151
|
Zhao X, Balaji P, Pachon R, Beniamen DM, Vatner DE, Graham RM, Vatner SF. Overexpression of Cardiomyocyte α1A-Adrenergic Receptors Attenuates Postinfarct Remodeling by Inducing Angiogenesis Through Heterocellular Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2451-9. [PMID: 26338300 DOI: 10.1161/atvbaha.115.305919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/19/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Stimulation of cardiac α1A-adrenergic receptors (α1A-AR) has been proposed for treatment of heart failure, since it increases myocardial contractility. We investigated a different mechanism, induction of angiogenesis. APPROACH AND RESULTS Four to 6 weeks after permanent coronary artery occlusion, transgenic rats with cardiomyocyte-specific α1A-adrenergic receptor overexpression had less remodeling than their nontransgenic littermates, with less fibrosis, hypertrophy and lung weight, and preserved left ventricular ejection fraction and wall stress (all P<0.05). Coronary blood flow, measured with microspheres, increased in the infarct zone in transgenic rats compared with nontransgenic littermates (1.4±0.2 versus 0.5±0.08 mL min(-1) g(-1); P<0.05), which is consistent with angiogenesis, as reflected by a 20% increase in capillary density in the zone adjacent to the infarct. The question arose, how does transgenic overexpression of a gene in cardiomyocytes induce angiogenesis? We identified a paracrine mechanism, whereby vascular endothelial growth factor-A mRNA and protein were increased in isolated transgenic cardiomyocytes and also by nontransgenic littermate cardiomyocytes treated with an α1A-agonist, resulting in angiogenesis. Conditioned medium from cultured cardiomyocytes treated with an α1A agonist enhanced human umbilical vein endothelial cell tubule formation, which was blocked by an anti-vascular endothelial growth factor-A antibody. Moreover, improved cardiac function, blood flow, and increased capillary density after chronic coronary artery occlusion in transgenic rats were blocked by either a mitogen ERK kinase (MEK) or a vascular endothelial growth factor-A inhibitor. CONCLUSION Cardiomyocyte-specific overexpression of the α1A-adrenergic receptors resulted in enhanced MEK-dependent cardiomyocyte vascular endothelial growth factor-A expression, which stimulates angiogenesis via a paracrine mechanism involving heterocellular cardiomyocyte/endothelial cell signaling, protecting against remodeling and heart failure after chronic coronary artery occlusion.
Collapse
Affiliation(s)
- Xin Zhao
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Poornima Balaji
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Ronald Pachon
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Daniella M Beniamen
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Dorothy E Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Robert M Graham
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Stephen F Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.).
| |
Collapse
|
152
|
Amaral N, Okonko DO. Mitigation of myocardial ischemia-reperfusion injury via HIF-1α-frataxin signaling. Am J Physiol Heart Circ Physiol 2015; 309:H728-30. [PMID: 26209059 PMCID: PMC4591396 DOI: 10.1152/ajpheart.00553.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nelson Amaral
- Cardiovascular Division, British Heart Foundation Centre of Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Darlington O Okonko
- Cardiovascular Division, British Heart Foundation Centre of Excellence, James Black Centre, King's College London, London, United Kingdom
| |
Collapse
|
153
|
Nanayakkara G, Alasmari A, Mouli S, Eldoumani H, Quindry J, McGinnis G, Fu X, Berlin A, Peters B, Zhong J, Amin R. Cardioprotective HIF-1α-frataxin signaling against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2015; 309:H867-79. [PMID: 26071548 DOI: 10.1152/ajpheart.00875.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/01/2015] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated the protective signaling of hypoxia-inducible factor (HIF)-1 α against ischemia-reperfusion (I/R) injury in the heart. In the present study, we provide further evidence for a cardioprotective mechanism by HIF-1α against I/R injury exerted via the mitochondrial protein frataxin, which regulates mitochondrial Fe-S cluster formation. Disruption of frataxin has been found to induce mitochondrial iron overload and subsequent ROS production. We observed that frataxin expression was elevated in mice hearts subjected to I/R injury, and this response was blunted in cardiomyocyte-specific HIF-1α knockout (KO) mice. Furthermore, these HIF-1α KO mice sustained extensive cardiac damage from I/R injury compared with control mice. Similarly, reduction of HIF-1α by RNA inhibition resulted in an attenuation of frataxin expression in response to hypoxia in H9C2 cardiomyocytes. Therefore, we postulated that HIF-1α transcriptionally regulates frataxin expression in response to hypoxia and offers a cardioprotective mechanism against ischemic injury. Our promoter activity and chromatin immunoprecipitation assays confirmed the presence of a functional hypoxia response element in the frataxin promoter. Our data also suggest that increased frataxin mitigated mitochondrial iron overload and subsequent ROS production, thus preserving mitochondrial membrane integrity and viability of cardiomyocytes. We postulate that frataxin may exert its beneficial effects by acting as an iron storage protein under hypoxia and subsequently facilitates the maintenance of mitochondrial membrane potential and promotes cell survival. The findings from our study revealed that HIF-1α-frataxin signaling promotes a protective mechanism against hypoxic/ischemic stress.
Collapse
Affiliation(s)
- Gayani Nanayakkara
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Abdullah Alasmari
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Shravanthi Mouli
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Haitham Eldoumani
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - John Quindry
- School of Kinesiology, Auburn University, Auburn, Alabama; and
| | - Graham McGinnis
- School of Kinesiology, Auburn University, Auburn, Alabama; and
| | - Xiaoyu Fu
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Avery Berlin
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Bridget Peters
- School of Kinesiology, Auburn University, Auburn, Alabama; and
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Rajesh Amin
- Cardio-Metabolic Lab, Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama;
| |
Collapse
|
154
|
Liu SQ, Ma XL, Qin G, Liu Q, Li YC, Wu YH. Trans-system mechanisms against ischemic myocardial injury. Compr Physiol 2015; 5:167-92. [PMID: 25589268 DOI: 10.1002/cphy.c140026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois Department of Emergency Medicine, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois Carbohydrate and Lipid Metabolism Research Laboratory, College of Life Science and Technology, Dalian University, Dalian, China Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
155
|
González-Santamaría J, Villalba M, Busnadiego O, López-Olañeta MM, Sandoval P, Snabel J, López-Cabrera M, Erler JT, Hanemaaijer R, Lara-Pezzi E, Rodríguez-Pascual F. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction. Cardiovasc Res 2015; 109:67-78. [PMID: 26260798 DOI: 10.1093/cvr/cvv214] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022] Open
Abstract
AIMS After myocardial infarction (MI), extensive remodelling of the extracellular matrix contributes to scar formation. While aiming to preserve tissue integrity, this fibrotic response is also associated with adverse events, including a markedly increased risk of heart failure, ventricular arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking. Members of the lysyl oxidase (LOX) family of enzymes are responsible for the formation of collagen cross-links. This study investigates the contribution of LOX family members to the heart response to MI. METHODS AND RESULTS Experimental MI was induced in C57BL/6 mice by permanent ligation of the left anterior descending coronary artery. The expression of LOX isoforms (LOX and LOXL1-4) was strongly increased upon MI, and this response was accompanied by a significant accumulation of mature collagen fibres in the infarcted area. LOX expression was observed in areas of extensive remodelling, partially overlapping with α-smooth muscle actin-expressing myofibroblasts. Tumour growth factor-β as well as hypoxia-activated pathways contributed to the induction of LOX expression in cardiac fibroblasts. Finally, in vivo post-infarction treatment with the broadband LOX inhibitor β-aminopropionitrile or, selectively, with a neutralizing antibody against the canonical LOX isoform attenuated collagen accumulation and maturation and also resulted in reduced ventricular dilatation and improved cardiac function. CONCLUSION LOX family members contribute significantly to the detrimental effects of cardiac remodelling, highlighting LOX inhibition as a potential therapeutic strategy for post-infarction recovery.
Collapse
Affiliation(s)
- José González-Santamaría
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, Madrid E28049, Spain
| | - María Villalba
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E28029, Spain
| | - Oscar Busnadiego
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, Madrid E28049, Spain
| | - Marina M López-Olañeta
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E28029, Spain
| | - Pilar Sandoval
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, Madrid E28049, Spain
| | | | - Manuel López-Cabrera
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, Madrid E28049, Spain
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | | | - Enrique Lara-Pezzi
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E28029, Spain
| | - Fernando Rodríguez-Pascual
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, Madrid E28049, Spain
| |
Collapse
|
156
|
Saygili E, Noor-Ebad F, Schröder JW, Mischke K, Saygili E, Rackauskas G, Marx N, Kelm M, Rana OR. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes. Biochem Biophys Res Commun 2015; 465:119-24. [PMID: 26248134 DOI: 10.1016/j.bbrc.2015.07.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. METHODS Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. RESULTS Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post-IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). CONCLUSION The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated.
Collapse
Affiliation(s)
- Erol Saygili
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | - Fawad Noor-Ebad
- Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Jörg W Schröder
- Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Karl Mischke
- Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Esra Saygili
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Gediminas Rackauskas
- Department of Cardiovascular Medicine, Vilnius University Hospital Santariskiu Klinikos, Vilnius University, Lithuania
| | - Nikolaus Marx
- Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Obaida R Rana
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
157
|
Lu X, Bi YW, Chen KB. Olmesartan restores the protective effect of remote ischemic perconditioning against myocardial ischemia/reperfusion injury in spontaneously hypertensive rats. Clinics (Sao Paulo) 2015; 70. [PMID: 26222820 PMCID: PMC4496757 DOI: 10.6061/clinics/2015(07)07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Remote ischemic perconditioning is the newest technique used to lessen ischemia/reperfusion injury. However, its effect in hypertensive animals has not been investigated. This study aimed to examine the effect of remote ischemic perconditioning in spontaneously hypertensive rats and determine whether chronic treatment with Olmesartan could influence the effect of remote ischemic perconditioning. METHODS Sixty rats were randomly divided into six groups: vehicle-sham, vehicle-ischemia/reperfusion injury, vehicle-remote ischemic perconditioning, olmesartan-sham, olmesartan-ischemia/reperfusion and olmesartan-remote ischemic perconditioning. The left ventricular mass index, creatine kinase concentration, infarct size, arrhythmia scores, HIF-1α mRNA expression, miR-21 expression and miR-210 expression were measured. RESULTS Olmesartan significantly reduced the left ventricular mass index, decreased the creatine kinase concentration, limited the infarct size and reduced the arrhythmia score. The infarct size, creatine kinase concentration and arrhythmia score during reperfusion were similar for the vehicle-ischemia/reperfusion group and vehicle-remote ischemic perconditioning group. However, these values were significantly decreased in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. HIF-1α, miR-21 and miR-210 expression were markedly down-regulated in the Olmesartan-sham group compared to the vehicle-sham group and significantly up-regulated in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. CONCLUSION The results indicate that (1) the protective effect of remote ischemic perconditioning is lost in vehicle-treated rats and that chronic treatment with Olmesartan restores the protective effect of remote ischemic perconditioning; (2) chronic treatment with Olmesartan down-regulates HIF-1α, miR-21 and miR-210 expression and reduces hypertrophy, thereby limiting ischemia/reperfusion injury; and (3) recovery of the protective effect of remote ischemic perconditioning is related to the up-regulation of HIF-1α, miR-21 and miR-210 expression.
Collapse
Affiliation(s)
- Xin Lu
- Shandong University, Qilu Hospital, Department of Cardiovascular Surgery, Jinan, China
| | - Yan-Wen Bi
- Shandong University, Qilu Hospital, Department of Cardiovascular Surgery, Jinan, China
- Corresponding Author: E-mail:
| | - Ke-Biao Chen
- Taian City Central Hospital, Department of Cardiovascular Surgery, Taian, China
| |
Collapse
|
158
|
Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, Shahrouki P, Redfors B, Omerovic E, Levin M, Borén J, Levin MC. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res 2015; 107:478-86. [DOI: 10.1093/cvr/cvv186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/12/2015] [Indexed: 01/04/2023] Open
|
159
|
Lan H, Wang Y, Yin T, Wang Y, Liu W, Zhang X, Yu Q, Wang Z, Wang G. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater 2015; 104:1237-47. [PMID: 26059710 DOI: 10.1002/jbm.b.33398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023]
Abstract
Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016.
Collapse
Affiliation(s)
- Hualin Lan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Tieyin Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Xiaojuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Qinsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissue Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| |
Collapse
|
160
|
Bouleti C, Mathivet T, Serfaty JM, Vignolles N, Berland E, Monnot C, Cluzel P, Steg PG, Montalescot G, Germain S. Angiopoietin-like 4 serum levels on admission for acute myocardial infarction are associated with no-reflow. Int J Cardiol 2015; 187:511-6. [DOI: 10.1016/j.ijcard.2015.03.263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 02/02/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
161
|
de Brito Alves JL, Nogueira VO, Cavalcanti Neto MP, Leopoldino AM, Curti C, Colombari DSA, Colombari E, Wanderley AG, Leandro CG, Zoccal DB, Costa-Silva JH. Maternal protein restriction increases respiratory and sympathetic activities and sensitizes peripheral chemoreflex in male rat offspring. J Nutr 2015; 145:907-14. [PMID: 25934662 PMCID: PMC6619683 DOI: 10.3945/jn.114.202804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Maternal protein restriction in rats increases the risk of adult offspring arterial hypertension through unknown mechanisms. OBJECTIVES The aims of the study were to evaluate the effects of a low-protein (LP) diet during pregnancy and lactation on baseline sympathetic and respiratory activities and peripheral chemoreflex sensitivity in the rat offspring. METHODS Wistar rat dams were fed a control [normal-protein (NP); 17% protein] or an LP (8% protein) diet during pregnancy and lactation, and their male offspring were studied at 30 d of age. Direct measurements of baseline arterial blood pressure (ABP), heart rate (HR), and respiratory frequency (Rf) as well as peripheral chemoreflex activation (potassium cyanide: 0.04%) were recorded in pups while they were awake. In addition, recordings of the phrenic nerve (PN) and thoracic sympathetic nerve (tSN) activities were obtained from the in situ preparations. Hypoxia-inducible factor 1α (HIF-1α) expression was also evaluated in carotid bifurcation through a Western blotting assay. RESULTS At 30 d of age, unanesthetized LP rats exhibited enhanced resting Rf (P = 0.001) and similar ABP and HR compared with the NP rats. Despite their similar baseline ABP values, LP rats exhibited augmented low-frequency variability (∼91%; P = 0.01). In addition, the unanesthetized LP rats showed enhanced pressor (P = 0.01) and tachypnoeic (P = 0.03) responses to peripheral chemoreflex activation. The LP rats displayed elevated baseline tSN activity (∼86%; P = 0.02) and PN burst frequency (45%; P = 0.01) and amplitude (53%; P = 0.001) as well as augmented sympathetic (P = 0.01) and phrenic (P = 0.04) excitatory responses to peripheral chemoreflex activation compared with the NP group. Furthermore, LP rats showed an increase of ∼100% in HIF-1α protein density in carotid bifurcation compared with NP rats. CONCLUSION Sympathetic-respiratory overactivity and amplified peripheral chemoreceptor responses, potentially through HIF-1α-dependent mechanisms, precede the onset of hypertension in juvenile rats exposed to protein undernutrition during gestation and lactation.
Collapse
Affiliation(s)
- José L de Brito Alves
- Department of Physical Education and Sport Sciences, Federal University of
Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Viviane O Nogueira
- Department of Physical Education and Sport Sciences, Federal University of
Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Marinaldo P Cavalcanti Neto
- Department of Physics and Chemistry, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Department of Clinical Analyses, Toxicology and Food Sciences, School of
Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andréia M Leopoldino
- Department of Physics and Chemistry, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Department of Clinical Analyses, Toxicology and Food Sciences, School of
Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Department of Clinical Analyses, Toxicology and Food Sciences, School of
Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Débora SA Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara,
São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara,
São Paulo State University, Araraquara, São Paulo, Brazil
| | - Almir G Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco,
Pernambuco, Brazil
| | - Carol G Leandro
- Department of Physical Education and Sport Sciences, Federal University of
Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pharmacology, Federal University of Pernambuco,
Pernambuco, Brazil
| | - João H Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil;
| |
Collapse
|
162
|
Yang SL, Wu C, Xiong ZF, Fang X. Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function (Review). Mol Med Rep 2015; 12:2411-6. [PMID: 25936862 DOI: 10.3892/mmr.2015.3689] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
Hypoxia inducible factors (HIFs) are transcription factors, which are commonly expressed in mammals, including humans. The HIFs consist of hypoxia-regulated α and oxygen-insensitive β subunits, and are key regulators of gene expression during hypoxia in normal and solid tumor tissues. Three members of the HIF family, HIF-1α, HIF-2α, and HIF-3α, are currently known. HIF-3α differs from HIF-1α and HIF-2α in protein structure and regulation of gene expression. For a long time, HIF-3α was considered as a negative mediator of HIF-regulated genes. HIF-3 has a transcriptional regulatory function, which negatively affects gene expression by competing with HIF-1α and HIF-2α in binding to transcriptional elements in target genes during hypoxia. Previously, certain target genes of HIF-3α have been identified, confirming the role of HIF-3α as a transcription factor. In this review, the protein structure, gene regulation and biological function of HIF-3 are discussed based on the literature.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Chao Wu
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Zhi-Fan Xiong
- Department of Medicine and Division of Digestion Disease, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
163
|
Güzel D, Dursun AD, Fıçıcılar H, Tekin D, Tanyeli A, Akat F, Topal Çelikkan F, Sabuncuoğlu B, Baştuğ M. Effect of intermittent hypoxia on the cardiac HIF-1/VEGF pathway in experimental type 1 diabetes mellitus. Anatol J Cardiol 2015; 16:76-83. [PMID: 26467365 PMCID: PMC5336740 DOI: 10.5152/akd.2015.5925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE High altitude and hypoxic preconditioning have cardioprotective effects by increasing coronary vascularity, reducing post-ischemic injury, and improving cardiac function. Our purpose was to examine if intermittent hypoxia treatment has any restoring effects related to the possible role of the HIF-1/VEGF pathway on diabetic cardiomyopathy. METHODS Wistar Albino male rats (n=34) were divided into four groups: control (C), intermittent hypoxia (IH), diabetes mellitus (DM), and diabetes mellitus plus intermittent hypoxia (DM+IH). Following a streptozotocin (STZ) injection (50 mg/kg, i.p.), blood glucose levels of 250 mg/dL and above were considered as DM. IH and DM+IH groups were exposed to hypoxia 6 h/day for 42 days at a pressure corresponding to 3000 m altitude. Twenty-four hours after the IH protocol, hearts were excised. Hematoxylin and eosin-stained apical parts of the left ventricles were evaluated. Hypoxia inducible factor-1 (HIF-1), vascular endothelial growth factor 164 (VEGF164), and VEGF188 polymerase chain reaction products were run in agarose gel electrophoresis. Band density analysis of UV camera images was performed using Image J. The data were compared by one-way ANOVA, repeated measures two-way ANOVA, and the Kruskal-Wallis test. RESULTS The percent weight change was lower in the DM group than in the controls (p=0.004). The tissue injury was the highest in the DM group and the least in the IH group. Diabetes decreased, whereas the IH treatment increased the vascularity. A decrease was observed in the VEGF188 mRNA levels in the DM+IH group compared with the C group, but there were no difference in HIF-1α and VEGF164 mRNA levels between the groups. CONCLUSION The IH treatment restored the diabetic effects on the heart by reducing tissue injury and increasing the capillarity without transcriptional changes in HIF-1/VEGF correspondingly.
Collapse
Affiliation(s)
- Derya Güzel
- Department of Physiology, Faculty of Medicine, Sakarya University; Sakarya-Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J Mol Cell Cardiol 2015; 81:114-26. [PMID: 25655933 DOI: 10.1016/j.yjmcc.2015.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/24/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023]
|
165
|
Huang CY, Chen SY, Fu RH, Huang YC, Chen SY, Shyu WC, Lin SZ, Liu SP. Differentiation of embryonic stem cells into cardiomyocytes used to investigate the cardioprotective effect of salvianolic acid B through BNIP3 involved pathway. Cell Transplant 2015; 24:561-71. [PMID: 25654620 DOI: 10.3727/096368915x686995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are related to many risk factors, such as diabetes, high blood pressure, smoking, and obesity. Myocardial infarction (MI), a cardiovascular disease, is the most common cause of cardiomyocyte death. In MI, hypoxia induces cardiomyocyte apoptosis; in particular, diabetes combined with MI has a synergistic effect that exacerbates cardiomyocyte death. The hypoxia-inducible factor-1α (HIF1α) transcriptional factor and a BH-3 only protein, Bcl-2 adenovirus E1B 19-kDa interacting protein 3 (BNIP3), are known to play fundamental roles in both adaptive and cell death processes in response to hypoxia. In addition, most cardioprotective studies used H9c2 cells that were not beating, so H9c2 cells may not be the best model for testing cardioprotective effects. Embryonic stem cells (ESCs) are pluripotent stem cells that are able to differentiate into several types of cells, including cardiomyocytes. In this study, we reveal a simple method to differentiate ESCs into cardiomyocytes by using poly-d-lysine-coated plates combined with ITS and N2-containing medium and characterized the ESC-derived cardiomyocytes by cardiomyocyte marker staining. The ESC-derived cardiomyocytes were used to investigate the protective effect of salvianolic acid B (Sal-B) in high glucose combined with hypoxic conditions to mimic diabetes patients with ischemia. The results of MTT and TUNEL assays indicate that Sal-B suppresses the apoptotic effect of treatment with high glucose combined with hypoxia in ESC-derived cardiomyocytes. In particular, Sal-B inhibited HIF1α, BNIP3, and cleavage caspase 3 expression levels, thereby suppressing apoptosis. This is the first study to mention the correlation between BNIP3 and Sal-B for cardioprotective effects. In conclusion, we suggest that Sal-B may be suitable for use as a future cardioprotective medicine.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Chang RL, Lin JW, Hsieh DJY, Yeh YL, Shen CY, Day CH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Long-term hypoxia exposure enhanced IGFBP-3 protein synthesis and secretion resulting in cell apoptosis in H9c2 myocardial cells. Growth Factors 2015; 33:275-81. [PMID: 26340107 DOI: 10.3109/08977194.2015.1077824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myocardial infarction (MI) usually results in myocardial ischemia, remodeling and hypoxia that lead to cell death. To date, the insulin-like growth factor binding protein-3 (IGFBP3) is known to play an important role in insulin growth factor (IGF) bioavailability. Previous studies have found that hypoxia results in cell apoptosis. However, the detailed mechanism and roles of IGFBP3 in long-term hypoxia (LTH) regulated heart cell apoptosis remains unknown. In this study H9c2 cardiomyoblast cells were treated with investigated long-term hypoxic exposure with the possible mechanisms involved. The results showed that LTH enhanced IGFBP3 protein synthesis and induced its secretion. The accumulated IGFBP3 sequestered Insulin growth factor 1 (IGF-1) away from the type I IGF receptor (IGF-1 R), which blocked the IGF1R/PI3K/Akt survival signaling pathway, resulting in cell apoptosis. According to our findings, IGFBP3 could be a valuable target for developing treatments for cardiac diseases in long-term hypoxia exposure patients.
Collapse
Affiliation(s)
- Ruey-Lin Chang
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Jing-Wei Lin
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Dennis Jine-Yuan Hsieh
- b School of Medical Laboratory and Biotechnology, Chung Shan Medical University , Taichung , Taiwan
| | - Yu-Lan Yeh
- c Department of Pathology , Changhua Christian Hospital , Changhua , Taiwan
- d en-Teh Junior College of Medicine, Nursing and Management , Miaoli , Taiwan
| | - Chia-Yao Shen
- e Department of Nursing , Mei Ho University , Pingtung , Taiwan
| | | | - Tsung-Jung Ho
- f Chinese Medicine Department , China Medical University Beigang Hospital , Taichung , Taiwan
| | | | - Wei-Wen Kuo
- h Department of Biological Science and Technology , China Medical University , Taichung , Taiwan
| | - Chih-Yang Huang
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
- i Graduate Institute of Chinese Medical Science, China Medical University , Taichung , Taiwan , and
- j Department of Health and Nutrition Biotechnology , Asia University , Taichung , Taiwan
| |
Collapse
|
167
|
Wu J, Lei Z, Yu J. Hypoxia induces autophagy in human vascular endothelial cells in a hypoxia-inducible factor 1‑dependent manner. Mol Med Rep 2014; 11:2677-82. [PMID: 25514934 DOI: 10.3892/mmr.2014.3093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
Hypoxia has been widely implicated in numerous pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of microvascular damage, the basis for which is not fully understood. In the present study, it was identified that autophagy was induced in human umbilical vein endothelial cells (HUVECs) post treatment with hypoxia, and the induction of autophagy by hypoxia was enhanced by hypoxia‑inducible factor 1 (HIF‑1) gene overexpression and inhibited by HIF‑1 knockout. Furthermore, the autophagy induced by overexpression of HIF‑1 was associated with a reduction of HUVEC cell viability. Therefore, HIF‑1 reduced HUVEC cell viability by inducing autophagy. These findings provide evidence of an important link between hypoxia and microvascular damage associated with HIF‑1‑related autophagy.
Collapse
Affiliation(s)
- Jianbo Wu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
168
|
Increase of circulating stromal cell-derived factor-1 in heart failure patients. Herz 2014; 40 Suppl 1:70-5. [DOI: 10.1007/s00059-014-4169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022]
|
169
|
Ambrose LJA, Abd-Jamil AH, Gomes RSM, Carter EE, Carr CA, Clarke K, Heather LC. Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation. J Cardiovasc Pharmacol Ther 2014; 19:574-85. [PMID: 24607765 DOI: 10.1177/1074248414524480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypoxia is a consequence of cardiac disease and downregulates mitochondrial metabolism, yet the molecular mechanisms through which this occurs in the heart are incompletely characterized. Therefore, we aimed to use a contracting HL-1 cardiomyocyte model to investigate the effects of hypoxia on mitochondrial metabolism. Cells were exposed to hypoxia (2% O2) for 6, 12, 24, and 48 hours to characterize the metabolic response. Cells were subsequently treated with the hypoxia inducible factor (HIF)-activating compound, dimethyloxalylglycine (DMOG), to determine whether hypoxia-induced mitochondrial changes were HIF dependent or independent, and to assess the suitability of this cultured cardiac cell line for cardiovascular pharmacological studies. Hypoxic cells had increased glycolysis after 24 hours, with glucose transporter 1 and lactate levels increased 5-fold and 15-fold, respectively. After 24 hours of hypoxia, mitochondrial networks were more fragmented but there was no change in citrate synthase activity, indicating that mitochondrial content was unchanged. Cellular oxygen consumption was 30% lower, accompanied by decreases in the enzymatic activities of electron transport chain (ETC) complexes I and IV, and aconitase by 81%, 96%, and 72%, relative to controls. Pharmacological HIF activation with DMOG decreased cellular oxygen consumption by 43%, coincident with decreases in the activities of aconitase and complex I by 26% and 30%, indicating that these adaptations were HIF mediated. In contrast, the hypoxia-mediated decrease in complex IV activity was not replicated by DMOG treatment, suggesting HIF-independent regulation of this complex. In conclusion, 24 hours of hypoxia increased anaerobic glycolysis and decreased mitochondrial respiration, which was associated with changes in ETC and tricarboxylic acid cycle enzyme activities in contracting HL-1 cells. Pharmacological HIF activation in this cardiac cell line allowed both HIF-dependent and independent mitochondrial metabolic changes to be identified.
Collapse
Affiliation(s)
- Lucy J A Ambrose
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| | - Amira H Abd-Jamil
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| | - Renata S M Gomes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| | - Emma E Carter
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
170
|
Si J, Wang N, Wang H, Xie J, Yang J, Yi H, Shi Z, Ma J, Wang W, Yang L, Yu S, Li J. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury. PLoS One 2014; 9:e107832. [PMID: 25238237 PMCID: PMC4169594 DOI: 10.1371/journal.pone.0107832] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we evaluated the effect of astragaloside IV (Ast IV) post-ischemia treatment on myocardial ischemia-reperfusion (IR) injury (IRI). We also examined whether hypoxia inducible factor-1α (HIF-1α) and its downstream gene-inducible nitric oxide (NO) synthase (iNOS) play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2). The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI). Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH) release in the coronary flow (CF) were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.
Collapse
Affiliation(s)
- Jingwen Si
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Ning Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Juan Xie
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Hui Yi
- Department of Nephropathy and Immunology, BaYi Childrens Hospital of The General Military Hospital of Beijing PLA, Beijing, China
| | - Zixuan Shi
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Lifang Yang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | - Junchang Li
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| |
Collapse
|
171
|
Greco S, Gaetano C, Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 2014; 21:1202-19. [PMID: 24053126 PMCID: PMC4142792 DOI: 10.1089/ars.2013.5403] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are deregulated and play a causal role in numerous cardiovascular diseases, including myocardial infarction, coronary artery disease, hypertension, heart failure, stroke, peripheral artery disease, kidney ischemia-reperfusion. RECENT ADVANCES One crucial component of ischemic cardiovascular diseases is represented by hypoxia. Indeed, hypoxia is a powerful stimulus regulating the expression of a specific subset of miRNAs, named hypoxia-induced miRNAs (hypoxamiR). These miRNAs are fundamental regulators of the cell responses to decreased oxygen tension. Certain hypoxamiRs seem to have a particularly pervasive role, such as miR-210 that is virtually induced in all ischemic diseases tested so far. However, its specific function may change according to the physiopathological context. CRITICAL ISSUES The discovery of HypoxamiR dates back 6 years. Thus, despite a rapid growth in knowledge and attention, a deeper insight of the molecular mechanisms underpinning hypoxamiR regulation and function is needed. FUTURE DIRECTIONS An extended understanding of the function of hypoxamiR in gene regulatory networks associated with cardiovascular diseases will allow the identification of novel molecular mechanisms of disease and indicate the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory , IRCCS-Policlinico San Donato, Milan, Italy
| | | | | |
Collapse
|
172
|
|
173
|
Pizarro S, García-Lucio J, Peinado VI, Tura-Ceide O, Díez M, Blanco I, Sitges M, Petriz J, Torralba Y, Marín P, Roca J, Barberà JA. Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease. PLoS One 2014; 9:e106163. [PMID: 25171153 PMCID: PMC4149524 DOI: 10.1371/journal.pone.0106163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. Objectives To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. Methods 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45+CD34+CD133+ labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. Results Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. Conclusions Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit.
Collapse
MESH Headings
- AC133 Antigen
- Aged
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Glycoproteins/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Leukocyte Common Antigens/metabolism
- Male
- Middle Aged
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Peptides/metabolism
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Smoking
Collapse
Affiliation(s)
- Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Víctor I. Peinado
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Díez
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Petriz
- Department of Cytometry, Institut de Recerca, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro Marín
- Department of Cryopreservervation, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Roca
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
174
|
Tsibouris P, Hendrickse MT, Mavrogianni P, Isaacs PET. Ischemic heart disease, factor predisposing to Barrett's adenocarcinoma: A case control study. World J Gastrointest Pharmacol Ther 2014; 5:183-90. [PMID: 25133047 PMCID: PMC4133444 DOI: 10.4292/wjgpt.v5.i3.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/06/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To define the significance of ischemic heart disease (IHD) (stable angina to infarction) co-existance in Barrett esophagus (BE) patients and patients with esophageal adenocarcinoma (AdE). METHODS All BE/AdE patients in Blackpool-Wyre-Fylde area and Trikala prefecture identified from medical records. Patient clinical details were obtained from hospital and General Practitioner records. Additional information was gathered from validated questionnaire. RESULTS Forty (33%) AdE and 83 (19%) BE patients had IHD (P = 0.002). Eighteen (15%) AdE and 34 (8%) BE patients had suffered a myocardial infarction (P = 0.03). Three (3%) AdE and 7 (2%) BE patients had severe heart failure (P = 0.82). Thirty-nine (47%) BE with IHD and 8 (20%) AdE patients with IHD consumed aspirin daily (P = 0.004). Seventh-seven (93%) BE patients with IHD and 36 (90%) AdE patients with IHD were on statins (P = 0.86). Logistic regression analysis: AdE was more frequent in the elderly, with long term reflux, long BE and concurrent IHD (odds ratio: 2.086, P = 0.001) not consuming statins. Eighteen (22%) BE patients with IHD [16 (84%) with myocardial infarction] vs 33 (10%) without IHD died from non-neoplastic causes within 24 mo from BE diagnosis (P = 0.005). CONCLUSION IHD is more prevalent in AdE than BE patients. Increased prevalence of AdE is related with the presence of myocardial infarction but not severe heart failure, possibly because patients with BE and severe IHD have low life expectancy.
Collapse
|
175
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
176
|
António N, Fernandes R, Soares A, Soares F, Lopes A, Carvalheiro T, Paiva A, Pêgo GM, Providência LA, Gonçalves L, Ribeiro CF. Impact of prior chronic statin therapy and high-intensity statin therapy at discharge on circulating endothelial progenitor cell levels in patients with acute myocardial infarction: a prospective observational study. Eur J Clin Pharmacol 2014; 70:1181-93. [PMID: 25048407 DOI: 10.1007/s00228-014-1718-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Endothelial progenitor stem cells (EPCs) are mobilized to the peripheral circulation in response to myocardial ischemia, playing a crucial role in vascular repair. Statins have been shown to stimulate EPCs. However, neither the impact of previous statin therapy on EPC response of acute myocardial infarction (AMI) patients nor the effect of post-AMI high-intensity statin therapy on the evolution of circulating EPC levels has yet been addressed. Therefore, we aimed to compare circulating EPC levels between patients receiving long-term statin therapy before the AMI and statin-naive patients and to assess the impact of high-intensity statin therapy at discharge on the evolution of circulating EPCs post-AMI. METHODS This is a prospective observational study of 100 AMI patients. Circulating EPCs (CD45dimCD34 + KDR + cells) and their subpopulation coexpressing the homing marker CXCR4 were quantified by the high-performance flow cytometer FACSCanto II in whole blood, in two different moments: within the first 24 h of admission and 3 months post-AMI. Patients were followed up clinically for 2 years. RESULTS Patients previously treated with statins had significantly higher levels of EPCs coexpressing CXCR4 (1.9 ± 1.4 vs. 1.3 ± 1.0 cells/1,000,000 events, p = 0.031) than statin-naive patients. In addition, the subanalysis of diabetics (N = 38) also revealed that patients previously on statins had significantly greater numbers of both CD45dimCD34 + KDR + CXCR4+ cells (p = 0.024) and CD45dimCD34 + KDR + CD133+ cells (p = 0.022) than statin-naive patients. Regarding the evolution of EPC levels after the AMI, patients not on a high-intensity statin therapy at discharge had a significant reduction of CD45dimCD34 + KDR + and CD45dimCD34 + KDR + CXCR4+ cells from baseline to 3 months follow-up (p = 0.031 and p = 0.005, respectively). However, patients discharged on a high-intensity statin therapy maintained circulating levels of all EPC populations, presenting at 3 months of follow-up significantly higher EPC levels than patients not on an intensive statin therapy. Moreover, the high-intensity statin treatment group had significantly better clinical outcomes during the 2-year follow-up period than patients not discharged on a high-intensity statin therapy. CONCLUSION Chronic statin therapy prior to an AMI strongly enhances the response of EPCs to myocardial ischemia, even in diabetic patients. Furthermore, high-intensity statin therapy after an AMI prevents the expected decrease of circulating EPC levels during follow-up. These results reinforce the importance of an early and intensive statin therapy in AMI patients.
Collapse
Affiliation(s)
- Natália António
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Prognostic value of VEGF in patients submitted to percutaneous coronary intervention. DISEASE MARKERS 2014; 2014:135357. [PMID: 25110384 PMCID: PMC4109329 DOI: 10.1155/2014/135357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/17/2022]
Abstract
We examined the longitudinal changes of VEGF levels after percutaneous coronary intervention for predicting major adverse cardiac events (MACE) in coronary artery disease (CAD) patients. VEGF was measured in 94 CAD patients' serum before revascularization, 1-month and 1-year after. Independently of clinical presentation, patients had lower VEGF concentration than a cohort of healthy subjects (median, IQ: 15.9, 9.0–264 pg/mL versus 419, 212–758 pg/mL; P < 0.001) at baseline. VEGF increased to 1-month (median, IQ: 276, 167–498 pg/mL; P < 0.001) and remained steady to 1-year (median, IQ: 320, 173–497 pg/mL; P < 0.001) approaching control levels. Drug eluting stent apposition and previous medication intake produced a less steep VEGF evolution after intervention (P < 0.05). Baseline VEGF concentration <40.8 pg/mL conveyed increased risk for MACE in a 5-year follow-up. Results reflect a positive role of VEGF in recovery and support its importance in CAD prognosis.
Collapse
|
178
|
Seymour JF, Pfreundschuh M, Trnĕný M, Sehn LH, Catalano J, Csinady E, Moore N, Coiffier B. R-CHOP with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: final MAIN study outcomes. Haematologica 2014; 99:1343-9. [PMID: 24895339 DOI: 10.3324/haematol.2013.100818] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial growth factor is involved in lymphoma growth, suggesting a potential role for anti-vascular endothelial growth factor therapies in hematologic malignancies. In this phase III study, patients with CD20-positive diffuse large B-cell lymphoma were randomized to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone plus either placebo (R-CHOP) or bevacizumab (RA-CHOP). Treatment was administered every 21 (8 cycles) or 14 days (6 cycles plus 2 rituximab cycles) as per institutional practice. An early analysis of risk/benefit by the Data and Safety Monitoring Board showed that RA-CHOP increased cardiotoxicity without prolonging progression-free survival compared with R-CHOP, and the trial was stopped early. The study protocol was amended to allow for 12 additional months of follow up to evaluate safety. With 787 patients enrolled, median follow up was 23.7 and 23.6 months for R-CHOP and RA-CHOP, respectively. Median progression-free survival for R-CHOP and RA CHOP was 42.9 and 40.2 months, respectively (hazard ratio=1.09; P=0.49). The proportion of deaths was identical for R-CHOP (83 of 387, 21%) and RA-CHOP (82 of 390, 21%). Relative to R-CHOP, RA-CHOP had a higher rate of left ventricular ejection fraction perturbation (18% vs. 8%; odds ratio=2.51; 95% confidence interval (CI): 1.60-3.93) and congestive heart failure (16% vs. 7%; odds ratio=2.79; 95%CI: 1.72-4.54). Bevacizumab added to R-CHOP increased cardiac events, without increasing efficacy, arguing against further evaluation of RA-CHOP in patients with diffuse large B-cell lymphoma. The MAIN study is registered at clinicaltrials.gov identifier:00486759.
Collapse
Affiliation(s)
- John F Seymour
- Peter MacCallum Cancer Centre, East Melbourne, Australia University of Melbourne, Parkville, Australia
| | | | - Marek Trnĕný
- General Hospital, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Laurie H Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Canada
| | - John Catalano
- Frankston Hospital and Monash University, Frankston, Australia
| | - Eva Csinady
- F. Hoffmann-La Roche Ltd. Pharmaceuticals Division, PDCO, Basel, Switzerland
| | - Nicola Moore
- F. Hoffmann-La Roche Ltd. Pharmaceuticals, Biostatistics, Basel, Switzerland
| | | | | |
Collapse
|
179
|
Tong X, Lv G, Huang J, Min Y, Yang L, Lin PC. Gr-1+CD11b+ myeloid cells efficiently home to site of injury after intravenous administration and enhance diabetic wound healing by neoangiogenesis. J Cell Mol Med 2014; 18:1194-202. [PMID: 24645717 PMCID: PMC4112018 DOI: 10.1111/jcmm.12265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022] Open
Abstract
Vascularization is an important factor that affects diabetic wound healing. There is increasing evidence that myeloid cell lineages play a role in neovascularization. In this study, the efficiency of Gr-1+CD11b+ myeloid cells to home to the site of injury and enhance diabetic wound healing by neoangiogenesis after intravenous administration was investigated. Gr-1+CD11b+ myeloid cells were injected into tail vein after establishment of dorsal window chamber, hindlimb ischaemia and ear-punch injury in diabetic or non-diabetic mice. The Gr-1+CD11b+ myeloid cells efficiently homed to the site of injury after intravenous administration and increased neoangiogenesis. The chemokine receptor type 4 (CXCR4) is robustly expressed by Gr-1+CD11b+ myeloid cells. Inhibition of CXCR4 decreases the homing ability of Gr-1+CD11b+ myeloid cells to the site of injury, which indicates that the CXCR4/SDF-1 axis plays an important role in the homing of Gr-1+CD11b+ myeloid cells to the site of injury. In addition, Gr-1+CD11b+ myeloid cells were found to improve blood flow recovery of ischaemic limb and enhance wound healing in diabetic mice by neoangiogenesis after intravenous administration. Taken together, the results of this study suggest that Gr-1+CD11b+ myeloid cells may serve as a potential cell therapy for diabetic wound healing.
Collapse
Affiliation(s)
- Xiaozhe Tong
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China; Department of Traditional Chinese Medicine, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | | | | | | | | | | |
Collapse
|
180
|
Boerckel JD, Chandrasekharan UM, Waitkus MS, Tillmaand EG, Bartlett R, Dicorleto PE. Mitogen-activated protein kinase phosphatase-1 promotes neovascularization and angiogenic gene expression. Arterioscler Thromb Vasc Biol 2014; 34:1020-31. [PMID: 24578378 DOI: 10.1161/atvbaha.114.303403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Angiogenesis is the formation of new blood vessels through endothelial cell sprouting. This process requires the mitogen-activated protein kinases, signaling molecules that are negatively regulated by the mitogen-activated protein kinase phosphatase-1 (MKP-1). The purpose of this study was to evaluate the role of MKP-1 in neovascularization in vivo and identify associated mechanisms in endothelial cells. APPROACH AND RESULTS We used murine hindlimb ischemia as a model system to evaluate the role of MKP-1 in angiogenic growth, remodeling, and arteriogenesis in vivo. Genomic deletion of MKP-1 blunted angiogenesis in the distal hindlimb and microvascular arteriogenesis in the proximal hindlimb. In vitro, endothelial MKP-1 depletion/deletion abrogated vascular endothelial growth factor-induced migration and tube formation, and reduced proliferation. These observations establish MKP-1 as a positive mediator of angiogenesis and contrast with the canonical function of MKP-1 as a mitogen-activated protein kinase phosphatase, implying an alternative mechanism for MKP-1-mediated angiogenesis. Cloning and sequencing of MKP-1-bound chromatin identified localization of MKP-1 to exonic DNA of the angiogenic chemokine fractalkine, and MKP-1 depletion reduced histone H3 serine 10 dephosphorylation on this DNA locus and blocked fractalkine expression. In vivo, MKP-1 deletion abrogated ischemia-induced fractalkine expression and macrophage and T-lymphocyte infiltration in distal hindlimbs, whereas fractalkine delivery to ischemic hindlimbs rescued the effect of MKP-1 deletion on neovascular hindlimb recovery. CONCLUSIONS MKP-1 promoted angiogenic and arteriogenic neovascular growth, potentially through dephosphorylation of histone H3 serine 10 on coding-region DNA to control transcription of angiogenic genes, such as fractalkine. These observations reveal a novel function for MKP-1 and identify MKP-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Joel D Boerckel
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, OH (J.D.B., U.M.C., M.S.W., E.G.T., R.B., P.E.D.); and Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN (J.D.B.)
| | | | | | | | | | | |
Collapse
|
181
|
Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014; 173:1-11. [PMID: 24636549 DOI: 10.1016/j.ijcard.2014.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/29/2013] [Accepted: 02/08/2014] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications which are defined by DNA methylation, histone modifications and microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes. Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that inhibit DNA methyltransferases such as 5-methyl Aza cytidine are under trials. Histone modifications which include acetylation, methylation, phosphorylation, ADP ribosylation, sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy, cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of circadian clockwork is regulated by miR122, they have a profound role in regulating biological clock and this may explain the high cardiovascular risk during the morning time. This review highlights the role of epigenetics which can be helpful in disease management strategies.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
182
|
Agustí A, Barberà JA, Wouters EFM, Peinado VI, Jeffery PK. Lungs, bone marrow, and adipose tissue. A network approach to the pathobiology of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 188:1396-406. [PMID: 24175885 DOI: 10.1164/rccm.201308-1404pp] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) often suffer other concomitant disorders, such as cardiovascular diseases and metabolic disorders, that influence significantly (and independently of lung function) their health status and prognosis. Thus, COPD is not a single organ condition, and disturbances of a complex network of interorgan connected responses occur and modulate the natural history of the disease. Here, we propose a novel hypothesis that considers a vascularly connected network with (1) the lungs as the main external sensor of the system and a major source of "danger signals"; (2) the endothelium as an internal sensor of the system (also a potential target tissue); and (3) two key responding elements, bone marrow and adipose tissue, which produce both inflammatory and repair signals. According to the model, the development of COPD, and associated multimorbidities (here we focus on cardiovascular disease as an important example), depend on the manner in which the vascular connected network responds, adapts, or fails to adapt (dictated by the genetic and epigenetic background of the individual) to the inhalation of particles and gases, mainly in cigarette smoke. The caveats and limitations of the hypothesis, as well as the experimental and clinical research needed to test and explore the proposed model, are also briefly discussed.
Collapse
Affiliation(s)
- Alvar Agustí
- 1 Thorax Institute, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
183
|
Huang B, Qian J, Ma J, Huang Z, Shen Y, Chen X, Sun A, Ge J, Chen H. Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res Ther 2014; 5:22. [PMID: 24507665 PMCID: PMC4055118 DOI: 10.1186/scrt410] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have potential for the treatment of myocardial infarction. However, several meta-analyses revealed that the outcome of stem cell transplantation is dissatisfactory. A series of studies demonstrated that the combination of cell and gene therapy was a promising strategy to enhance therapeutic efficiency. The aim of this research is to investigate whether and how the combination of overexpression of hypoxia-inducible factor-1α (HIF-1α) and co-transplantation of mesenchymal stem cells can enhance cardiac repair in myocardial infarction. Methods We investigated the therapeutic effects of myocardial transfection of HIF-1α and co-transplantation of MSCs on cardiac repair in myocardial infarction by using myocardial transfection of HIF-1α via an adenoviral vector. Myocardial infarction was produced by coronary ligation in Sprague-Dawley (SD) rats. Animals were divided randomly into six groups: (1) HIF-1α + MSCs group: Ad-HIF-1α (6 × 109 plate forming unit) and MSCs (1 × 106) were intramyocardially injected into the border zone simultaneously; (2) HIF-1α group: Ad-HIF-1α (6 × 109 plate forming unit) was injected into the border zone; (3) HIF-1α-MSCs group: Ad-HIF-1α transfected MSCs (1 × 106) were injected into the border zone; (4) MSCs group: MSCs (1 × 106) were injected into the border zone; (5) Control group: same volume of DMEM was injected; (6) SHAM group. Cardiac performance was then quantified by echocardiography as well as molecular and pathologic analysis of heart samples in the peri-infarcted region and the infarcted region at serial time points. The survival and engraftment of transplanted MSCs were also assessed. Results Myocardial transfection of HIF-1α combined with MSC transplantation in the peri-infarcted region improved cardiac function four weeks after myocardial infarction. Significant increases in vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) expression, angiogenesis and MSC engraftment, as well as decreased cardiomyocyte apoptosis in peri-infarcted regions in the hearts of the HIF-1α + MSCs group were detected compared to the MSCs group and Control group. Conclusions These findings suggest that myocardial transfection of HIF-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in myocardial infarction, indicating the feasibility and preliminary safety of a combination of myocardial transfection of HIF-1α and MSC transplantation to treat myocardial infarction.
Collapse
|
184
|
Li X, Zhao H, Wu Y, Zhang S, Zhao X, Zhang Y, Wang J, Wang J, Liu H. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats. Acta Biochim Biophys Sin (Shanghai) 2014; 46:112-8. [PMID: 24389644 DOI: 10.1093/abbs/gmt132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyperlipidemia is an independent risk factor in the development of ischemic heart disease, which can increase myocardial susceptibility to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (PostC) has now been demonstrated as a novel strategy to harness nature's protection against myocardial I/R injury in normal conditions. However, the effect of PostC on hyperlipidemic animals remains elusive. It has been shown in our previous study that PostC reduces the myocardial I/R injury, and hypoxia-inducible factor-1α (HIF-1α) may play an important role in the cardioprotective mechanisms of PostC on normal rats. Here, we tested the hypothesis that the cardioprotection of PostC on hyperlipidemic rats is associated with the up-regulated HIF-1α expression. Male Wistar rats were fed with a high-fat diet for 8 weeks, and then randomly divided into five groups: sham, I/R, dimethyloxalylglycine (DMOG) + I/R, PostC, and DMOG + PostC group. The detrimental indices induced by I/R injury included infarct size, plasma creatine kinase (CK) activity and caspase-3 activity. The results showed that PostC could reduce the infarct size, when compared with the I/R group, which was consistent with the significant lower levels of plasma CK activity and caspase-3 activity, and that it increased the expression of HIF-1α in hyperlipidemic rats. When DMOG was given before PostC to up-regulate HIF-1α protein level, the degree of I/R injury was attenuated. In conclusion, these data suggested that the up-regulation of HIF-1α may be one of the cardioprotective mechanisms of PostC against I/R injury in hyperlipidemic rats.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Al-Salam S, Hashmi S. Galectin-1 in early acute myocardial infarction. PLoS One 2014; 9:e86994. [PMID: 24498007 PMCID: PMC3909026 DOI: 10.1371/journal.pone.0086994] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/17/2013] [Indexed: 02/02/2023] Open
Abstract
Myocardial infarction (MI) is the most serious manifestation of coronary artery disease and the cause of significant mortality and morbidity worldwide. Galectin-1(GAL-1), a divalent 14.5-kDa protein, is present both inside and outside cells, and has both intracellular and extracellular functions. Hypoxia inducible factor-1 alpha (HIF-1α) is a transcription factor mediating early and late responses to myocardial ischemia. Identification of the pattern of expression of GAL-1 and HIF-1α in the heart during the first 24 hours following acute MI will help in understanding early molecular changes in this event and may provide methods to overcome serious complications. Mouse model of MI was used and heart samples were processed for immunohistochemical and immunofluorescent labeling and Enzyme linked immunosorbent assay to identify GAL-1 and HIF 1α levels in the heart during the first 24 hours following MI. There was significant increase in left ventricular GAL-1 at 20 (p = 0.001) and 30 minutes (p = 0.004) following MI. There was also a significant increase in plasma GAL-1 at 4 hours (p = 0.012) and 24 hours (p = 0.001) following MI. A significant increase in left ventricular HIF-1 α was seen at 20 minutes (p = 0.047) following MI. In conclusion, we show for the first time that GAL-1 level in the left ventricle is increased in early ischemic period. We also report for the first time that HIF-1 α is significantly increased at 20 minutes following MI. In addition we report for the first time that mouse plasma GAL-1 level is significantly raised as early as 4 hours following MI.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- * E-mail:
| | - Satwat Hashmi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
186
|
Lionetti V, Matteucci M, Ribezzo M, Di Silvestre D, Brambilla F, Agostini S, Mauri P, Padeletti L, Pingitore A, Delsedime L, Rinaldi M, Recchia FA, Pucci A. Regional mapping of myocardial hibernation phenotype in idiopathic end-stage dilated cardiomyopathy. J Cell Mol Med 2014; 18:396-414. [PMID: 24444256 PMCID: PMC3955147 DOI: 10.1111/jcmm.12198] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/28/2013] [Indexed: 01/18/2023] Open
Abstract
Myocardial hibernation (MH) is a well-known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 ± 5.45 years; left ventricle-ejection fraction (LV-EF), 18 ± 3.16%) and ICM patients (n = 12; 58.08 ± 1.7 years; LVEF, 21.5 ± 6.08%) undergoing cardiac transplantation, and normal donor hearts (N, n = 8). LV inter-ventricular septum (IVS) and antero-lateral free wall (FW) were transmurally (i.e. sub-epicardial, mesocardial and sub-endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts (P < 0.001), with a U-shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub-endocardial and sub-epicardial layers of DCM as compared with ICM. HIF1-α and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in DCM-LV and ICM-LV myocardium. The proteomic profile was overlapping by ˜50% in DCM and ICM groups. Morphological and molecular features of MH were detected in end-stage ICM as well as in end-stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical management of DCM.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione CNR-Regione Toscana "G. Monasterio", Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Du Y, Zhu H, Li D, Wang L, Zhang L, Luo Y, Pan D, Huang M. Lentiviral-mediated overexpression of Akt1 reduces anoxia-reoxygenation injury in cardiomyocytes. Cell Biol Int 2014; 38:488-96. [PMID: 24375547 DOI: 10.1002/cbin.10234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/13/2013] [Indexed: 12/29/2022]
Abstract
Activated PI3K/Akt signalling exerts a protective effect after myocardial ischemia by phosphorylating various substrates; however, the precise mechanism by which this occurs remains to be elucidated. We have constructed the recombinant lentiviral vector pLVX-Akt1-EGFP- 3FLAG (LV-Akt1) to determine the efficiency of LV-Akt1 infection, explore the protective role of Akt1, and investigate the possible mechanism by which Akt1 signalling acts during anoxia/reoxygenation (A/R) of cardiomyocytes in primary culture. Akt1 gene transfection increased cardiomyocyte pulsation, reduced cell mortality, and decreased the concentration of lactate dehydrogenase (LDH) in myocardial cells supernatants. Akt1 transfection increased the levels of intracellular p-Akt, enhanced the expression of the anti-apoptosis protein Bcl-2, and reduced that of the apoptosis protein Bax (thereby increasing the Bcl-2/Bax ratio), and caused some increase in hypoxia-inducible factor1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression after A/R. The protective role of Akt1 was partly suppressed by adding a phosphoinositide 3-kinase/Akt inhibitor (LY294002). In conclusion, LV-Akt1 was successfully constructed and neonatal rat cardiomyocytes were transfected efficiently. Akt1 overexpression significantly reduced A/R injury in cardiomyocytes, and this could be related to its effects on various targets of the PI3K/Akt signalling pathway, such as Bcl-2, Bax, HIF-1α and VEGF.
Collapse
Affiliation(s)
- Yanyan Du
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, No. 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Chang ML, Chiu CJ, Shang F, Taylor A. High Glucose Activates ChREBP-Mediated HIF-1α and VEGF Expression in Human RPE Cells Under Normoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:609-21. [DOI: 10.1007/978-1-4614-3209-8_77] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
189
|
Jivraj N, Phinikaridou A, Shah AM, Botnar RM. Molecular imaging of myocardial infarction. Basic Res Cardiol 2013; 109:397. [PMID: 24322905 DOI: 10.1007/s00395-013-0397-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI), and subsequent heart failure, remains a major healthcare problem in the western and developing world and leads to substantial morbidity and mortality. After MI, the ability of the myocardium to recover is closely associated with a complex immune response that often leads to adverse remodeling of the ventricle, and poor prognosis. Currently used clinical imaging modalities allow the assessment of anatomy, perfusion, function, and viability but do not provide insights into specific biological processes. In contrast, novel non-invasive imaging methods, using targeted imaging agents, allow imaging of the molecular processes underlying the post-MI immune cell response, and subsequent remodeling. Therefore, this may have significant diagnostic, prognostic, and therapeutic value, and may help to improve our understanding of post-infarct remodeling, in vivo. Imaging modalities such as magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography have been used in concert with radiolabelled and (super) paramagnetic probes to image each phase of the immune response. These probes, which target apoptosis, necrosis, neutrophils, monocytes, enzymes, angiogenesis, extracellular matrix, and scar formation have been assessed and validated pre-clinically. Translating this work to the bedside in a cost-effective, clinically beneficial manner remains a significant challenge. This article reviews these new imaging techniques as well as the corresponding pathophysiology.
Collapse
Affiliation(s)
- Naheed Jivraj
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, 4th Floor, Lambeth Wing, London, SE1 7EH, UK,
| | | | | | | |
Collapse
|
190
|
Tada Y, Ogawa M, Watanabe R, Zempo H, Takamura C, Suzuki JI, Dan T, Miyata T, Isobe M, Komuro I. Neovascularization induced by hypoxia inducible transcription factor is associated with the improvement of cardiac dysfunction in experimental autoimmune myocarditis. Expert Opin Investig Drugs 2013; 23:149-62. [DOI: 10.1517/13543784.2014.855196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
191
|
Mahmoud SA, Poizat C. Epigenetics and chromatin remodeling in adult cardiomyopathy. J Pathol 2013; 231:147-57. [PMID: 23813473 PMCID: PMC4285861 DOI: 10.1002/path.4234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
Abstract
The manipulation of chromatin structure regulates gene expression and the flow of genetic information. Histone modifications and ATP-dependent chromatin remodeling together with DNA methylation are dynamic processes that modify chromatin architecture and profoundly modulate gene expression. Their coordinated control is key to ensuring proper cell commitment and organ development, as well as adaption to environmental cues. Recent studies indicate that abnormal epigenetic status of the genome, in concert with alteration of transcriptional networks, contribute to the development of adult cardiomyopathy such as pathological cardiac hypertrophy. Here we consider the emerging role of different classes of chromatin regulators and how their dysregulation in the adult heart alters specific gene programs with subsequent development of major cardiomyopathies. Understanding the functional significance of the different epigenetic marks as points of genetic control may represent a promising future therapeutic tool.
Collapse
Affiliation(s)
- Salma Awad Mahmoud
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | | |
Collapse
|
192
|
Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning. J Mol Cell Cardiol 2013; 65:98-104. [PMID: 24140799 DOI: 10.1016/j.yjmcc.2013.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/23/2022]
Abstract
Remote ischemic preconditioning (RIPC) has emerged as a feasible and attractive therapeutic procedure for heart protection against ischemia/reperfusion (I/R) injury. However, its molecular mechanisms remain poorly understood. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia. This study's aim was to test whether RIPC-induced cardioprotection requires HIF-1α upregulation to be effective. In the first study, wild-type mice and mice heterozygous for HIF1a (gene encoding the HIF-1α protein) were subjected to RIPC immediately before myocardial infarction (MI). RIPC resulted in a robust HIF-1α activation in the limb and acute cardioprotection in wild-type mice. RIPC-induced cardioprotection was preserved in heterozygous mice, despite the low HIF-1α expression in their limbs. In the second study, the role of HIF-1α in RIPC was evaluated using cadmium (Cd), a pharmacological HIF-1α inhibitor. Rats were subjected to MI (MI group) or to RIPC immediately prior to MI (R-MI group). Cd was injected 18 0min before RIPC (Cd-R-MI group). RIPC induced robust HIF-1α activation in rat limbs and significantly reduced infarct size (IS). Despite Cd's inhibition of HIF-1α activation, RIPC-induced cardioprotection was preserved in the Cd-R-MI group. RIPC applied immediately prior to MI increased HIF-1α expression and attenuated IS in rats and wild-type mice. However, RIPC-induced cardioprotection was preserved in partially HIF1a-deficient mice and in rats pretreated with Cd. When considered together, these results suggest that HIF-1α upregulation is unnecessary in acute RIPC.
Collapse
|
193
|
Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci Rep 2013; 3:2767. [PMID: 24067542 PMCID: PMC3783882 DOI: 10.1038/srep02767] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/06/2013] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia, while causing cardiomyocyte injury, can activate innate protective processes, enhancing myocardial tolerance to ischemia. Such processes are present in not only the heart, but also remote organs. In this investigation, we demonstrated a cardioprotective process involving FGF21 from the liver and adipose tissue. In response to myocardial ischemia/reperfusion injury in the mouse, FGF21 was upregulated and released from the hepatic cells and adipocytes into the circulation and interacted with FGFR1 in cardiomyocytes under the mediation of the cell membrane protein β-Klotho, inducing FGFR1 phosphorylation. This action caused phosphorylation of the signaling molecules PI3K p85, Akt1, and BAD, thereby reducing caspase 3 activity, cell death, and myocardial infarction in association with improvement of myocardial function. These observations suggest that FGF21 is upregulated and released from the liver and adipose tissue in myocardial injury, contributing to myocardial protection by the mediation of the FGFR1/β-Klotho–PI3K–Akt1–BAD signaling network.
Collapse
|
194
|
Abstract
INTRODUCTION Organ/tissue replacement therapy is inherently difficult for application in the tissue engineering field due to immune rejection that limits the long-term efficacy of implanted devices. As the application of tissue engineering in the biomedical field has steadily expanded, stem cells have emerged as a viable option to promote the immune acceptance of implantable devices and to expedite alleviation of the pathological conditions. With various novel scaffolds being introduced, nanofibers which have a three-dimensional architecture can be considered as an efficient carrier for stem cells. AREAS COVERED This article reviews the novel tissue engineering processes involved with nanofiber and stem cells. Topics such as the fabrication of nanofiber via electrospinning techniques, the interaction between nanofiber scaffold and specific cell and advanced techniques to enhance the stability of stem cells are delineated in detail. In addition, cardiovascular applications of nanofiber scaffolds loaded with stem cells are examined from a clinical perspective. EXPERT OPINION Electrospun nanofibers have been intensively explored as a tool for the architecture control of cardiovascular tissue engineering due to their tunable physicochemical properties. The modification of nanofiber with biological cues, which provide rapid differentiation of stem cells into a specific lineage and protect stem cells under the harsh conditions (i.e., hypoxia), will significantly enhance therapeutic efficacies of transplanted cells. A combination of nanofiber carriers and stem cell therapy for tissue regeneration seems to pose enormous potential for the treatment of cardiac diseases including atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Byeongtaek Oh
- University of Missouri-Kansas, School of Pharmacy, Division of Pharmaceutical Sciences , Kansas City, MO 64108 , USA
| | | |
Collapse
|
195
|
Short- and long-term effects of a maternal low-protein diet on ventilation, O₂/CO₂ chemoreception and arterial blood pressure in male rat offspring. Br J Nutr 2013; 111:606-15. [PMID: 24059468 DOI: 10.1017/s0007114513002833] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal undernutrition increases the risk of adult arterial hypertension. The present study investigated the short- and long-term effects of a maternal low-protein diet on respiratory rhythm, O₂/CO₂ chemosensitivity and arterial blood pressure (ABP) of the offspring. Male Wistar rats were divided into two groups according to their mothers' diets during gestation and lactation: control (NP, 17% of casein) and low-protein (LP, 8% of casein) groups. Direct measurements of ABP, respiratory frequency (RF), tidal volume (V T) and ventilation (VE), as well as hypercapnia (7% CO₂) and hypoxia (7% O₂) evoked respiratory responses were recorded from the awake male offspring at the 30th and 90th days of life. Blood samples were collected for the analyses of protein, creatinine and urea concentrations. The LP offspring had impaired body weight and length throughout the experiment. At 30 d of age, the LP rats showed a reduction in the concentrations of total serum protein (approximately 24%). ABP in the LP rats was similar to that in the NP rats at 30 d of age, but it was 20% higher at 90 d of age. With respect to ventilatory parameters, the LP rats showed enhanced RF (approximately 34%) and VE (approximately 34%) at 30 d of age, which was associated with increased ventilatory responses to hypercapnia (approximately 21% in VE) and hypoxia (approximately 82% in VE). At 90 d of age, the VE values and CO₂/O₂ chemosensitivity of the LP rats were restored to the control range, but the RF values remained elevated. The present data show that a perinatal LP diet alters respiratory rhythm and O₂/CO₂ chemosensitivity at early ages, which may be a predisposing factor for increased ABP at adulthood.
Collapse
|
196
|
Tan JTM, Prosser HCG, Vanags LZ, Monger SA, Ng MKC, Bursill CA. High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1α. FASEB J 2013; 28:206-17. [PMID: 24022405 DOI: 10.1096/fj.13-233874] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increasing evidence suggests that high-density lipoproteins (HDLs) promote hypoxia-induced angiogenesis. The hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway is important in hypoxia and is modulated post-translationally by prolyl hydroxylases (PHD1-PHD3) and E3 ubiquitin ligases (Siah1 and Siah2). We aimed to elucidate the mechanisms by which HDLs augment hypoxia-induced angiogenesis. Preincubation (16 h) of human coronary artery endothelial cells with reconstituted high-density lipoprotein (rHDL) containing apolipoprotein A-I (apoA-I) and phosphatidylcholine (20 μM, final apoA-I concentration), before hypoxia, increased Siah1 (58%) and Siah2 (88%) mRNA levels and suppressed PHD2 (32%) and PHD3 (45%) protein levels compared with hypoxia-induced control levels. After Siah1/2 small interfering RNA knockdown, rHDL was unable to suppress PHD2/3 and failed to induce HIF-1α, VEGF, and tubulogenesis in hypoxia. Inhibition of the upstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway also abrogated the effects of rHDL. Furthermore, knockdown of the scavenger receptor SR-BI attenuated rHDL-induced elevations in Siah1/2 and tubulogenesis in hypoxia, indicating that SR-BI plays a key role. Finally, the importance of VEGF in mediating the ability of rHDL to drive hypoxia-induced angiogenesis was confirmed using a VEGF-neutralizing antibody. In summary, rHDL augments the HIF-1α/VEGF pathway via SR-BI and modulation of the post-translational regulators of HIF-1α (PI3K/Siahs/PHDs). HDL-induced augmentation of angiogenesis in hypoxia may have implications for therapeutic modulation of ischemic injury.
Collapse
Affiliation(s)
- Joanne T M Tan
- 1Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
198
|
González-Herrera L, Valenzuela A, Marchal JA, Lorente JA, Villanueva E. Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic Sci Int 2013; 232:218-28. [PMID: 24053884 DOI: 10.1016/j.forsciint.2013.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/24/2013] [Accepted: 08/03/2013] [Indexed: 11/30/2022]
Abstract
Analyses of gene expression of ischemic myocardial injury and repair related proteins has been carried out for the first time in samples from five specific sites of the myocardium, pericardial fluid and blood from thirty cadavers in relation to post-mortem interval (PMI). RNA integrity was evaluated by RNA integrity number (RIN), with values ranging from 6.57 to 8.11; sufficiently high levels of integrity to permit further gene amplification. No significant correlations between RIN and PMI in any samples were detected. Prior to target gene expression analysis, a normalization strategy was carried out to assess candidate reference gene stability, involving the analysis and comparison of four common housekeeping genes (Glyceraldehide-3-phosphate dehydrogenase, beta-actin, TATA box binding protein and Cyclophilin A). Gene expression of cardiac troponin I (TNNI3), myosin light chain 3 (MYL3), matrix metalloprotease 9 (MMP9), transforming growth factor beta 1 (TGFB1), and vascular endothelial growth factor A (VEGFA) in myocardial zones and body fluids were subsequently studied by real-time quantitative PCR. Expression levels of all the proteins studied in cardiac zone samples were similar. No statistical differences for expression were detected among proteins taken from any myocardial area. No significant differences were detected for TNNI3 and TGFB1 gene expressions when compared with samples at or under 12h-PMI or over 12h-PMI. However, differences in MYL3, MMP9, and VEGFA gene expression in body fluids were found at PMI periods of over 12h. These interesting results may contribute to the refinement of current knowledge regarding cardiac metabolism and improve understanding of the underlying mechanisms involved in myocardium ischemia and its repair.
Collapse
Affiliation(s)
- Lucas González-Herrera
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Av. de Madrid 11, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
199
|
Huang Y, Di Lorenzo A, Jiang W, Cantalupo A, Sessa WC, Giordano FJ. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis. Hypertension 2013; 62:634-40. [PMID: 23918749 DOI: 10.1161/hypertensionaha.111.00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.
Collapse
Affiliation(s)
- Yan Huang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
200
|
Reduced microvascular density in non-ischemic myocardium of patients with recent non-ST-segment-elevation myocardial infarction. Int J Cardiol 2013; 167:1027-37. [DOI: 10.1016/j.ijcard.2012.03.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/29/2012] [Accepted: 03/03/2012] [Indexed: 01/22/2023]
|