151
|
Abstract
Chronic inflammatory diseases, such as atherosclerosis, are a major cause of death and disability in the developed world. In this respect, although cholesterol obviously plays a predominant role in atherosclerosis, targeting inflammation at lesion sites may be just as important. Indeed, elevated IL-6 (interleukin 6) levels are as strongly associated with coronary heart disease as increased cholesterol. We have been investigating novel cAMP-regulated pathways that combat the action of pro-inflammatory cytokines, such as IL-6 and leptin, in the VECs (vascular endothelial cells) of the circulatory system. In this respect, we have begun to unravel new molecular mechanisms by which the cAMP/Epac1 (exchange protein directly activated by cAMP 1)/Rap1 pathway can initiate a rigorous programme of protective anti-inflammatory responses in VECs. Central to this is the coupling of cAMP elevation to the mobilization of two C/EBP (CCAAT/enhancer-binding protein) family transcription factors, resulting in the induction of the SOCS3 (suppressor of cytokine signalling 3) gene, which attenuates pro-inflammatory cytokine signalling in VECs. These novel 'protective' mechanisms of cAMP action will inform the development of the next generation of pharmaceuticals specifically designed to combat endothelial inflammation associated with cardiovascular disease.
Collapse
|
152
|
Unbiased identification of substrates for the Epac1-inducible E3 ubiquitin ligase component SOCS-3. Biochem Soc Trans 2012; 40:215-8. [PMID: 22260693 DOI: 10.1042/bst20110629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The anti-inflammatory effects of the prototypical second messenger cAMP have been extensively documented in multiple cell types. One mechanism by which these effects are achieved is via Epac1 (exchange protein directly activated by cAMP 1)-dependent induction of SOCS-3 (suppressor of cytokine signalling 3), which binds and inhibits specific class I cytokine receptors. One important aspect of SOCS-3 functionality is its role as the specificity determinant within an E3 ubiquitin ligase complex which targets cellular substrates for polyubiquitylation and proteasomal degradation. In the present review, we describe key inhibitory processes that serve to reduce cytokine receptor signalling, focusing primarily on SOCS protein function and regulation. We also outline a strategy we have developed to identify novel ubiquitylated substrates for the Epac1-inducible SOCS-3 E3 ubiquitin ligase complex following purification of the ubiquitinome. It is anticipated that identifying substrates for the Epac1-regulated SOCS-3 E3 ubiquitin ligase, and assessment of their functional significance, may pinpoint new sites for therapeutic intervention that would achieve therapeutic efficacy of cAMP-elevating drugs while minimizing the adverse effects usually associated with these agents.
Collapse
|
153
|
Wiejak J, Dunlop J, Gao S, Borland G, Yarwood SJ. Extracellular signal-regulated kinase mitogen-activated protein kinase-dependent SOCS-3 gene induction requires c-Jun, signal transducer and activator of transcription 3, and specificity protein 3 transcription factors. Mol Pharmacol 2012; 81:657-68. [PMID: 22311708 DOI: 10.1124/mol.111.076976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SOCS-3 gene induction by cAMP-elevating agents or the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), in primary HUVECs was found to require PKCη- and PKCε-dependent extracellular signal-regulated kinase (ERK) activation. The minimal, ERK-responsive element of the SOCS-3 promoter was localized to a region spanning nucleotides -107 to the transcription start site and contains conserved binding sites for AP-1 and SP1/SP3 transcription factors, as well as proximal and distal signal transducer and activator of transcription (pSTAT and dSTAT) binding elements. All three classes of transcription factor were activated in response to ERK activation. Moreover, representative protein components of each of these transcription factor binding sites, namely c-Jun, STAT3, and SP3, were found to undergo ERK-dependent phosphorylation within their respective transactivation domains. Mutational analysis demonstrated an absolute requirement for the SP1/SP3 binding element in controlling basal transcriptional activity of the minimal SOCS-3 promoter. In addition AP-1, pSTAT, and SP1/SP3 binding sites were required for ERK-dependent, PMA-stimulated SOCS-3 gene activation. The dSTAT site seems to be important for supporting activity of the AP-1 site, because combined deletion of both sites completely blocks transcriptional activation of SOCS-3 by PMA. Together these results describe novel, ERK-dependent regulation of transcriptional activity that requires codependent activation of multiple transcription factors within the same region of the SOCS-3 gene promoter.
Collapse
Affiliation(s)
- Jolanta Wiejak
- The Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
154
|
Eberle ME, Dalpke AH. Dectin-1 Stimulation Induces Suppressor of Cytokine Signaling 1, Thereby Modulating TLR Signaling and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:5644-54. [DOI: 10.4049/jimmunol.1103068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
155
|
Gao Y, Cimica V, Reich NC. Suppressor of cytokine signaling 3 inhibits breast tumor kinase activation of STAT3. J Biol Chem 2012; 287:20904-12. [PMID: 22547065 DOI: 10.1074/jbc.m111.334144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Breast tumor kinase (Brk) was originally isolated from a human metastatic breast tumor, but also is found expressed in other epithelial tumors and in a subset of normal epithelia. Brk is a tyrosine kinase and its expression in breast carcinoma has been linked to tumor progression. The signal transducer and activator of transcription 3 (STAT3) is one of the substrate targets of Brk, and elevated tyrosine phosphorylation of STAT3 is known to contribute to oncogenesis. Conventional activation of STAT3 occurs in response to cytokine stimulation of Janus tyrosine kinases (JAK). One of the negative regulators discovered in cytokine signaling of the JAK-STAT pathway is the suppressor of cytokine signaling 3 (SOCS3). In this report we describe the finding that SOCS3 can also inhibit the unconventional target, Brk. Investigation of the mechanism by which SOCS3 inhibits Brk reveals the SOCS3 protein binds to Brk primarily via its SH2 domain, and its main inhibitory effect is mediated by the SOCS3 kinase inhibitory region (KIR). SOCS3 has only a modest effect on promoting Brk degradation, and this requires the C-terminal SOCS box domain. SOCS3 is the only known inhibitor of Brk, and knowledge of the mechanisms by which SOCS3 inhibits Brk may lead to methods that block Brk in cancer progression.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
156
|
Babon JJ, Kershaw NJ, Murphy JM, Varghese LN, Laktyushin A, Young SN, Lucet IS, Norton RS, Nicola NA. Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Immunity 2012; 36:239-50. [PMID: 22342841 DOI: 10.1016/j.immuni.2011.12.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/24/2011] [Accepted: 12/21/2011] [Indexed: 12/01/2022]
Abstract
Janus kinases (JAKs) are key effectors in controlling immune responses and maintaining hematopoiesis. SOCS3 (suppressor of cytokine signaling-3) is a major regulator of JAK signaling and here we investigate the molecular basis of its mechanism of action. We found that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not JAK3 via an evolutionarily conserved motif unique to JAKs. Mutation of this motif led to the formation of an active kinase that could not be inhibited by SOCS3. Surprisingly, we found that SOCS3 simultaneously bound JAK and the cytokine receptor to which it is attached, revealing how specificity is generated in SOCS action and explaining why SOCS3 inhibits only a subset of cytokines. Importantly, SOCS3 inhibited JAKs via a noncompetitive mechanism, making it a template for the development of specific and effective inhibitors to treat JAK-based immune and proliferative diseases.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, VIC, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Xu Z, Huang G, Gong W, Zhou P, Zhao Y, Zhang Y, Zeng Y, Gao M, Pan Z, He F. FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal 2012; 24:1658-64. [PMID: 22560881 DOI: 10.1016/j.cellsig.2012.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/18/2012] [Indexed: 01/09/2023]
Abstract
Because of the anti-inflammatory actions of farnesoid X receptor (FXR) agonists, FXR has received much attention as a potential therapeutic target. However, the molecular mechanisms of actions have not yet been elucidated. In the present study, we reported that in the animal model of LPS-induced liver injury, administration of the FXR natural ligand CDCA could attenuate hepatocyte inflammatory damage, reduce transaminase activities, suppress inflammation mediators (IL-6, TNF-α and ICAM-1) expression and inhibit STAT3 phosphorylation. These protective effects of FXR were accompanied by an increased expression of suppressor of cytokine signaling 3 (SOCS3), which is a negative feedback regulator of cytokine-STAT3 signaling. We then demonstrated that the beneficial effects of FXR agonist in STAT3 activation were weakened by small interfering RNA-mediated SOCS3 knockdown in hepacytes. Moreover we observed both natural ligand CDCA and synthetic ligand GW4064 could upregulate SOCS 3 expression by enhancing the promoter activity in hepatocytes. These results suggest modulation of SOCS3 expression may represent a novel mechanism through which FXR activation could selectively affect cytokine bioactivity in inflammation response. FXR ligands may be potentially therapeutic in the treatment of liver inflammatory diseases via SOCS3 induction.
Collapse
Affiliation(s)
- Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
159
|
Knosp CA, Johnston JA. Regulation of CD4+ T-cell polarization by suppressor of cytokine signalling proteins. Immunology 2012; 135:101-11. [PMID: 22044277 DOI: 10.1111/j.1365-2567.2011.03520.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Suppressors of cytokine signalling (SOCS) proteins are induced in responses to many stimuli and by binding to cytokine receptors and associated janus kinase (JAK) proteins, directly regulate the activation of the signal transducers and activators of transcription (STATs). STAT proteins regulate the expression of many genes required for the differentiation of various CD4(+) T helper cell lineages, and there is now accumulating evidence that SOCS also play essential roles in the regulation and maintenance of CD4(+) T-cell polarization. As it is now clear that CD4(+) T cells are more plastic than initially thought, it is of particular importance to understand the molecular mechanisms regulating CD4(+) T-cell differentiation. Here we review the current understanding of how STATs and SOCS act in concert to influence the polarization of CD4(+) T cells and highlight the relevance of this in disease.
Collapse
Affiliation(s)
- Camille A Knosp
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, University Road, Belfast, Northern Ireland
| | | |
Collapse
|
160
|
New mimetic peptides of the kinase-inhibitory region (KIR) of SOCS1 through focused peptide libraries. Biochem J 2012; 443:231-40. [DOI: 10.1042/bj20111647] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/07/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022]
Abstract
SOCS (suppressor of cytokine signalling) proteins are negative-feedback regulators of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) pathway. Their expression levels are low under physiological conditions, but they are up-regulated in response to cytokine stimulation in many immune and inflammatory processes. Overexpression of SOCS1 in keratinocyte clones abrogates the IFNγ (interferon γ)-induced expression of many pro-inflammatory genes and the release of related chemokines by blocking the JAK/STAT pathway. SOCS1 inhibits JAK2 kinase activity by binding the catalytic site of JAK2, with its KIR (kinase-inhibitory region) acting as a pseudo-substrate of the enzyme. In the present study, we screened a focused combinatorial peptide library of KIR to identify new peptides able to mimic its function with an improved affinity towards the JAK2 catalytic site. Using an alanine-scanning method, KIR residues that are crucial for the interaction with JAK2 were unveiled. In this way, the KIR sequence was restricted to a shorter segment and ‘non-essential’ residues were replaced by different amino acids following a simplified combinatorial approach. We selected a new unnatural sequence able to bind to JAK2 with Kd values in the nanomolar range. This peptide was tested in human keratinocyte cultures and reduced the phosphorylation of STAT1 and the expression levels of IRF-1 (interferon regulatory factor-1).
Collapse
|
161
|
Yoshimura A, Suzuki M, Sakaguchi R, Hanada T, Yasukawa H. SOCS, Inflammation, and Autoimmunity. Front Immunol 2012; 3:20. [PMID: 22566904 PMCID: PMC3342034 DOI: 10.3389/fimmu.2012.00020] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/03/2012] [Indexed: 12/16/2022] Open
Abstract
Cytokines play essential roles in innate and adaptive immunity. However, excess cytokines or dysregulation of cytokine signaling will cause a variety of diseases, including allergies, autoimmune diseases, inflammation, and cancer. Most cytokines utilize the so-called Janus kinase–signal transducers and activators of transcription pathway. This pathway is negatively regulated by various mechanisms including suppressors of cytokine signaling (SOCS) proteins. SOCS proteins bind to JAK or cytokine receptors, thereby suppressing further signaling events. Especially, suppressor of cytokine signaling-1 (SOCS1) and SOCS3 are strong inhibitors of JAKs, because these two contain kinase inhibitory region at the N-terminus. Studies using conditional knockout mice have shown that SOCS proteins are key physiological as well as pathological regulators of immune homeostasis. Recent studies have also demonstrated that SOCS1 and SOCS3 are important regulators of helper T cell differentiation and functions. This review focuses on the roles of SOCS1 and SOCS3 in T cell mediated inflammatory diseases.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi Tokyo, Japan
| | | | | | | | | |
Collapse
|
162
|
Linossi EM, Nicholson SE. The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life 2012; 64:316-23. [PMID: 22362562 DOI: 10.1002/iub.1011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/25/2012] [Indexed: 01/29/2023]
Abstract
The suppressor of cytokine signalling (SOCS) box was first identified in the SH2-containing SOCS box family (cytokine-inducible SH2-containing protein, SOCS1-7) and is a 40-amino acid motif, which functions to recruit an E3 ubiquitin ligase complex consisting of the adapter proteins elongins B and C, Rbx2 and the scaffold protein Cullin5. The SOCS box is found in a diverse array of intracellular signalling molecules, many of which contain different protein interaction domains such as SPRY and WD40 domains, leucine and ankyrin repeats or other functional domains such as GTPases. In general, the SOCS box-containing proteins are thought to act as substrate-recognition modules to mediate the polyubiquitination and subsequent degradation of substrate proteins by the 26S proteasome.
Collapse
Affiliation(s)
- Edmond M Linossi
- Inflammation Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria
| | | |
Collapse
|
163
|
Luckett-Chastain LR, Ihnat MA, Mickle-Kawar BM, Gallucci RM. SOCS3 modulates interleukin-6R signaling preference in dermal fibroblasts. J Interferon Cytokine Res 2012; 32:207-15. [PMID: 22313262 DOI: 10.1089/jir.2011.0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS This study aims to investigate the mechanisms in the apparent preference for mitogen-activated protein kinase /ERK signaling through interleukin (IL)-6R in dermal fibroblasts. METHODS Dermal fibroblasts isolated from IL-6KO mice were pretreated with specific ERK or STAT3 chemical inhibitors or SOCS3 specific siRNA and treated with rmIL-6. Phosphorylation was monitored via enzyme-linked immunosorbent assay or immunohistology. SOCS3 interaction with p120Ras-Gap was examined by co-immunoprecipitation and Western blot. Expression of MMP2 mRNA was assessed via real-time quantitative polymerase chain reaction. RESULTS A dose response phosphorylation of ERK1/2 occurred while no STAT3 activation (p-Tyr705) was induced after IL-6 treatment, despite an increase in Ser727 phosphorylation. Inhibition of STAT3 in fibroblasts potentiated IL-6R induced ERK phosphorylation and vice versa. Phosphorylated SOCS3 and p120 RasGAP co-immunoprecipitated in response to IL-6 treatment. SOCS3 siRNA knockdown allowed STAT3 phosphorylation after rmIL-6 treatment. Chemical inhibition of IL-6R signaling altered the IL-6 modulated mRNA expression of MMP-2. CONCLUSIONS SOCS3 interaction with p120 Ras-Gap plays a role in determining the preference for IL-6R signaling through ERK in dermal fibroblasts. This study provides insight into the pleiotropic nature of IL-6 and the selective signaling mechanism elicited by the IL-6R system in dermal fibroblasts. It may further indicate a method for manipulation of IL-6R function.
Collapse
Affiliation(s)
- Lerin R Luckett-Chastain
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | | | | | | |
Collapse
|
164
|
|
165
|
Delgado-Ortega M, Melo S, Meurens F. Expression of SOCS1-7 and CIS mRNA in porcine tissues. Vet Immunol Immunopathol 2011; 144:493-8. [DOI: 10.1016/j.vetimm.2011.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 01/08/2023]
|
166
|
Zhang WN, Wang L, Wang Q, Luo X, Fang DF, Chen Y, Pan X, Man JH, Xia Q, Jin BF, Li WH, Li T, Liang B, Chen L, Gong WL, Yu M, Li AL, Zhou T, Li HY. CUEDC2 (CUE domain-containing 2) and SOCS3 (suppressors of cytokine signaling 3) cooperate to negatively regulate Janus kinase 1/signal transducers and activators of transcription 3 signaling. J Biol Chem 2011; 287:382-392. [PMID: 22084247 DOI: 10.1074/jbc.m111.276832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Janus kinase 1/signal transducers and activators of transcription 3 (JAK1/STAT3) pathway is one of the recognized oncogenic signaling pathways that frequently overactivated in a variety of human tumors. Despite rapid progress in elucidating the molecular mechanisms of activation of JAK/STAT pathway, the processes that regulate JAK/STAT deactivation need to be further clarified. Here we demonstrate that CUE domain-containing 2 (CUEDC2) inhibits cytokine-induced phosphorylation of JAK1 and STAT3 and the subsequent STAT3 transcriptional activity. Further analysis by a yeast two-hybrid assay showed that CUEDC2 could engage in a specific interaction with a key JAK/STAT inhibitor, SOCS3 (suppressors of cytokine signaling 3). The interaction between CUEDC2 and SOCS3 is required for the inhibitory effect of CUEDC2 on JAK1 and STAT3 activity. Additionally, we found CUEDC2 functions collaboratively with SOCS3 to inhibit JAK1/STAT3 signaling by increasing SOCS3 stability via enhancing its association with Elongin C. Therefore, our findings revealed a new biological activity for CUEDC2 as the regulator of JAK1/STAT3 signaling and paved the way to a better understanding of the mechanisms by which SOCS3 has been linked to suppression of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Wei-Na Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Li Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Qiong Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xue Luo
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Di-Feng Fang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Yuan Chen
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Jiang-Hong Man
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Qing Xia
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Bao-Feng Jin
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Wei-Hua Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Bing Liang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Liang Chen
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Wei-Li Gong
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Ming Yu
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Ai-Ling Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | - Tao Zhou
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China.
| | - Hui-Yan Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China.
| |
Collapse
|
167
|
Horndasch M, Culig Z. SOCS-3 antagonizes pro-apoptotic effects of TRAIL and resveratrol in prostate cancer cells. Prostate 2011; 71:1357-66. [PMID: 21308719 DOI: 10.1002/pros.21353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Therapy for advanced prostate cancer is only palliative and its improvement could be achieved by sensitization to pro-apoptotic agents to which resveratrol belongs. We investigated the interaction between the tumor-selective apoptosis inducer tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and suppressor of cytokine signaling (SOCS-3), an antiapoptotic molecule which is up-regulated in prostate cancer. METHODS Expression of SOCS-3 and TRAIL (death) receptors was determined by Western blot after treatment with TRAIL in prostate cancer cell lines. Binding of SOCS-3 to death receptors was investigated by immunoprecipitation. Apoptosis rate was determined by a propidium iodide assay after treatment by TRAIL and resveratrol. RESULTS SOCS-3, whose expression was differentially regulated by TRAIL in androgen-insensitive prostate cell lines, binds to death receptor 4. Overexpression of SOCS-3 reduced apoptosis in TRAIL- and resveratrol-treated DU145 cells and SOCS-3 siRNA increased apoptosis in TRAIL-treated PC-3 and LNCaP-IL-6+ cells. CONCLUSIONS Our results strongly suggest that SOCS-3 is one of the proteins which influence the ability of TRAIL and resveratrol to cause programmed cell death in prostate cancer.
Collapse
Affiliation(s)
- Manuela Horndasch
- Department of Urology, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
168
|
Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J Virol 2011; 85:10058-68. [PMID: 21752905 DOI: 10.1128/jvi.05075-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have demonstrated that mouse hepatitis virus (MHV) hepatotropism is determined largely by postentry events rather than by availability of the viral receptor. In addition, mutation of MHV nonstructural protein 2 (ns2) abrogates the ability of the virus to replicate in the liver and induce hepatitis but does not affect replication in the central nervous system (CNS). Here we show that replication of ns2 mutant viruses is attenuated in bone marrow-derived macrophages (BMM) generated from wild-type (wt) mice but not in L2 fibroblasts, primary astrocytes, or BMM generated from type I interferon receptor-deficient (IFNAR(-/-)) mice. In addition, ns2 mutants are more sensitive than wt virus to pretreatment of BMM, but not L2 fibroblasts or primary astrocytes, with alpha/beta interferon (IFN-α/β). The ns2 mutants induced similar levels of IFN-α/β in wt and IFNAR(-/-) BMM, indicating that ns2 expression has no effect on the induction of IFN but rather that it antagonizes a later step in IFN signaling. Consistent with these in vitro data, the virulence of ns2 mutants increased to near that of wt virus after depletion of macrophages in vivo. These data imply that the ability of MHV to replicate in macrophages is a prerequisite for replication in the liver and induction of hepatitis but not for replication or disease in the CNS, underscoring the importance of IFN signaling in macrophages in vivo for protection of the host from hepatitis. Our results further support the notion that viral tissue tropism is determined in part by postentry events, including the early type I interferon response.
Collapse
|
169
|
Liu Q, Liu S, Shi Y, Li H, Hao J, Xing L, Cao Y, Duan H. Suppressors of cytokine signaling inhibit tubular epithelial cell-myofibroblast transdifferentiation. Am J Nephrol 2011; 34:142-51. [PMID: 21734367 DOI: 10.1159/000329325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/10/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIMS Tubular epithelial cell-myofibroblast transdifferentiation (TEMT) can be induced by diverse cytokines. The suppressors of cytokine signaling (SOCS) proteins negatively regulate cytokine signaling. This study is aimed at examining the role of SOCS-1 and SOCS-3 in TEMT induced by cytokines. METHODS The cell ultrastructure was observed using transmission electron microscopy. The protein and mRNA levels of cytokeratin 18 (CK18) and α-smooth muscle actin (α-SMA) were detected by immunocytochemistry, Western blot and real-time PCR. The levels of phosphorylated-signal transducer and activator of transcription (p-STAT) 1 and 3 were detected by Western blot. The protein and mRNA levels of SOCS-1 and SOCS-3 were detected by Western blot and real-time PCR. The levels of collagen type I and fibronectin (FN) were determined by ELISA. RESULTS Interleukin-1β (IL-1β) and oncostatin M (OSM) were able to downregulate CK18 expression and upregulate α-SMA, p-STAT1, p-STAT3, collagen type I and FN expression in cultured human renal proximal tubular epithelial cells (HKCs), whereas pretreatment with AG490 prevented these expression changes from occurring. All of the changes induced by IL-1β or OSM could be decreased by SOCS-1 and SOCS-3 overexpression, and were increased by SOCS-1 and SOCS-3 knockdown. CONCLUSIONS SOCS-1 and SOCS-3 can prevent tubulointerstitial fibrosis by inhibiting TEMT, which may be connected with the activation of STAT1 and STAT3.
Collapse
Affiliation(s)
- Qingjuan Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol 2011; 31:980-5. [PMID: 21508344 DOI: 10.1161/atvbaha.110.207464] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various cytokines are involved in the regulation of the immune system and inflammation. Dysregulation of cytokine signaling can cause a variety of diseases, including allergy, autoimmune diseases, inflammation, and cancer. Most cytokines use the so-called janus kinase/signal transducer and activator of transcription pathway, and this pathway is negatively regulated by suppressors of cytokine signaling (SOCS) proteins. SOCS proteins bind to janus kinase and to certain cytokine receptors and signaling molecules, thereby suppressing further signaling events. Studies have shown that SOCS proteins are key physiological regulators of inflammation. Recent studies have also demonstrated that SOCS1 and SOCS3 are important regulators of adaptive immunity.
Collapse
Affiliation(s)
- Taiga Tamiya
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
171
|
Reuben JS, Dinh L, Lee J, Stateson J, Kamara H, Xiang L, Opperman LA. Bisphosphonates inhibit phosphorylation of signal transducer and activator of transcription 3 and expression of suppressor of cytokine signaling 3: implications for their effects on innate immune function and osteoclastogenesis. ACTA ACUST UNITED AC 2011; 111:196-204. [PMID: 21237434 DOI: 10.1016/j.tripleo.2010.09.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/15/2010] [Accepted: 09/19/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study tested the effects of bisphosphonates (BPs) on the suppressor of cytokine signaling 3 (SOCS3) protein in macrophages. SOCS3 has been shown to regulate cell differentiation and survival; however, its potential role in mediating the effects of BPs has not been explored. STUDY DESIGN The cell viability of murine RAW 267.4 macrophages was assessed after culturing with control medium or media containing increasing concentrations of 2 BPs (ibandronate or clodronate) for 24, 48, and 72 hours. The phosphorylation status of signal transducer and activator of transcription 3 (STAT3) and the expression of SOCS3 protein levels were determined by Western blot analysis. RESULTS In control cultures, STAT3 phosphorylation and STAT3 and SOCS3 protein levels increased within 5 minutes after the addition of fresh medium. This increase was inhibited in cultures treated with both BPs. Macrophage cell viability also decreased after BP treatment. CONCLUSIONS These data demonstrate that, in addition to their effects on macrophage viability, BPs can decrease STAT3 and SOCS3 expression, which are important modulators of immune responses and bone homeostasis.
Collapse
Affiliation(s)
- Jayne S Reuben
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246, USA.
| | | | | | | | | | | | | |
Collapse
|
172
|
Williams KW, Scott MM, Elmquist JK. Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network. Eur J Pharmacol 2011; 660:2-12. [PMID: 21211525 PMCID: PMC3085544 DOI: 10.1016/j.ejphar.2010.11.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/08/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Over the past century, prevalent models of energy and glucose homeostasis have been developed from a better understanding of the neural circuits underlying obesity and diabetes. From the early hypothalamic lesion reports to the more recent pharmacological and molecular/genetic studies, the hypothalamic melanocortin system has been shown to play a critical role in the regulation of metabolism. This review attempts to highlight contributions to our current understanding of how numerous neuromodulators (leptin, insulin, and serotonin) integrate with the central melanocortin system to coordinate alterations in energy and glucose balance.
Collapse
Affiliation(s)
- Kevin W. Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Michael M. Scott
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
173
|
Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun 2011; 79:2964-73. [PMID: 21576331 DOI: 10.1128/iai.00047-11] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The generation of an effective immune response against an infection while also limiting tissue damage requires a delicate balance between pro- and anti-inflammatory responses. Interleukin-10 (IL-10) has potent immunosuppressive effects and is essential for regulation of immune responses. However, the immunosuppressive properties of IL-10 can also be exploited by pathogens to facilitate their own survival. In this minireview, we discuss the role of IL-10 in modulating intracellular bacterial, fungal, and parasitic infections. Using information from several different infection models, we bring together and highlight some common pathways for IL-10 regulation and function that cannot be fully appreciated by studies of a single pathogen.
Collapse
|
174
|
Cantù C, Ierardi R, Alborelli I, Fugazza C, Cassinelli L, Piconese S, Bosè F, Ottolenghi S, Ferrari G, Ronchi A. Sox6 enhances erythroid differentiation in human erythroid progenitors. Blood 2011; 117:3669-79. [PMID: 21263153 DOI: 10.1182/blood-2010-04-282350] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and, despite their leukemic origin, died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets, we found SOCS3 (suppressor of cytokine signaling-3), a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element, which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6, which demonstrates that SOCS3 is a relevant Sox6 effector.
Collapse
Affiliation(s)
- Claudio Cantù
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Oh ST, Gotlib J. JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol 2011; 3:323-37. [PMID: 21082983 DOI: 10.1586/ehm.10.28] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulated signaling is a hallmark of chronic myeloproliferative neoplasms (MPNs), as evidenced by the identification of the activating JAK2 V617F somatic mutation in almost all patients with polycythemia vera (PV) and 50-60% of essential thrombocythemia and primary myelofibrosis patients. These disorders are clinically distinct, raising the question of how a single mutation can result in such phenotypic diversity. Mouse models have demonstrated that the level of JAK2 V617F expression can modulate the phenotype, and clinical studies of JAK2 V617F allele burden have reported similar findings. It has also been hypothesized that one or more pre-JAK2 V617F events may modify the MPN phenotype. However, the molecular basis of JAK2 V617F-negative essential thrombocythemia and primary myelofibrosis remains largely unexplained. Mutations in the TET2 gene have been identified in both JAK2 V617F-positive and -negative MPNs and other myeloid neoplasms, but their functional and clinical significance have yet to be clarified. In addition, recent reports have identified a specific germline haplotype that increases the predisposition to MPNs. The role of inhibitory pathways (e.g., SOCS and LNK) in regulating JAK-STAT signaling in MPNs is being increasingly recognized. The implications of these findings and their clinical relevance are the focus of this article.
Collapse
Affiliation(s)
- Stephen T Oh
- Division of Hematology, Stanford Cancer Center, 875 Blake Wilbur Drive, Room 2324, Stanford, CA 94305-5821, USA
| | | |
Collapse
|
176
|
Venkitachalam S, Chueh FY, Leong KF, Pabich S, Yu CL. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase. Oncol Rep 2011; 25:677-83. [PMID: 21234523 PMCID: PMC3031786 DOI: 10.3892/or.2011.1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/13/2010] [Indexed: 01/23/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.
Collapse
Affiliation(s)
- Srividya Venkitachalam
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
177
|
Gu Q, Kong Y, Yu ZB, Bai L, Xiao YB. Hypoxia-induced SOCS3 is limiting STAT3 phosphorylation and NF-κB activation in congenital heart disease. Biochimie 2011; 93:909-20. [PMID: 21354254 DOI: 10.1016/j.biochi.2011.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/16/2011] [Indexed: 02/07/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a critical attenuator of the JAK-STAT signaling pathway, and it is involved in mediating the intensity and duration of STAT3 activation in the process of myocardial protection. Nuclear factor-κB (NF-κB) has emerged as a decisive transcription factor in cardiac myocyte compensatory responses to stress that enhance survival. However, the expression, activation and regulation of this signaling molecule in response to hypoxic stress have not been elucidated. We investigated 40 infants with cyanotic or acyanotic cardiac defects, as well as H9c2 embryonic rat cardiomyocytes, to examine the effect of hypoxia on the expression or activation of SOCS3, STAT3 and NF-κB in vivo and in vitro. We found an increase in endogenous cardiac SOCS3, p-STAT3 and AC-RelA activation in the myocardium of infants with cyanotic cardiac defects. In hypoxic cultivated H9c2 cells, SOCS3, STAT3 and AC-RelA activity slowly increased and then reached a stable expression. We evaluated the interaction of SOCS3 with STAT3 and NF-κB by transfecting the SOCS3 plasmid to hypoxic cultured H9c2 cells. Forced expression of SOCS3suppressed tyrosine phosphorylation of STAT3 and transcription of the C-myc and interleukin-6 genes. AC-RelA activation was also suppressed by over expression of SOCS3. These findings suggest that the mechanism of a positive transactivation loop that maintains higher levels of NF-κB and p-STAT3 and the negative feedback factor SOCS3, which maintains balanced NF-κB and p-STAT3 activities, is important in the process of myocardial adaptation to chronic hypoxia. SOCS3 is a rapid hypoxia inducible gene and acts to inhibit activation of the cellular signaling pathway in a classical negative feedback loop. Upregulated SOCS3 might play an important role in cardiocytes during chronic hypoxia as SOCS3 regulates cell signaling crosstalking between NF-κB and p-STAT3 under stressful conditions.
Collapse
Affiliation(s)
- Qiang Gu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, PR China.
| | | | | | | | | |
Collapse
|
178
|
Metlakunta AS, Sahu M, Yasukawa H, Dhillon SS, Belsham DD, Yoshimura A, Sahu A. Neuronal suppressor of cytokine signaling-3 deficiency enhances hypothalamic leptin-dependent phosphatidylinositol 3-kinase signaling. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1185-93. [PMID: 21325649 DOI: 10.1152/ajpregu.00794.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30-120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity.
Collapse
Affiliation(s)
- Anantha S Metlakunta
- Dept. of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Fukaya T, Suzuki M, Sakaguchi R, Yasukawa H, Yoshimura A. Role of SOCS proteins in inflammation and autoimmune diseases. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
180
|
Mansfield KL, Johnson N, Cosby SL, Solomon T, Fooks AR. Transcriptional upregulation of SOCS 1 and suppressors of cytokine signaling 3 mRNA in the absence of suppressors of cytokine signaling 2 mRNA after infection with West Nile virus or tick-borne encephalitis virus. Vector Borne Zoonotic Dis 2010; 10:649-53. [PMID: 20854017 DOI: 10.1089/vbz.2009.0259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Suppressors of cytokine signaling (SOCS) proteins are a family of proteins that are able to act in a classic negative feedback loop to regulate cytokine signal transduction. The regulation of the immune response by SOCS proteins may contribute to persistent infection or even a fatal outcome. In this study, we have investigated the induction of SOCS 1-3 after peripheral infection with West Nile virus (WNV) or tick-borne encephalitis virus (TBEV) in the murine model. We have shown that the cytokine response after infection of mice with WNV or TBEV induces an upregulation in the brain of mRNA transcripts for SOCS 1 and SOCS 3, but not SOCS 2. We hypothesize that SOCS proteins may play a role in limiting cytokine responses in the brain as a neuroprotective mechanism, which may actually enhance the ability of neuroinvasive viruses such as WNV and TBEV to spread and cause disease.
Collapse
Affiliation(s)
- Karen L Mansfield
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency, New Haw, Addlestone, United Kingdom
| | | | | | | | | |
Collapse
|
181
|
Yan C, Cao J, Wu M, Zhang W, Jiang T, Yoshimura A, Gao H. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein {beta} activity. J Biol Chem 2010; 285:37227-39. [PMID: 20876575 DOI: 10.1074/jbc.m110.132084] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein that inhibits cytokine signaling in numerous cell types and has been implicated in several inflammatory diseases. However, the expression and function of SOCS3 in osteoblasts are not known. In this study, we demonstrated that SOCS3 expression was transiently induced by LPS in osteoblasts, and apparently contributed to the inhibition of IL-6 induction by LPS treatment. We found that tyrosine 204 of the SOCS box, the SH2 domain, and the N-terminal kinase inhibitory region (KIR) of SOCS3 were all involved in its IL-6 inhibition. Furthermore, we demonstrated that CCAAT/enhancer-binding protein (C/EBP) β was activated by LPS (increased DNA binding activity), and played a key role in LPS-induced IL-6 expression in osteoblasts. We further provided the evidence that SOCS3 functioned as a negative regulator for LPS response in osteoblasts by suppressing C/EBPβ DNA binding activity. In addition, tyrosine 204 of the SOCS box, the SH2 domain, and the N-terminal kinase inhibitory region (KIR) of SOCS3 were all required for its C/EBPβ inhibition. These findings suggest that SOCS3 by interfering with C/EBPβ activation may have an important regulatory role during bone-associated inflammatory responses.
Collapse
Affiliation(s)
- Chunguang Yan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Hill GR, Kuns RD, Raffelt NC, Don ALJ, Olver SD, Markey KA, Wilson YA, Tocker J, Alexander WS, Clouston AD, Roberts AW, MacDonald KPA. SOCS3 regulates graft-versus-host disease. Blood 2010; 116:287-96. [PMID: 20435883 PMCID: PMC2910612 DOI: 10.1182/blood-2009-12-259598] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/14/2010] [Indexed: 12/30/2022] Open
Abstract
Suppressor of cytokine signaling-3 (SOCS3) is the main intracellular regulator of signaling by granulocyte colony-stimulating factor, an immune-modulatory cytokine used to mobilize stem cells for transplantation. We have therefore studied the contribution of SOCS3 to the spectrum of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (SCT). Grafts from SOCS3(-/Deltavav) donor mice in which SOCS3 deficiency is restricted to the hematopoietic compartment had an augmented capacity to induce acute GVHD. With the use of SOCS3(-/DeltaLysM) and SOCS3(-/Deltalck) donors in which SOCS3 deficiency was restricted to the myeloid or T-cell lineage, respectively, we confirmed SOCS3 deficiency promoted acute GVHD mortality and histopathology within the gastrointestinal tract by effects solely within the donor T cell. SOCS3(-/Deltalck) donor T cells underwent enhanced alloantigen-dependent proliferation and generation of interleukin-10 (IL-10), IL-17, and interferon-gamma (IFNgamma) after SCT. The enhanced capacity of the SOCS3(-/Deltalck) donor T cell to induce acute GVHD was dependent on IFNgamma but independent of IL-10 or IL-17. Surprisingly, SOCS3(-/Deltalck) donor T cells also induced severe, transforming growth factor beta- and IFNgamma-dependent, sclerodermatous GVHD. Thus, the delivery of small molecule SOCS3 mimetics may prove to be useful for the inhibition of both acute and chronic GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- The Queensland Institute of Medical Research, 300 Herston Rd., Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Bruel T, Guibon R, Melo S, Guillén N, Salmon H, Girard-Misguich F, Meurens F. Epithelial induction of porcine suppressor of cytokine signaling 2 (SOCS2) gene expression in response to Entamoeba histolytica. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:562-571. [PMID: 20045027 DOI: 10.1016/j.dci.2009.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/23/2009] [Accepted: 12/27/2009] [Indexed: 05/28/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are key physiological regulators of both innate and adaptive immunity. These proteins belong to the three major classes of modulators of cytokines signaling. In the following article, we used porcine polarized intestinal cells to study early response to the protozoan, Entamoeba histolytica, and we identified by rapid amplification of cDNA ends (RACE) PCR porcine SOCS1, SOCS4, SOCS5 and SOCS6 encoding sequences. With more than 92% identity predicted porcine SOCS proteins are very similar to their human counterparts. Among SOCS transcripts, only SOCS2 mRNA was significantly induced in epithelial intestinal cells in response to the cytolytic activity of the parasite. The transcriptomic profile obtained after 3h of co-culture of polarized intestinal cells with E. histolytica was clearly oriented toward inflammation and the recruitment of neutrophils. These transcriptomic data have been normalized with accuracy by the utilisation of multiple validated reference genes. The analysis offers a first set of reference genes useful for future studies in porcine intestinal cells. Our data shed light on the understanding of the early response of polarized intestinal cells to E. histolytica and identified a potential involvement of SOCS2 in the parasite regulation of the host response.
Collapse
Affiliation(s)
- Timothée Bruel
- Institut National de la Recherche Agronomique, UR1282, Infectiologie Animale et Santé Publique, Nouzilly, Tours, France
| | | | | | | | | | | | | |
Collapse
|
184
|
Fletcher TC, DiGiandomenico A, Hawiger J. Extended anti-inflammatory action of a degradation-resistant mutant of cell-penetrating suppressor of cytokine signaling 3. J Biol Chem 2010; 285:18727-36. [PMID: 20400504 DOI: 10.1074/jbc.m109.095216] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) regulates the proinflammatory cytokine signaling mediated by the JAK/STAT signaling pathway. SOCS3 is rapidly induced and then targeted to the ubiquitin-proteasome pathway via a mechanism that requires the C-terminal SOCS box. Due to its rapid turnover, the intracellular stores of SOCS3 seem insufficient to control acute or protracted inflammatory diseases. Previously, we developed an intracellular protein therapy that uses a recombinant cell-penetrating form of SOCS3 (CP-SOCS3) to inhibit the JAK/STAT pathway and prevent cytokine-mediated lethal inflammation and apoptosis of the liver (Jo, D., Liu, D., Yao, S., Collins, R. D., and Hawiger, J. (2005) Nat. Med. 11, 892-898). The potent anti-inflammatory and cytoprotective activity of CP-SOCS3 prompted us to analyze its intracellular turnover, as compared with that of endogenous SOCS3 protein induced in macrophages by the proinflammatory agonists, interferon-gamma and lipopolysaccharide. We found that the half-life (t(1/2)) of endogenous SOCS3 is 0.7 h in activated macrophages, compared with a t(1/2) of 6.2 h for recombinant CP-SOCS3. Deletion of the SOCS box in CP-SOCS3 renders it more resistant to proteasomal degradation, extending its t(1/2) to 29 h. Consequently, this SOCS box-deleted form of CP-SOCS3 displays persistent inhibitory activity for 24 h toward interferon-gamma- and lipopolysaccharide-induced cytokine and chemokine production. Compared with the wild-type suppressor, this gain-of-function CP-SOCS3 mutant provides a longer acting inhibitor of cytokine signaling, a feature that offers a clear advantage for the intracellular delivery of proteins to treat acute or protracted inflammatory diseases.
Collapse
Affiliation(s)
- Tynetta C Fletcher
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | |
Collapse
|
185
|
Huang LJ, Shen YM, Bulut GB. Advances in understanding the pathogenesis of primary familial and congenital polycythaemia. Br J Haematol 2010; 148:844-52. [PMID: 20096014 DOI: 10.1111/j.1365-2141.2009.08069.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary familial and congenital polycythemia (PFCP) is an autosomal-dominant proliferative disorder characterized by erythrocytosis and hypersensitivity of erythroid progenitors to erythropoietin (Epo). Several lines of evidence suggest a causal role of truncated erythropoietin receptor (EpoR) in this disease. In this review, we discuss PFCP in the context of erythrocytosis and EpoR signalling. We focus on recent studies describing mechanisms underlying Epo-dependent EpoR down-regulation. One mechanism depends on internalization mediated through the p85 regulatory subunit of the Phosphoinositide 3-Kinase, and the other utilizes ubiquitin-based proteasomal degradation. Truncated PFCP EpoRs are not properly down-regulated upon stimulation, underscoring the importance of these mechanisms in the pathogenesis of PFCP.
Collapse
Affiliation(s)
- Lily J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| | | | | |
Collapse
|
186
|
Knobelspies H, Zeidler J, Hekerman P, Bamberg-Lemper S, Becker W. Mechanism of attenuation of leptin signaling under chronic ligand stimulation. BMC BIOCHEMISTRY 2010; 11:2. [PMID: 20059770 PMCID: PMC2821298 DOI: 10.1186/1471-2091-11-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/08/2010] [Indexed: 01/04/2023]
Abstract
Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb) to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs). Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance). Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3) revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.
Collapse
Affiliation(s)
- Holger Knobelspies
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
187
|
do Amaral BC, Connor EE, Tao S, Hayen J, Bubolz J, Dahl GE. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domest Anim Endocrinol 2010; 38:38-45. [PMID: 19733997 DOI: 10.1016/j.domaniend.2009.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
Abstract
Heat stress perturbs prolactin (PRL) release and affects dairy cow lactational performance and immune cell function. We hypothesized that greater PRL concentration in plasma of heat-stressed cows relative to cooled cows would decrease expression of prolactin receptor (PRL-R) mRNA and increase mRNA expression of suppressors of cytokine signaling (SOCS) in lymphocytes, altering their cytokine production. To test this hypothesis, multiparous Holstein cows were dried off 46 d before their expected calving date and assigned randomly to heat stress (HT; n=9) or cooling (CL; n=7) during the entire dry period. A second study was conducted the following year with an additional 21 cows (12 HT; 9 CL). Lymphocytes were isolated from cows at -46, -20, +2, and +20 d relative to expected calving date and mRNA expression of PRL-R, SOCS-1, SOCS-2, SOCS-3, cytokine-inducible SH2-containing protein (CIS), and heat shock protein 70 KDa A5 (HSPA5), and housekeeping genes hydroxymethylbilane synthase (HMBS), ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit (ATP5B), and ribosomal protein S9 (RPS9) was analyzed by quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Cows exposed to HT had greater PRL concentration in plasma compared with CL cows. Measurement of lymphocyte proliferation indicated that lymphocytes of CL cows proliferated more than those from HT cows and exressed more PRL-R mRNA and less SOCS-1 and SOCS-3 mRNA relative to HT cows. Further, lymphocytes from CL cows produced more tumor necrosis factor-alpha (TNF-alpha) than those from HT cows. These results suggest that changes in PRL-signaling pathway genes during heat stress are associated with differential cytokine secretion by lymphocytes and may regulate lymphocyte proliferation in dairy cows.
Collapse
Affiliation(s)
- B C do Amaral
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA 32611, United States
| | | | | | | | | | | |
Collapse
|
188
|
Kiu H, Greenhalgh CJ, Thaus A, Hilton DJ, Nicola NA, Alexander WS, Roberts AW. Regulation of multiple cytokine signalling pathways by SOCS3 is independent of SOCS2. Growth Factors 2009; 27:384-93. [PMID: 19919527 PMCID: PMC3412171 DOI: 10.3109/08977190903210954] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Suppressor of cytokine signalling (SOCS) 3 is an essential regulator of cytokine signalling, and in turn its expression is tightly regulated. Data from overexpression studies in cell lines suggest that SOCS2 regulates SOCS3 protein degradation, by forming a molecular bridge to an E3 ubiquitin-ligase complex. Whether this regulation is relevant in primary cells is unknown. In this study, we utilized Socs2( - / - ) mice to examine the role of SOCS2 in modulating SOCS3 expression and degradation, and its impact on interleukin-2 (IL-2) and IL-6 signalling in primary haemopoietic cells. Both biochemical and biological analyses demonstrated unperturbed SOCS3 expression and cytokine signalling in the absence of SOCS2. Our results suggest that SOCS2 is not a physiological regulator of SOCS3 expression and action in primary haemopoietic cells.
Collapse
Affiliation(s)
- Hiu Kiu
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
189
|
Suessmuth Y, Elliott J, Percy MJ, Inami M, Attal H, Harrison CN, Inokuchi K, McMullin MF, Johnston JA. A new polycythaemia vera-associated SOCS3 SH2 mutant (SOCS3F136L) cannot regulate erythropoietin responses. Br J Haematol 2009; 147:450-8. [PMID: 19735488 PMCID: PMC2838228 DOI: 10.1111/j.1365-2141.2009.07860.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently several different JAK2 exon12 mutations have been identified in V617F negative polycythaemia vera (PV) or idiopathic erythrocytosis (IE) patients. The patients present with erythrocytosis, ligand-independent cell growth and low serum erythropoietin (EPO) levels. Within this group, a deletion of amino acids 542-543 (N542-E543del) of JAK2 is most prevalent. We have previously shown that in the presence of JAK2(V617F), suppressor of cytokine signalling 3 (SOCS3) is unable to negatively regulate EPO signalling and proliferation of V617F-expressing cells. Here we report a PV patient heterozygous for the somatic JAK2(N542-E543del) mutation and a previously unreported germline mutation within the SH2 domain of SOCS3 (F136L). Interestingly, the SOCS3(F136L) mutation was detected in a Japanese myeloproliferative disorder patient cohort at double the frequency of healthy controls. Cells expressing SOCS3(F136L) had markedly elevated EPO-induced proliferation and extended EPO-induced JAK2 phosphorylation. Additionally, compared to wild-type SOCS3, mutant SOCS3 had an extended half-life in the presence of JAK2 and JAK2(N542-E543del). Our findings suggest that this loss-of-function SOCS3 mutation may have contributed to disease onset by causing deregulated JAK2 signalling in the presence of a constitutively active JAK2(N542-E543del) mutant.
Collapse
Affiliation(s)
- Yvonne Suessmuth
- Centre for Infection and Immunity, Queen's University, Northern Ireland
| | - Joanne Elliott
- Centre for Infection and Immunity, Queen's University, Northern Ireland
| | - Melanie J. Percy
- Haematology, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Mitsuharu Inami
- Division of Haematology/Oncology, Department of Internal Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hila Attal
- Oncology Institute, Sheba Medical Centre, Ramat, Gan, Israel
| | | | - Koiti Inokuchi
- Division of Haematology/Oncology, Department of Internal Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Mary-Frances McMullin
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| | - James A. Johnston
- Centre for Infection and Immunity, Queen's University, Northern Ireland
| |
Collapse
|
190
|
Starr R, Fuchsberger M, Lau LS, Uldrich AP, Goradia A, Willson TA, Verhagen AM, Alexander WS, Smyth MJ. SOCS-1 binding to tyrosine 441 of IFN-gamma receptor subunit 1 contributes to the attenuation of IFN-gamma signaling in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:4537-44. [PMID: 19734231 DOI: 10.4049/jimmunol.0901010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Suppressor of cytokine signaling (SOCS)-1 is a critical inhibitor of IFN-gamma signal transduction in vivo, but the precise biochemical mechanism of action of SOCS-1 is unclear. Studies in vitro have shown that SOCS-1 binds to Jaks and inhibits their catalytic activity, but recent studies indicate SOCS-1 may act in a similar manner to SOCS-3 by firstly interacting with cytokine receptors and then inhibiting Jak activity. Here, we have generated mice, termed Ifngr1(441F), in which a putative SOCS-1 binding site, tyrosine 441 (Y441), on the IFN-gamma receptor subunit 1 (IFNGR1) is mutated. We confirm that SOCS-1 binds to IFNGR1 in wild-type but not mutant cells. Mutation of Y441 results in impaired negative regulation of IFN-gamma signaling. IFN-gamma-induced STAT1 activation is prolonged in Ifngr1(441F) cells, but not to the extent seen in cells completely lacking SOCS-1, suggesting that SOCS-1 maintains activity to modulate IFN-gamma signaling via other mechanisms. Despite this, we show that hypersensitivity to IFN-gamma results in enhanced innate tumor protection in Ifngr1(441F) mice in vivo, and unregulated expression of an IFN-gamma-dependent chemokine, monokine-induced by IFN-gamma. Collectively, these data indicate that Y441 contributes to the regulation of signaling through IFNGR1 via the recruitment of SOCS-1 to the receptor.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Gene Knock-In Techniques
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Subunits/deficiency
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Suppressor of Cytokine Signaling 1 Protein
- Suppressor of Cytokine Signaling Proteins/deficiency
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Tyrosine/genetics
- Tyrosine/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Robyn Starr
- Signal Transduction Laboratory, St Vincent's Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Fushimi S, Ogino T, Hara J, Takahata T, Wakabayashi H, Watanabe H, Arashima Y, Kubo M, Matsukawa A. Forced expression of suppressor of cytokine signaling 3 in T cells protects the development of concanavalin A-induced hepatitis in mice. Clin Immunol 2009; 133:437-46. [PMID: 19766538 DOI: 10.1016/j.clim.2009.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/22/2009] [Accepted: 08/27/2009] [Indexed: 01/09/2023]
Abstract
T cells play central roles in liver diseases, but the regulatory mechanism by cytokine signaling is not well understood. In the present study, we explored the role of SOCS3 in T cells in concanavalin A (ConA)-induced hepatitis. Mice with T-cell-specific overexpression of SOCS3 (SOCS3-cTg) showed reduced hepatic damage and improved mice survival relative to the control, an event that was associated with decreased apoptotic signals Fas and pStat1. Expression of Th1-cytokines/chemokines was decreased in SOCS3-cTg liver with reduced expression of T-bet, a Th1-transcription factor. Flow cytometric analysis of the liver lymphocytes demonstrated that activated CD4(+) T cells, cytotoxic T cells and natural killer T cells were significantly decreased in SOCS3-cTg liver with decreased expression of perforin and granzyme B, injurious molecules for hepatocyte damage. These results suggest that forced expression of SOCS3 in T cells prevents ConA-induced liver injury by inhibiting several phases of Th1 responses.
Collapse
Affiliation(s)
- Soichiro Fushimi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Down-regulation of Suppressor of Cytokine Signaling-3 Causes Prostate Cancer Cell Death through Activation of the Extrinsic and Intrinsic Apoptosis Pathways. Cancer Res 2009; 69:7375-84. [DOI: 10.1158/0008-5472.can-09-0806] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
193
|
Oh YM, Kim JK, Choi Y, Choi S, Yoo JY. Prediction and experimental validation of novel STAT3 target genes in human cancer cells. PLoS One 2009; 4:e6911. [PMID: 19730699 PMCID: PMC2731854 DOI: 10.1371/journal.pone.0006911] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 08/03/2009] [Indexed: 11/23/2022] Open
Abstract
The comprehensive identification of functional transcription factor binding sites (TFBSs) is an important step in understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach, STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner, which was designed to predict functional STAT TFBSs with improved sensitivity, and a motif-based alignment to minimize false positive prediction rates. Using two reference sets containing promoter sequences of known STAT3 target genes, STAT-Finder identified functional STAT3 TFBSs with enhanced prediction efficiency and sensitivity relative to other conventional TFBS prediction tools. In addition, STAT-Finder identified novel STAT3 target genes among a group of genes that are over-expressed in human cancer cells. The binding of STAT3 to the predicted TFBSs was also experimentally confirmed through chromatin immunoprecipitation. Our proposed method provides a systematic approach to the prediction of functional TFBSs that can be applied to other TFs.
Collapse
Affiliation(s)
- Young Min Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong Kyoung Kim
- Department of Computer Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yongwook Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seungjin Choi
- Department of Computer Science, Pohang University of Science and Technology, Pohang, Republic of Korea
- * E-mail: (JY); (SC)
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- * E-mail: (JY); (SC)
| |
Collapse
|
194
|
Herrmann JL, Markel TA, Abarbanell AM, Weil BR, Wang M, Wang Y, Tan J, Meldrum DR. Proinflammatory stem cell signaling in cardiac ischemia. Antioxid Redox Signal 2009; 11:1883-96. [PMID: 19187005 PMCID: PMC2872207 DOI: 10.1089/ars.2009.2434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell-based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways.
Collapse
Affiliation(s)
- Jeremy L Herrmann
- Clarian Cardiovascular Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Folco EJ, Rocha VZ, López-Ilasaca M, Libby P. Adiponectin inhibits pro-inflammatory signaling in human macrophages independent of interleukin-10. J Biol Chem 2009; 284:25569-75. [PMID: 19617629 DOI: 10.1074/jbc.m109.019786] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages participate pivotally in the pathogenesis of many chronic inflammatory diseases including atherosclerosis. Adiponectin, a vasculoprotective molecule with insulin-sensitizing and anti-atherogenic properties, suppresses pro-inflammatory gene expression in macrophages by mechanisms that remain incompletely understood. This study investigated the effects of adiponectin on major pro-inflammatory signaling pathways in human macrophages. We demonstrate that pretreatment of these cells with adiponectin inhibits phosphorylation of nuclear factor kappaB inhibitor (IkappaB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK), induced by either lipopolysaccharide (LPS) or tumor necrosis factor (TNF) alpha, as well as STAT3 phosphorylation induced by interleukin-6 (IL6). Antagonism of IL10 by either neutralizing antibodies or siRNA-mediated silencing did not abrogate the anti-inflammatory actions of adiponectin, indicating that the ability of adiponectin to render human macrophages tolerant to various pro-inflammatory stimuli does not require this cytokine. A systematic search for adiponectin-inducible genes with established anti-inflammatory properties revealed that adiponectin augmented the expression of A20, suppressor of cytokine signaling (SOCS) 3, B-cell CLL/lymphoma (BCL) 3, TNF receptor-associated factor (TRAF) 1, and TNFAIP3-interacting protein (TNIP) 3. These results suggest that adiponectin triggers a multifaceted response in human macrophages by inducing the expression of various anti-inflammatory proteins that act at different levels in concert to suppress macrophage activation.
Collapse
Affiliation(s)
- Eduardo J Folco
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
196
|
SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene 2009; 28:3069-80. [PMID: 19543316 DOI: 10.1038/onc.2009.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, mutations in the gene of Janus kinase 2 (Jak2) were discovered in patients suffering from chronic myeloproliferative disorders (MPD) and leukemia. As suppressors of cytokine signaling (SOCS) proteins are potent feedback inhibitors of Jak-mediated signaling, we investigated their role in signal transduction through constitutively active Jak2 mutants. We selected two mutants, Jak2-V617F and Jak2-K539L, found in patients with MPDs and Jak2-T875N identified in acute megakaryoblastic leukemia. We found SOCS family members to be induced through Jak2-V617F in human leukemia cell lines expressing the mutant allele and in stable HEK transfectants inducibly expressing constitutively active Jak2 mutants. SOCS proteins were recruited to the membrane and bound to the constitutively active Jaks. In contrast to wild-type Jak2, the mutant proteins were constitutively ubiquitinated and degraded through the proteasome. Taken together, we show a SOCS-mediated downregulation of the constitutively active, disease-associated mutant Jak2 proteins. Furthermore, a threshold level of mutant Jak expression has to be overcome to allow full cytokine-independent constitutive activation of signaling proteins, which may explain progression to homozygocity in MPDs as well as gene amplification in severe phenotypes and leukemia.
Collapse
|
197
|
Haan C, Kroy DC, Wüller S, Sommer U, Nöcker T, Rolvering C, Behrmann I, Heinrich PC, Haan S. An unusual insertion in Jak2 is crucial for kinase activity and differentially affects cytokine responses. THE JOURNAL OF IMMUNOLOGY 2009; 182:2969-77. [PMID: 19234192 DOI: 10.4049/jimmunol.0800572] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Janus kinases, Jaks, constitutively associate with the cytoplasmic region of cytokine receptors and play an important role in a multitude of biological processes. Jak2 dysfunction has been implicated in myeloproliferative diseases and leukemia. Although Jaks were studied extensively for many years, the molecular mechanism of Jak activation upon cytokine stimulation of cells is still incompletely understood. In this study, we investigated the importance of an unusual insertion located within the kinase domain in Jak2. We found that the deletion of this insertion, which we named the Jak-specific insertion (JSI), totally abrogates Jak2 autophosphorylation. We further point mutated four residues within the JSI that are conserved in all Jak family members. Three of these mutants showed abrogated or reduced autophosphorylation, whereas the fourth displayed increased autophosphorylation. We found that the phosphorylation state of these mutants is not influenced by other domains of the kinase. Our data further suggest that the JSI is not required for the negative regulation of kinase activity by the suppressor of cytokine signaling proteins, SOCS. Most importantly, we show that mutations in this region differentially affect IFN-gamma and erythropoietin signal transduction. Taken together, the dramatic effects on the phosphorylation status of Jak2 as well as the differential effects on the signaling via different cytokines highlight the importance of this unusual region for the catalytic activity of Jaks.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Barclay JL, Anderson ST, Waters MJ, Curlewis JD. SOCS3 as a tumor suppressor in breast cancer cells, and its regulation by PRL. Int J Cancer 2009; 124:1756-66. [DOI: 10.1002/ijc.24172] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
199
|
Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Inflammation and liver cancer: new molecular links . Ann N Y Acad Sci 2009; 1155:206-21. [PMID: 19250206 DOI: 10.1111/j.1749-6632.2009.03704.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A connection between inflammation and cancer has been long suspected. Epidemiological studies have established that many tumors occur in association with chronic infectious diseases, and it is also known that persistent inflammation in the absence of infections increases the risk and accelerates the development of cancer. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC is a type tumor that slowly unfolds on a background of chronic inflammation mainly triggered by exposure to infectious agents (hepatotropic viruses) or to toxic compounds (ethanol). The molecular links that connect inflammation and cancer are not completely known, but evidences gathered over the past few years are beginning to define the precise mechanisms. In this article we review the most compelling evidences on the role of transcription factors such as NF-kappaB and STAT3, cytokines like IL-6 and IL-1alpha, ligands of the EGF receptor and other inflammatory mediators in cancer development, with special emphasis in HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will pave the way for better therapies to treat cancers.
Collapse
Affiliation(s)
- C Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
200
|
Babon JJ, Sabo JK, Zhang JG, Nicola NA, Norton RS. The SOCS box encodes a hierarchy of affinities for Cullin5: implications for ubiquitin ligase formation and cytokine signalling suppression. J Mol Biol 2009; 387:162-74. [PMID: 19385048 PMCID: PMC2720833 DOI: 10.1016/j.jmb.2009.01.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The SOCS (suppressors of cytokine signalling) family of proteins inhibits the cytokine-induced signalling cascade in part by promoting the ubiquitination of signalling intermediates that are then targeted for proteasomal degradation. This activity relies upon an interaction between the SOCS box domain, the adapter complex elonginBC and a member of the Cullin family, the scaffold protein of an E3 ubiquitin ligase. In this study, we dissected this interaction in vitro using purified components.We found that all eight SOCS proteins bound Cullin5 but required prior recruitment of elonginBC. Neither SOCS nor elonginBC bound Cullin5 when in isolation. Interestingly, the affinity of each SOCS-elonginBC complex for Cullin5 varied by 2 orders of magnitude across the SOCS family. Unexpectedly, the most potent suppressors of signalling, SOCS-1 and SOCS-3, bound most weakly to the E3 ligase scaffold, with affinities 100- and 10-fold lower, respectively, than the rest of the family. The remaining six SOCS proteins all bound Cullin5 with high affinity (K(d) of ~10 nM) due to a slower off-rate and hence a longer halflife of the complex. This difference in affinity may reflect a difference in mode of action as only SOCS-1 and SOCS-3 have been shown to suppress signalling using both SOCS box-dependent and SOCS box-independent mechanisms. This is not the case with the other six SOCS proteins, and our data imply the existence of two distinct subclasses of SOCS proteins with a high affinity for Cullin5, the E3 ligase scaffold, possibly reflecting complete dependence upon ubiquitination for suppression of cytokine signalling.
Collapse
Affiliation(s)
- Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|