation(s)
- Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA). Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| |
Collapse
|
166
|
Zhao R, Chen CS, Reich DH. Force-driven evolution of mesoscale structure in engineered 3D microtissues and the modulation of tissue stiffening. Biomaterials 2014; 35:5056-64. [PMID: 24630092 DOI: 10.1016/j.biomaterials.2014.02.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
The complex structures of tissues determine their mechanical strength. In engineered tissues formed through self-assembly in a mold, artificially imposed boundary constraints have been found to induce anisotropic clustering of the cells and the extracellular matrix in local regions. To understand how such tissue remodeling at the intermediate length-scale (mesoscale) affects tissue stiffening, we used a novel microtissue mechanical testing system to manipulate the remodeling of the tissue structures and to measure the subsequent changes in tissue stiffness. Microtissues were formed through cell driven self-assembly of collagen matrix in arrays of micro-patterned wells, each containing two flexible micropillars that measured the microtissues' contractile forces and elastic moduli via magnetic actuation. We manipulated tissue remodeling by inducing myofibroblast differentiation with TGF-β1, by varying the micropillar spring constants or by blocking cell contractility with blebbistatin and collagen cross-linking with BAPN. We showed that increased anisotropic compaction of the collagen matrix, caused by increased micropillar spring constant or elevated cell contraction force, contributed to tissue stiffening. Conversely, collagen matrix and tissue stiffness were not affected by inhibition of cell-generated contraction forces. Together, these measurements showed that mesoscale tissue remodeling is an important middle step linking tissue compaction forces and tissue stiffening.
Collapse
Affiliation(s)
- Ruogang Zhao
- Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | - Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, 510 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
167
|
Abstract
For in vitro tissue engineering of skeletal muscle, alignment and fusion of the cultured skeletal muscle cells are required. Although the successful alignment of skeletal muscle cells cultured in collagen gel has been reported using a mechanical force, other means of aligning cultured skeletal muscle cells have not been described. However, skeletal muscle cells cultured in a two-dimensional dish have been reported to align in a uniform direction when electrically stimulated. The purpose of this study is to determine if skeletal muscle cells cultured three-dimensionally in collagen gels can be aligned by an electrical load. By adding direct current to cells of the C2C12 skeletal muscle cell line cultured in collagen gel, it was possible to align C2C12 cells in a similar direction. However, the ratio of alignment was better when mechanical force was used as the means of alignment. Thus for tissue engineering of skeletal muscle cells, electrical stimulation may be useful as a supplementary method.
Collapse
|
168
|
Chan V, Asada HH, Bashir R. Utilization and control of bioactuators across multiple length scales. LAB ON A CHIP 2014; 14:653-670. [PMID: 24345906 DOI: 10.1039/c3lc50989c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this review, we summarize the recent developments in the emerging field of bioactuators across a multitude of length scales. First, we discuss the use and control of biomolecules as nanoscale actuators. Molecular motors, such as DNA, kinesin, myosin, and F1-ATPase, have been shown to exert forces in the range between 1 pN to 45 pN. Second, we discuss the use and control of single and small clusters of cells to power microscale devices. Microorganisms, such as flagellated bacteria, protozoa, and algae, can naturally swim at speeds between 20 μm s(-1) to 2 mm s(-1) and produce thrust forces between 0.3 pN to 200 pN. Individual and clustered mammalian cells, such as cardiac and skeletal cells, can produce even higher contractile forces between 80 nN to 3.5 μN. Finally, we discuss the use and control of 2D- and 3D-assembled muscle tissues and muscle tissue explants as bioactuators to power devices. Depending on the size, composition, and organization of these hierarchical tissue constructs, contractile forces have been demonstrated to produce between 25 μN to 1.18 mN.
Collapse
Affiliation(s)
- Vincent Chan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
169
|
Abstract
There is significant interest within the tissue engineering and pharmaceutical industries to create 3D microphysiological systems of human organ function. The interest stems from a growing concern that animal models and simple 2D culture systems cannot replicate essential features of human physiology that are critical to predict drug response, or simply to develop new therapeutic strategies to repair or replace damaged organs. Central to human organ function is a microcirculation that not only enhances the rate of nutrient and waste transport by convection, but also provides essential additional physiological functions that can be specific to each organ. This review highlights progress in the creation of in vitro functional microvessel networks, and emphasizes organ-specific functional and structural characteristics that should be considered in the future mimicry of four organ systems that are of primary interest: lung, brain, liver, and muscle (skeletal and cardiac).
Collapse
|
170
|
ADAMS DANYSPENCER, LEMIRE JOANM, KRAMER RICHARDH, LEVIN MICHAEL. Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:851-61. [PMID: 25896279 PMCID: PMC10468825 DOI: 10.1387/ijdb.140207ml] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Developmental bioelectricity, electrical signaling among non-excitable cells, is now known to regulate proliferation, apoptosis, gene expression, and patterning during development. The extraordinary temporal and spatial resolution offered by optogenetics could revolutionize the study of bioelectricity the same way it has revolutionized neuroscience. There is, however, no guide to adapting optogenetics to patterning systems. To fill this gap, we used optogenetic reagents, both proteins and photochemical switches, to vary steady-state bioelectrical properties of non-spiking embryonic cells in Xenopus laevis. We injected mRNA for various proteins, including Channelrhodopsins and Archaerhodopsin, into 1-8 cell embryos, or soaked embryos in media containing photochemical switches, then examined the effect of light and dark on membrane voltage (Vmem) using both electrodes and fluorescent membrane voltage reporters. We also scored tadpoles for known effects of varying Vmem, including left-right asymmetry disruption, hyperpigmentation, and craniofacial phenotypes. The majority of reagents we tested caused a significant increase in the percentage of light-exposed tadpoles showing relevant phenotypes; however, the majority of reagents also induced phenotypes in controls kept in the dark. Experiments on this "dark phenotype" yielded evidence that the direction of ion flux via common optogenetic reagents may be reversed, or unpredictable in non-neural cells. When used in combination with rigorous controls, optogenetics can be a powerful tool for investigating ion-flux based signaling in non-excitable systems. Nonetheless, it is crucial that new reagents be designed with these non-neural cell types in mind.
Collapse
Affiliation(s)
- DANY SPENCER ADAMS
- Dept of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - JOAN M. LEMIRE
- Dept of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - RICHARD H. KRAMER
- Dept of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - MICHAEL LEVIN
- Dept of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
171
|
Ramade A, Legant WR, Picart C, Chen CS, Boudou T. Microfabrication of a Platform to Measure and Manipulate the Mechanics of Engineered Microtissues. Methods Cell Biol 2014; 121:191-211. [DOI: 10.1016/b978-0-12-800281-0.00013-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
172
|
Ong LLS, Dauwels J, Ang MH, Asada HH. A Bayesian filtering approach to incorporate 2D/3D time-lapse confocal images for tracking angiogenic sprouting cells interacting with the gel matrix. Med Image Anal 2014; 18:211-27. [DOI: 10.1016/j.media.2013.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 09/29/2013] [Accepted: 10/15/2013] [Indexed: 11/16/2022]
|
173
|
Lee EJ, Tabor JJ, Mikos AG. Leveraging synthetic biology for tissue engineering applications. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
174
|
Nagamine K, Okamoto K, Otani S, Kaji H, Kanzaki M, Nishizawa M. Hydrogel-based bioassay sheets for in vitro evaluation of contraction-dependent metabolic regulation in skeletal muscle cells. Biomater Sci 2014; 2:252-256. [DOI: 10.1039/c3bm60179j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
175
|
Akiyama Y, Sakuma T, Funakoshi K, Hoshino T, Iwabuchi K, Morishima K. Atmospheric-operable bioactuator powered by insect muscle packaged with medium. LAB ON A CHIP 2013; 13:4870-4880. [PMID: 24185263 DOI: 10.1039/c3lc50490e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite attempts in a number of studies to utilize muscle tissue and cells as microactuators, all of the biohybrid microdevices have been operable only in the culture medium and none have worked in air due to the dry environment. This paper demonstrates an atmospheric-operable bioactuator (AOB) fabricated by packaging an insect dorsal vessel (DV) tissue with a small amount of culture medium inside a capsule. The AOB, consisting of microtweezers and the capsule, was designed based on a structural simulation that took into account the capillary effect. The base part of the microtweezers was deformed by spontaneous contractions of the DV tissue in the medium inside the capsule, by which the front edges of the microtweezer arms projecting above the medium surface were also deformed. First, we confirmed in the medium that the DV tissue was able to reduce the gap between the arm tips of the microtweezers. After taking the AOB out of the medium, as we expected, the AOB continued to work in air at room temperature. The gap reduction in air became larger than the one in the medium due to a surface tension effect, which was consistent with the simulation findings on the surface tension by the phase-field method. Second, we demonstrated that the AOB deformed a thin-wall ring placed between its tips in air. Third, we measured the lifetime of the AOB. The AOB kept working for around 40 minutes in air, but eventually stopped due to medium evaporation. As the evaporation progressed, the microtweezers were pressed onto the capsule wall by the surface tension and opening and closing stopped. Finally, we attempted to prevent the medium from evaporating by pouring liquid paraffin (l-paraffin) over the medium after lipophilic coating of the capsule. As a result, we succeeded in prolonging the AOB lifetime to more than five days. In this study, we demonstrated the significant potential of insect muscle tissue and cells as a bioactuator in air and at room temperature. By integrating insect tissue and cells not only into a microspace but also onto a substrate, we expect to realize a biohybrid MEMS device with various functions in the near future.
Collapse
Affiliation(s)
- Yoshitake Akiyama
- Department of Mechanical Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
176
|
Duffy RM, Feinberg AW. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:178-95. [PMID: 24319010 DOI: 10.1002/wnan.1254] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs.
Collapse
Affiliation(s)
- Rebecca M Duffy
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | |
Collapse
|
177
|
Snyman C, Goetsch KP, Myburgh KH, Niesler CU. Simple silicone chamber system for in vitro three-dimensional skeletal muscle tissue formation. Front Physiol 2013; 4:349. [PMID: 24348426 PMCID: PMC3842895 DOI: 10.3389/fphys.2013.00349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/12/2013] [Indexed: 12/29/2022] Open
Abstract
Bioengineering skeletal muscle often requires customized equipment and intricate casting techniques. One of the major hurdles when initially trying to establish in vitro tissue engineered muscle constructs is the lack of consistency across published methodology. Although this diversity allows for specialization according to specific research goals, lack of standardization hampers comparative efforts. Differences in cell type, number and density, variability in matrix and scaffold usage as well as inconsistency in the distance between and type of adhesion posts complicates initial establishment of the technique with confidence. We describe an inexpensive, but readily adaptable silicone chamber system for the generation of skeletal muscle constructs that can readily be standardized and used to elucidate myoblast behavior in a three-dimensional space. Muscle generation, regeneration and adaptation can also be investigated in this model, which is more advanced than differentiated myotubes.
Collapse
Affiliation(s)
- Celia Snyman
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, South Africa
| | - Kyle P Goetsch
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, South Africa
| | - Kathryn H Myburgh
- Department of Physiological Sciences, University of Stellenbosch Stellenbosch, South Africa
| | - Carola U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, South Africa
| |
Collapse
|
178
|
Neal D, Asada HH. Engineered muscle systems having individually addressable distributed muscle actuators controlled by optical stimuli. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:326-9. [PMID: 24109690 DOI: 10.1109/embc.2013.6609503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A multi degree-of-freedom system using live skeletal muscles as actuators is presented. Millimeter-scale, optically excitable 3D skeletal muscle strips are created by culturing genetically coded precursory muscle cells that are activated with light: optogenetics. These muscle bio-actuators are networked together to create a distributed actuator system. Unlike traditional mechanical systems where fixed axis joints are rotated with electric motors, the new networked muscle bio-actuators can activate loads having no fixed joint. These types of loads include shoulders, the mouth, and the jaw. The optogenetic approach offers high spatiotemporal resolution for precise control of muscle activation, and opens up the possibility to activate hundreds of interconnected muscles in a spatiotemporally coordinated manner. In this work, we explore the design of robotic systems composed of multiple light-activated live muscular actuator units. We describe and compare massively parallel and highly serial/networked distributions of these building-block actuator units. We have built functional fundamental prototypes and present experimental results to demonstrate the feasibility of the construction of larger scale muscle systems.
Collapse
|
179
|
Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 2013; 34:9413-9. [PMID: 24041425 DOI: 10.1016/j.biomaterials.2013.08.062] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
This paper describes a fabrication method of muscle tissue constructs driven by neurotransmitters released from activated motor neurons. The constructs consist of three-dimensional (3D) free-standing skeletal muscle fibers co-cultured with motor neurons. We differentiated mouse neural stem cells (mNSCs) cultured on the skeletal muscle fibers into neurons that extend their processes into the muscle fibers. We found that acetylcholine receptors (AChRs) were formed at the connection between the muscle fibers and the neurons. The neuron-muscle constructs consist of highly aligned, long and matured muscle fibers that facilitate wide contractions of muscle fibers in a single direction. The contractions of the neuron-muscle construct were observed after glutamic acid activation of the neurons. The contraction was stopped by treatment with curare, an neuromuscular junction (NMJ) antagonist. These results indicate that our method succeeded in the formation of NMJs in the neuron-muscle constructs. The neuron-muscle construct system can potentially be used in pharmacokinetic assays related to NMJ disease therapies and in soft-robotic actuators.
Collapse
Affiliation(s)
- Yuya Morimoto
- Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | | | |
Collapse
|
180
|
Kamm RD, Bashir R. Creating living cellular machines. Ann Biomed Eng 2013; 42:445-59. [PMID: 24006130 DOI: 10.1007/s10439-013-0902-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
Development of increasingly complex integrated cellular systems will be a major challenge for the next decade and beyond, as we apply the knowledge gained from the sub-disciplines of regenerative medicine, synthetic biology, micro-fabrication and nanotechnology, systems biology, and developmental biology. In this prospective, we describe the current state-of-the-art in the assembly of source cells, derived from pluripotent cells, into populations of a single cell type to produce the components or building blocks of higher order systems and finally, combining multiple cell types, possibly in combination with scaffolds possessing specific physical or chemical properties, to produce higher level functionality. We also introduce the issue, questions and ample research opportunities to be explored by others in the field. As these "living machines" increase in capabilities, exhibit emergent behavior and potentially reveal the ability for self-assembly, self-repair, and even self-replication, questions arise regarding the ethical implications of this work. Future prospects as well as ways of addressing these complex ethical questions will be discussed.
Collapse
Affiliation(s)
- Roger D Kamm
- Massachusetts Institute of Technology, Cambridge, MA, USA,
| | | |
Collapse
|
181
|
Sun Y, Duffy R, Lee A, Feinberg AW. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater 2013; 9:7885-94. [PMID: 23632372 DOI: 10.1016/j.actbio.2013.04.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 11/16/2022]
Abstract
An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force-frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure-function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.
Collapse
Affiliation(s)
- Y Sun
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
182
|
Kural MH, Billiar KL. Regulating tension in three-dimensional culture environments. Exp Cell Res 2013; 319:2447-59. [PMID: 23850829 DOI: 10.1016/j.yexcr.2013.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/13/2023]
Abstract
The processes of development, repair, and remodeling of virtually all tissues and organs, are dependent upon mechanical signals including external loading, cell-generated tension, and tissue stiffness. Over the past few decades, much has been learned about mechanotransduction pathways in specialized two-dimensional culture systems; however, it has also become clear that cells behave very differently in two- and three-dimensional (3D) environments. Three-dimensional in vitro models bring the ability to simulate the in vivo matrix environment and the complexity of cell-matrix interactions together. In this review, we describe the role of tension in regulating cell behavior in three-dimensional collagen and fibrin matrices with a focus on the effective use of global boundary conditions to modulate the tension generated by populations of cells acting in concert. The ability to control and measure the tension in these 3D culture systems has the potential to increase our understanding of mechanobiology and facilitate development of new ways to treat diseased tissues and to direct cell fate in regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mehmet Hamdi Kural
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | |
Collapse
|
183
|
Polacheck WJ, Li R, Uzel SGM, Kamm RD. Microfluidic platforms for mechanobiology. LAB ON A CHIP 2013; 13:2252-67. [PMID: 23649165 PMCID: PMC3714214 DOI: 10.1039/c3lc41393d] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mechanotransduction has been a topic of considerable interest since early studies demonstrated a link between mechanical force and biological response. Until recently, studies of fundamental phenomena were based either on in vivo experiments with limited control or direct access, or on large-scale in vitro studies lacking many of the potentially important physiological factors. With the advent of microfluidics, many of the previous limitations of in vitro testing were eliminated or reduced through greater control or combined functionalities. At the same time, imaging capabilities were tremendously enhanced. In this review, we discuss how microfluidics has transformed the study of mechanotransduction. This is done in the context of the various cell types that exhibit force-induced responses and the new biological insights that have been elucidated. We also discuss new microfluidic studies that could produce even more realistic models of in vivo conditions by combining multiple stimuli or creating a more realistic microenvironment.
Collapse
Affiliation(s)
- William J. Polacheck
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ran Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sebastien G. M. Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
184
|
Chan V, Raman R, Cvetkovic C, Bashir R. Enabling microscale and nanoscale approaches for bioengineered cardiac tissue. ACS NANO 2013; 7:1830-7. [PMID: 23527748 DOI: 10.1021/nn401098c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this issue of ACS Nano, Shin et al. present their finding that the addition of carbon nanotubes (CNT) in gelatin methacrylate (GelMA) results in improved functionality of bioengineered cardiac tissue. These CNT-GelMA hybrid materials demonstrate cardiac tissue with enhanced electrophysiological performance; improved mechanical integrity; better cell adhesion, viability, uniformity, and organization; increased beating rate and lowered excitation threshold; and protective effects against cardio-inhibitory and cardio-toxic drugs. In this Perspective, we outline recent progress in cardiac tissue engineering and prospects for future development. Bioengineered cardiac tissues can be used to build "heart-on-a-chip" devices for drug safety and efficacy testing, fabricate bioactuators for biointegrated robotics and reverse-engineered life forms, treat abnormal cardiac rhythms, and perhaps one day cure heart disease with tissue and organ transplants.
Collapse
Affiliation(s)
- Vincent Chan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
185
|
Development of miniaturized walking biological machines. Sci Rep 2012; 2:857. [PMID: 23155480 PMCID: PMC3498929 DOI: 10.1038/srep00857] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/24/2012] [Indexed: 01/15/2023] Open
Abstract
The quest to 'forward-engineer' and fabricate biological machines remains a grand challenge. Towards this end, we have fabricated locomotive "bio-bots" from hydrogels and cardiomyocytes using a 3D printer. The multi-material bio-bot consisted of a 'biological bimorph' cantilever structure as the actuator to power the bio-bot, and a base structure to define the asymmetric shape for locomotion. The cantilever structure was seeded with a sheet of contractile cardiomyocytes. We evaluated the locomotive mechanisms of several designs of bio-bots by changing the cantilever thickness. The bio-bot that demonstrated the most efficient mechanism of locomotion maximized the use of contractile forces for overcoming friction of the supporting leg, while preventing backward movement of the actuating leg upon relaxation. The maximum recorded velocity of the bio-bot was ~236 µm s(-1), with an average displacement per power stroke of ~354 µm and average beating frequency of ~1.5 Hz.
Collapse
|