151
|
Aβ40 Reduces P-Glycoprotein at the Blood-Brain Barrier through the Ubiquitin-Proteasome Pathway. J Neurosci 2016; 36:1930-41. [PMID: 26865616 DOI: 10.1523/jneurosci.0350-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Failure to clear amyloid-β (Aβ) from the brain is in part responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood-brain barrier is the efflux transporter P-glycoprotein (P-gp) in the luminal plasma membrane of the brain capillary endothelium. P-gp is reduced at the blood-brain barrier in AD, which has been shown to be associated with Aβ brain accumulation. However, the mechanism responsible for P-gp reduction in AD is not well understood. Here we focused on identifying critical mechanistic steps involved in reducing P-gp in AD. We exposed isolated rat brain capillaries to 100 nm Aβ40, Aβ40, aggregated Aβ40, and Aβ42. We observed that only Aβ40 triggered reduction of P-gp protein expression and transport activity levels; this occurred in a dose- and time-dependent manner. To identify the steps involved in Aβ-mediated P-gp reduction, we inhibited protein ubiquitination, protein trafficking, and the ubiquitin-proteasome system, and monitored P-gp protein expression, transport activity, and P-gp-ubiquitin levels. Thus, exposing brain capillaries to Aβ40 triggers ubiquitination, internalization, and proteasomal degradation of P-gp. These findings may provide potential therapeutic targets within the blood-brain barrier to limit P-gp degradation in AD and improve Aβ brain clearance. SIGNIFICANCE STATEMENT The mechanism reducing blood-brain barrier P-glycoprotein (P-gp) in Alzheimer's disease is poorly understood. In the present study, we focused on defining this mechanism. We demonstrate that Aβ40 drives P-gp ubiquitination, internalization, and proteasome-dependent degradation, reducing P-gp protein expression and transport activity in isolated brain capillaries. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit P-gp degradation in Alzheimer's disease and improve Aβ brain clearance.
Collapse
|
152
|
Chen X, Petranovic D. Role of frameshift ubiquitin B protein in Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:300-13. [DOI: 10.1002/wsbm.1340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Chen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
| | - Dina Petranovic
- Systems and Synthetic Biology, Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Göteborg Sweden
| |
Collapse
|
153
|
Johnston-Carey HK, Pomatto LCD, Davies KJA. The Immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol 2016; 51:268-81. [PMID: 27098648 DOI: 10.3109/10409238.2016.1172554] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Immunoproteasome has traditionally been viewed primarily for its role in peptide production for antigen presentation by the major histocompatibility complex, which is critical for immunity. However, recent research has shown that the Immunoproteasome is also very important for the clearance of oxidatively damaged proteins in homeostasis, and especially during stress and disease. The importance of the Immunoproteasome in protein degradation has become more evident as diseases characterized by protein aggregates have also been linked to deficiencies of the Immunoproteasome. Additionally, there are now diseases defined by mutations or polymorphisms within Immunoproteasome-specific subunit genes, further suggesting its crucial role in cytokine signaling and protein homeostasis (or "proteostasis"). The purpose of this review is to highlight our growing understanding of the importance of the Immunoproteasome in the management of protein quality control, and the detrimental impact of its dysregulation during disease and aging.
Collapse
Affiliation(s)
- Helen K Johnston-Carey
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Laura C D Pomatto
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Kelvin J A Davies
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA ;,b Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences , Los Angeles , CA , USA
| |
Collapse
|
154
|
Guo JL, Buist A, Soares A, Callaerts K, Calafate S, Stevenaert F, Daniels JP, Zoll BE, Crowe A, Brunden KR, Moechars D, Lee VMY. The Dynamics and Turnover of Tau Aggregates in Cultured Cells: INSIGHTS INTO THERAPIES FOR TAUOPATHIES. J Biol Chem 2016; 291:13175-93. [PMID: 27129267 DOI: 10.1074/jbc.m115.712083] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
Filamentous tau aggregates, the hallmark lesions of Alzheimer disease (AD), play key roles in neurodegeneration. Activation of protein degradation systems has been proposed to be a potential strategy for removing pathological tau, but it remains unclear how effectively tau aggregates can be degraded by these systems. By applying our previously established cellular model system of AD-like tau aggregate induction using preformed tau fibrils, we demonstrate that tau aggregates induced in cells with regulated expression of full-length mutant tau can be gradually cleared when soluble tau expression is suppressed. This clearance is at least partially mediated by the autophagy-lysosome pathway, although both the ubiquitin-proteasome system and the autophagy-lysosome pathway are deficient in handling large tau aggregates. Importantly, residual tau aggregates left after the clearance phase leads to a rapid reinstatement of robust tau pathology once soluble tau expression is turned on again. Moreover, we succeeded in generating monoclonal cells persistently carrying tau aggregates without obvious cytotoxicity. Live imaging of GFP-tagged tau aggregates showed that tau inclusions are dynamic structures constantly undergoing "fission" and "fusion," which facilitate stable propagation of tau pathology in dividing cells. These findings provide a greater understanding of cell-to-cell transmission of tau aggregates in dividing cells and possibly neurons.
Collapse
Affiliation(s)
- Jing L Guo
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Arjan Buist
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Alberto Soares
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kathleen Callaerts
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Sara Calafate
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Frederik Stevenaert
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Joshua P Daniels
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Bryan E Zoll
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Alex Crowe
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Kurt R Brunden
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| | - Diederik Moechars
- the Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Virginia M Y Lee
- From the Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
155
|
Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun 2016; 7:10963. [PMID: 26957043 PMCID: PMC4786872 DOI: 10.1038/ncomms10963] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/04/2016] [Indexed: 12/20/2022] Open
Abstract
When in the closed form, the substrate translocation channel of the proteasome core
particle (CP) is blocked by the convergent N termini of α-subunits. To
probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal
tail of α3; the resulting α3ΔN proteasomes are intact
but hyperactive in the hydrolysis of fluorogenic peptide substrates and the
degradation of polyubiquitinated proteins. Cells expressing the hyperactive
proteasomes show markedly elevated degradation of many established proteasome
substrates and resistance to oxidative stress. Multiplexed quantitative proteomics
revealed ∼200 proteins with reduced levels in the mutant cells. Potentially
toxic proteins such as tau exhibit reduced accumulation and aggregate formation.
These data demonstrate that the CP gate is a key negative regulator of proteasome
function in mammals, and that opening the CP gate may be an effective strategy to
increase proteasome activity and reduce levels of toxic proteins in cells. The proteasome plays a key role in proteostasis by mediating the
degradation of ubiquitinated substrates. Here the authors show that an open-gate mutant
of the proteasome is hyperactive towards a subset of substrates and can effectively
delay the accumulation of toxic protein aggregates.
Collapse
|
156
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
157
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
158
|
Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 2015; 22:46-53. [PMID: 26692334 DOI: 10.1038/nm.4011] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) degrades misfolded proteins including those implicated in neurodegenerative diseases. We investigated the effects of tau accumulation on proteasome function in a mouse model of tauopathy and in a cross to a UPS reporter mouse (line Ub-G76V-GFP). Accumulation of insoluble tau was associated with a decrease in the peptidase activity of brain 26S proteasomes, higher levels of ubiquitinated proteins and undegraded Ub-G76V-GFP. 26S proteasomes from mice with tauopathy were physically associated with tau and were less active in hydrolyzing ubiquitinated proteins, small peptides and ATP. 26S proteasomes from normal mice incubated with recombinant oligomers or fibrils also showed lower hydrolyzing capacity in the same assays, implicating tau as a proteotoxin. Administration of an agent that activates cAMP-protein kinase A (PKA) signaling led to attenuation of proteasome dysfunction, probably through proteasome subunit phosphorylation. In vivo, this led to lower levels of aggregated tau and improvements in cognitive performance.
Collapse
|
159
|
Zare-Shahabadi A, Masliah E, Johnson GVW, Rezaei N. Autophagy in Alzheimer's disease. Rev Neurosci 2015; 26:385-95. [PMID: 25870960 DOI: 10.1515/revneuro-2014-0076] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
Autophagy is a vesicle and lysosome-mediated degradative pathway that is essential for protein homeostasis and cell health. In particular, compared to nonneuronal cells, neurons are dependent on high basal autophagy for survival. There is emerging agreement that defects in autophagy are likely to contribute to the neurodegenerative processes in numerous diseases, including Alzheimer's disease (AD). Autophagy-lysosome defects occur early in the pathogenesis of AD and have been proposed to be a significant contributor to the disease process. Given the fact that autophagy deficits are likely major contributors to the etiology of AD, the focus of this review will be on recent studies that support a role for autophagy deficits in AD.
Collapse
|
160
|
Wong H, Levenga J, Cain P, Rothermel B, Klann E, Hoeffer C. RCAN1 overexpression promotes age-dependent mitochondrial dysregulation related to neurodegeneration in Alzheimer's disease. Acta Neuropathol 2015; 130:829-43. [PMID: 26497675 DOI: 10.1007/s00401-015-1499-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Aging is the largest risk factor for Alzheimer's disease (AD). Patients with Down syndrome (DS) develop symptoms consistent with early-onset AD, suggesting that overexpression of chromosome 21 genes such as Regulator of Calcineurin 1 (RCAN1) plays a role in AD pathogenesis. RCAN1 levels are increased in the brain of DS and AD patients but also in the human brain with normal aging. RCAN1 has been implicated in several neuronal functions, but whether its increased expression is correlative or causal in the aging-related progression of AD remains elusive. We show that brain-specific overexpression of the human RCAN1.1S isoform in mice promotes early age-dependent memory and synaptic plasticity deficits, tau pathology, and dysregulation of dynamin-related protein 1 (DRP1) activity associated with mitochondrial dysfunction and oxidative stress, reproducing key AD features. Based on these findings, we propose that chronic RCAN1 overexpression during aging alters DRP1-mediated mitochondrial fission and thus acts to promote AD-related progressive neurodegeneration.
Collapse
Affiliation(s)
- Helen Wong
- Center for Neural Science, New York University, New York, NY, USA
| | - Josien Levenga
- Department of Integrated of Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Peter Cain
- Department of Integrated of Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Beverly Rothermel
- Department of Cardiology, University of Texas-Southwestern, Dallas, TX, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| | - Charles Hoeffer
- Department of Integrated of Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
- New York University School of Medicine, New York, NY, USA.
- Linda Crnic Institute, Denver, CO, USA.
| |
Collapse
|
161
|
Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory. Mol Neurobiol 2015; 53:6228-6239. [DOI: 10.1007/s12035-015-9514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
|
162
|
Wegmann S, Maury EA, Kirk MJ, Saqran L, Roe A, DeVos SL, Nicholls S, Fan Z, Takeda S, Cagsal-Getkin O, William CM, Spires-Jones TL, Pitstick R, Carlson GA, Pooler AM, Hyman BT. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J 2015; 34:3028-41. [PMID: 26538322 DOI: 10.15252/embj.201592748] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau-overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eduardo A Maury
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Molly J Kirk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lubna Saqran
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Allyson Roe
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sarah L DeVos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Samantha Nicholls
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shuko Takeda
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ozge Cagsal-Getkin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Christopher M William
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems and Euan MacDonald Centre, University of Edinburgh, Edinburgh, UK
| | | | | | - Amy M Pooler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
163
|
Deger JM, Gerson JE, Kayed R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 2015; 14:715-24. [PMID: 26053162 PMCID: PMC4568959 DOI: 10.1111/acel.12359] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins-oligomers-appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.
Collapse
Affiliation(s)
- Jennifer M. Deger
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Julia E. Gerson
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| |
Collapse
|
164
|
Abstract
Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. Proteins undergo reversible and irreversible redox modifications. Oxidized proteins are cleared mainly through the 20S proteasome and autophagy. The proteolytic systems exhibit a dynamic crosstalk to adapt to redox alterations. Protein oxidation together with impaired degradation are linked to neurodegeneration.
Collapse
|
165
|
Gentier RJ, van Leeuwen FW. Misframed ubiquitin and impaired protein quality control: an early event in Alzheimer's disease. Front Mol Neurosci 2015; 8:47. [PMID: 26388726 PMCID: PMC4557111 DOI: 10.3389/fnmol.2015.00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) plaque formation is a prominent cellular hallmark of Alzheimer's disease (AD). To date, immunization trials in AD patients have not been effective in terms of curing or ameliorating dementia. In addition, γ-secretase inhibitor strategies await clinical improvements in AD. These approaches were based upon the idea that autosomal dominant mutations in amyloid precursor protein (APP) and Presenilin 1 (PS1) genes are predictive for treatment of all AD patients. However most AD patients are of the sporadic form which partly explains the failures to treat this multifactorial disease. The major risk factor for developing sporadic AD (SAD) is aging whereas the Apolipoprotein E polymorphism (ε4 variant) is the most prominent genetic risk factor. Other medium-risk factors such as triggering receptor expressed on myeloid cells 2 (TREM2) and nine low risk factors from Genome Wide Association Studies (GWAS) were associated with AD. Recently, pooled GWAS studies identified protein ubiquitination as one of the key modulators of AD. In addition, a brain site specific strategy was used to compare the proteomes of AD patients by an Ingenuity Pathway Analysis. This strategy revealed numerous proteins that strongly interact with ubiquitin (UBB) signaling, and pointing to a dysfunctional ubiquitin proteasome system (UPS) as a causal factor in AD. We reported that DNA-RNA sequence differences in several genes including ubiquitin do occur in AD, the resulting misframed protein of which accumulates in the neurofibrillary tangles (NFTs). This suggests again a functional link between neurodegeneration of the AD type and loss of protein quality control by the UPS. Progress in this field is discussed and modulating the activity of the UPS opens an attractive avenue of research towards slowing down the development of AD and ameliorating its effects by discovering prime targets for AD therapeutics.
Collapse
Affiliation(s)
- Romina J. Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastricht, Netherlands
| | - Fred W. van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastricht, Netherlands
| |
Collapse
|
166
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
167
|
Quarles EK, Dai DF, Tocchi A, Basisty N, Gitari L, Rabinovitch PS. Quality control systems in cardiac aging. Ageing Res Rev 2015; 23:101-15. [PMID: 25702865 PMCID: PMC4686341 DOI: 10.1016/j.arr.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. These degenerative changes are intimately associated with quality control mechanisms. This review provides a general overview of the clinical and cellular changes which manifest in cardiac aging, and the quality control mechanisms involved in maintaining homeostasis and retarding aging. These mechanisms include autophagy, ubiquitin-mediated turnover, apoptosis, mitochondrial quality control and cardiac matrix homeostasis. Finally, we discuss aging interventions that have been observed to impact cardiac health outcomes. These include caloric restriction, rapamycin, resveratrol, GDF11, mitochondrial antioxidants and cardiolipin-targeted therapeutics. A greater understanding of the quality control mechanisms that promote cardiac homeostasis will help to understand the benefits of these interventions, and hopefully lead to further improved therapeutic modalities.
Collapse
Affiliation(s)
- Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Dao-Fu Dai
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| |
Collapse
|
168
|
Rao G, Croft B, Teng C, Awasthi V. Ubiquitin-Proteasome System in Neurodegenerative Disorders. JOURNAL OF DRUG METABOLISM & TOXICOLOGY 2015; 6:187. [PMID: 30761219 PMCID: PMC6370320 DOI: 10.4172/2157-7609.1000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer's and Parkinson's. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in neurodegenerative disorders and potential utility of proteasomal modulation therein.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Brandon Croft
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Chengwen Teng
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
169
|
LRRK2 Promotes Tau Accumulation, Aggregation and Release. Mol Neurobiol 2015; 53:3124-3135. [PMID: 26014385 DOI: 10.1007/s12035-015-9209-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 01/09/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are known as the most frequent cause of familial Parkinson's disease (PD), but are also present in sporadic cases. The G2019S-LRRK2 mutation is located in the kinase domain of the protein, and has consistently been reported to promote a gain of kinase function. Several proteins have been reported as LRRK2 substrates and/or interactors, suggesting possible pathways involved in neurodegeneration in PD. Hyperphosphorylated Tau protein accumulates in neurofibrillary tangles, a typical pathological hallmark in Alzheimer's disease and frontotemporal dementia. In addition, it is also frequently found in the brains of PD patients. Although LRRK2 is a kinase, it appears that a putative interaction with Tau is phosphorylation-independent. However, the underlying mechanisms and the cellular consequences of this interaction are still unclear. In this study, we demonstrate an interaction between LRRK2 and Tau and that LRRK2 promotes the accumulation of non-monomeric and high-molecular weight (HMW) Tau species independent of its kinase activity. Interestingly, we found that LRRK2 increases Tau secretion, possibly as a consequence of an impairment of Tau proteasomal degradation. Our data highlight a mechanism through which LRRK2 regulates intracellular Tau levels, contributing to the progression of the pathology caused by the LRRK2-mediated proteasome impairment. In total, our findings suggest that the interplay between LRRK2 and proteasome activity might constitute a valid target for therapeutic intervention in PD.
Collapse
|
170
|
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res 2015; 7:376-85. [PMID: 25774178 PMCID: PMC4350122 DOI: 10.3969/j.issn.1673-5374.2012.05.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/22/2011] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2−) and hydroxyl radical (OH−), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| | - Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| |
Collapse
|
171
|
Abstract
The introduction of combined antiretroviral therapy (cART) has dramatically reduced the risk of central nervous system opportunistic infection and severe dementia secondary to HIV infection in the last two decades. However, a milder form of HIV-associated neurocognitive disorder (HAND) remains prevalent in the cART era and has a significant impact on patients' quality of life. In this review, we outline updated research findings on investigating and monitoring cognitive impairment in HAND patients. The outcomes of recent research on the pathogenesis of HAND and how it overlaps with neurodegenerative diseases are discussed. Lastly, there is a brief discussion of the results of clinical trials using a brain-penetrating cART regimen.
Collapse
|
172
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
173
|
The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol 2015; 53:905-931. [PMID: 25561438 DOI: 10.1007/s12035-014-9063-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer's disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
Collapse
|
174
|
Saez I, Vilchez D. Protein clearance mechanisms and their demise in age-related neurodegenerative diseases. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
175
|
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, Pappolla MA, Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr Alzheimer Res 2015; 12:32-46. [PMID: 25523424 PMCID: PMC4820400 DOI: 10.2174/1567205012666141218140953] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
Abstract
Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| |
Collapse
|
176
|
Cárdenas-Aguayo MDC, Gómez-Virgilio L, DeRosa S, Meraz-Ríos MA. The role of tau oligomers in the onset of Alzheimer's disease neuropathology. ACS Chem Neurosci 2014; 5:1178-91. [PMID: 25268947 DOI: 10.1021/cn500148z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Most neurodegenerative diseases are characterized by the presence of protein aggregates. Alzheimer's disease (AD) is the most common cause of dementia in people over age 60. One of the histopathological hallmarks of AD is the presence of tau protein aggregates. Historically, it has been thought that paired helical filaments (PHFs) were the toxic form of tau that assembled to form neurofibrillary tangles (NFTs), but recently there has been evidence that tau oligomers, which form before PHFs and NFTs, could be the structures mediating neurodegeneration even before the fibrillary tau is deposited. Here, we discuss the recent advances in tau oligomer research, their implications on AD and other tauopathies, the mechanisms of tau turnover by the principal protein clearance systems (the proteasome and autophagy), and the potential use of tau oligomers as drug targets for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- María del Carmen Cárdenas-Aguayo
- Molecular
Biomedicine Department, CINVESTAV-IPN, Ave. Politécnico 2508, Colonia
San Pedro Zacatenco, México City, D.F. 07360, México
| | - Laura Gómez-Virgilio
- Molecular
Biomedicine Department, CINVESTAV-IPN, Ave. Politécnico 2508, Colonia
San Pedro Zacatenco, México City, D.F. 07360, México
| | - Steven DeRosa
- Center
for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, New York 10962, United States
| | - Marco Antonio Meraz-Ríos
- Molecular
Biomedicine Department, CINVESTAV-IPN, Ave. Politécnico 2508, Colonia
San Pedro Zacatenco, México City, D.F. 07360, México
| |
Collapse
|
177
|
Abstract
SIGNIFICANCE Impairment of the ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of a wide variety of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. The most significant risk factor for the development of these disorders is aging, which is associated with a progressive decline in UPS activity and the accumulation of oxidatively modified proteins. To date, no therapies have been developed that can specifically up-regulate this system. RECENT ADVANCES In the neurodegenerative brain, dysfunction of the UPS has been associated with the deposition of ubiquitinated protein aggregates and widespread disruption of the proteostasis network. Recent research has identified further evidence of impairment in substrate ubiquitination and proteasomal degradation, which could contribute to the loss of cellular proteostasis in neurodegenerative disease. Novel strategies for activation of the UPS by genetic manipulation and treatment with synthetic compounds have also recently been identified. CRITICAL ISSUES Here, we discuss the specific roles of the UPS in the healthy central nervous system and establish how dysfunctional components can contribute to neurotoxicity in the context of disease. FUTURE DIRECTIONS Knowledge of the UPS components that are specifically or preferentially involved in neurodegenerative disease will be critical in the development of targeted therapies which aim at limiting the accumulation of misfolded proteins without gross disturbance of this major proteolytic pathway.
Collapse
Affiliation(s)
- Chris McKinnon
- Department of Neurodegenerative Disease, University College London Institute of Neurology , London, United Kingdom
| | | |
Collapse
|
178
|
Phosphoproteomic profiling of selenate-treated Alzheimer's disease model cells. PLoS One 2014; 9:e113307. [PMID: 25485856 PMCID: PMC4259334 DOI: 10.1371/journal.pone.0113307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022] Open
Abstract
The reversible phosphorylation of proteins regulates most biological processes, while abnormal phosphorylation is a cause or consequence of many diseases including Alzheimer's disease (AD). One of the hallmarks of AD is the formation of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau proteins. Sodium selenate has been recently found to reduce tau hyperphosphorylation and NFTs formation, and to improve spatial learning and motor performance in AD mice. In the current study, the phosphoproteomics of N2aSW cells treated with selenate were investigated. To avoid missing low-abundance phosphoproteins, both the total proteins of cells and the phosphor-enriched proteins were extracted and subjected to the two-dimensional gel electrophoresis with Pro-Q diamond staining and then LC-MS/MS analysis. A total of 65 proteins were altered in phosphorylation level, of which 39 were up-regulated and 26 were down-regulated. All identified phosphoproteins were bioinformatically annotated according to their physiochemical features, subcellular location, and biological function. Most of these significantly changed phosphoproteins are involved in crucial neural processes such as protesome activity, oxidative stress, cysteine and methionine metabolism, and energy metabolism. Furthermore, decreases were found in homocysteine, phosphor-tau and amyloid β upon selenate treatment. Our results suggest that selenate may intervene in the pathological process of AD by altering the phosphorylation of some key proteins involved in oxidative stress, energy metabolism and protein degradation, thus play important roles in maintaining redox homeostasis, generating ATP, and clearing misfolded proteins and aggregates. The present paper provides some new clues to the mechanism of selenate in AD prevention.
Collapse
|
179
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
180
|
Zheng C, Geetha T, Babu JR. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. NEURODEGENER DIS 2014; 14:161-75. [PMID: 25413678 DOI: 10.1159/000367694] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is the primary proteolytic quality control system in cells and has an essential function in the nervous system. UPS dysfunction has been linked to neurodegenerative conditions, including Alzheimer's, Parkinson's and Huntington's diseases. The pathology of neurodegenerative diseases is characterized by the abnormal accumulation of insoluble protein aggregates or inclusion bodies within neurons. The failure or dysregulation of the UPS prevents the degradation of misfolded/aberrant proteins, leading to deficient synaptic function that eventually affects the nervous system. In this review, we discuss the UPS and its physiological roles in the nervous system, its influence on neuronal function, and how UPS dysfunction contributes to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Ala., USA
| | | | | |
Collapse
|
181
|
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-53. [PMID: 25375928 DOI: 10.1038/nm.3739] [Citation(s) in RCA: 828] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.
Collapse
Affiliation(s)
- Doris Popovic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA
| | - Ivan Dikic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [3] Department of Immunology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
182
|
D'Alton S, Lewis J. Therapeutic and diagnostic challenges for frontotemporal dementia. Front Aging Neurosci 2014; 6:204. [PMID: 25191265 PMCID: PMC4137452 DOI: 10.3389/fnagi.2014.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022] Open
Abstract
In the search for therapeutic modifiers, frontotemporal dementia (FTD) has traditionally been overshadowed by other conditions such as Alzheimer's disease (AD). A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43 kDa (TDP-43) as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau-a protein which is pathologically aggregated in the majority of the remaining cases-there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies.
Collapse
Affiliation(s)
- Simon D'Alton
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida Gainesville, FL, USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida Gainesville, FL, USA
| |
Collapse
|
183
|
Gan L, Johnson JA. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1208-18. [DOI: 10.1016/j.bbadis.2013.12.011] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022]
|
184
|
Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 2014; 7:70. [PMID: 25132814 PMCID: PMC4117186 DOI: 10.3389/fnmol.2014.00070] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) has been implicated in neurodegenerative diseases based on the presence of deposits consisting of ubiquitylated proteins in affected neurons. It has been postulated that aggregation-prone proteins associated with these disorders, such as α-synuclein, β-amyloid peptide, and polyglutamine proteins, compromise UPS function, and delay the degradation of other proteasome substrates. Many of these substrates play important regulatory roles in signaling, cell cycle progression, or apoptosis, and their inadvertent stabilization due to an overloaded and improperly functioning UPS may thus be responsible for cellular demise in neurodegeneration. Over the past decade, numerous studies have addressed the UPS dysfunction hypothesis using various model systems and techniques that differ in their readout and sensitivity. While an inhibitory effect of some disease proteins on the UPS has been demonstrated, increasing evidence attests that the UPS remains operative in many disease models, which opens new possibilities for treatment. In this review, we will discuss the paradigm shift that repositioned the UPS from being a prime suspect in the pathophysiology of neurodegeneration to an attractive therapeutic target that can be harnessed to accelerate the clearance of disease-linked proteins.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, Sweden
| | - Laura C Bott
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, Sweden ; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
185
|
Höhn A, Jung T, Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radic Biol Med 2014; 71:70-89. [PMID: 24632383 DOI: 10.1016/j.freeradbiomed.2014.02.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) are formed continuously in the organism even under physiological conditions. If the level of ROS in cells exceeds the cellular defense capacity, components such as RNA/DNA, lipids, and proteins are damaged and modified, thus affecting the functionality of organelles as well. Proteins are especially prominent targets of various modifications such as oxidation, glycation, or conjugation with products of lipid peroxidation, leading to the alteration of their biological function, nonspecific interactions, and the production of high-molecular-weight protein aggregates. To ensure the maintenance of cellular functions, two proteolytic systems are responsible for the removal of oxidized and modified proteins, especially the proteasome and organelles, mainly the autophagy-lysosomal systems. Furthermore, increased protein oxidation and oxidation-dependent impairment of proteolytic systems lead to an accumulation of oxidized proteins and finally to the formation of nondegradable protein aggregates. Accordingly, the cellular homeostasis cannot be maintained and the cellular metabolism is negatively affected. Here we address the current knowledge of protein aggregation during oxidative stress, aging, and disease.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tobias Jung
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
186
|
Saez I, Vilchez D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics 2014; 15:38-51. [PMID: 24653662 PMCID: PMC3958958 DOI: 10.2174/138920291501140306113344] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 01/17/2023] Open
Abstract
Damaged and misfolded proteins accumulate during the aging process, impairing cell function and tissue homeostasis. These perturbations to protein homeostasis (proteostasis) are hallmarks of age-related neurodegenerative disorders such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by cellular clearance mechanisms such as the proteasome, a key component of the proteostasis network. Proteasome activity declines during aging, and proteasomal dysfunction is associated with late-onset disorders. Modulation of proteasome activity extends lifespan and protects organisms from symptoms associated with proteostasis disorders. Here we review the links between proteasome activity, aging and neurodegeneration. Additionally, strategies to modulate proteasome activity and delay the onset of diseases associated to proteasomal dysfunction are discussed herein.
Collapse
Affiliation(s)
- Isabel Saez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Co-logne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Co-logne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
187
|
Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in Alzheimer's disease. Neurosci Bull 2014; 30:359-66. [PMID: 24627329 DOI: 10.1007/s12264-013-1415-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Since abnormal post-translational modifications or gene mutations of tau have been detected in over twenty neurodegenerative disorders, tau has attracted widespread interest as a target protein. Among its various post-translational modifications, phosphorylation is the most extensively studied. It is recognized that tau hyperphosphorylation is the root cause of neurodegeneration in Alzheimer's disease (AD); however, it is not clear how it causes neurodegeneration. Based on the findings that tau hyperphosphorylation leads to the escape of neurons from acute apoptosis and simultaneously impairs the function of neurons, we have proposed that the nature of AD neurodegeneration is the consequence of aborted apoptosis induced by tau phosphorylation. Therefore, proper manipulation of tau hyperphosphorylation could be promising for arresting AD neurodegeneration. In this review, the neuroprotective and neurodegenerative effects of tau hyperphosphorylation and our thoughts regarding their relationship are presented.
Collapse
|
188
|
Fecto F, Esengul YT, Siddique T. Protein recycling pathways in neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2014; 6:13. [PMID: 25031631 PMCID: PMC4055009 DOI: 10.1186/alzrt243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many progressive neurodegenerative diseases, including Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal lobe dementia, are associated with the formation of insoluble intracellular proteinaceous inclusions. It is therefore imperative to understand the factors that regulate normal, as well as abnormal, protein recycling in neurons. Dysfunction of the ubiquitin-proteasome or autophagy pathways might contribute to the pathology of various neurodegenerative diseases. Induction of these pathways may offer a rational therapeutic strategy for a number of these diseases.
Collapse
Affiliation(s)
- Faisal Fecto
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Y Taylan Esengul
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Teepu Siddique
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA ; Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
189
|
Agholme L, Nath S, Domert J, Marcusson J, Kågedal K, Hallbeck M. Proteasome inhibition induces stress kinase dependent transport deficits--implications for Alzheimer's disease. Mol Cell Neurosci 2013; 58:29-39. [PMID: 24270002 DOI: 10.1016/j.mcn.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 11/14/2013] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of two misfolded and aggregated proteins, β-amyloid and hyperphosphorylated tau. Both cellular systems responsible for clearance of misfolded and aggregated proteins, the lysosomal and the proteasomal, have been shown to be malfunctioning in the aged brain and more so in patients with neurodegenerative diseases, including AD. This malfunction could be contributing to β-amyloid and tau accumulation, eventually aggregating in plaques and tangles. We have investigated the impact of decreased proteasome activity on tau phosphorylation as well as on microtubule stability and transport. To do this, we used our recently developed neuronal model where human SH-SY5Y cells obtain neuronal morphology and function through differentiation. We found that exposure to low doses of the proteasome inhibitor MG-115 caused tau phosphorylation, microtubule destabilization and disturbed neuritic transport. Furthermore, reduced proteasome activity activated several proteins implicated in tau phosphorylation and AD pathology, including c-Jun N-terminal kinase, c-Jun and extracellular signal-regulated protein kinase (ERK) 1/2. Restoration of the microtubule transport was achieved by inhibiting ERK 1/2 activation, and simultaneous inhibition of both ERK 1/2 and c-Jun reversed the proteasome inhibition-induced tau phosphorylation. Taken together, this study suggests that a decrease in proteasome activity can, through activation of c-Jun and ERK 1/2, result in several events related to neurodegenerative diseases. Restoration of proteasome activity or modulation of ERK 1/2 and c-Jun function can open new treatment possibilities against neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Lotta Agholme
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Sangeeta Nath
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Jakob Domert
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Jan Marcusson
- Geriatric, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Katarina Kågedal
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Clinical Pathology, County Council of Östergötland, Linköping, Sweden.
| |
Collapse
|
190
|
Riederer BM, Leuba G, Elhajj Z. Oxidation and ubiquitination in neurodegeneration. Exp Biol Med (Maywood) 2013; 238:519-24. [PMID: 23856903 DOI: 10.1177/1535370213488484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is widely accepted that protein oxidation is involved in a variety of diseases, including neurodegenerative diseases. Especially during aging, a reduction in anti-oxidant defence mechanisms leads to an increased formation of free radical oxygen species and consequently results in a damage of proteins, including mitochondrial and synaptic ones. Even those proteins involved in repair and protein clearance via the ubiquitin proteasome and lysosomal system are subject to damage and show a reduced function. Here, we will discuss a variety of mechanisms and provide examples where cognition is affected and where repair mechanisms are no longer sufficient to compensate for a dysfunction of damaged proteins or even may become toxic. Next to physiological deficits, an accumulation of deficient proteins in aggresomes may occur and result in a formation of pathological hallmark structures typical for aging and disease. A major challenge is how to prevent aberrant oxidation, given that oxidation plays an essential role in aging and neurodegenerative diseases. Particularly interesting are the possibilities to reduce the formation of radical oxygen species leading to a dysfunction of protein repair and protein clearance, or to a formation of toxic byproducts accelerating neurodegeneration.
Collapse
Affiliation(s)
- Beat M Riederer
- Proteomic Unit, Centre for Psychiatric Neuroscience, Department of Psychiatry, CHUV, CERY, Prilly-Lausanne, CH-1008, Switzerland.
| | | | | |
Collapse
|
191
|
Chesser AS, Pritchard SM, Johnson GVW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013; 4:122. [PMID: 24027553 PMCID: PMC3759803 DOI: 10.3389/fneur.2013.00122] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022] Open
Abstract
One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal accumulation of tau. The tau that forms these accumulations is altered both posttranslationally and conformationally, and there is now significant evidence that soluble forms of these modified tau species are the toxic entities rather than the insoluble neurofibrillary tangles. However there is still noteworthy debate concerning which specific pathological forms of tau are the contributors to neuronal dysfunction and death in AD. Given that increases in aberrant forms of tau play a role in the neurodegeneration process in AD, there is growing interest in understanding the degradative pathways that remove tau from the cell, and the selectivity of these different pathways for various forms of tau. Indeed, one can speculate that deficits in a pathway that selectively removes certain pathological forms of tau could play a pivotal role in AD. In this review we will discuss the different proteolytic and degradative machineries that may be involved in removing tau from the cell. How deficits in these different degradative pathways may contribute to abnormal accumulation of tau in AD will also be considered. In addition, the issue of the selective targeting of specific tau species to a given degradative pathway for clearance from the cell will be addressed.
Collapse
Affiliation(s)
- Adrianne S Chesser
- Neuroscience Graduate Program, Department of Anesthesiology, University of Rochester , Rochester, NY , USA
| | | | | |
Collapse
|
192
|
Martinez-Vicente M, Vila M. Alpha-synuclein and protein degradation pathways in Parkinson's disease: A pathological feed-back loop. Exp Neurol 2013; 247:308-13. [DOI: 10.1016/j.expneurol.2013.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/12/2013] [Accepted: 03/02/2013] [Indexed: 01/22/2023]
|
193
|
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:13-25. [PMID: 23994620 DOI: 10.1016/j.bbamcr.2013.08.012] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Marion Schmidt
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
194
|
Castro JP, Jung T, Grune T, Almeida H. Actin carbonylation: from cell dysfunction to organism disorder. J Proteomics 2013; 92:171-80. [PMID: 23684956 DOI: 10.1016/j.jprot.2013.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Protein carbonylation is an important event in the context of proteostasis because of its frequency, non-enzymatic nature and irreversible effects. The carbonylation of proteins disturbs their function and leads to protein aggregates, which may precede cellular senescence and cell death. Actin, an evolutionarily conserved cytoskeletal protein that is involved in important cellular processes, is one of the proteins most susceptible to carbonylation. Conditions resulting in oxidative stress are likely to lead to its carbonylation, loss of function and aggregate formation. In this review, we summarise actin susceptibility to carbonylation, as verified in cell free extracts, cell lines and animal models, and review its fate through the activation of cell mechanisms aimed at removing damaged proteins. Their insufficient activity may underlie age-related diseases and the ageing process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- José Pedro Castro
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; Institute of Nutrition, Friedrich Schiller Universität Jena, Dornburger Str. 24, 07743 Jena, Germany
| | | | | | | |
Collapse
|
195
|
Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, Dimayuga Smith V, Koot S, Mamber C, Jansen AH, Ovaa H, Hol EM. Reactive glia show increased immunoproteasome activity in Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:1415-31. [PMID: 23604491 DOI: 10.1093/brain/awt083] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The proteasome is the major protein degradation system within the cell, comprised of different proteolytic subunits; amyloid-β is thought to impair its activity in Alzheimer's disease. Neuroinflammation is a prominent hallmark of Alzheimer's disease, which may implicate an activation of the immunoproteasome, a specific proteasome variant induced by immune signalling that holds slightly different proteolytic properties than the constitutive proteasome. Using a novel cell-permeable proteasome activity probe, we found that amyloid-β enhances proteasome activity in glial and neuronal cultures. Additionally, using a subunit-specific proteasome activity assay we showed that in the cortex of the APPswePS1dE9 plaque pathology mouse model, immunoproteasome activities were strongly increased together with increased messenger RNA and protein expression in reactive glia surrounding plaques. Importantly, this elevated activity was confirmed in human post-mortem tissue from donors with Alzheimer's disease. These findings are in contrast with earlier studies, which reported impairment of proteasome activity in human Alzheimer's disease tissue and mouse models. Targeting the increased immunoproteasome activity with a specific inhibitor resulted in a decreased expression of inflammatory markers in ex vivo microglia. This may serve as a potential novel approach to modulate sustained neuroinflammation and glial dysfunction associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Marie Orre
- Astrocyte Biology and Neurodegeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105:49-59. [PMID: 23528736 DOI: 10.1016/j.pneurobio.2013.03.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) and the autophagy-lysosome system are two major protein quality control mechanisms in eukaryotic cells. While the UPS has been considered for decades as the critical regulator in the degradation of various aggregate-prone proteins, autophagy has more recently been shown to be an important pathway implicated in neuronal health and disease. The two hallmark lesions of Alzheimer's disease (AD) are extracellular β-amyloid plaques and intracellular tau tangles. It has been suggested that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than β-amyloid plaques. Here, we review the UPS and autophagy-mediated tau clearance mechanisms and outline the biochemical connections between these two processes. In addition, we discuss pharmacological methods that target these degradation systems for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | | | | |
Collapse
|
197
|
Fonseca MI, McGuire SO, Counts SE, Tenner AJ. Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 2013; 10:25. [PMID: 23394121 PMCID: PMC3605123 DOI: 10.1186/1742-2094-10-25] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative dementia characterized by the decline of cognition and the presence of neuropathological changes including neuronal loss, neurofibrillary pathology and extracellular senile plaques. A neuroinflammatory process is also triggered and complement activation has been hypothesized to have a relevant role in this local inflammatory response. C5a, a proinflammatory anaphylatoxin generated after complement activation, exerts its chemotactic and inflammatory functions through the CD88 receptor while the more recently discovered C5L2 receptor has been postulated to have an anti-inflammatory role. Previously, we reported that a CD88 specific antagonist (PMX205) decreased the pathology and improved cognition in transgenic models of AD suggesting that C5a/C5aR interaction has an important role in the progression of the disease. Methods The present study characterizes the expression of the two receptors for C5a in human brain with confirmed post mortem diagnosis of vascular dementia (VD) or AD as well as age matched controls by immunohistochemistry and Western blot analysis using several antibodies against different epitopes of the human receptors. Results The CD88 and C5L2 antibodies revealed increased expression of both receptors in AD samples as compared to age-matched controls or VD brain tissue by Western blot and immunohistochemistry, using multiple antibodies and distinct cohorts of brain tissue. Immunostaining showed that both the C5L2 and CD88 antibodies similarly labeled abundant neurofibrillary tangles, neuropil threads and dystrophic neurites associated with plaques in the hippocampus and frontal cortex of AD cases. In contrast, little or no neuronal staining, tangles or dystrophic neurites associated with plaques were observed in control or VD brains. CD88 and C5L2 receptors are associated with both early (AT8) and mature (PHF1) neurofibrillary tangles and can be found either independently or colocalized with each other. Conclusions The observed association of CD88 and C5L2 with neurofibrillary pathology suggests a common altered pathway of degradation.
Collapse
Affiliation(s)
- Maria I Fonseca
- Dept of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
198
|
Liu HY, Pfleger CM. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment. PLoS One 2013; 8:e32835. [PMID: 23382794 PMCID: PMC3558519 DOI: 10.1371/journal.pone.0032835] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/31/2012] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.
Collapse
Affiliation(s)
- Hsiu-Yu Liu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Cathie M. Pfleger
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
199
|
Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener 2013; 8:7. [PMID: 23356410 PMCID: PMC3615964 DOI: 10.1186/1750-1326-8-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/21/2013] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs, especially those from class I, via chromatin deacetylation. However, other mechanisms may contribute to the neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial. Specific inhibitors exert neuroprotection by increasing the acetylation levels of α-tubulin with subsequent improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand, an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize various neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Hutington’s diseases. This review describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding the modulation of HDAC6 activity.
Collapse
Affiliation(s)
- Claudia Simões-Pires
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
200
|
Luan K, Rosales JL, Lee KY. Viewpoint: Crosstalks between neurofibrillary tangles and amyloid plaque formation. Ageing Res Rev 2013; 12:174-81. [PMID: 22728532 DOI: 10.1016/j.arr.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/17/2012] [Accepted: 06/06/2012] [Indexed: 12/29/2022]
Abstract
Since its discovery, the hallmarks of Alzheimer's disease (AD) brain have been recognised as the formation of amyloid plaques and neurofibrillary tangles (NFTs). Mounting evidence has suggested the active interplay between the two pathways. Studies have shown that β-amyloid (Aβ) can be internalized and generated intracellularly, accelerating NFT formation. Conversely, tau elements in NFTs are observed to affect Aβ and amyloid plaque formation. Yet the precise mechanisms which link the pathologies of the two brain lesions remain elusive. In this review, we discuss recent evidence that support five putative mechanisms by which crosstalk occurs between amyloid plaque and NFT formation in AD pathogenesis. Understanding the crosstalks in the formation of AD pathologies could provide new clues for the development of novel therapeutic strategies to delay or halt the progression of AD.
Collapse
Affiliation(s)
- Kailie Luan
- Department of Cell Biology and Anatomy, Southern Alberta Cancer Research and Hotchkiss Brain Institutes, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|