151
|
Su Y, Zhang X, Li H, Peng D, Zhang Y. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
152
|
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203899. [PMID: 36285802 PMCID: PMC9798988 DOI: 10.1002/advs.202203899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Indexed: 06/04/2023]
Abstract
Addressing climate change challenges by reducing greenhouse gas levels requires innovative adsorbent materials for clean energy applications. Recent progress in machine learning has stimulated technological breakthroughs in the discovery, design, and deployment of materials with potential for high-performance and low-cost clean energy applications. This review summarizes basic machine learning methods-data collection, featurization, model generation, and model evaluation-and reviews their use in the development of robust adsorbent materials. Key case studies are provided where these methods are used to accelerate adsorbent materials design and discovery, optimize synthesis conditions, and understand complex feature-property relationships. The review provides a concise resource for researchers wishing to use machine learning methods to rapidly develop effective adsorbent materials with a positive impact on the environment.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - Tu C. Le
- School of EngineeringSTEM CollegeRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Dehong Chen
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - David A. Winkler
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- School of Biochemistry and ChemistryLa Trobe UniversityKingsbury DriveBundoora3042Australia
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Rachel A. Caruso
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| |
Collapse
|
153
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
154
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
155
|
Yin Y, Wu L, Chen C, Zheng B, Xiong WW. A facile strategy for engineering heterostructures of Pd nanoparticle-loaded metal-organic framework nanosheets as active hydrogenation catalysts. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
156
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
157
|
Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks. Nat Commun 2022; 13:7240. [PMID: 36433971 PMCID: PMC9700716 DOI: 10.1038/s41467-022-34820-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interests for (opto)-electronics and spintronics. They generally consist of van der Waals stacked layers and exhibit layer-depended electronic properties. While considerable efforts have been made to regulate the charge transport within a layer, precise control of electronic coupling between layers has not yet been achieved. Herein, we report a strategy to precisely tune interlayer charge transport in 2D c-MOFs via side-chain induced control of the layer spacing. We design hexaiminotriindole ligands allowing programmed functionalization with tailored alkyl chains (HATI_CX, X = 1,3,4; X refers to the carbon numbers of the alkyl chains) for the synthesis of semiconducting Ni3(HATI_CX)2. The layer spacing of these MOFs can be precisely varied from 3.40 to 3.70 Å, leading to widened band gap, suppressed carrier mobilities, and significant improvement of the Seebeck coefficient. With this demonstration, we further achieve a record-high thermoelectric power factor of 68 ± 3 nW m-1 K-2 in Ni3(HATI_C3)2, superior to the reported holes-dominated MOFs.
Collapse
|
158
|
Zeng X, Xiao C, Liao L, Tu Z, Lai Z, Xiong K, Wen Y. Two-Dimensional (2D) TM-Tetrahydroxyquinone Metal-Organic Framework for Selective CO 2 Electrocatalysis: A DFT Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4049. [PMID: 36432332 PMCID: PMC9696692 DOI: 10.3390/nano12224049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The resource utilization of CO2 is one of the essential avenues to realize the goal of "double carbon". The metal-organic framework (MOF) has shown promising applications in CO2 catalytic reduction reactions due to its sufficient pore structure, abundant active sites and functionalizability. In this paper, we investigated the electrocatalytic carbon dioxide reduction reactions of single-atom catalysts created by MOF two-dimensional coordination network materials constructed from transition metal-tetrahydroxybenzoquinone using density function theory calculations. The results indicate that for 10 transition metals, TM-THQ single levels ranging from Sc to Zn, the metal atom binding energy to the THQ is large enough to allow the metal atoms to be stably dispersed in the THQ monolayer. The Ni-THQ catalyst does not compete with the HER reaction in an electrocatalytic CO2 reduction. The primary product of reduction for Sc-THQ is HCOOH, but the major product of Co-THQ is HCHO. The main product of Cu-THQ is CO, while the main product of six catalysts, Ti, V, Cr, Mn, Fe, and Zn, is CH4. The limit potential and overpotential of Ti-THQ are the highest, 1.043 V and 1.212 V, respectively. The overpotentials of the other monolayer catalysts ranged from 0.172 to 0.952 V, and they were all relatively low. Therefore, we forecast that the TM-HQ monolayer will show powerful activity in electrocatalytic carbon dioxide reduction, making it a prospective electrocatalyst for carbon dioxide reduction.
Collapse
Affiliation(s)
- Xianshi Zeng
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China
- Institute for Advanced Study, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Chuncai Xiao
- School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China
| | - Luliang Liao
- Institute for Advanced Study, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
- School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China
| | - Zongxing Tu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhangli Lai
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China
| | - Kai Xiong
- Materials Genome Institute, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
- Advanced Computing Center, Information Technology Center, Yunnan University, Kunming 650091, China
| | - Yufeng Wen
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
159
|
Gu H, Shi G, Zhong L, Liu L, Zhang H, Yang C, Yu K, Zhu C, Li J, Zhang S, Chen C, Han Y, Li S, Zhang L. A Two-Dimensional van der Waals Heterostructure with Isolated Electron-Deficient Cobalt Sites toward High-Efficiency CO 2 Electroreduction. J Am Chem Soc 2022; 144:21502-21511. [DOI: 10.1021/jacs.2c07601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huoliang Gu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Guoshuai Shi
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Honghao Zhang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Chunlei Yang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Ke Yu
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Chenyuan Zhu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Liming Zhang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| |
Collapse
|
160
|
Fan WK, Sherryna A, Tahir M. Advances in Titanium Carbide (Ti 3C 2T x ) MXenes and Their Metal-Organic Framework (MOF)-Based Nanotextures for Solar Energy Applications: A Review. ACS OMEGA 2022; 7:38158-38192. [PMID: 36340125 PMCID: PMC9631731 DOI: 10.1021/acsomega.2c05030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Introducing new materials with low cost and superior solar harvesting efficiency requires urgent attention to solve energy and environmental challenges. Titanium carbide (Ti3C2T x ) MXene, a 2D layered material, is a promising solution to solve the issues of existing materials due to their promising conductivity with low cost to function as a cocatalyst/support. On the other hand, metal-organic frameworks (MOFs) are emerging materials due to their high surface area and semiconducting characteristics. Therefore, coupling them would be promising to form composites with higher solar harvesting efficiency. Thus, the main objective of this work to disclose recent development in Ti3C2T x -based MOF nanocomposites for energy conversion applications to produce renewable fuels. MOFs can generate photoinduced electron/hole pairs, followed by transfer of electrons to MXenes through Schottky junctions for photoredox reactions. Currently, the principles, fundamentals, and mechanism of photocatalytic systems with construction of Schottky junctions are critically discussed. Then the basics of MOFs are discussed thoroughly in terms of their physical properties, morphologies, optical properties, and derivatives. The synthesis of Ti3C2T x MXenes and their composites with the formation of surface functionals is systematically illustrated. Next, critical discussions are conducted on design considerations and strategies to engineer the morphology of Ti3C2T x MXenes and MOFs. The interfacial/heterojunction modification strategies of Ti3C2T x MXenes and MOFs are then deeply discussed to understand the roles of both materials. Following that, the applications of MXene-mediated MOF nanotextures in view of CO2 reduction and water splitting for solar fuel production are critically analyzed. Finally, the challenges and a perspective toward the future research of MXene-based MOF composites are disclosed.
Collapse
Affiliation(s)
- Wei Keen Fan
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Areen Sherryna
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical
and Petroleum Engineering Department, UAE
University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
161
|
Sun Y, Geng C, Zhang Z, Qiao Z, Zhong C. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
162
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
163
|
Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
164
|
Qiao D, Chen Y, Tan H, Zhou R, Feng J. De novo design of transmembrane nanopores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
165
|
Li X, Li X, Wang B. H 2O 2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: Metal dependence of boosting reactive oxygen species generation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129757. [PMID: 35988492 DOI: 10.1016/j.jhazmat.2022.129757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The existence of organic micropollutants (OPMs) in water poses a considerable threat to the environment. A centralized approach towards pollutants abatement has dominated over the recent decades wherein heterogeneous Fenton-like based advanced oxidation processes can be a promising technology. The application of engineered nanomaterials offers more opportunities to enhance their catalyst properties. This study synthesizes a series of ultrathin two-dimensional (2D) Metal-organic frameworks (MOFs) nanosheets with tunable metal clusters. The formation of reactive oxygen species (•OH and 1O2) can be significantly boosted via transferring the adsorbed H2O2 onto the solid-liquid interface by systematically tuning the metal species. The Co-MOF nanosheets exhibited an ultrafast degradation kinetic for BPA with a rate of 2.23 min-1 (4.98 times higher than that of the bulk MOF) and TOF (turnover frequency) value of 9.99 min-1, which are observably greater than that of the existing materials reported to date. Density functional theory simulation and experimental results unravel the mechanism for ROS formation, which is strongly metal-depend. We further loaded the powder onto a flow-through poly (vinylidene fluoride) (PVDF) microfiltration membrane and observed that the representative OPMs could be rapidly degraded, indicating promising properties for practical application.
Collapse
Affiliation(s)
- Xuheng Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China.
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| |
Collapse
|
166
|
Ultrathin Covalent Organic Framework Nanosheets/Ti 3C 2T x-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196732. [PMID: 36235265 PMCID: PMC9572316 DOI: 10.3390/molecules27196732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
Designable and ultrathin covalent organic framework nanosheets (CONs) with good photoelectric activity are promising candidates for the construction of photoelectrochemical (PEC) biosensors for the detection of low-abundance biological substrates. However, achieving highly sensitive PEC properties by using emerging covalent organic framework nanosheets (CONs) remains a great challenge due to the polymeric nature and poor photoelectric activity of CONs. Herein, we report for the first time the preparation of novel composites and their PEC sensing properties by electrostatic self-assembly of ultrathin CONs (called TTPA-CONs) with Ti3C2Tx. The prepared TTPA-CONs/Ti3C2Tx composites can be used as photocathodes for PEC detection of prostate-specific antigen (PSA) with high sensitivity, low detection limit, and good stability. This work not only expands the application of CONs but also opens new avenues for the development of efficient PEC sensing platforms.
Collapse
|
167
|
Fabrication of nanocomposite membrane based on post-synthetic modification of two-dimensional metal-organic framework nanosheet. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
168
|
Makiura R. Creation of metal–organic framework nanosheets by the Langmuir-Blodgett technique. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
169
|
Solvent-exfoliated Cu-TCPP nanosheets: Electrochemistry and sensing application in simultaneous determination of 4-aminophenol and acetaminophen. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
170
|
Zhao T, Wu H, Wen X, Zhang J, Tang H, Deng Y, Liao S, Tian X. Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
171
|
Xu Y, Liu SY, Zeng L, Ma H, Zhang Y, Yang H, Liu Y, Fang S, Zhao J, Xu Y, Ashby CR, He Y, Dai Z, Pan Y. An Enzyme-Engineered Nonporous Copper(I) Coordination Polymer Nanoplatform for Cuproptosis-Based Synergistic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204733. [PMID: 36054475 DOI: 10.1002/adma.202204733] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Cuproptosis, a newly identified form of regulated cell death that is copper-dependent, offers great opportunities for exploring the use of copper-based nanomaterials inducing cuproptosis for cancer treatment. Here, a glucose oxidase (GOx)-engineered nonporous copper(I) 1,2,4-triazolate ([Cu(tz)]) coordination polymer (CP) nanoplatform, denoted as GOx@[Cu(tz)], for starvation-augmented cuproptosis and photodynamic synergistic therapy is developed. Importantly, the catalytic activity of GOx is shielded in the nonporous scaffold but can be "turned on" for efficient glucose depletion only upon glutathione (GSH) stimulation in cancer cells, thereby proceeding cancer starvation therapy. The depletion of glucose and GSH sensitizes cancer cells to the GOx@[Cu(tz)]-mediated cuproptosis, producing aggregation of lipoylated mitochondrial proteins, the target of copper-induced toxicity. The increased intracellular hydrogen peroxide (H2 O2 ) levels, due to the oxidation of glucose, activates the type I photodynamic therapy (PDT) efficacy of GOx@[Cu(tz)]. The in vivo experimental results indicate that GOx@[Cu(tz)] produces negligible systemic toxicity and inhibits tumor growth by 92.4% in athymic mice bearing 5637 bladder tumors. This is thought to be the first report of a cupreous nanomaterial capable of inducing cuproptosis and cuproptosis-based synergistic therapy in bladder cancer, which should invigorate studies pursuing rational design of efficacious cancer therapy strategies based on cuproptosis.
Collapse
Affiliation(s)
- Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuo Fang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jing Zhao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yunsheng Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zong Dai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
172
|
Zeng L, Huang L, Han G. Dye Doped Metal-Organic Frameworks for Enhanced Phototherapy. Adv Drug Deliv Rev 2022; 189:114479. [PMID: 35932906 DOI: 10.1016/j.addr.2022.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Phototherapy is a noninvasive cancer treatment that relies on the interaction between light and photoactive agents. These photoactive agents are typically organic dyes, but their hydrophobic nature and self-aggregation tendency in biological media greatly restricts the development of highly effective phototherapeutic systems. In the past decade, functional dye-doped metal-organic framework (MOF)-based phototherapy has attracted enormous interest because organic dyes can be encapsulated and isolated within the MOF structure to show superior treatment efficacy. In addition to incorporating the reported phototherapeutic dyes into MOF as the ligand or the guest in the pores, the construction of an MOF-based phototherapy agent can also be extended to these dye units that are previously inactive for phototherapy. Thus, this review focuses on the emerging development of phototherapeutic MOFs that exhibited better performance than the involving dye units due to the controlled dye aggregation within the MOF. The related mechanisms and some emerging future directions of dye-doped MOF-based phototherapy are also discussed and summarized.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
173
|
Tailored design of MXene-like 2D MOF derived carbon/Fe3O4 Fenton-like catalysts towards effective removal of contaminants via size-exclusion effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
174
|
Guo B, Xu R, Liang J, Zou L, Terfort A, Tian Z, Liu P, Wang T, Liu J. Dialytic Synthesis of Two-Dimensional Cu-Based Metal-Organic Frameworks for Gas Separation: Designable MOF-Polymer Interface. Inorg Chem 2022; 61:16197-16202. [PMID: 36168991 DOI: 10.1021/acs.inorgchem.2c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate a dialytic strategy for the synthesis of congeneric two-dimensional metal-organic framework (2D MOF) nanosheets with a dialysis membrane using 1,4-benzenedicarboxylic acid (BDC), 1,4-naphthalenedicarboxylic acid (NDC), and 9,10-anthracenedicarboxylic acid (ADC) as organic linkers and copper(II) as a metal precursor, respectively. Polyimide (PI) membranes containing these empty 2D MOF nanosheets exhibit distinct molecular sieve effects. Molecular dynamic simulation results reveal that the structures of MOF-polymer interfaces are designable by modifying the MOF interlayer distance and aperture size, which has significant influences on gas permeability and selectivity. As a result, Cu-NDC/PI with the moderate composite interface structure shows superior performance toward H2/CH4 and CO2/CH4 separations with a selectivity of 199 and 63 over Cu-BDC (121 and 53) and Cu-ADC (135 and 54), respectively.
Collapse
Affiliation(s)
- Biao Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Jing Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Lie Zou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Andreas Terfort
- Institute of Inorganic and Analytical Chemistry, University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| | - Pingying Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, 333403 Jingdezhen, China
| | - Tonghua Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Jinxuan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
175
|
Dai F, Cui X, Luo Y, Zhang D, Li N, Huang Y, Peng Y. Ultrathin MOF nanosheet-based resistive sensors for highly sensitive detection of methanol. Chem Commun (Camb) 2022; 58:11543-11546. [PMID: 36155602 DOI: 10.1039/d2cc04230d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensors with high-sensitivity for resistive methanol gas detection are highly desirable. Herein, we report newly designed ultrathin anionic metal-organic framework (MOF) nanosheets (NSs), with an average thickness of 10 nm and an electrical conductivity of 3.77 × 10-4 S cm-1. The ultrathin MOF NSs can be used as the active material in an electronic methanol gas sensor, which exhibits high sensitivity toward methanol gas at room temperature, i.e., high Rair/Rgas (363.2 at 100 ppm), fast gas response/recovery speed (6 s/2 s at 20 ppm), long-term stability, and superior cross-selectivity against other interfering gases.
Collapse
Affiliation(s)
- Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong 266580, China
| | - Xiaoya Cui
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuwei Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong 266580, China
| | - Dongzhi Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong 266580, China
| | - Nanjun Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
176
|
Lu Y, Zhong H, Li J, Dominic AM, Hu Y, Gao Z, Jiao Y, Wu M, Qi H, Huang C, Wayment LJ, Kaiser U, Spiecker E, Weidinger IM, Zhang W, Feng X, Dong R. sp-Carbon Incorporated Conductive Metal-Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation. Angew Chem Int Ed Engl 2022; 61:e202208163. [PMID: 35903982 PMCID: PMC9804563 DOI: 10.1002/anie.202208163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3 HHAE2 . This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3 HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 μA cm-2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.
Collapse
Affiliation(s)
- Yang Lu
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Jian Li
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 5610044StockholmSweden
| | - Anna Maria Dominic
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Yiming Hu
- Department of ChemistryUniversity of Colorado BoulderBoulderCO 80309USA
| | - Zhen Gao
- College of PhysicsHebei Key Laboratory of Photophysics Research and ApplicationHebei Normal UniversityShijiazhuang050024China
| | - Yalong Jiao
- College of PhysicsHebei Key Laboratory of Photophysics Research and ApplicationHebei Normal UniversityShijiazhuang050024China
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Department of Materials Science and EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergCauerstrasse 391058ErlangenGermany
| | - Haoyuan Qi
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Central Facility of Materials Science Electron MicroscopyUniversität Ulm89081UlmGermany
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Lacey J. Wayment
- Department of ChemistryUniversity of Colorado BoulderBoulderCO 80309USA
| | - Ute Kaiser
- Central Facility of Materials Science Electron MicroscopyUniversität Ulm89081UlmGermany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Department of Materials Science and EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergCauerstrasse 391058ErlangenGermany
| | - Inez M. Weidinger
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Wei Zhang
- Department of ChemistryUniversity of Colorado BoulderBoulderCO 80309USA
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute for Microstructure Physics06120Halle (Saale)Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| |
Collapse
|
177
|
Yu B, Meng T, Ding X, Liu X, Wang H, Chen B, Zheng T, Li W, Zeng Q, Jiang J. Hydrogen‐Bonded Organic Framework Ultrathin Nanosheets for Efficient Visible‐Light Photocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202211482. [DOI: 10.1002/anie.202211482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Ting Meng
- CAS Key laboratory of standardization and Measurement for Nanotechnology CAS Center for Excellence in nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Wen Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Qingdao Zeng
- CAS Key laboratory of standardization and Measurement for Nanotechnology CAS Center for Excellence in nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
178
|
Yu B, Meng T, Ding X, Liu X, Wang H, Chen B, Zheng T, Li W, Zeng Q, Jiang J. Hydrogen‐Bonded Organic Framework Ultrathin Nanosheets for Efficient Visible Light Photocatalytic CO2 Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Baoqiu Yu
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Ting Meng
- NCNST: National Center for Nanoscience and Technology NCNST Beijing CHINA
| | - Xu Ding
- University of Science and Technology Beijing Chemistry Beijing CHINA
| | - Xiaolin Liu
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Hailong Wang
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Baotong Chen
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Tianyu Zheng
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Wen Li
- University of Science and Technology Beijing Chemistry 100083 Beijing CHINA
| | - Qingdao Zeng
- NCNST: National Center for Nanoscience and Technology NCNST Beijing CHINA
| | - Jianzhuang Jiang
- University of Science and Technology Beijing Chemistry Xueyuan Road 30 100083 Beijing CHINA
| |
Collapse
|
179
|
Chang H, Zhou Y, Zheng X, Liu W, Xu Q. Single‐Layer 2D Ni−BDC MOF Obtained in Supercritical CO
2
‐Assisted Aqueous Solution. Chemistry 2022; 28:e202201811. [DOI: 10.1002/chem.202201811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Hongwei Chang
- College of Materials Science and Engineering Zhengzhou University 100, Science Avenue, Zhengzhou Henan Province P. R. China
| | - Yannan Zhou
- College of Materials Science and Engineering Zhengzhou University 100, Science Avenue, Zhengzhou Henan Province P. R. China
| | - Xiaoli Zheng
- College of Materials Science and Engineering Zhengzhou University 100, Science Avenue, Zhengzhou Henan Province P. R. China
| | - Wei Liu
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450052 P. R. China
| | - Qun Xu
- College of Materials Science and Engineering Zhengzhou University 100, Science Avenue, Zhengzhou Henan Province P. R. China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450052 P. R. China
| |
Collapse
|
180
|
Wei RJ, You PY, Duan H, Xie M, Xia RQ, Chen X, Zhao X, Ning GH, Cooper AI, Li D. Ultrathin Metal-Organic Framework Nanosheets Exhibiting Exceptional Catalytic Activity. J Am Chem Soc 2022; 144:17487-17495. [PMID: 36047954 DOI: 10.1021/jacs.2c06312] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) metal-organic framework nanosheets (MONs) or membranes are classes of periodic, crystalline polymeric materials that may show unprecedented physicochemical properties due to their modular structures, high surface areas, and high aspect ratios. Yet preparing 2D MONs from multiple components and two different types of polymerization reaction remains challenging and less explored. Here, we report the synthesis of MOF films via interfacial polymerization, which involves three active monomers for simultaneous polycondensation and polycoordination taking place in a confined interface. The well-defined lamellar structure of the MOF films allowed feasible and scalable exfoliation to produce free-standing 2D MONs with high aspect ratio up to 2000:1 and ultrathin thickness (∼1.7 nm). The pore structure was revealed by high-resolution TEM images with near-atomic precision. The imide-linkage of MONs provided superior thermal (up to 530 °C) and good chemical stability in the pH range from 3 to 12. More importantly, the MONs exhibited exceptional catalytic activity and superior reusability for the hydroboration reactions of alkynes, in which the turnover frequency (TOF) reached 41734 h-1, which is 2-4 orders of magnitude greater than that reported for homogeneous and heterogeneous catalysts.
Collapse
Affiliation(s)
- Rong-Jia Wei
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Pei-Ye You
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Haiyan Duan
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China.,Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Mo Xie
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ri-Qin Xia
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xu Chen
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dan Li
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
181
|
High-pressure modified mesoporous Zr-BTB nanosheets with enhanced photocatalyst activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
182
|
Zhou Y, Yan P, Zhang S, Zhang Y, Chang H, Zheng X, Jiang J, Xu Q. CO 2 coordination-driven top-down synthesis of a 2D non-layered metal-organic framework. FUNDAMENTAL RESEARCH 2022; 2:674-681. [PMID: 38933122 PMCID: PMC11197606 DOI: 10.1016/j.fmre.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022] Open
Abstract
Combining the physical advantages of two-dimensional (2D) inorganic nanosheets and the modular design and programmed structure of metal-organic frameworks (MOFs), 2D MOFs remain at the forefront of functional material research. Despite tremendous efforts, precise control in the synthesis of 2D nonlayered MOFs with predesigned topology for desired applications remains challenging. Success in the bottom-up synthesis of 2D nonlayered MOFs via ligand exchange motivated us to incorporate partial BTC (BTC = 1,3,5-benzenetricarboxylate) ligand dissociation and CO2 capped coordination into the top-down treatment of bulk Cu-BTC MOF, leading to successful conversion of a 3D nonlayered network to a 2D Cu-based topological structure. Notably, a supercritical CO2-containing solvent mixture is employed to provide the desired defect and coordination engineering. Thus, our work introduces a new top-down concept based on modulated synthesis to fabricate high-quality 2D nonlayered MOFs for the first time.
Collapse
Affiliation(s)
- Yannan Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Pengfei Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yunxiao Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Chang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Jingyun Jiang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
183
|
Guo T, Bao S, Guo J, Chen W, Wen L. Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
184
|
Yu CX, Li XJ, Zong JS, You DJ, Liang AP, Zhou YL, Li XQ, Liu LL. Fabrication of Protonated Two-Dimensional Metal-Organic Framework Nanosheets for Highly Efficient Iodine Capture from Water. Inorg Chem 2022; 61:13883-13892. [PMID: 35998569 DOI: 10.1021/acs.inorgchem.2c01886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radioactive iodine (129I and 131I), produced or released from nuclear-related activities, posed severe effects on both human health and environment. The efficient removal of radioiodine from aqueous medium and vapor phase is of paramount importance for the sustainable development of nuclear energy. Herein, a metal-organic framework (MOF) nanosheet with a positive charge was constructed for the capture of iodine for the first time. The as-synthesized ultrathin nanosheets, with a thickness of 4.4 ± 0.1 nm, showed a record-high iodine adsorption capacity (3704.08 mg g-1) from aqueous solution, which is even higher than that from the vapor phase (3510.05 mg g-1). It can be ascribed to the fully interactions between the extensive accessible active sites on the largely exposed surface of 2D MOF nanosheets and the target pollutants, which also gave rise to fast adsorption kinetics with relative high removal efficiencies in the low concentrations, even in seawater. Moreover, a facile recyclability with fast desorption kinetics can also be achieved for the MOF nanosheets. The excellent iodine removal performance in aqueous solution demonstrated that the electrostatic attraction between MOF nanosheets with a positive charge and the negatively charged triiodide (I3-, the dominant form of iodine in aqueous solution) is the driving force in adsorption, which endows the adsorbents with the characteristics of fast adsorption and desorption kinetics. The adsorption mechanism was systematically verified by the studies of ζ potential, Fourier transform infrared, X-ray photoelectron spectroscopy, and Raman spectra.
Collapse
Affiliation(s)
- Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xue-Jing Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jia-Shu Zong
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Dong-Jiang You
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ai-Ping Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yan-Li Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xiao-Qiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
185
|
Su Z, Zhang J, Zhang B, Cheng X, Xu M, Sha Y, Wang Y, Hu J, Zheng L, Han B. Cu 3(BTC) 2 nanoflakes synthesized in an ionic liquid/water binary solvent and their catalytic properties. SOFT MATTER 2022; 18:6009-6014. [PMID: 35920400 DOI: 10.1039/d2sm00749e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-dimensional metal-organic frameworks (MOFs) exhibit enhanced properties compared with three-dimensional (3D) geometry MOFs in many fields. In this work, we demonstrate the synthesis of Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) nanoflakes in a binary solvent of ionic liquid (IL) and water. Such a MOF architecture has a high surface area and abundant unsaturated coordination metal sites, making them attractive for adsorption and catalysis. For example, in catalyzing the oxidation reactions of a series of alcohols, the Cu3(BTC)2 nanoflakes exhibit a high performance that is superior to Cu3(BTC)2 microparticles synthesized in a conventional solvent. Experimental and theoretical studies reveal that the IL accelerates the crystallization of Cu3(BTC)2, while water plays a role in stripping the Cu3(BTC)2 blocks that are formed at an early stage through its attack on the crystal plane of Cu3(BTC)2. Such an in situ crystallization-exfoliation process that uses an IL/water solvent opens a new route for producing low-dimensional MOFs.
Collapse
Affiliation(s)
- Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bingxing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingzhao Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
186
|
Wang Y, Zhang J, Cheng X, Sha Y, Xu M, Su Z, Hu J, Yao L. ZIF-9(III) nanosheets synthesized in ionic liquid/ethanol mixture for efficient photocatalytic hydrogen production. NANOSCALE 2022; 14:11012-11017. [PMID: 35861619 DOI: 10.1039/d2nr03139f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To improve the photocatalytic performance of metal-organic frameworks is of great importance. We synthesized the nanosheets of a zeolitic imidazolate framework (ZIF-9(III)) in ionic liquid/ethanol solution, with an average thickness of 4.6 nm. The as-synthesized ZIF-9(III) nanosheets have optoelectronic properties superior to the three-dimensional ZIF-9(III) synthesized by the conventional solvothermal method. The ZIF-9(III) nanosheets exhibit high activity for photocatalytic hydrogen production under visible light irradiation. The maximum hydrogen production rate can reach 112.37 mmol g-1 h-1, while that by three-dimensional ZIF-9(III) is 29.64 mmol g-1 h-1 under the same experimental conditions.
Collapse
Affiliation(s)
- Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Mingzhao Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Lei Yao
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China
| |
Collapse
|
187
|
Wang L, Saji SE, Wu L, Wang Z, Chen Z, Du Y, Yu XF, Zhao H, Yin Z. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201642. [PMID: 35843870 DOI: 10.1002/smll.202201642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.
Collapse
Affiliation(s)
- Linjuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| | - Lingjun Wu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zixuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zijian Chen
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
188
|
Zhang WD, Zhou L, Wang HR, Xu H, Zhu H, Jiang Y, Yan X, Gu ZG. A Hexagonal Nut-Like Metal-Organic Framework and Its Conformal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203356. [PMID: 35836099 DOI: 10.1002/smll.202203356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Hollow structured metal-organic frameworks (MOFs) and their derivatives are desired in catalysis, energy storage, etc. However, fabrication of novel hollow MOFs and revelation of their formation mechanisms remain challenging. Herein, open hollow 2D MOFs in the form of hexagonal nut are prepared through self-template method, which can be readily scaled up at gram scale in a one-pot preparation. The evolution from the initial superstructure to the final stable MOFs is tracked by wide-angle X-ray scattering, transforming from solid hexagon to open hollow hexagon. More importantly, this protocol can be extended to synthesizing a series of open hollow structured MOFs with sizes ranging from ≈120 to ≈1200 nm. Further, open hollow structured cobalt/N-doped porous carbon composites are realized through conformal transformation of the as-prepared MOFs, which demonstrates promising applications in sustainable energy conversion technologies. This study sheds light on the kinetically controlled synthesis of novel 2D MOFs for their extended utilizations.
Collapse
Affiliation(s)
- Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lang Zhou
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hao-Ran Wang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hanwen Xu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Haiyan Zhu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuqin Jiang
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
189
|
Firooz SK, Armstrong DW. Metal-organic frameworks in separations: A review. Anal Chim Acta 2022; 1234:340208. [DOI: 10.1016/j.aca.2022.340208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
|
190
|
Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
191
|
Lu Y, Zhong H, Li J, Dominic AM, Hu Y, Gao Z, Jiao Y, Wu M, Qi H, Huang C, Wayment L, Kaiser U, Spiecker E, Weidinger I, Zhang W, Feng X, Dong R. sp‐Carbon Incorporated Conductive Metal‐Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Lu
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Haixia Zhong
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Jian Li
- KTH Royal Institute of Technology: Kungliga Tekniska Hogskolan Department of Fibre and Polymer Technology SWEDEN
| | - Anna Maria Dominic
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Yiming Hu
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Zhen Gao
- Hebei Normal University College of Physics CHINA
| | - Yalong Jiao
- Hebei Normal University College of Physics CHINA
| | - Mingjian Wu
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Materials Science and Engineering GERMANY
| | - Haoyuan Qi
- Ulm University: Universitat Ulm Central Facility for Electron Microscopy GERMANY
| | - Chuanhui Huang
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Lacey Wayment
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Ute Kaiser
- Ulm University: Universitat Ulm Central Facility for Electron Microscopy GERMANY
| | - Erdmann Spiecker
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Materials Science and Engineering GERMANY
| | - Inez Weidinger
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Wei Zhang
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Xinliang Feng
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Renhao Dong
- TU Dresden: Technische Universitat Dresden Department of Chemistry and Food Chemistry Mommsenstrasse 4 01062 Dresden GERMANY
| |
Collapse
|
192
|
Ma W, Peng C, Song X, Zhang L, Fei H. Efficient and reusable catalysis of benzylic C-H oxidation over layered [Co 5(OH) 6] 4+ derivatives. Chem Commun (Camb) 2022; 58:8444-8447. [PMID: 35797619 DOI: 10.1039/d2cc02424a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic oxidation of benzylic C(sp3)-H bonds in a green and heterogeneous manner is a major target in organic catalysis. Herein, we report the synthesis of 3D coordination polymers containing [Co5(OH)6]4+ layers, affording reusable and efficient oxidation of ethylbenezene and tetralin by using O2 as the oxidant. Moreover, the cleavage of CoII-carboxylate bonding renders atomically thin cobaltate nanosheets and enhanced catalytic performance. This is one of the top catalytic performances for CoII-catalyzed benzylic C(sp3)-H oxidation (∼0.02 mol% Co and 76% conversion for nanosheets), ascribed to the exposed, accessible and coordinatively unsaturated CoII species.
Collapse
Affiliation(s)
- Wen Ma
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, P. R. China.
| | - Chengdong Peng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, P. R. China.
| | - Xueling Song
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, P. R. China.
| | - Lu Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, P. R. China.
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, P. R. China.
| |
Collapse
|
193
|
Dong J, Mo Q, Wang Y, Jiang L, Zhang L, Su C. Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheets Based on a Halogen‐Substituted Porphyrin Ligand: Synthesis and Catalytic Application in CO
2
Reductive Amination. Chemistry 2022; 28:e202200555. [DOI: 10.1002/chem.202200555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jurong Dong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 PR China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 PR China
| | - Yufei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 PR China
| | - Long Jiang
- Instrumental Analysis & Research Center Sun Yat-Sen University Guangzhou 510275 PR China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 PR China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 PR China
| |
Collapse
|
194
|
Wang S, Zhang T, Zhu X, Zu S, Xie Z, Lu X, Zhang M, Song L, Jin Y. Metal–Organic Frameworks for Electrocatalytic Sensing of Hydrogen Peroxide. Molecules 2022; 27:molecules27144571. [PMID: 35889442 PMCID: PMC9316108 DOI: 10.3390/molecules27144571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023] Open
Abstract
The electrochemical detection of hydrogen peroxide (H2O2) has become more and more important in industrial production, daily life, biological process, green energy chemistry, and other fields (especially for the detection of low concentration of H2O2). Metal organic frameworks (MOFs) are promising candidates to replace the established H2O2 sensors based on precious metals or enzymes. This review summarizes recent advances in MOF-based H2O2 electrochemical sensors, including conductive MOFs, MOFs with chemical modifications, MOFs-composites, and MOF derivatives. Finally, the challenges and prospects for the optimization and design of H2O2 electrochemical sensors with ultra-low detection limit and long-life are presented.
Collapse
|
195
|
Chong YL, Zhao DD, Wang B, Feng L, Li SJ, Shao LX, Tong X, Du X, Cheng H, Zhuang JL. Metal-Organic Frameworks Functionalized Separators for Lithium-Sulfur Batteries. CHEM REC 2022; 22:e202200142. [PMID: 35833508 DOI: 10.1002/tcr.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Lithium sulfur batteries (LSBs) have attracted tremendous attention owing to their high theoretical specific capacity and specific energy. However, their practical applications are hindered by poor cyclic life, mainly caused by polysulfide shuttling. The development of advanced materials to mitigate the polysulfide shuttling effect is urgently demanded. Metal-organic frameworks (MOFs) have been exploited as multifunctional materials for the decoration of separators owing to their high surface area, structural diversity, tunable pore size, and easy tailor ability. In this review, we aim to present the state-of-the-art MOF-based separators for LSBs. Particular attention is paid to the rational design (pore aperture, metal node, functionality, and dimension) of MOFs with enhanced ability for anchoring polysulfides and facilitating Li+ transportation. Finally, the challenges and perspectives are provided regarding to the future design MOF-based separators for high-performance LSBs.
Collapse
Affiliation(s)
- Yu-Liang Chong
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Dong-Dong Zhao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Bing Wang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Li Feng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Si-Jun Li
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Lan-Xing Shao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Xin Tong
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Xuan Du
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - H Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| |
Collapse
|
196
|
Chen J, Ye Z, Chen P, Hu H, Zhang S, Xu H, Cao L, Wang C. Two-dimensional metal-organic layers constructed from Hf 6/Hf 12-oxo clusters and a trigonal pyramidal phosphine oxide ligand. Dalton Trans 2022; 51:11236-11240. [PMID: 35822837 DOI: 10.1039/d2dt01239a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic layers (MOLs), a category of two-dimensional materials, have attracted wide interest due to their molecular tunability and the ease of surface modification. Herein, we reported the synthesis and structural determination of a free-standing MOL, {[Hf6O8H4(HCOO)2(H2O·OH)4]3[Hf12O16H8(HCOO)6.8(H2O·OH)11.2](TPO)8}n, constructed from Hf6-oxo and Hf12-oxo clusters as secondary building units (SBUs) and the tris(4-carboxylphenyl)phosphine oxide (TPO) ligand. We establish a structure model of this new MOL based on the combined information from different characterization methods.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Zhi Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 53004, P. R. China
| | - Huihui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Shuhong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| |
Collapse
|
197
|
Nagai D, Isobe N, Inoue T, Okamoto S, Maki Y, Yamanobe T. Preparation of Various Nanomaterials via Controlled Gelation of a Hydrophilic Polymer Bearing Metal-Coordination Units with Metal Ions. Gels 2022; 8:gels8070435. [PMID: 35877520 PMCID: PMC9322127 DOI: 10.3390/gels8070435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the gelation of a hydrophilic polymer with metal-coordination units (HPMC) and metal ions (PdII or AuIII). Gelation proceeded by addition of an HPMC solution in N-methyl-2-pyrrolidone (NMP) to a metal ion aqueous solution. An increase in the composition ratio of the metal-coordination units from 10 mol% to 34 mol% (HPMC-34) increased the cross-linking rate with AuIII. Cross-linking immediately occurred after dropwise addition of an HPMC-34 solution to the AuIII solution, generating the separation between the phases of HPMC-34 and AuIII. The cross-linking of AuIII proceeded from the surface to the inside of the HPMC-34 droplets, affording spherical gels. In contrast, a decrease in the ratio of metal-coordination units from 10 mol% to 4 mol% (HPMC-4) decreased the PdII cross-linking rate. The cross-linking occurred gradually and the gels extended to the bottom of the vessel, forming fibrous gels. On the basis of the mechanism for the formation of gels with different morphologies, the gelation of HPMC-34 and AuIII provided nanosheets via gelation at the interface between the AuIII solution and the HPMC-34 solution. The gelation of HPMC-4 and PdII afforded nanofibers by a facile method, i.e., dropwise addition of the HPMC-4 solution to the PdII solution. These results demonstrated that changing the composition ratio of the metal-coordination units in HPMC can control the gelation behavior, resulting in different types of nanomaterials.
Collapse
Affiliation(s)
- Daisuke Nagai
- School of Food and Nutritional Science, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Shizuoka, Japan; (N.I.); (S.O.)
- Correspondence: ; Tel.: +81-54-264-5729
| | - Naoki Isobe
- School of Food and Nutritional Science, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Shizuoka, Japan; (N.I.); (S.O.)
| | - Tatsushi Inoue
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Gunma, Japan; (T.I.); (T.Y.)
| | - Shusuke Okamoto
- School of Food and Nutritional Science, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Shizuoka, Japan; (N.I.); (S.O.)
| | - Yasuyuki Maki
- Department of Chemistry, Graduate School of Science, Kyusyu University, 744 Motooka, Fukuoka 819-0395, Fukuoka, Japan;
| | - Takeshi Yamanobe
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Gunma, Japan; (T.I.); (T.Y.)
| |
Collapse
|
198
|
Yuan B, Gou G, Fan T, Liu M, Ma Y, Matsuda R, Li L. Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202204568. [DOI: 10.1002/anie.202204568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Baoling Yuan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Yunsheng Ma
- Department of Chemistry and Biotechnology School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
199
|
Bao L, Yang SQ, Hu TL. Cu-NPs@C Nanosheets Derived from a PVP-assisted 2D Cu-MOF with Renewable Ligand for High-Efficient Selective Hydrogenation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200392. [PMID: 35373919 DOI: 10.1002/cssc.202200392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (HMF) containing C=O, C-O, and furan ring functional groups is an important platform chemical derived from C6 sugars. The selective hydrogenation of C=O in HMF produces 2,5-dihydroxymethylfuran (DHMF), which is a potential sustainable substitute for petroleum-based building blocks. Here, 2,5-furandicarboxylic acid (H2 FDC), a promising sustainable alternative to terephthalic acid, was employed as a renewable ligand to synthesize a novel Cu metal-organic framework (Cu-FDC). With a polyvinyl pyrrolidone (PVP)-assisted approach, 2D Cu-FDC nano-lamellae of micrometer lateral dimensions and nanometer thickness could be obtained, which could be used as a precursor to fabricate 2D oxygen-rich carbon nanosheets embedded with Cu nanoparticles (denoted CFP-300) after a thermal treatment at 300 °C under N2 atmosphere. The synthesized CFP-300 exhibited excellent catalytic performance and stability for the selective hydrogenation of HMF to DHMF. These results demonstrated a sustainable route to synthesize efficient catalysts by employing metal-organic frameworks based on renewable ligands.
Collapse
Affiliation(s)
- Liwei Bao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
200
|
Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S, Khosla A, Barathi S, Sundramoorthy AK. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications - A review. CHEMOSPHERE 2022; 298:134184. [PMID: 35271904 DOI: 10.1016/j.chemosphere.2022.134184] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Metal organic frameworks (MOFs) represent the organic and inorganic hybrid porous materials. MOFs are low dense and highly porous materials which in turn provide large surface area that can accumulate and store numerous molecules within the pores. The pore size may also act as a mesh to separate molecules. The porous nature of MOFs is beneficial for altering the intrinsic properties of the materials. Over the past decade, different types of hybrid MOFs have been reported in combination with polymers, carbon materials, metal nanoparticles, metal oxides, and biomolecules for various applications. MOFs have also been used in the fabrication of electronic devices, sensors, energy storage, gas separation, supercapacitors, drug delivery and environmental clean-up. In this review, the unique structural orientation, exceptional properties and recent applications of MOFs have been discussed in the first section along with their porosity, stability and other influencing factors. In addition, various methods and techniques involved in the synthesis and designing of MOFs such as solvothermal, electrochemical, mechanochemical, ultrasonication and microwave methods are highlighted. In order to understand the scientific feasibility of MOFs in developing new products, various strategies have been applied to obtain different dimensional MOFs (0D, 1D, 2D and 3D) and their composite materials are also been conferred. Finally, the future prospects of MOFs, remaining challenges, research gaps and possible solutions that need to be addressed by advanced experimental design, computational models, simulation techniques and theoretical concepts have been deliberated.
Collapse
Affiliation(s)
- Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Seetharaman Barathi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|