151
|
Pietrobono S, Stecca B. Targeting the Oncoprotein Smoothened by Small Molecules: Focus on Novel Acylguanidine Derivatives as Potent Smoothened Inhibitors. Cells 2018; 7:cells7120272. [PMID: 30558232 PMCID: PMC6316656 DOI: 10.3390/cells7120272] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Hedgehog-GLI (HH) signaling was originally identified as a critical morphogenetic pathway in embryonic development. Since its discovery, a multitude of studies have reported that HH signaling also plays key roles in a variety of cancer types and in maintaining tumor-initiating cells. Smoothened (SMO) is the main transducer of HH signaling, and in the last few years, it has emerged as a promising therapeutic target for anticancer therapy. Although vismodegib and sonidegib have demonstrated effectiveness for the treatment of basal cell carcinoma (BCC), their clinical use has been hampered by severe side effects, low selectivity against cancer stem cells, and the onset of mutation-driven drug resistance. Moreover, SMO antagonists are not effective in cancers where HH activation is due to mutations of pathway components downstream of SMO, or in the case of noncanonical, SMO-independent activation of the GLI transcription factors, the final mediators of HH signaling. Here, we review the current and rapidly expanding field of SMO small-molecule inhibitors in experimental and clinical settings, focusing on a class of acylguanidine derivatives. We also discuss various aspects of SMO, including mechanisms of resistance to SMO antagonists.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit⁻Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Barbara Stecca
- Tumor Cell Biology Unit⁻Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
152
|
Medulloblastomas in adolescents and adults - Can the pediatric experience be extrapolated? Neurochirurgie 2018; 67:76-82. [PMID: 30554773 DOI: 10.1016/j.neuchi.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/27/2018] [Accepted: 10/06/2018] [Indexed: 01/07/2023]
Abstract
Adult medulloblastomas are orphan diseases that differ from their pediatric counterpart. Most are classified as classic or desmoplastic and fall in the SHH subgroup, mainly with loss-of-function mutations in PTCH1 and some by TP53-mutation due to underlying germline mutation. Activation of the WNT pathway is sporadic, although underlying Turcot syndrome may be present. One-third of tumors are issued from group 4. Most adult studies are small non-randomized retrospective heterogeneous studies performed at a single center with short follow-up. Standard craniospinal irradiation followed by maintenance chemotherapy (CCNU, cisplatin-vincristine) results in a 4-year event-free survival (EFS) and overall survival (OS) of 68% and 89% respectively in standard-risk adults, and in a 4-year EFS and OS of 50% and 90%, respectively in high-risk adults. Several pooled analyses point out the potential role of chemotherapy in adults. The feasibility of pediatric protocols in adults is sometimes hampered because of blood and peripheral nerve toxicity. In the near future, subgroups of medulloblastomas may be treated by personalized therapies. With prolonged follow-up, adults fare worse. Long-term sequelae and second line treatment are not well defined in adults. Prospective studies are ongoing to define optimal first-line and relapse treatments.
Collapse
|
153
|
Rodriguez-Blanco J, Li B, Long J, Shen C, Yang F, Orton D, Collins S, Kasahara N, Ayad NG, McCrea HJ, Roussel MF, Weiss WA, Capobianco AJ, Robbins DJ. A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic Medulloblastoma. Clin Cancer Res 2018; 25:1379-1388. [PMID: 30487124 DOI: 10.1158/1078-0432.ccr-18-1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Although most children with medulloblastoma are cured of their disease, Sonic Hedgehog (SHH) subgroup medulloblastoma driven by TRP53 mutations is essentially lethal. Casein kinase 1α (CK1α) phosphorylates and destabilizes GLI transcription factors, thereby inhibiting the key effectors of SHH signaling. We therefore tested a second-generation CK1α activator against TRP53-mutant, MYCN-amplified medulloblastoma. EXPERIMENTAL DESIGN The ability of this CK1α activator to block SHH signaling was determined in vitro using GLI reporter cells, granular precursor primary cultures, and PATCHED1 (PTCH1)-mutant sphere cultures. While in vivo efficacy was tested using 2 different medulloblastoma mouse models: PTCH1 and ND2:SMOA1. Finally, the clinical relevance of CK1α activators was demonstrated using a TRP53-mutant, MYCN-amplified patient-derived xenograft. RESULTS SSTC3 inhibited SHH activity in vitro, acting downstream of the vismodegib target SMOOTHENED (SMO), and reduced the viability of sphere cultures derived from SHH medulloblastoma. SSTC3 accumulated in the brain, inhibited growth of SHH medulloblastoma tumors, and blocked metastases in a genetically engineered vismodegib-resistant mouse model of SHH medulloblastoma. Importantly, SSTC3 attenuated growth and metastasis of orthotopic patient-derived TRP53-mutant, MYCN-amplified, SHH subgroup medulloblastoma xenografts, increasing overall survival. CONCLUSIONS Using a newly described small-molecule, SSTC3, we show that CK1a activators could address a significant unmet clinical need for patients with SMO inhibitor-resistant medulloblastoma, including those harboring mutations in TRP53.
Collapse
Affiliation(s)
- Jezabel Rodriguez-Blanco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jun Long
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Chen Shen
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Fan Yang
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Sara Collins
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Noriyuki Kasahara
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - Nagi G Ayad
- Sylvester Comprehensive Cancer Center, University of Miami, Florida.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, Miami, Florida
| | - Heather J McCrea
- Department of Clinical Neurological Surgery, University of Miami, Florida
| | - Martine F Roussel
- Department of Tumor Cell Biology, St Jude Children's Research Hospital (SJCRH), Memphis, Tennessee
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| |
Collapse
|
154
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
155
|
Abstract
First described in Drosophila, Hedgehog signalling is a key regulator of embryonic development and tissue homeostasis and its dysfunction underlies a variety of human congenital anomalies and diseases. Although now recognised as a major target for cancer therapy as well as a mediator of directed stem cell differentiation, the unveiling of the function and mechanisms of Hedgehog signalling was driven largely by an interest in basic developmental biology rather than clinical need. Here, I describe how curiosity about embryonic patterning led to the identification of the family of Hedgehog signalling proteins and the pathway that transduces their activity, and ultimately to the development of drugs that block this pathway.
Collapse
Affiliation(s)
- Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
156
|
Khatua S, Song A, Citla Sridhar D, Mack SC. Childhood Medulloblastoma: Current Therapies, Emerging Molecular Landscape and Newer Therapeutic Insights. Curr Neuropharmacol 2018; 16:1045-1058. [PMID: 29189165 PMCID: PMC6120114 DOI: 10.2174/1570159x15666171129111324] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Medulloblastoma is the most common malignant brain tumor in children, currently treated uniformly based on histopathology and clinico-radiological risk stratification leading to unpredictable relapses and therapeutic failures. Identification of molecular subgroups have thrown light on the reasons for these and now reveals clues to profile molecularly based personalized therapy against these tumors. Methods: Research and online contents were evaluated for pediatric medulloblastoma which included latest information on the molecular subgroups and their clinical relevance and update on efforts to translate them into clinics. Results: Scientific endeavors over the last decade have clearly identified four molecular variants (WNT, SHH, Group 3, and Group 4) and their demographic, genomic, and epigenetic profile. Latest revelations include significant heterogeneity within these subgroups and 12 different subtypes of MB are now identified with disparate outcomes and biology. These findings have important implications for stratification and profiling future clinical trials against these formidable tumors. Conclusion: With the continued outpouring of genomic/epigenomic data of these molecular subgroups and evolution of further subtypes in each subgroup, the challenge lies in comprehensive evaluation of these informations. Current and future endeavors are now needed to profile personalized therapy for each child based on the molecular risk stratification of medulloblastoma, with a hope to improve survival outcome and reduce relapses.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| | - Anne Song
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| | - Divyaswathi Citla Sridhar
- Department of Pediatrics, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, The University of Texas Health Science Center at Houston, Pediatrics Houston, Texas, United States
| |
Collapse
|
157
|
Nanta R, Shrivastava A, Sharma J, Shankar S, Srivastava RK. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol Cell Biochem 2018; 454:11-23. [PMID: 30251117 DOI: 10.1007/s11010-018-3448-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Since PI3K/Akt/mTOR and sonic hedgehog (SHH) signaling pathways are highly activated in glioblastoma-initiating cells (GICs), we examined the effects of inhibiting these pathways on GIC characteristics and tumor growth in mice. NVP-LDE-225 (inhibitor of Smoothened) inhibited the expression of Gli1, Gli2, Smoothened, Patched1, and Patched2, and induced the expression of SuFu, whereas NVP-BEZ-235 (dual inhibitor of PI3K and mTOR) inhibited the expression of p-PI3K, p-Akt, p-mTOR, and p-p70S6K. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting the self-renewal capacity of GICs, expression of pluripotency maintaining factors (Nanog, c-Myc, Oct4, and Sox2), Musashi1, cyclin D1, and Bcl-2, and transcription and expression of Gli, and in inducing the expression of cleaved caspase-3, cleaved PARP and Bim. Additionally, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting epithelial-mesenchymal transition. Finally, the combination of NVP-LDE-225 and NVP-BEZ-235 was superior in inhibiting tumor growth, regulating the expression of pluripotency promoting factors, stem cell markers, cell cycle, and cell proliferation, and modulating EMT compared to single agent alone. In conclusion, the combined inhibition of PI3K/Akt/mTOR and SHH pathways was superior to single pathway inhibition in suppressing glioblastoma growth by targeting GICs.
Collapse
Affiliation(s)
- Rajesh Nanta
- Ingenious e-Brain Solutions, 208 Welldone Tech Park, Gurugram, Haryana, India.
| | | | - Jay Sharma
- Celprogen Inc., 3914 Del Amo Blvd. Suite 901, Torrance, CA, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, USA.,Department of Pathology, University of Missouri-School of Medicine, Kansas City, MO, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA.,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, USA. .,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
158
|
Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. Bioengineering (Basel) 2018; 5:bioengineering5040078. [PMID: 30249036 PMCID: PMC6315657 DOI: 10.3390/bioengineering5040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Embryonal tumors (ET) of the central nervous system (CNS) in children encompass a wide clinical spectrum of aggressive malignancies. Until recently, the overlapping morphological features of these lesions posed a diagnostic challenge and undermined discovery of optimal treatment strategies. However, with the advances in genomic technology and the outpouring of biological data over the last decade, clear insights into the molecular heterogeneity of these tumors are now well delineated. The major subtypes of ETs of the CNS in children include medulloblastoma, atypical teratoid rhabdoid tumor (ATRT), and embryonal tumors with multilayered rosettes (ETMR), which are now biologically and clinically characterized as different entities. These important developments have paved the way for treatments guided by risk stratification as well as novel targeted therapies in efforts to improve survival and reduce treatment burden.
Collapse
|
159
|
Purzner T, Purzner J, Buckstaff T, Cozza G, Gholamin S, Rusert JM, Hartl TA, Sanders J, Conley N, Ge X, Langan M, Ramaswamy V, Ellis L, Litzenburger U, Bolin S, Theruvath J, Nitta R, Qi L, Li XN, Li G, Taylor MD, Wechsler-Reya RJ, Pinna LA, Cho YJ, Fuller MT, Elias JE, Scott MP. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci Signal 2018; 11:11/547/eaau5147. [PMID: 30206138 DOI: 10.1126/scisignal.aau5147] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A major limitation of targeted cancer therapy is the rapid emergence of drug resistance, which often arises through mutations at or downstream of the drug target or through intrinsic resistance of subpopulations of tumor cells. Medulloblastoma (MB), the most common pediatric brain tumor, is no exception, and MBs that are driven by sonic hedgehog (SHH) signaling are particularly aggressive and drug-resistant. To find new drug targets and therapeutics for MB that may be less susceptible to common resistance mechanisms, we used a developmental phosphoproteomics approach in murine granule neuron precursors (GNPs), the developmental cell of origin of MB. The protein kinase CK2 emerged as a driver of hundreds of phosphorylation events during the proliferative, MB-like stage of GNP growth, including the phosphorylation of three of the eight proteins commonly amplified in MB. CK2 was critical to the stabilization and activity of the transcription factor GLI2, a late downstream effector in SHH signaling. CK2 inhibitors decreased the viability of primary SHH-type MB patient cells in culture and blocked the growth of murine MB tumors that were resistant to currently available Hh inhibitors, thereby extending the survival of tumor-bearing mice. Because of structural interactions, one CK2 inhibitor (CX-4945) inhibited both wild-type and mutant CK2, indicating that this drug may avoid at least one common mode of acquired resistance. These findings suggest that CK2 inhibitors may be effective for treating patients with MB and show how phosphoproteomics may be used to gain insight into developmental biology and pathology.
Collapse
Affiliation(s)
- Teresa Purzner
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - James Purzner
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - Taylor Buckstaff
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, Padova, PD 35122, Italy
| | - Sharareh Gholamin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica M Rusert
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Sanders
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Conley
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuecai Ge
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340, USA
| | | | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ulrike Litzenburger
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Sara Bolin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johanna Theruvath
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lin Qi
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padua, Padova, PD 35122, Italy.,National Research Council Neuroscience Institute, Padova, PD 35122, Italy
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
160
|
Kao SH, Wu HT, Wu KJ. Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci 2018; 25:67. [PMID: 30176860 PMCID: PMC6122628 DOI: 10.1186/s12929-018-0470-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023] Open
Abstract
Ubiquitination modulates a large repertoire of cellular functions and thus, dysregulation of the ubiquitin system results in multiple human diseases, including cancer. Ubiquitination requires an E3 ligase, which is responsible for substrate recognition and conferring specificity to ubiquitination. HUWE1 is a multifaceted HECT domain-containing ubiquitin E3 ligase, which catalyzes both mono-ubiquitination and K6-, K48- and K63-linked poly-ubiquitination of its substrates. Many of the substrates of HUWE1 play a crucial role in maintaining the homeostasis of cellular development. Not surprisingly, dysregulation of HUWE1 is associated with tumorigenesis and metastasis. HUWE1 is frequently overexpressed in solid tumors, but can be downregulated in brain tumors, suggesting that HUWE1 may possess differing cell-specific functions depending on the downstream targets of HUWE1. This review introduces some important discoveries of the HUWE1 substrates, including those controlling proliferation and differentiation, apoptosis, DNA repair, and responses to stress. In addition, we review the signaling pathways HUWE1 participates in and obstacles to the identification of HUWE1 substrates. We also discuss up-to-date potential therapeutic designs using small molecules or ubiquitin variants (UbV) against the HUWE1 activity. These molecular advances provide a translational platform for future bench-to-bed studies. HUWE1 is a critical ubiquitination modulator during the tumor progression and may serve as a possible therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan.
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, 500, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan. .,Institute of New Drug Development, Taichung, 40402, Taiwan. .,Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Departmet of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
161
|
Amarante MK, Vitiello GAF, Rosa MH, Mancilla IA, Watanabe MAE. Potential use of CXCL12/CXCR4 and sonic hedgehog pathways as therapeutic targets in medulloblastoma. Acta Oncol 2018; 57:1134-1142. [PMID: 29771176 DOI: 10.1080/0284186x.2018.1473635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor occurring in children, and although high long-term survival rates have been reached with current therapeutic protocols, several neurological injuries are still observed among survivors. It has been shown that the development of MB is highly dependent on the microenvironment surrounding it and that the CXCL12 chemokine and its receptor, CXCR4 and the Sonic Hedgehog (SHH) pathway are crucial for cerebellar development, coordinating proliferation and migration of embryonic cells and malfunctions in these axes can lead to MB development. Indeed, the concomitant overactivation of these axes was suggested to define a new MB molecular subgroup. New molecules are being studied, aiming to inhibit either CXCR4 or the SHH pathways and have been tested in preclinical settings for the treatment of cancers. The use of these molecules could improve MB treatment and save patients from aggressive surgery, chemotherapy and radiotherapy regimens, which are responsible for severe neurological consequences. This review aims to summarize current data about the experimental inhibition of CXCR4 and SHH pathways in MB and its potential implications in treatment of this cancer.
Collapse
Affiliation(s)
| | | | - Marcos Henrique Rosa
- Department of Pathological Sciences, Londrina State University, Londrina, Brazil
| | | | | |
Collapse
|
162
|
Diao Y, Rahman MFU, Vyatkin Y, Azatyan A, St Laurent G, Kapranov P, Zaphiropoulos PG. Identification of novel GLI1 target genes and regulatory circuits in human cancer cells. Mol Oncol 2018; 12:1718-1734. [PMID: 30098229 PMCID: PMC6166001 DOI: 10.1002/1878-0261.12366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023] Open
Abstract
Hedgehog (HH) signaling is involved in many physiological processes, and pathway deregulation can result in a wide range of malignancies. Glioma‐associated oncogene 1 (GLI1) is a transcription factor and a terminal effector of the HH cascade. Despite its crucial role in tumorigenesis, our understanding of the GLI1 cellular targets is quite limited. In this study, we identified multiple new GLI1 target genes using a combination of different genomic surveys and then subjected them to in‐depth validation in human cancer cell lines. We were able to validate >90% of the new targets, which were enriched in functions involved in neurogenesis and regulation of transcription, in at least one type of follow‐up experiment. Strikingly, we found that RNA editing of GLI1 can modulate effects on the targets. Furthermore, one of the top targets, FOXS1, a gene encoding a transcription factor previously implicated in nervous system development, was shown to act in a negative feedback loop limiting the cellular effects of GLI1 in medulloblastoma and rhabdomyosarcoma cells. Moreover, FOXS1 is both highly expressed and positively correlated with GLI1 in medulloblastoma samples of the Sonic HH subgroup, further arguing for the existence of FOXS1/GLI1 interplay in human tumors. Consistently, high FOXS1 expression predicts longer relapse‐free survival in breast cancer. Overall, our findings open multiple new avenues in HH signaling pathway research and have potential for translational implications.
Collapse
Affiliation(s)
- Yumei Diao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Yuri Vyatkin
- St. Laurent Institute, Cambridge, MA, USA.,AcademGene LLC, Novosibirsk, Russia
| | - Ani Azatyan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
163
|
Zeng X, Ju D. Hedgehog Signaling Pathway and Autophagy in Cancer. Int J Mol Sci 2018; 19:E2279. [PMID: 30081498 PMCID: PMC6121518 DOI: 10.3390/ijms19082279] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) pathway controls complex developmental processes in vertebrates. Abnormal activation of Hh pathway is responsible for tumorigenesis and maintenance of multiple cancers, and thus addressing this represents promising therapeutic opportunities. In recent years, two Hh inhibitors have been approved for basal cell carcinoma (BCC) treatment and show extraordinary clinical outcomes. Meanwhile, a series of novel agents are being developed for the treatment of several cancers, including lung cancer, leukemia, and pancreatic cancer. Unfortunately, Hh inhibition fails to show satisfactory benefits in these cancer types compared with the success stories in BCC, highlighting the need for better understanding of Hh signaling in cancer. Autophagy, a conserved biological process for cellular component elimination, plays critical roles in the initiation, progression, and drug resistance of cancer, and therefore, implied potential to be targeted. Recent evidence demonstrated that Hh signaling interplays with autophagy in multiple cancers. Importantly, modulating this crosstalk exhibited noteworthy capability to sensitize primary and drug-resistant cancer cells to Hh inhibitors, representing an emerging opportunity to reboot the efficacy of Hh inhibition in those insensitive tumors, and to tackle drug resistance challenges. This review will highlight recent advances of Hh pathway and autophagy in cancers, and focus on their crosstalk and the implied therapeutic opportunities.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
164
|
Han L, Tang L, Jiang Z, Jiang Y. Enhanced radiosensitization of human glioblastoma multiforme cells with phosphorylated peptides derived from Gli2. Neuropeptides 2018; 70:87-92. [PMID: 29880393 DOI: 10.1016/j.npep.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
Glioma-Associated Oncogene Family Zinc Finger 2 (Gli2) seems to be the major nuclear effector of Sonic Hedgehog (SHH) signaling to regulate self-renewal and tumorigenic potential of Glioblastoma multiforme (GBM) cells. Three phosphorylated peptides derived from Gli2 were synthesized and combined with cell-penetrating peptide Tat-(47-57) (AYGRKKRRQRRR). Western Blot was applied to detect the phosphorylation level of Gli2 and cell division protein kinase 6 (CDK6) luciferase reporter was utilized to detect the transcriptional activator function of Gli2. Clonogenic survival assay and apoptosis assay were used to testify the radiosensitization effect. The mixed three phosphorylated peptides derived from Gli2 increased the phosphorylation level of Gli2 and decreased Gli2 transcriptional activator activity significantly than the individually used peptide. The mixed three phosphorylated peptides showed greater radiation-sensitizing effects in GBM cells in clonogenic and survival assay compared with control peptide. We present here a novel rational strategy for developing phosphorylated peptides derived from Gli2 to decrease Gli2 transcriptional activator activity and such administration could radiosensitize GBM.
Collapse
Affiliation(s)
- Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ling Tang
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, PR China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, PR China.
| | - Yuquan Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, PR China.
| |
Collapse
|
165
|
Unique Tumor Heterogeneity Within a Single Locally Advanced Basal Cell Carcinoma Resulting in a Partial Response Despite Continuous Vismodegib Treatment. Dermatol Surg 2018; 45:608-610. [PMID: 30045109 DOI: 10.1097/dss.0000000000001607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
166
|
Abstract
INTRODUCTION Integrated genomics has significantly advanced our understanding of medulloblastoma heterogeneity. It is now clear that it actually comprises at least four distinct molecular subgroups termed Wnt/Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4 with stark clinical and biological differences. Areas covered: This paper reviews advances in the classification and risk stratification of medulloblastoma, specifically integrating subgroup with clinical and cytogenetic risk factors, with a summary of the potential to lead to more precise therapies. Moreover, the current state of preclinical modeling is summarized with respect to their utility in generating new treatments and correlation with genomic discoveries. Opportunities and challenges in developing new treatment paradigms are summarized and discussed, specifically new therapies for very high-risk metastatic/MYC-amplified Group 3 and TP53-mutant SHH and reductions in therapy for lower risk groups. Expert commentary: Survival across medulloblastoma has been stagnant for over 30 years, and new treatment paradigms are urgently required. Current therapy significantly over treats a high proportion of patients leaving them with lifelong side effects; while many patients still succumb to their disease. Applying biological advances could improve quality of life for a significant proportion of patients while offering new upfront approaches to the highest risk patients.
Collapse
Affiliation(s)
- Carolina Nör
- a Programme in Developmental and Stem Cell Biology , Hospital for Sick Children , Toronto , ON , Canada.,b Labatt Brain Tumour Research Centre , Hospital for Sick Children , Toronto , ON , Canada
| | - Vijay Ramaswamy
- b Labatt Brain Tumour Research Centre , Hospital for Sick Children , Toronto , ON , Canada.,c Division of Haematology/Oncology , Hospital for Sick Children , Toronto , ON , Canada
| |
Collapse
|
167
|
Guerrini-Rousseau L, Dufour C, Varlet P, Masliah-Planchon J, Bourdeaut F, Guillaud-Bataille M, Abbas R, Bertozzi AI, Fouyssac F, Huybrechts S, Puget S, Bressac-De Paillerets B, Caron O, Sevenet N, Dimaria M, Villebasse S, Delattre O, Valteau-Couanet D, Grill J, Brugières L. Germline SUFU mutation carriers and medulloblastoma: clinical characteristics, cancer risk, and prognosis. Neuro Oncol 2018; 20:1122-1132. [PMID: 29186568 PMCID: PMC6280147 DOI: 10.1093/neuonc/nox228] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Germline mutations of suppressor of fused homolog (SUFU) predispose to sonic hedgehog (SHH) medulloblastoma. Germline SUFU mutations have been reported in nevoid basal cell carcinoma syndrome (NBCCS), but little is known about the cancer risk and clinical spectrum. Methods We performed a retrospective review of all patients with medulloblastoma and a germline SUFU mutation in France. Results Twenty-two patients from 17 families were identified with medulloblastoma and a germline SUFU mutation (median age at diagnosis: 16.5 mo). Macrocrania was present in 20 patients, but only 5 met the diagnostic criteria for NBCCS. Despite treatment with surgery and chemotherapy, to avoid radiotherapy in all patients except one, the outcome was worse than expected for SHH medulloblastoma, due to the high incidence of local relapses (8/22 patients) and second malignancies (n = 6 in 4/22 patients). The 5-year progression-free survival and overall survival rates were 42% and 66%. Mutations were inherited in 79% of patients, and 34 additional SUFU mutation carriers were identified within 14 families. Medulloblastoma penetrance was incomplete, but higher than in Patched 1 (PTCH1) mutation carriers. Besides medulloblastoma, 19 other tumors were recorded among the 56 SUFU mutation carriers, including basal cell carcinoma (BCC) in 2 patients and meningioma in 3 patients. Conclusion Germline SUFU mutations strongly predispose to medulloblastoma in the first years of life, with worse prognosis than usually observed for SHH medulloblastoma. The clinical spectrum differs between SUFU and PTCH1 mutation carriers, and BCC incidence is much lower in SUFU mutation carriers. The optimal treatment of SUFU mutation-associated medulloblastoma has not been defined.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France,Corresponding author: Léa Guerrini-Rousseau, Gustave Roussy, Département de Cancérologie de l’Enfant et de l’Adolescent, 114 rue Edouard Vaillant, 94805 Villejuif, France ()
| | - Christelle Dufour
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Pascale Varlet
- Service de neuropathologie, Hôpital Sainte-Anne, Université Paris Descartes, Paris, France
| | - Julien Masliah-Planchon
- PSL Research University, INSERM U830 Génétique et Biologie des Cancers Institut Curie, Paris, France,Unité de génétique somatique, SIREDO pediatric oncology center, Institut Curie, Paris, France
| | - Franck Bourdeaut
- PSL Research University, INSERM U830 Génétique et Biologie des Cancers Institut Curie, Paris, France,Département d’oncologie Pédiatrique adolescents Jeunes Adultes, Institut Curie, Paris, France, SIREDO pediatric oncology center, Institut Curie, Paris, France,Institut Curie SIRIC - Laboratoire de Recherche Translationnelle en Oncologie Pédiatrique, Institut Curie, Paris, France
| | - Marine Guillaud-Bataille
- Département de Biologie et Pathologie Médicales, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Rachid Abbas
- INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France,Service de Biostatistique et d’Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Fanny Fouyssac
- Onco-hématologie pédiatrique, Hôpital d’Enfants, CHU Nancy, Nancy, France
| | - Sophie Huybrechts
- Hematology-Oncology Unit, Hôpital Universitaire des Enfants Reine Fabiola, ULB Université libre de Bruxelles, Brussels, Belgium
| | - Stéphanie Puget
- Service de neurochirurgie pédiatrique, Hôpital Necker-Enfants malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Olivier Caron
- PSL Research University, INSERM U830 Génétique et Biologie des Cancers Institut Curie, Paris, France,Unité de génétique somatique, SIREDO pediatric oncology center, Institut Curie, Paris, France,Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Nicolas Sevenet
- Laboratoire de génétique moléculaire, Département de bio-pathologie, Institut Bergonié, Bordeaux, France,INSERM U1218, Université de Bordeaux, Bordeaux, France,UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Marina Dimaria
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sophie Villebasse
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Olivier Delattre
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Dominique Valteau-Couanet
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique, Université Paris-Saclay, Villejuif, France
| | - Laurence Brugières
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
168
|
Pallavicini G, Sgrò F, Garello F, Falcone M, Bitonto V, Berto GE, Bianchi FT, Gai M, Chiotto AM, Filippi M, Cutrin JC, Ala U, Terreno E, Turco E, Cunto FD. Inactivation of Citron Kinase Inhibits Medulloblastoma Progression by Inducing Apoptosis and Cell Senescence. Cancer Res 2018; 78:4599-4612. [DOI: 10.1158/0008-5472.can-17-4060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/01/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
|
169
|
Wang F, Jiang H, Deng Y, Yu J, Zhan M, Zhao L, Chen Y. Design, synthesis and biological evaluation of deuterated Vismodegib for improving pharmacokinetic properties. Bioorg Med Chem Lett 2018; 28:2399-2402. [PMID: 29929879 DOI: 10.1016/j.bmcl.2018.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023]
Abstract
Vismodegib is an oral and high selective hedgehog (Hh) inhibitor used for the treatment of basal cell carcinoma (BCC). In this work, analogs of Vismodegib with deuterium-for-hydrogen replacement at certain metabolically active sites were prepared and found to have a better pharmacokinetic properties in mice. In particular, deuterated compound SKLB-C2211 obviously altered the blood circulation behavior compared to its prototype, which was demonstrated by significantly prolonged blood circulation half-life time (t1/2) and increased AUC0→∞. These results suggested SKLB-C2211 had the potential to be a long-acting inhibitor against Hh signaling pathway, and laid the foundation for the further research of its druggability.
Collapse
Affiliation(s)
- Fangying Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School of Sichuan University, Chengdu 610041, China
| | - Hongxia Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School of Sichuan University, Chengdu 610041, China
| | - Yufang Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School of Sichuan University, Chengdu 610041, China
| | - Jiang Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School of Sichuan University, Chengdu 610041, China
| | - Miao Zhan
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Lifeng Zhao
- Chengdu University, Sichuan Industrial Institute of Antibiotics, Chengdu 610052, China.
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School of Sichuan University, Chengdu 610041, China; Hinova Pharmaceuticals Inc., Suite 402, Building B, #5 South KeYuan Road, Chengdu 610041, China.
| |
Collapse
|
170
|
Shih S, Dai C, Ansari A, Urso BA, Laughlin AI, Solomon JA. Advances in genetic understanding of gorlin syndrome and emerging treatment options. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1483233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shawn Shih
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Christina Dai
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Ahmed Ansari
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Brittany A Urso
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Amy I Laughlin
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James A Solomon
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
- University of Illinois College of Medicine, Urbana, Illinois
- Ameriderm Research, Ormond Beach, FL
- Department of Dermatology, Florida State University College of Medicine, Tallahassee, FL
| |
Collapse
|
171
|
Phi JH, Park AK, Lee S, Choi SA, Baek IP, Kim P, Kim EH, Park HC, Kim BC, Bhak J, Park SH, Lee JY, Wang KC, Kim DS, Shim KW, Kim SH, Kim CY, Kim SK. Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas. Acta Neuropathol 2018; 135:939-953. [PMID: 29644394 DOI: 10.1007/s00401-018-1845-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Despite great advances in understanding of molecular pathogenesis and achievement of a high cure rate in medulloblastoma, recurrent medulloblastomas are still dismal. Additionally, misidentification of secondary malignancies due to histological ambiguity leads to misdiagnosis and eventually to inappropriate treatment. Nevertheless, the genomic characteristics of recurrent medulloblastomas are poorly understood, largely due to a lack of matched primary and recurrent tumor tissues. We performed a genomic analysis of recurrent tumors from 17 pediatric medulloblastoma patients. Whole transcriptome sequencing revealed that a subset of recurrent tumors initially diagnosed as locally recurrent medulloblastomas are secondary glioblastomas after radiotherapy, showing high similarity to the non-G-CIMP proneural subtype of glioblastoma. Further analysis, including whole exome sequencing, revealed missense mutations or complex gene fusion events in PDGFRA with augmented expression in the secondary glioblastomas after radiotherapy, implicating PDGFRA as a putative driver in the development of secondary glioblastomas after treatment exposure. This result provides insight into the possible application of PDGFRA-targeted therapy in these second malignancies. Furthermore, genomic alterations of TP53 including 17p loss or germline/somatic mutations were also found in most of the secondary glioblastomas after radiotherapy, indicating a crucial role of TP53 alteration in the process. On the other hand, analysis of recurrent medulloblastomas revealed that the most prevalent alterations are the loss of 17p region including TP53 and gain of 7q region containing EZH2 which already exist in primary tumors. The 7q gain events are frequently accompanied by high expression levels of EZH2 in both primary and recurrent medulloblastomas, which provides a clue to a new therapeutic target to prevent recurrence. Considering the fact that it is often challenging to differentiate between recurrent medulloblastomas and secondary glioblastomas after radiotherapy, our findings have major clinical implications both for correct diagnosis and for potential therapeutic interventions in these devastating diseases.
Collapse
|
172
|
Galanis E, Nassiri F, Coy S, Nejad R, Zadeh G, Santagata S. Integrating Genomics Into Neuro-Oncology Clinical Trials and Practice. Am Soc Clin Oncol Educ Book 2018; 38:148-157. [PMID: 30231374 DOI: 10.1200/edbk_200989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Important advances in our understanding of the molecular biology of brain tumors have resulted in a rapid evolution in the taxonomy of central nervous system (CNS) tumors, which culminated in the revised 2016 World Health Organization classification of CNS tumors that incorporates an integrated molecular/histologic diagnostic approach. Our expanding understanding of brain tumor genomics and molecular evolution during the disease course has started to impact clinical management. Furthermore, incorporation of genomic information in ongoing and planned neuro-oncology clinical trials is expected to lead to improved outcomes and result in personalized treatment options for patients with CNS malignancies.
Collapse
Affiliation(s)
- Evanthia Galanis
- From the Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; MacFeeters Hamilton Centre for Neuro-Oncology Research, University of Toronto, Toronto, ON, Canada; Ludwig Center at Harvard, Department of Pathology, Boston Children's Hospital, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Farhad Nassiri
- From the Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; MacFeeters Hamilton Centre for Neuro-Oncology Research, University of Toronto, Toronto, ON, Canada; Ludwig Center at Harvard, Department of Pathology, Boston Children's Hospital, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shannon Coy
- From the Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; MacFeeters Hamilton Centre for Neuro-Oncology Research, University of Toronto, Toronto, ON, Canada; Ludwig Center at Harvard, Department of Pathology, Boston Children's Hospital, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Romina Nejad
- From the Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; MacFeeters Hamilton Centre for Neuro-Oncology Research, University of Toronto, Toronto, ON, Canada; Ludwig Center at Harvard, Department of Pathology, Boston Children's Hospital, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Gelareh Zadeh
- From the Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; MacFeeters Hamilton Centre for Neuro-Oncology Research, University of Toronto, Toronto, ON, Canada; Ludwig Center at Harvard, Department of Pathology, Boston Children's Hospital, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sandro Santagata
- From the Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; MacFeeters Hamilton Centre for Neuro-Oncology Research, University of Toronto, Toronto, ON, Canada; Ludwig Center at Harvard, Department of Pathology, Boston Children's Hospital, and Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
173
|
Miranda Kuzan-Fischer C, Juraschka K, Taylor MD. Medulloblastoma in the Molecular Era. J Korean Neurosurg Soc 2018; 61:292-301. [PMID: 29742881 PMCID: PMC5957312 DOI: 10.3340/jkns.2018.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 03/03/2018] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy.
Collapse
Affiliation(s)
- Claudia Miranda Kuzan-Fischer
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Kyle Juraschka
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| |
Collapse
|
174
|
Latuske EM, Stamm H, Klokow M, Vohwinkel G, Muschhammer J, Bokemeyer C, Jücker M, Kebenko M, Fiedler W, Wellbrock J. Combined inhibition of GLI and FLT3 signaling leads to effective anti-leukemic effects in human acute myeloid leukemia. Oncotarget 2018; 8:29187-29201. [PMID: 28418873 PMCID: PMC5438723 DOI: 10.18632/oncotarget.16304] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of the Hedgehog pathway has been implicated in the pathogenesis of several tumor types including myeloid leukemia. Previously we demonstrated that overexpression of Hedgehog downstream mediators GLI1/2 confers an adverse prognosis to patients with acute myeloid leukemia (AML) and is correlated with a FLT3 mutated status. To analyze a possible non-canonical activation of the Hedgehog pathway via FLT3 and PI3K, we performed blocking experiments utilizing inhibitors for FLT3 (sunitinib), PI3K (PF-04691502) and GLI1/2 (GANT61) in FLT3-mutated and FLT3 wildtype AML cell lines and primary blasts. Combination of all three compounds had stronger anti-leukemic effects in FLT3-mutated compared to FLT3 wildtype AML cells in vitro. Interestingly, the colony growth of normal CD34+ cells from healthy donors was not impeded by the triple inhibitor combination possibly opening a therapeutic window for the clinical use of inhibitor combinations. Besides, combined treatment with sunitinib, PF-04691502 and GANT61 significantly prolonged the survival of mice transplanted with FLT3-mutated MV4-11 cells compared to the single agent treatments. Furthermore, the inhibition of FLT3 and PI3K resulted in reduced GLI protein expression and promotor activity in FLT3-mutated but not in FLT3 wildtype AML cell lines in western blotting and GLI1/2 promoter assays supporting our hypothesis of non-canonical GLI activation via FLT3. In summary, FLT3-mutated in contrast to FLT3 wildtype cells or normal human hematopoietic progenitor cells are exquisitely sensitive to combined inhibition by FLT3, PI3K and GLI1/2 overcoming some of the limitations of current FLT3 directed therapy in AML. The development of GLI1/2 inhibitors is highly desirable.
Collapse
Affiliation(s)
- Emily-Marie Latuske
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Stamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Klokow
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxim Kebenko
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
175
|
Targeting GLI Transcription Factors in Cancer. Molecules 2018; 23:molecules23051003. [PMID: 29695137 PMCID: PMC6100584 DOI: 10.3390/molecules23051003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been observed in a wide variety of tumors and accounts for more than 25% of human cancer deaths. Inhibitors targeting the Hh signal transducer Smoothened (SMO) are widely used and display a good initial efficacy in patients suffering from basal cell carcinoma (BCC); however, a large number of patients relapse. Though SMO mutations may explain acquired therapy resistance, a growing body of evidence suggests that the non-canonical, SMO-independent activation of the Hh pathway in BCC patients can also account for this adverse effect. In this review, we highlight the importance of glioma-associated oncogene (GLI) transcription factors (the main downstream effectors of the canonical and the non-canonical Hh cascade) and their putative role in the regulation of multiple oncogenic signaling pathways. Moreover, we discuss the contribution of the Hh signaling to malignant transformation and propose GLIs as central hubs in tumor signaling networks and thus attractive molecular targets in anti-cancer therapies.
Collapse
|
176
|
Castillo-Rodríguez RA, Dávila-Borja VM, Juárez-Méndez S. Data mining of pediatric medulloblastoma microarray expression reveals a novel potential subdivision of the Group 4 molecular subgroup. Oncol Lett 2018; 15:6241-6250. [PMID: 29616106 PMCID: PMC5876455 DOI: 10.3892/ol.2018.8094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 01/11/2018] [Indexed: 11/09/2022] Open
Abstract
Medulloblastoma is the most common type of solid brain tumor in children. This type of embryonic tumor is highly heterogeneous and has been classified into 4 molecular subgroups based on their gene expression profiles: WNT, SHH, Group 3 (G3) and Group 4 (G4). WNT and SHH tumors exhibit the specific dysregulation of genes and pathways, whereas G3 and G4 tumors, two of the more frequent subtypes, are the least characterized. Thus, novel markers to aid in the diagnosis, prognosis and management of medulloblastoma are required. In the present study, microarray gene expression data was downloaded from the Gene Expression Omnibus database, including data from the 4 subgroups of medulloblastoma and healthy cerebellum tissue (CT). The data was utilized in an in silico analysis to characterize each subgroup at a transcriptomic level. Using Partek Genomics Suite software, the data were visualized via hierarchical clustering and principal component analysis. The differentially expressed genes were uploaded to the MetaCore portal to perform enrichment analysis using CT gene expression as baseline, with fold change thresholds of <-5 and >5 for differential expression. The data mining analysis of microarray gene expression data enabled the identification of a range of dysregulated molecules associated with each subgroup of medulloblastoma. G4 is the most heterogeneous subgroup, as no definitive pathway defines its pathogenesis; analysis of the gene expression profiles were associated with the G4α and G4β subcategories. TOX high mobility group box family member 3, synuclein α interacting protein and, potassium voltage-gated channel interacting protein 4 were identified as three novel potential markers for distinguishing the α and β subcategories of G4. These genes may be associated with medulloblastoma pathogenesis, and thus may provide a basis for researching novel targeted treatment strategies for G4 medulloblastoma.
Collapse
Affiliation(s)
- Rosa Angélica Castillo-Rodríguez
- Laboratory of Experimental Oncology, National Institute of Pediatrics, Mexico City 04530, Mexico.,CONACyT, National Institute of Pediatrics, Mexico City 04530, Mexico
| | | | - Sergio Juárez-Méndez
- Laboratory of Experimental Oncology, National Institute of Pediatrics, Mexico City 04530, Mexico
| |
Collapse
|
177
|
Carballo GB, Honorato JR, de Lopes GPF, Spohr TCLDSE. A highlight on Sonic hedgehog pathway. Cell Commun Signal 2018; 16:11. [PMID: 29558958 PMCID: PMC5861627 DOI: 10.1186/s12964-018-0220-7] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an essential role during vertebrate embryonic development and tumorigenesis. It is already known that Sonic hedgehog (Shh) pathway is important for the evolution of radio and chemo-resistance of several types of tumors. Most of the brain tumors are resistant to chemotherapeutic drugs, consequently, they have a poor prognosis. So, a better knowledge of the Shh pathway opens an opportunity for targeted therapies against brain tumors considering a multi-factorial molecular overview. Therefore, emerging studies are being conducted in order to find new inhibitors for Shh signaling pathway, which could be safely used in clinical trials. Shh can signal through a canonical and non-canonical way, and it also has important points of interaction with other pathways during brain tumorigenesis. So, a better knowledge of Shh signaling pathway opens an avenue of possibilities for the treatment of not only for brain tumors but also for other types of cancers. In this review, we will also highlight some clinical trials that use the Shh pathway as a target for treating brain cancer.
Collapse
Affiliation(s)
- Gabriela Basile Carballo
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.,Programa de Pós-Gradução em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Ribeiro Honorato
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.,Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), RJ, Brazil.,Programa de Pós-Gradução em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Pinto Farias de Lopes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), RJ, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.
| |
Collapse
|
178
|
Presutti D, Ceccarelli M, Micheli L, Papoff G, Santini S, Samperna S, Lalli C, Zentilin L, Ruberti G, Tirone F. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018. [PMID: 29538458 PMCID: PMC5851620 DOI: 10.1371/journal.pone.0194206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), the tumor of the cerebellum, is the most frequent brain cancer in childhood and a major cause of pediatric mortality. Based on gene profiling, four MB subgroups have been identified, i.e., Wnt or Sonic Hedgehog (Shh) types, and subgroup 3 or 4. The Shh-type MB has been shown to arise from the cerebellar precursors of granule neurons (GCPs), where a hyperactivation of the Shh pathway leads to their neoplastic transformation. We have previously shown that the gene Tis21 (PC3/Btg2) inhibits the proliferation and promotes the differentiation and migration of GCPs. Moreover, the overexpression or the deletion of Tis21 in Patched1 heterozygous mice, a model of spontaneous Shh-type MB, highly reduces or increases, respectively, the frequency of MB. Here we tested whether Tis21 can inhibit MB allografts. Athymic nude mice were subcutaneously grafted with MB cells explanted from Patched1 heterozygous mice. MB allografts were then injected with adeno-associated viruses either carrying Tis21 (AAV-Tis21) or empty (AAV-CBA). We observed that the treatment with AAV-Tis21 significantly inhibited the growth of tumor nodules, as judged by their volume, and reduced the number of proliferating tumor cells (labeled with Ki67 or BrdU), relative to AAV-CBA-treated control mice. In parallel, AAV-Tis21 increased significantly tumor cells labeled with early and late neural differentiation markers. Overall the results suggest that Tis21-gene therapy slows down MB tumor growth through inhibition of proliferation and enhancement of neural differentiation. These results validate Tis21 as a relevant target for MB therapy.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Giuliana Papoff
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simonetta Santini
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simone Samperna
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
- * E-mail: (GR); (FT)
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
- * E-mail: (GR); (FT)
| |
Collapse
|
179
|
Dong X, Wang C, Chen Z, Zhao W. Overcoming the resistance mechanisms of Smoothened inhibitors. Drug Discov Today 2018; 23:704-710. [DOI: 10.1016/j.drudis.2018.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
|
180
|
Gordon RE, Zhang L, Peri S, Kuo YM, Du F, Egleston BL, Ng JMY, Andrews AJ, Astsaturov I, Curran T, Yang ZJ. Statins Synergize with Hedgehog Pathway Inhibitors for Treatment of Medulloblastoma. Clin Cancer Res 2018; 24:1375-1388. [PMID: 29437795 DOI: 10.1158/1078-0432.ccr-17-2923] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/01/2017] [Accepted: 01/09/2018] [Indexed: 01/18/2023]
Abstract
Purpose: The role of cholesterol biosynthesis in hedgehog pathway activity and progression of hedgehog pathway medulloblastoma (Hh-MB) were examined in vivo Statins, commonly used cholesterol-lowering agents, were utilized to validate cholesterol biosynthesis as a therapeutic target for Hh-MB.Experimental Design: Bioinformatic analysis was performed to evaluate the association between cholesterol biosynthesis with hedgehog group medulloblastoma in human biospecimens. Alterations in hedgehog signaling were evaluated in medulloblastoma cells after inhibition of cholesterol biosynthesis. The progression of endogenous medulloblastoma in mice was examined after genetic blockage of cholesterol biosynthesis in tumor cells. Statins alone, or in combination with vismodegib (an FDA-approved Smoothened antagonist), were utilized to inhibit medulloblastoma growth in vivoResults: Cholesterol biosynthesis was markedly enhanced in Hh-MB from both humans and mice. Inhibition of cholesterol biosynthesis dramatically decreased Hh pathway activity and reduced proliferation of medulloblastoma cells. Statins effectively inhibited medulloblastoma growth in vivo and functioned synergistically in combination with vismodegib.Conclusions: Cholesterol biosynthesis is required for Smoothened activity in the hedgehog pathway, and it is indispensable for the growth of Hh-MB. Targeting cholesterol biosynthesis represents a promising strategy for treatment of Hh-MB. Clin Cancer Res; 24(6); 1375-88. ©2018 AACR.
Collapse
Affiliation(s)
- Renata E Gordon
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Li Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yin-Ming Kuo
- Cancer Epigenetics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Fang Du
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Brian L Egleston
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Missouri
| | - Andrew J Andrews
- Cancer Epigenetics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Igor Astsaturov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Molecular Therapeutics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Missouri
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
181
|
Li XY, Zhou LF, Gao LJ, Wei Y, Xu SF, Chen FY, Huang WJ, Tan WF, Ye YP. Cynanbungeigenin C and D, a pair of novel epimers from Cynanchum bungei, suppress hedgehog pathway-dependent medulloblastoma by blocking signaling at the level of Gli. Cancer Lett 2018; 420:195-207. [PMID: 29425683 DOI: 10.1016/j.canlet.2018.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Uncontrolled excessive activation of Hedgehog (Hh) signaling pathway is linked to a number of human malignant tumorigenesis. To obtain valuable Hh pathway inhibitors from natural product, in present study, a pair of novel epimers, Cynanbungeigenin C (CBC) and D (CBD) from the plant Cynanchum bungei Decne were chemically characterized by multiple spectroscopic data and chemical derivatization, and evaluated for their inhibition on Hh pathway. Mechanistically, CBC and CBD block Hh pathway signaling not through targeting Smo and Sufu, but at the level of Gli. In addition, both eipmers significantly suppress Hh pathway-dependent Ptch+/-; p53-/- medulloblastoma in vitro and in vivo. Furthermore, both CBC and CBD inhibited two Smo mutants induced Hh pathway activation, which suggested that they are potential compounds for the treatment of medulloblastoma with primary or acquired resistance to current Smo inhibitors. These results highlight the potential of CBC and CBD as effective lead compounds in the treatment of medulloblastoma and other Hh-dependent malignancy.
Collapse
Affiliation(s)
- Xiao-Yu Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Li-Fei Zhou
- Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Li-Juan Gao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Yang Wei
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Shi-Fang Xu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Feng-Yang Chen
- Department of Basic Medical Science, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Wen-Jing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Fu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi-Ping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.
| |
Collapse
|
182
|
Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, Huang Y, Fu J. GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem 2018; 119:3641-3652. [PMID: 29231999 DOI: 10.1002/jcb.26572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway promotes prostate cancer (PC) growth and progression by regulating cancer-related genes through its downstream effectors GLI1 and GLI2. Therefore, targeting the SHH-GLI pathway provides an alternative approach to avoid cancer progression. The aim of this study was to delineate the underlying molecular mechanisms by which GDC-0449 (a SMO receptor inhibitor) and GANT-61 (a GLI transcription factor inhibitor) regulate cellular proliferation and self-renewal in human PC stem cells (ProCSCs). Inhibition of the SHH signaling pathway by GANT-61 induced apoptosis with more efficacy than by GDC-0449 in ProCSCs and PC cell lines. GLI1 and GLI2 expression, promoter-binding activity and GLI-responsive luciferase reporter activity were all decreased with either GDC-0449 or GANT-61 treatment. Expression of Fas, DR4, DR5, and cleavage of caspase-3 and PARP were increased, whereas levels of PDGFR-α and Bcl-2 were reduced. Double knockout of GLI1 and GLI2 using shRNA abolished the effects observed with either GDC-0449 or GANT-61 treatment. Collectively, our results showed that GANT-61 and GDC-0449 induced ProCSC apoptosis by directly or indirectly inhibiting the activities of the GLI family transcription factors, may enhance the efficacy of PC treatment.
Collapse
Affiliation(s)
- Wangxia Tong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Lei Qiu
- Division of Abdominal Cancer, West China Hospital, Sichuan University and National Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Meng Qi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Jianbing Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Yan Huang
- Center for Nuclear Medicine, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
183
|
Recurrent extraneural sonic hedgehog medulloblastoma exhibiting sustained response to vismodegib and temozolomide monotherapies and inter-metastatic molecular heterogeneity at progression. Oncotarget 2018. [PMID: 29515801 PMCID: PMC5839382 DOI: 10.18632/oncotarget.23699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Response to targeting and non-targeting agents is variable and molecular information remains poorly described in patients with recurrent sonic-hedgehog-driven medulloblastoma (SHH-MB). Materials and Methods Clinical and PET/CT findings during treatment with successive hedgehog antagonists and temozolomide monotherapies are described in a heavily pre-treated patient with recurrent extraneural metastases from PTCH1 mutated/ wild type smoothened (SMO) CNS SHH-MB. Molecular tests were prospectively performed in tissue from two extraneural sites at progression. Results Sustained clinical/metabolic response was obtained to vismodegib. At progression, itraconazole was ineffective, but salvage temozolomide treatment results in a response similar to vismodegib. At further progression, acquired SMO and PIK3CA mutations were identified in bone (G477L and H1047A, respectively) and epidural (L412P and H1065L, respectively) metastases. No response was observed with subsequent sonidegib treatment. Conclusions This is the first clinical report of recurrent extraneural PTCH1 mutated SHH-MB exhibiting: 1) a sustained response to vismodegib and temozolomide, and 2) inter-metastatic molecular heterogeneity and acquired SMO-G477L, SMO-L412P, and PIK3CA-H1065L mutations at progression, highlighting the need for a multitarget treatment approach.
Collapse
|
184
|
Lassaletta A, Ramaswamy V. Medulloblastoma in adults: they're not just big kids. Neuro Oncol 2018; 18:895-7. [PMID: 27271088 DOI: 10.1093/neuonc/now110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alvaro Lassaletta
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada (V.R., A.L.); Department of Pediatric Hematology/Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain (A.L.)
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada (V.R., A.L.); Department of Pediatric Hematology/Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain (A.L.)
| |
Collapse
|
185
|
Wu CC, Hou S, Orr BA, Kuo BR, Youn YH, Ong T, Roth F, Eberhart CG, Robinson GW, Solecki DJ, Taketo MM, Gilbertson RJ, Roussel MF, Han YG. mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma. Dev Cell 2017; 43:673-688.e5. [PMID: 29103956 PMCID: PMC5736446 DOI: 10.1016/j.devcel.2017.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/29/2017] [Accepted: 10/07/2017] [Indexed: 12/13/2022]
Abstract
Mechanistic target of rapamycin (MTOR) cooperates with Hedgehog (HH) signaling, but the underlying mechanisms are incompletely understood. Here we provide genetic, biochemical, and pharmacologic evidence that MTOR complex 1 (mTORC1)-dependent translation is a prerequisite for HH signaling. The genetic loss of mTORC1 function inhibited HH signaling-driven growth of the cerebellum and medulloblastoma. Inhibiting translation or mTORC1 blocked HH signaling. Depleting 4EBP1, an mTORC1 target that inhibits translation, alleviated the dependence of HH signaling on mTORC1. Consistent with this, phosphorylated 4EBP1 levels were elevated in HH signaling-driven medulloblastomas in mice and humans. In mice, an mTORC1 inhibitor suppressed medulloblastoma driven by a mutant SMO that is inherently resistant to existing SMO inhibitors, prolonging the survival of the mice. Our study reveals that mTORC1-mediated translation is a key component of HH signaling and an important target for treating medulloblastoma and other cancers driven by HH signaling.
Collapse
Affiliation(s)
- Chang-Chih Wu
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shirui Hou
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bryan R Kuo
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taren Ong
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fanny Roth
- Sorbonne Universités, UPMC Paris 06, INSERM, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 Boulevard de l'hôpital, Paris 13, Paris, France
| | - Charles G Eberhart
- Department of Pathology, The Johns Hopkins University School of Medicine, Ross Building 558, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Giles W Robinson
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David J Solecki
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto 606-8501, Japan
| | - Richard J Gilbertson
- Department of Oncology and CRUK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, England
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
186
|
Tu J, Li JJ, Song LT, Zhai HL, Wang J, Zhang XY. Molecular modeling study on resistance of WT/D473H SMO to antagonists LDE-225 and LEQ-506. Pharmacol Res 2017; 129:491-499. [PMID: 29175550 DOI: 10.1016/j.phrs.2017.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/28/2023]
Abstract
The smoothened (SMO) receptor, an essential signal transducer in the Hedgehog pathway, was targeted with antagonists to suppress the tumor. It is interesting that SMO D473H mutation confers resistance on inhibitor LDE-225 rather than LEQ-506. In this paper, the binding modes of them against the wild type and mutant SMO receptors were identified to gain insights into the resistant and non-resistant factors, based on a comprehensive protocol involving molecular docking, molecular dynamic simulations, free energy calculation and decomposition. A comparison of resistant LDE-225 and non-resistant LEQ-506 indicates that the volume of the binding cavity decreases seriously in the mutant complex with resistant LDE-225. In addition, the D473H mutation disrupts the hydrogen bond network with residues R400 and Q477, which results in the TM6 conformation inward. Owing to the absence of the hydrogen bond, residues R400 and Q477 make weak contributions to LDE-225. However, the D473H mutation along with TM6 conformational change has no effect on non-resistant LEQ-506. Finally, the resistance ascribes to adverse interaction between the greater polarity of mutant residue H473 and the nonpolar phenmethyl of LDE-225. The elaborate insights into structural and energetic mechanism of drug resistance provide an effective strategy to design rationally non-resistant antagonists.
Collapse
Affiliation(s)
- Jing Tu
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiao Jiao Li
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Ting Song
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Juan Wang
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao Yun Zhang
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
187
|
Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N, Reiter JF. Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest 2017; 128:120-124. [PMID: 29202464 DOI: 10.1172/jci92710] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022] Open
Abstract
Medulloblastoma, an aggressive cancer of the cerebellum, is among the most common pediatric brain tumors. Approximately one-third of medulloblastomas are associated with misactivation of the Hedgehog (Hh) pathway. GLI family zinc finger 2 (GLI2) coordinates the Hh transcriptional program; however, the GLI2 targets that promote cancer cell proliferation are unknown. Here, we incorporated a Gli2-EGFP allele into 2 different genetic mouse models of Hh-associated medulloblastoma. Hh signaling induced GLI2 binding to the Cdk6 promoter and activated Cdk6 expression, thereby promoting uncontrolled cell proliferation. Genetic or pharmacological inhibition of CDK6 in mice repressed the growth of Hh-associated medulloblastoma and prolonged survival through inhibition of cell proliferation. In human medulloblastoma, misactivation of Hh signaling was associated with high levels of CDK6, pointing to CDK6 as a direct transcriptional target of the Hh pathway. These results suggest that CDK6 antagonists may be a promising therapeutic approach for Hh-associated medulloblastoma in humans.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Pervinder K Choksi
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Alexis Leigh Krup
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Wasima Mayer
- Department of Radiation Oncology and.,Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Nicole Santos
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|
188
|
Abstract
The treatment options for basal cell carcinoma (BCC) have recently been augmented with the introduction of novel chemotherapeutic drugs. New S2 guidelines on the disease have also been published. The aim of this article is to present a comprehensive state of the art description of the features of ocular BCC and an overview of the various therapeutic options. Particular emphasis is placed on the clinical signs, the diagnostic tools to identify periocular BCC and interpretation of the different histopathological subtypes. Tumor staging, TNM classification, interdisciplinary tumor conference reviews as well as psycho-oncological services play an important role in patients with pronounced periocular BCC. Surgical removal with a histological R0 resection is an important component of therapy options in this disease and includes the microsurgical excision into healthy tissue and the subsequent covering of the defect. A special focus of this article is the treatment of locally extensive and metastasized BCC.
Collapse
|
189
|
Gruber W, Peer E, Elmer DP, Sternberg C, Tesanovic S, Del Burgo P, Coni S, Canettieri G, Neureiter D, Bartz R, Kohlhof H, Vitt D, Aberger F. Targeting class I histone deacetylases by the novel small molecule inhibitor 4SC-202 blocks oncogenic hedgehog-GLI signaling and overcomes smoothened inhibitor resistance. Int J Cancer 2017; 142:968-975. [PMID: 29055107 PMCID: PMC5813224 DOI: 10.1002/ijc.31117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
Aberrant activation of Hedgehog (HH)/GLI signaling is causally involved in numerous human malignancies, including basal cell carcinoma (BCC) and medulloblastoma. HH pathway antagonists targeting smoothened (SMO), an essential effector of canonical HH/GLI signaling, show significant clinical success in BCC patients and have recently been approved for the treatment of advanced and metastatic BCC. However, rapid and frequent development of drug resistance to SMO inhibitors (SMOi) together with severe side effects caused by prolonged SMOi treatment call for alternative treatment strategies targeting HH/GLI signaling downstream of SMO. In this study, we report that 4SC-202, a novel clinically validated inhibitor of class I histone deacetylases (HDACs), efficiently blocks HH/GLI signaling. Notably, 4SC-202 treatment abrogates GLI activation and HH target gene expression in both SMOi-sensitive and -resistant cells. Mechanistically, we propose that the inhibition of HDACs 1/2/3 is crucial for targeting oncogenic HH/GLI signaling, and that class I HDAC inhibitors either in combination with SMOi or as second-line therapy may improve the treatment options for HH-associated malignancies with SMOi resistance.
Collapse
Affiliation(s)
- Wolfgang Gruber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Elisabeth Peer
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Dominik P Elmer
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Christina Sternberg
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Suzana Tesanovic
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Pedro Del Burgo
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University, Salzburger Landeskliniken (SALK), Salzburg, 5020, Austria
| | - René Bartz
- 4SC AG, Planegg-Martinsried, 82152, Germany
| | - Hella Kohlhof
- 4SC AG, Planegg-Martinsried, 82152, Germany.,Immunic AG, Planegg-Martinsried, 82152, Germany
| | - Daniel Vitt
- 4SC AG, Planegg-Martinsried, 82152, Germany.,Immunic AG, Planegg-Martinsried, 82152, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| |
Collapse
|
190
|
Neumann JE, Swartling FJ, Schüller U. Medulloblastoma: experimental models and reality. Acta Neuropathol 2017; 134:679-689. [PMID: 28725965 DOI: 10.1007/s00401-017-1753-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/27/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
Medulloblastoma is the most frequent malignant brain tumor in childhood, but it may also affect infants, adolescents, and young adults. Recent advances in the understanding of the disease have shed light on molecular and clinical heterogeneity, which is now reflected in the updated WHO classification of brain tumors. At the same time, it is well accepted that preclinical research and clinical trials have to be subgroup-specific. Hence, valid models have to be generated specifically for every medulloblastoma subgroup to properly mimic molecular fingerprints, clinical features, and responsiveness to targeted therapies. This review summarizes the availability of experimental medulloblastoma models with a particular focus on how well these models reflect the actual disease subgroup. We further describe technical advantages and disadvantages of the models and finally point out how some models have successfully been used to introduce new drugs and why some medulloblastoma subgroups are extraordinary difficult to model.
Collapse
Affiliation(s)
- Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
191
|
Bautista F, Fioravantti V, de Rojas T, Carceller F, Madero L, Lassaletta A, Moreno L. Medulloblastoma in children and adolescents: a systematic review of contemporary phase I and II clinical trials and biology update. Cancer Med 2017; 6:2606-2624. [PMID: 28980418 PMCID: PMC5673921 DOI: 10.1002/cam4.1171] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Survival rates for patients with medulloblastoma have improved in the last decades but for those who relapse outcome is dismal and new approaches are needed. Emerging drugs have been tested in the last two decades within the context of phase I/II trials. In parallel, advances in genetic profiling have permitted to identify key molecular alterations for which new strategies are being developed. We performed a systematic review focused on the design and outcome of early-phase trials evaluating new agents in patients with relapsed medulloblastoma. PubMed, clinicaltrials.gov, and references from selected studies were screened to identify phase I/II studies with reported results between 2000 and 2015 including patients with medulloblastoma aged <18 years. A total of 718 studies were reviewed and 78 satisfied eligibility criteria. Of those, 69% were phase I; 31% phase II. Half evaluated conventional chemotherapeutics and 35% targeted agents. Overall, 662 patients with medulloblastoma/primitive neuroectodermal tumors were included. The study designs and the response assessments were heterogeneous, limiting the comparisons among trials and the correct identification of active drugs. Median (range) objective response rate (ORR) for patients with medulloblastoma in phase I/II studies was 0% (0-100) and 6.5% (0-50), respectively. Temozolomide containing regimens had a median ORR of 16.5% (0-100). Smoothened inhibitors trials had a median ORR of 8% (3-8). Novel drugs have shown limited activity against relapsed medulloblastoma. Temozolomide might serve as backbone for new combinations. Novel and more homogenous trial designs might facilitate the development of new drugs.
Collapse
Affiliation(s)
- Francisco Bautista
- CNIO‐HNJ Clinical Research UnitPediatric Oncology, Hematology and Stem Cell Transplant DepartmentHospital Infantil Universitario Niño JesúsAvenida Menéndez Pelayo, 6528009MadridSpain
| | - Victoria Fioravantti
- CNIO‐HNJ Clinical Research UnitPediatric Oncology, Hematology and Stem Cell Transplant DepartmentHospital Infantil Universitario Niño JesúsAvenida Menéndez Pelayo, 6528009MadridSpain
| | - Teresa de Rojas
- CNIO‐HNJ Clinical Research UnitPediatric Oncology, Hematology and Stem Cell Transplant DepartmentHospital Infantil Universitario Niño JesúsAvenida Menéndez Pelayo, 6528009MadridSpain
| | - Fernando Carceller
- Pediatric and Adolescent Drug Development, Children and Young People's UnitThe Royal Marsden NHS Foundation TrustLondonUK
- Division of Clinical Studies and Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Luis Madero
- CNIO‐HNJ Clinical Research UnitPediatric Oncology, Hematology and Stem Cell Transplant DepartmentHospital Infantil Universitario Niño JesúsAvenida Menéndez Pelayo, 6528009MadridSpain
| | - Alvaro Lassaletta
- CNIO‐HNJ Clinical Research UnitPediatric Oncology, Hematology and Stem Cell Transplant DepartmentHospital Infantil Universitario Niño JesúsAvenida Menéndez Pelayo, 6528009MadridSpain
| | - Lucas Moreno
- CNIO‐HNJ Clinical Research UnitPediatric Oncology, Hematology and Stem Cell Transplant DepartmentHospital Infantil Universitario Niño JesúsAvenida Menéndez Pelayo, 6528009MadridSpain
- Instituto de Investigación La PrincesaMadridSpain
| |
Collapse
|
192
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2017; 16:1337-1351. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
193
|
Liu X, McKenzie JA, Maschhoff CW, Gardner MJ, Silva MJ. Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice. Bone 2017; 103:241-251. [PMID: 28734986 PMCID: PMC5568453 DOI: 10.1016/j.bone.2017.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
Abstract
Fracture healing recapitulates many aspects of developmental osteogenesis. The hedgehog (Hh) signaling pathway, essential to skeletal development, is upregulated during fracture healing, although its importance is unclear. Our goal was to assess the functional importance of Hh signaling in endochondral fracture healing. We created closed, transverse diaphyseal femur fractures in mice, stabilized with an intramedullary pin, and administered a systemic Hh inhibitor or vehicle. Because Hh pathway activation is mediated by the receptor Smoothened (Smo), we used the Smo antagonist GDC-0449 (GDC, 50mg/kg, twice daily) to target the pathway. First, in vehicle-treated 10-wk. female C57BL/6 mice we confirmed that Hh signaling was increased in fracture callus compared to intact bone, with >5-fold upregulation of target genes Ptch1 and Gli1. Additionally, using 10-wk. male and female Gli1 reporter mice, we saw a strong activation of the reporter in the osseous regions of the fracture callus 7-10days after fracture. GDC treatment significantly blunted these responses, indicating effective inhibition of fracture-induced Hh signaling in bone. Moreover, microCT analysis revealed that GDC treatment significantly reduced cancellous and cortical bone volume at non-fracture sites (tibial metaphysis and diaphysis), suggesting that the drug inhibited normal bone formation. GDC treatment had a modest effect on fracture healing, with evidence of delayed callus mineralization radiographically (significantly lower Goldberg score at day 14) and by microCT (reduced callus vBMD at 14days), and a delay in the recovery of torsional rotation to normal (elevated rotation-at-peak torque at 21days). On the other hand, GDC treatment did not inhibit qPCR or morphological measures of chondrogenesis or angiogenesis, and did not impair the recovery of failure torque (at day 14 or 21), a measure of biomechanical competence. In summary, GDC treatment inhibited Hh signaling, which delayed but did not prevent fracture healing in young mice. We conclude that Hh signaling is strongly induced after fracture and may play a role in early callus mineralization, although it does not appear to be required for eventual healing.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Clayton W Maschhoff
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael J Gardner
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
194
|
Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017; 14:6327-6333. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
195
|
Liu G, Huang W, Wang J, Liu X, Yang J, Zhang Y, Geng Y, Tan W, Zhang A. Discovery of Novel Macrocyclic Hedgehog Pathway Inhibitors Acting by Suppressing the Gli-Mediated Transcription. J Med Chem 2017; 60:8218-8245. [PMID: 28873303 DOI: 10.1021/acs.jmedchem.7b01185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A systemic medicinal chemistry campaign was conducted based on a literature hit compound 5 bearing the 4,5-dihydro-2H-benzo[b][1,5]oxazocin-6(3H)-one core through cyclization of two side substituents of the bicyclic skeleton combined with N-atom walking or ring walking and the central ring expansion or extraction approaches, leading to several series of structurally unique tricyclic compounds. Among these, compound 29a was identified as the most potent against the Hedgehog (Hh) signaling pathway showing an IC50 value of 23 nM. Mechanism studies indicated that compound 29a inhibited the Hh signaling pathway by suppressing the expression of the transcriptional factors Gli rather than by interrupting the binding of Gli with DNA. We further observed that 29a was equally potent against both Smo wild type and the two major resistant mutants (Smo D473H and Smo W535L). It potently inhibited the proliferation of medulloblastoma cells and showed significant tumor growth inhibition in the ptch± ;p53-/- medulloblastoma allograft mice model. Though more studies are needed to clarify the precise interaction pattern of 29a with Gli, its promising in vitro and in vivo properties encourage further profiling as a new-generation Hh signaling inhibitor to treat tumors primarily or secondarily resistant to current Smo inhibitors.
Collapse
Affiliation(s)
- Gang Liu
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Xiaohua Liu
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yong Geng
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
196
|
Zhao X, Pak E, Ornell KJ, Pazyra-Murphy MF, MacKenzie EL, Chadwick EJ, Ponomaryov T, Kelleher JF, Segal RA. A Transposon Screen Identifies Loss of Primary Cilia as a Mechanism of Resistance to SMO Inhibitors. Cancer Discov 2017; 7:1436-1449. [DOI: 10.1158/2159-8290.cd-17-0281] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/14/2017] [Accepted: 09/11/2017] [Indexed: 11/16/2022]
|
197
|
Synthesis and evaluation of vitamin D3 analogues with C-11 modifications as inhibitors of Hedgehog signaling. Bioorg Med Chem Lett 2017; 27:4011-4014. [DOI: 10.1016/j.bmcl.2017.07.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/11/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022]
|
198
|
Armas-López L, Zúñiga J, Arrieta O, Ávila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget 2017; 8:60684-60703. [PMID: 28948003 PMCID: PMC5601171 DOI: 10.18632/oncotarget.19527] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCAN), Thoracic Oncology Clinic, Mexico City, México
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| |
Collapse
|
199
|
Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget 2017; 8:69295-69302. [PMID: 29050204 PMCID: PMC5642479 DOI: 10.18632/oncotarget.20619] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
The permanent defects in bone growth observed in preclinical studies of hedgehog (Hh) pathway inhibitors were not substantiated in early phase clinical studies of vismodegib in children. Consequently, vismodegib advanced into pediatric trials for malignancies suspected of being driven by aberrant activation of the Hh pathway. In one multicenter phase II trial, vismodegib was added to the therapy regimen for newly diagnosed Hh pathway activated medulloblastoma. Herein, we report on 3 children (2 on trial and one off trial) treated with vismodegib who developed widespread growth plate fusions that persist long after cessation of therapy. Currently, all 3 patients exhibit profound short stature and disproportionate growth, and 2 subsequently developed precocious puberty. Notably, the growth plate fusions only developed after a prolonged exposure to the drug (> 140 days). These findings resulted in a major trial amendment to restrict the agent to skeletally mature patients as well as a product label warning and update. Moreover, these findings alter the risk-benefit ratio of Hh inhibitors and underscore the importance of careful study of targeted agents in children.
Collapse
|
200
|
Holgado BL, Guerreiro Stucklin A, Garzia L, Daniels C, Taylor MD. Tailoring Medulloblastoma Treatment Through Genomics: Making a Change, One Subgroup at a Time. Annu Rev Genomics Hum Genet 2017; 18:143-166. [DOI: 10.1146/annurev-genom-091416-035434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Borja L. Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Ana Guerreiro Stucklin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael D. Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|