151
|
McGuinness MB, Karahalios A, Finger RP, Guymer RH, Simpson JA. Age-Related Macular Degeneration and Mortality: A Systematic Review and Meta-Analysis. Ophthalmic Epidemiol 2017; 24:141-152. [DOI: 10.1080/09286586.2016.1259422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Ophthalmology, University of Melbourne, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Robert P. Finger
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Ophthalmology, University of Melbourne, East Melbourne, Australia
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Robyn H. Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Ophthalmology, University of Melbourne, East Melbourne, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
152
|
Stasiukonyte N, Liutkeviciene R, Vilkeviciute A, Banevicius M, Kriauciuniene L. Associations between Rs4244285 and Rs762551 gene polymorphisms and age-related macular degeneration. Ophthalmic Genet 2017; 38:357-364. [PMID: 28095090 DOI: 10.1080/13816810.2016.1242018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Age-related macular degeneration is the leading cause of blindness in elderly individuals in developed countries. The etiology and pathophysiology of age-related macular degeneration have not been elucidated yet. Knowing that the main pathological change of age-related macular degeneration is formation of drusen containing about 40% of lipids, there have been attempts to find associations between age-related macular degeneration and genes controlling lipid metabolism. PURPOSE To determine the frequency of CYP2C19 (G681A) Rs4244285 and CYP1A2 (-163C>A) Rs762551 genotypes in patients with age-related macular degeneration. METHODS The study enrolled 150 patients with early age-related macular degeneration and 296 age- and gender-matched healthy controls. The genotyping of Rs4244285 and Rs762551 was carried out by using the real-time polymerase chain reaction method. RESULTS The CYP1A2 (-163C>A) Rs762551 C/C genotype was more frequently detected in patients with age-related macular degeneration than in the control group (32.7% vs. 21.6%, p = 0.011) and was associated with an increased risk of developing early age-related macular degeneration (OR = 1.759, 95% CI: 1.133-2.729; p = 0.012). The CYP1A2 (-163C>A) Rs762551 C/A genotype was more frequently documented in the control group compared with patients with age-related macular degeneration (46.3% vs. 30.7%, p = 0.002) and was associated with a decreased risk of having age-related macular degeneration (OR = 0.580. 95% CI: 0.362-0.929, p = 0.023) in the co-dominant model. CONCLUSION The study showed that the CYP1A2 (-163C>A) Rs762551 C/C genotype was associated with an increased risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Neringa Stasiukonyte
- a Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Rasa Liutkeviciene
- b Department of Ophthalmology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania.,c Neuroscience Institute, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Alvita Vilkeviciute
- c Neuroscience Institute, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Mantas Banevicius
- b Department of Ophthalmology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Loresa Kriauciuniene
- b Department of Ophthalmology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania.,c Neuroscience Institute, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| |
Collapse
|
153
|
McKay GJ, Young IS, McGinty A, Bentham GC, Chakravarthy U, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vioque J, de Jong PT, Fletcher AE. Associations between Serum Vitamin D and Genetic Variants in Vitamin D Pathways and Age-Related Macular Degeneration in the European Eye Study. Ophthalmology 2017; 124:90-96. [DOI: 10.1016/j.ophtha.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022] Open
|
154
|
Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors. EYE AND VISION 2016; 3:34. [PMID: 28032115 PMCID: PMC5178091 DOI: 10.1186/s40662-016-0063-5] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in adults over 50 years old. Genetic, epidemiological, and molecular studies are beginning to unravel the intricate mechanisms underlying this complex disease, which implicate the lipid-cholesterol pathway in the pathophysiology of disease development and progression. Many of the genetic and environmental risk factors associated with AMD are also associated with other complex degenerative diseases of advanced age, including cardiovascular disease (CVD). In this review, we present epidemiological findings associating AMD with a variety of lipid pathway genes, cardiovascular phenotypes, and relevant environmental exposures. Despite a number of studies showing significant associations between AMD and these lipid/cardiovascular factors, results have been mixed and as such the relationships among these factors and AMD remain controversial. It is imperative that researchers not only tease out the various contributions of such factors to AMD development but also the connections between AMD and CVD to develop optimal precision medical care for aging adults.
Collapse
Affiliation(s)
- Katie L Pennington
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah, Salt Lake City, UT USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
155
|
Farris RA, Price ET. Reverse Translational Study of Fenofibrate's Observed Effects in Diabetes-Associated Retinopathy. Clin Transl Sci 2016; 10:110-116. [PMID: 27996196 PMCID: PMC5352499 DOI: 10.1111/cts.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 11/28/2022] Open
Abstract
Clinical trials suggest that fenofibrate reduces the progression of retinopathies in patients with type 2 diabetes. Furthermore, patients with retinopathies have elevated levels of inflammatory chemokines and dysfunctional retinal angiogenesis. Therefore, we investigated the effects of fenofibrate on the production of inflammatory chemokines and genes associated with angiogenesis. Retinal pigment epithelial cells (RPECs) were cultured with IL-1β and fenofibrate ranging from 1-50 μM. ENA-78, IL-8, and RANTES were measured in cell culture by ELISA. ENA-78, ABCA1, and ABCG1 gene expression were tested by RT-PCR. IL-1β significantly induced the production of ENA-78, IL-8, and RANTES. Fenofibrate at concentrations of 25-50 uM blunted the IL-1β induced production of ENA-78 (p < 0.05) with no significant effects on RANTES and IL-8. Fenofibrate also reduced the expression of the ENA-78 gene as well as ABCA1 and ABCG1, which are genes involved in angiogenesis. Fenofibrate decreases ENA-78 production and ABCA1/ABCG1 gene expression in RPECs.
Collapse
Affiliation(s)
- R A Farris
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, Arkansas, USA
| | - E T Price
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, Arkansas, USA
| |
Collapse
|
156
|
Iannaccone A, Hollingsworth TJ, Koirala D, New DD, Lenchik NI, Beranova-Giorgianni S, Gerling IC, Radic MZ, Giorgianni F. Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration. Exp Eye Res 2016; 155:64-74. [PMID: 27989757 DOI: 10.1016/j.exer.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022]
Abstract
We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, USA.
| | - T J Hollingsworth
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Diwa Koirala
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - David D New
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Nataliya I Lenchik
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Sarka Beranova-Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Ivan C Gerling
- University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Marko Z Radic
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Francesco Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
157
|
Mishra S, Peterson K, Yin L, Berger A, Fan J, Wistow G. Accumulation of cholesterol and increased demand for zinc in serum-deprived RPE cells. Mol Vis 2016; 22:1387-1404. [PMID: 28003730 PMCID: PMC5166821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/08/2016] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Having observed that confluent ARPE-19 cells (derived from human RPE) survive well in high-glucose serum-free medium (SFM) without further feeding for several days, we investigated the expression profile of RPE cells under the same conditions. METHODS Expression profiles were examined with microarray and quantitative PCR (qPCR) analyses, followed by western blot analysis of key regulated proteins. The effects of low-density lipoprotein (LDL) and zinc supplementation were examined with qPCR. Immunofluorescence was used to localize the LDL receptor and to examine LDL uptake. Cellular cholesterol levels were measured with filipin binding. Expression patterns in primary fetal RPE cells were compared using qPCR. RESULTS Microarray analyses of gene expression in ARPE-19, confirmed with qPCR, showed upregulation of lipid and cholesterol biosynthesis pathways in SFM. At the protein level, the cholesterol synthesis control factor SRBEF2 was activated, and other key lipid synthesis proteins increased. Supplementation of SFM with LDL reversed the upregulation of lipid and cholesterol synthesis genes, but not of cholesterol transport genes. The LDL receptor relocated to the plasma membrane, and LDL uptake was activated by day 5-7 in SFM, suggesting increased demand for cholesterol. Confluent ARPE-19 cells in SFM accumulated intracellular cholesterol, compared with cells supplemented with serum, over 7 days. Over the same time course in SFM, the expression of metallothioneins decreased while the major zinc transporter was upregulated, consistent with a parallel increase in demand for zinc. Supplementation with zinc reversed expression changes for metallothionein genes, but not for other zinc-related genes. Similar patterns of regulation were also seen in primary fetal human RPE cells in SFM. CONCLUSIONS ARPE-19 cells respond to serum deprivation and starvation with upregulation of the lipid and cholesterol pathways, accumulation of intracellular cholesterol, and increased demand for zinc. Similar trends are seen in primary fetal RPE cells. Cholesterol accumulation basal to RPE is a prominent feature of age-related macular degeneration (AMD), while dietary zinc is protective. It is conceivable that accumulating defects in Bruch's membrane and dysfunction of the choriocapillaris could impede transport between RPE and vasculature in AMD. Thus, this pattern of response to serum deprivation in RPE-derived cells may have relevance for some aspects of the progression of AMD.
Collapse
Affiliation(s)
- Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Lili Yin
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Alan Berger
- Lowe Family Genomics Core, Johns Hopkins University - School of Medicine, Baltimore, MD
| | - Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
158
|
Yu Y, Wagner EK, Souied EH, Seitsonen S, Immonen IJ, Häppölä P, Raychaudhuri S, Daly MJ, Seddon JM. Protective coding variants in CFH and PELI3 and a variant near CTRB1 are associated with age-related macular degeneration†. Hum Mol Genet 2016; 25:5276-5285. [PMID: 28011711 PMCID: PMC6078639 DOI: 10.1093/hmg/ddw336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022] Open
Abstract
Although numerous common age-related macular degeneration (AMD) alleles have been discovered using genome-wide association studies, substantial disease heritability remains unexplained. We sought to identify additional common and rare variants associated with advanced AMD. A total of 4,332 cases and 25,268 controls of European ancestry from three different populations were genotyped using the Illumina Infinium HumanExome BeadChip. We performed meta-analyses to identify associations with common variants, and single variant and gene-based burden tests to identify rare variants. Two protective, low-frequency, non-synonymous variants were significantly associated with a decrease in AMD risk: A307V in PELI3 (odds ratio [OR] = 0.14, P = 4.3 × 10-10) and N1050Y in CFH (OR = 0.76, P = 6.2 × 10-12). The new variants have a large effect size, similar to some rare mutations we reported previously in a targeted sequencing study, which remain significant in this analysis: CFH R1210C (OR = 18.82, P = 3.5 × 10-07), C3 K155Q (OR = 3.27, P = 1.5 × 10-10) and C9 P167S (OR = 2.04, P = 2.8 × 10-07). We also identified a strong protective signal for a common variant (rs8056814) near CTRB1 associated with a decrease in AMD risk (logistic regression: OR = 0.71, P = 1.8 × 10-07). Suggestive protective loci were identified in the COL4A3 and APOH genes. Our results support the involvement of common and low-frequency protective variants in this vision-threatening condition. This study expands the roles of the innate immune pathway as well as the extracellular matrix and high-density lipoprotein pathways in the aetiology of AMD.
Collapse
Affiliation(s)
- Yi Yu
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA, USA
| | - Erin K. Wagner
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Eric H. Souied
- Hôpital Intercommunal, Hôpital Henri Mondor, Créteil Université Paris Est, Paris, France
| | | | | | - Paavo Häppölä
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Mark J. Daly
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA and
| | - Johanna M. Seddon
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| |
Collapse
|
159
|
The Association between the Lipids Levels in Blood and Risk of Age-Related Macular Degeneration. Nutrients 2016; 8:nu8100663. [PMID: 27782072 PMCID: PMC5084049 DOI: 10.3390/nu8100663] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Lipid metabolism may be involved in the pathogenic mechanism of age-related macular degeneration (AMD). However, conflicting results have been reported in the associations of AMD with blood lipids. We performed a meta-analysis including a total of 19 studies to evaluate associations between blood lipids and this disease. The result reported that the high level of high-density lipoprotein cholesterol (HDL-C) obtained with an increment of 1 mmol/L could result in a significantly increase in the AMD risk of approximately 18% (relative risk (RR), 1.18; 95% confidence interval (CI), 1.01 to 1.35; I2 = 53.8%; p = 0.007). High levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were significantly associated with a decreased risk of AMD (RRs ranging from 0.92 to 0.95; all p < 0.05). The stratified analysis based on AMD subtypes showed that these blood lipids were only significantly associated with the risk of early AMD (all p < 0.05). The association between the blood lipids and AMD risk did not differ substantially based on the other characteristics of the participants. A high HDL-C level was associated with an increased AMD risk, whereas participants with high TC, LDL-C, and TG concentrations may show a decreased risk for this disease. Further well-designed large studies are warranted to confirm the conclusions.
Collapse
|
160
|
Wang Y, Wang M, Zhang X, Nie J, Zhang M, Liu X, Ma L. The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13101022. [PMID: 27763569 PMCID: PMC5086761 DOI: 10.3390/ijerph13101022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/25/2016] [Accepted: 10/08/2016] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to evaluate the association of the hepatic lipase (LIPC) rs493258 polymorphism and susceptibility to age-related macular degeneration (AMD). A systematic search in PubMed, EMBASE, and ISI web of science databases was performed to identify eligible published studies without language restrictions up to April 2016. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) in different stages of AMD were estimated under different genetic models using meta-analytic methods. Seven studies comprising 20,559 cases and 17,200 controls met the inclusion criteria and were included in the meta-analysis. The LIPC rs493258 polymorphism showed a significant association with a lower risk of AMD under the allelic model (OR = 0.87, 95% CI = 0.84–0.90). Significant relationships between the variant and AMD were also observed in other genetic models (OR ranging from 0.71 to 0.86, all p < 0.05). Stratified analysis based on ethnicity found that LIPC rs493258 polymorphism had a significant association with the decreased risk of the disease in the Caucasian population, but not in the Asian population. For late AMD, significant associations of the rs493258 polymorphism with a lower risk of this disease were also observed in the allelic genetic model (OR = 0.87, 95% CI = 0.83–0.90). This meta-analysis demonstrates that the T allele in the LIPC rs493258 polymorphism was significantly associated with the risk of any and late AMD. The associations of the locus with early and late AMD risk in various populations need further exploration.
Collapse
Affiliation(s)
- Yafeng Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Mingxu Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Xiaoqing Zhang
- Department of Public Health, Xi'an Medical University, Xi'an 710021, China.
| | - Jing Nie
- School of Humanities, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ming Zhang
- Department of Internal Medicine, Xi'an Honghui Hospital, Xi'an 710054, China.
| | - Xiaohong Liu
- The First Affiliated Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
161
|
Genetic and environmental factors strongly influence risk, severity and progression of age-related macular degeneration. Signal Transduct Target Ther 2016; 1:16016. [PMID: 29263899 PMCID: PMC5661646 DOI: 10.1038/sigtrans.2016.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is characterized by complex interactions between genetic and environmental factors. Here we genotyped the selected 25 single-nucleotide polymorphisms (SNPs) in 983 cases with advanced AMD and 271 cases with intermediate AMD and build an AMD life-risk score model for assessment of progression from intermediate to advanced AMD. We analyzed the performance of the prediction model for geographic atrophy progressors or choroidal neovascularization progressors versus non-progressors based on the 25 SNPs plus body mass index and smoking status. Our results suggest that a class prediction algorithm can be used for the risk assessment of progression from intermediate to late AMD stages. The algorithm could also be potentially applied for therapeutic response, and toward personalized care and precision medicine.
Collapse
|
162
|
Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. BMC Genomics 2016; 17:695. [PMID: 27576376 PMCID: PMC5006276 DOI: 10.1186/s12864-016-2871-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies provide important insights to the genetic component of disease risks. However, an existing challenge is how to incorporate collective effects of interactions beyond the level of independent single nucleotide polymorphism (SNP) tests. While methods considering each SNP pair separately have provided insights, a large portion of expected heritability may reside in higher-order interaction effects. RESULTS We describe an inference approach (discrete discriminant analysis; DDA) designed to probe collective interactions while treating both genotypes and phenotypes as random variables. The genotype distributions in case and control groups are modeled separately based on empirical allele frequency and covariance data, whose differences yield disease risk parameters. We compared pairwise tests and collective inference methods, the latter based both on DDA and logistic regression. Analyses using simulated data demonstrated that significantly higher sensitivity and specificity can be achieved with collective inference in comparison to pairwise tests, and with DDA in comparison to logistic regression. Using age-related macular degeneration (AMD) data, we demonstrated two possible applications of DDA. In the first application, a genome-wide SNP set is reduced into a small number (∼100) of variants via filtering and SNP pairs with significant interactions are identified. We found that interactions between SNPs with highest AMD association were epigenetically active in the liver, adipocytes, and mesenchymal stem cells. In the other application, multiple groups of SNPs were formed from the genome-wide data and their relative strengths of association were compared using cross-validation. This analysis allowed us to discover novel collections of loci for which interactions between SNPs play significant roles in their disease association. In particular, we considered pathway-based groups of SNPs containing up to ∼10, 000 variants in each group. In addition to pathways related to complement activation, our collective inference pointed to pathway groups involved in phospholipid synthesis, oxidative stress, and apoptosis, consistent with the AMD pathogenesis mechanism where the dysfunction of retinal pigment epithelium cells plays central roles. CONCLUSIONS The simultaneous inference of collective interaction effects within a set of SNPs has the potential to reveal novel aspects of disease association.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Chenggang Yu
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Kamal Kumar
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | - Bert Gold
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA.
| |
Collapse
|
163
|
Wagner EK, Raychaudhuri S, Villalonga MB, Java A, Triebwasser MP, Daly MJ, Atkinson JP, Seddon JM. Mapping rare, deleterious mutations in Factor H: Association with early onset, drusen burden, and lower antigenic levels in familial AMD. Sci Rep 2016; 6:31531. [PMID: 27572114 PMCID: PMC5004131 DOI: 10.1038/srep31531] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/21/2016] [Indexed: 02/02/2023] Open
Abstract
The genetic architecture of age-related macular degeneration (AMD) involves numerous genetic variants, both common and rare, in the coding region of complement factor H (CFH). While these variants explain high disease burden in some families, they fail to explain the pathology in all. We selected families whose AMD was unexplained by known variants and performed whole exome sequencing to probe for other rare, highly penetrant variants. We identified four rare loss-of-function variants in CFH associated with AMD. Missense variant CFH 1:196646753 (C192F) segregated perfectly within a family characterized by advanced AMD and drusen temporal to the macula. Two families, each comprising a pair of affected siblings with extensive extramacular drusen, carried essential splice site variant CFH 1:196648924 (IVS6+1G>A) or missense variant rs139360826 (R175P). In a fourth family, missense variant rs121913058 (R127H) was associated with AMD. Most carriers had early onset bilateral advanced AMD and extramacular drusen. Carriers tended to have low serum Factor H levels, especially carriers of the splice variant. One missense variant (R127H) has been previously shown not to be secreted. The two other missense variants were produced recombinantly: compared to wild type, one (R175P) had no functional activity and the other (C192F) had decreased secretion.
Collapse
Affiliation(s)
- Erin K. Wagner
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Mercedes B. Villalonga
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA 02111, USA
| | - Anuja Java
- Washington University School of Medicine, Department of Medicine, Division of Nephrology, Saint Louis, MO 63110, USA
| | - Michael P. Triebwasser
- Washington University School of Medicine, Department of Medicine, Division of Rheumatology, Saint Louis, MO 63110, USA
| | - Mark J. Daly
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA 02115, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John P. Atkinson
- Washington University School of Medicine, Department of Medicine, Division of Rheumatology, Saint Louis, MO 63110, USA
| | - Johanna M. Seddon
- Ophthalmic Epidemiology and Genetics Service, New England Eye Center, Tufts Medical Center, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
164
|
Sardell RJ, Bailey JNC, Courtenay MD, Whitehead P, Laux RA, Adams LD, Fortun JA, Brantley MA, Kovach JL, Schwartz SG, Agarwal A, Scott WK, Haines JL, Pericak-Vance MA. Whole exome sequencing of extreme age-related macular degeneration phenotypes. Mol Vis 2016; 22:1062-76. [PMID: 27625572 PMCID: PMC5007100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/27/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Demographic, environmental, and genetic risk factors for age-related macular degeneration (AMD) have been identified; however, a substantial portion of the variance in AMD disease risk and heritability remains unexplained. To identify AMD risk variants and generate hypotheses for future studies, we performed whole exome sequencing for 75 individuals whose phenotype was not well predicted by their genotype at known risk loci. We hypothesized that these phenotypically extreme individuals were more likely to carry rare risk or protective variants with large effect sizes. METHODS A genetic risk score was calculated in a case-control set of 864 individuals (467 AMD cases, 397 controls) based on 19 common (≥1% minor allele frequency, MAF) single nucleotide variants previously associated with the risk of advanced AMD in a large meta-analysis of advanced cases and controls. We then selected for sequencing 39 cases with bilateral choroidal neovascularization with the lowest genetic risk scores to detect risk variants and 36 unaffected controls with the highest genetic risk score to detect protective variants. After minimizing the influence of 19 common genetic risk loci on case-control status, we targeted single variants of large effect and the aggregate effect of weaker variants within genes and pathways. Single variant tests were conducted on all variants, while gene-based and pathway analyses were conducted on three subsets of data: 1) rare (≤1% MAF in the European population) stop, splice, or damaging missense variants, 2) all rare variants, and 3) all variants. All analyses controlled for the effects of age and sex. RESULTS No variant, gene, or pathway outside regions known to be associated with risk for advanced AMD reached genome-wide significance. However, we identified several variants with substantial differences in allele frequency between cases and controls with strong additive effects on affection status after controlling for age and sex. Protective effects trending toward significance were detected at two loci identified in single-variant analyses: an intronic variant in FBLN7 (the gene encoding fibulin 7) and at three variants near pyridoxal (pyridoxine, vitamin B6) kinase (PDXK). Aggregate rare-variant analyses suggested evidence for association at ASRGL1, a gene previously linked to photoreceptor cell death, and at BSDC1. In known AMD loci we also identified 29 novel or rare damaging missense or stop/splice variants in our sample of cases and controls. CONCLUSIONS Identified variants and genes may highlight regions important in the pathogenesis of AMD and are key targets for replication.
Collapse
Affiliation(s)
- Rebecca J. Sardell
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Jessica N Cooke Bailey
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Monique D. Courtenay
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Patrice Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Reneé A. Laux
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Larry D. Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Jorge A. Fortun
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Milam A. Brantley
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Jaclyn L. Kovach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Stephen G. Schwartz
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Anita Agarwal
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - William K. Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
165
|
Handa JT, Cano M, Wang L, Datta S, Liu T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:430-440. [PMID: 27480216 DOI: 10.1016/j.bbalip.2016.07.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022]
Abstract
Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly in western societies. While antioxidant micronutrient treatment is available for intermediate non-neovascular disease, and effective anti-vascular endothelial growth factor treatment is available for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. The role of lipids, which accumulate in the macula, and their oxidation, has emerged as an important factor in disease development. These oxidized lipids can either directly contribute to tissue injury or react with amine on proteins to form oxidation-specific epitopes, which can induce an innate immune response. If inadequately neutralized, the inflammatory response from these epitopes can incite tissue injury during disease development. This review explores how the accumulation of lipids, their oxidation, and the ensuing inflammatory response might contribute to the pathogenesis of AMD. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder .
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Tongyun Liu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
166
|
Abstract
Age-related macular degeneration (AMD), widely prevalent across the globe, is a major stakeholder among adult visual morbidity and blindness, not only in the Western world but also in Asia. Several risk factors have been identified, including critical genetic factors, which were never imagined 2 decades ago. The etiopathogenesis is emerging to demonstrate that immune and complement-related inflammation pathway members chronically exposed to environmental insults could justifiably influence disease morbidity and treatment outcomes. Approximately half a dozen physiological and biochemical cascades are disrupted in the AMD disease genesis, eventually leading to the distortion and disruption of the subretinal space, subretinal pigment epithelium, and Bruch membrane, thus setting off chaos and disorder for signs and symptoms to manifest. Approximately 3 dozen genetic factors have so far been identified, including the recent ones, through powerful genomic technologies and large robust sample sizes. The noteworthy genetic variants (common and rare) are complement factor H, complement factor H-related genes 1 to 5, C3, C9, ARMS2/HTRA1, vascular endothelial growth factor A, vascular endothelial growth factor receptor 2/KDR, and rare variants (show causal link) such as TIMP3, fibrillin, COL4A3, MMP19, and MMP9. Despite the enormous amount of scientific information generated over the years, diagnostic genetic or biomarker tests are still not available for clinicians to understand the natural course of the disease and its management in a patient. However, further research in the field should reduce this gap not only by aiding the clinician but also through the possibilities of clinical intervention with complement pathway-related inhibitors entering preclinical and clinical trials in the near future.
Collapse
|
167
|
Tan PL, Bowes Rickman C, Katsanis N. AMD and the alternative complement pathway: genetics and functional implications. Hum Genomics 2016; 10:23. [PMID: 27329102 PMCID: PMC4915094 DOI: 10.1186/s40246-016-0079-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.
Collapse
Affiliation(s)
- Perciliz L Tan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Catherine Bowes Rickman
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, 27710, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
168
|
Maguire MG, Ying GS, Jaffe GJ, Toth CA, Daniel E, Grunwald J, Martin DF, Hagstrom SA. Single-Nucleotide Polymorphisms Associated With Age-Related Macular Degeneration and Lesion Phenotypes in the Comparison of Age-Related Macular Degeneration Treatments Trials. JAMA Ophthalmol 2016; 134:674-81. [PMID: 27099955 PMCID: PMC6005698 DOI: 10.1001/jamaophthalmol.2016.0669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE Single-nucleotide polymorphisms (SNPs) associated with the CFH, ARMS2, C3, LIPC, CFB, and C2 genes are associated with age-related macular degeneration (AMD); however, the association of these SNPs with angiographic features of neovascular AMD has been inconsistent in previous studies, and to date, no studies have addressed their association with features on optical coherence tomography. OBJECTIVE To evaluate the influence of genotype of SNPs previously associated with AMD on the phenotype of neovascular lesions. DESIGN, SETTING, AND PARTICIPANTS Participants for this cross-sectional study were recruited from the 1185 patients enrolled in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT), a randomized clinical trial. Eligibility criteria for CATT specified that eyes have choroidal neovascularization and visual acuity between 20/25 and 20/320. A subgroup of 835 patients provided blood samples from July 2010 through September 2011 and were genotyped for the SNPs rs1061170 (CFH), rs10490924 (ARMS2),rs2230199 (C3), rs10468017 (LIPC), rs4151667 (CFB), rs547154 (C2) using TaqMan SNP genotyping assays. Data analysis was initiated in November 2013 and completed in January 2016. MAIN OUTCOMES AND MEASURES Pretreatment ocular characteristics on fluorescein angiography (lesion type, area of neovascularization and total lesion, retinal angiomatous proliferation) and on time-domain optical coherence tomography (presence of intraretinal, subretinal, and subretinal pigment epithelium fluid; thickness at the foveal center of the retina, subretinal fluid, and subretinal tissue complex), visual acuity, and age. RESULTS A total of 835 (73%) of 1150 CATT patients were genotyped. Mean age decreased with the number of risk alleles for CFH (P < .001), ARMS2 (P < .001), and C3 (P = .005). The following results were found as the number of risk alleles increased from 0 to 1 to 2. For CFH, mean total thickness decreased from 476 to 476 to 434 µm (P = .01; adjusted for age, sex, and smoking status). For ARMS2, the mean area of the total lesion increased from 2.0 to 2.8 to 2.4 mm2 (P = .03), the proportion with retinal angiomatous proliferation lesions increased from 8% to 10% to 12% (P = .05), and the proportion with intraretinal fluid increased from 72% to 71% to 82% (P = .008). For C3, the proportion with intraretinal fluid decreased from 78% to 69% to 64% (P = .001), and the mean retinal thickness decreased from 225 to 207 to 197 µm (P = .02). CONCLUSIONS AND RELEVANCE CFH, ARMS2, and C3 were associated with specific features of neovascularization at the time patients were enrolled in CATT. Previously identified associations of ARMS2 and CFH with type of choroidal neovascularization on fluorescein angiography were not confirmed. New associations with OCT features identified in CATT need confirmation to establish whether a true association exists. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00593450.
Collapse
Affiliation(s)
- Maureen G Maguire
- Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Gui-Shuang Ying
- Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Cynthia A Toth
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Ebenezer Daniel
- Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Juan Grunwald
- Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
169
|
Anand A, Sharma K, Sharma SK, Singh R, Sharma NK, Prasad K. AMD Genetics in India: The Missing Links. Front Aging Neurosci 2016; 8:115. [PMID: 27252648 PMCID: PMC4876307 DOI: 10.3389/fnagi.2016.00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 01/28/2023] Open
Abstract
Age related macular degeneration is a disease which occurs in aged individuals. There are various changes that occur at the cellular, molecular and physiological level with advancing age (Samiec et al., 1988; Sharma K. et al., 2014). Drusen deposition between retinal pigment epithelium (RPE) and Bruch’s membrane (BM) is one of the key features in AMD patients (Mullins et al., 2000; Hageman et al., 2001) similar to Aβ/tau aggregates in Alzheimer’s disease (AD) patients. The primary goal of this review is to discuss whether the various candidate genes and associated biomarkers, that are known to play an independent role in progression of AMD, exert deleterious effect on phenotype, alone or in combination, in Indian AMD patients from the same ethnic group and the significance of such research. A statistical model for probable interaction between genes could be derived from such analysis. Therefore, one can use multiple modalities to identify and enrol AMD patients based on established clinical criteria and examine the risk factors to determine if these genes are associated with risk factors, biomarkers or disease by Mendelian randomization. Similarly, there are large numbers of single nucleotide polymorphisms (SNPs) identified in human population. Even non-synonymous SNPs (nsSNPs) are believed to induce deleterious effects on the functionality of various proteins. The study of such snSNPs could provide a better genetic insight for diverse phenotypes of AMD patients, predicting significant risk factors for the disease in Indian population. Therefore, the prediction of biological effect of nsSNPs in the candidate genes and the associated grant applications in the subject are highly solicited.Therefore, genotyping and levels of protein expression of various genes would provide wider canvas in genetic complexity of AMD pathology which should be evaluated by valid statistical and bioinformatics’ tools. Longitudinal follow up of Indian AMD patients to evaluate the temporal effect of SNPs and biomarkers on progression of disease would provide a unique strategy in the field.
Collapse
Affiliation(s)
- Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India; Centre for Systems Biology and Bioinformatics, Panjab UniversityChandigarh, India
| | - Suresh K Sharma
- Centre for Systems Biology and Bioinformatics, Panjab UniversityChandigarh, India; Department of Statistics, Panjab UniversityChandigarh, India
| | - Ramandeep Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Neel K Sharma
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute Bethesda, MD, USA
| | - Keshava Prasad
- Institute of BioinformaticsBangalore, India; YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya UniversityMangalore, India; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and NeurosciencesBangalore, India
| |
Collapse
|
170
|
Oliver VF, Jaffe AE, Song J, Wang G, Zhang P, Branham KE, Swaroop A, Eberhart CG, Zack DJ, Qian J, Merbs SL. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 2016; 10:698-707. [PMID: 26067391 DOI: 10.1080/15592294.2015.1060388] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD. We performed genome-wide DNA methylation profiling of blood from AMD patients and controls. No differential methylation site reached genome-wide significance; however, when epigenetic changes in and around known GWAS-defined AMD risk loci were explored, we found small but significant DNA methylation differences in the blood of neovascular AMD patients near age-related maculopathy susceptibility 2 (ARMS2), a top-ranked GWAS locus preferentially associated with neovascular AMD. The methylation level of one of the CpG sites significantly correlated with the genotype of the risk SNP rs10490924, suggesting a possible epigenetic mechanism of risk. Integrating genome-wide DNA methylation analysis of retina samples with and without AMD together with blood samples, we further identified a consistent, replicable change in DNA methylation in the promoter region of protease serine 50 (PRSS50). These methylation changes may identify sites in novel genes that are susceptible to non-genetic factors known to contribute to AMD development and progression.
Collapse
Key Words
- AMD, Age-related macular degeneration
- AMD-MMAP, Michigan, Mayo
- AREDS, Age-Related Eye Disease Study
- AREDS, and Pennsylvania
- DNA methylation
- DNAm, DNA methylation
- GA, geographic atrophy
- GWAS, genome-wide association study
- KEC, Kellogg Eye Center
- LCLs, lymphoblastoid cell lines
- NV, choroidal neovascularization
- RPE, retinal pigment epithelium
- age-related macular degeneration
- genome-wide methylation
- meQTL, methylation quantitative trait loci
- methyl-QTL
- peripheral blood leukocytes
- retina
Collapse
Affiliation(s)
- Verity F Oliver
- a Department of Ophthalmology; Johns Hopkins University; School of Medicine ; Baltimore , MD USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Shaw PX, Stiles T, Douglas C, Ho D, Fan W, Du H, Xiao X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS MOLECULAR SCIENCE 2016; 3:196-221. [PMID: 27239555 PMCID: PMC4882104 DOI: 10.3934/molsci.2016.2.196] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process.
Collapse
Affiliation(s)
- Peter X Shaw
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Travis Stiles
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Christopher Douglas
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Daisy Ho
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Wei Fan
- Huaxi Hospital, Sichuan University, China
| | | | - Xu Xiao
- Sichuan People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
172
|
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54:64-102. [PMID: 27156982 DOI: 10.1016/j.preteyeres.2016.04.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Collapse
Affiliation(s)
- Nathan G Lambert
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Malkit K Singh
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Maximilian Padilla
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - David Keegan
- Mater Misericordia Hospital, Eccles St, Dublin 7, Ireland.
| | - Ruth E Hogg
- Centre for Experimental Medicine, Institute of Clinical Science Block A, Grosvenor Road, Belfast, Co.Antrim, Northern Ireland, UK.
| | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
173
|
Rowan S, Taylor A. Gene-Diet Interactions in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:95-101. [PMID: 26427399 DOI: 10.1007/978-3-319-17121-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50 % of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation is the only available treatment option for the dry form of the disease known to slow progression of AMD. Despite an excellent understanding of genes and nutrition in AMD, there is remarkably little known about gene-diet interactions that may identify efficacious approaches to treat individuals. This review will summarize our current understanding of gene-diet interactions in AMD with a focus on animal models and human epidemiological studies.
Collapse
Affiliation(s)
- Sheldon Rowan
- USDA-JM Human Nutrition Research Center on Aging (HNRCA), Tufts University, 02111, Boston, MA, USA. .,Department of Ophthalmology, Tufts University School of Medicine, 02111, Boston, MA, USA.
| | - Allen Taylor
- USDA-JM Human Nutrition Research Center on Aging (HNRCA), Tufts University, 02111, Boston, MA, USA. .,Department of Ophthalmology, Tufts University School of Medicine, 02111, Boston, MA, USA. .,Friedman School of Nutrition Science and Policy, Tufts University, 02111, Boston, MA, USA.
| |
Collapse
|
174
|
Su Y, Zhang X, Zuo C, Li M, Wu K, Ji Y, Wen F. Three Variants of or near VEGF-A Gene are Not Associated with Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in a Han Chinese Population. Ophthalmic Genet 2016; 36:218-23. [PMID: 24303777 DOI: 10.3109/13816810.2013.858753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate whether three previously identified variants for age-related macular degeneration (AMD), the single nucleotide polymorphism (SNP) variants of or near the vascular endothelial growth factor A gene (VEGFA), were associated with neovascular AMD or polypoidal choroidal vasculopathy (PCV) in a Han Chinese cohort. METHODS This was a case-control study comprising 251 PCV patients, 157 neovascular AMD patients, and 204 control participants in a Han Chinese population. The rs833069, rs943080 and rs4711751 SNP were genotyped using the Multiplex SNaPshot system. Genotypes and allele frequencies of patients and controls were evaluated for the SNPs using PLINK software. RESULTS None of the allelic or genotypic effects of these three variants was significantly associated with PCV, neovascular AMD or combined both patient categories. CONCLUSIONS No association was found to support the role for the rs833069, rs943080 and rs4711751 variants of or near VEGFA gene in susceptibility to either PCV or neovascular AMD in Han Chinese population. Further replication is necessary to validate these results.
Collapse
Affiliation(s)
- Yu Su
- a State Key Laboratory of Ophthalmology , Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , China
| | | | | | | | | | | | | |
Collapse
|
175
|
Kurihara T, Westenskow PD, Gantner ML, Usui Y, Schultz A, Bravo S, Aguilar E, Wittgrove C, Friedlander MS, Paris LP, Chew E, Siuzdak G, Friedlander M. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. eLife 2016; 5. [PMID: 26978795 PMCID: PMC4848091 DOI: 10.7554/elife.14319] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/11/2016] [Indexed: 12/24/2022] Open
Abstract
Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies. DOI:http://dx.doi.org/10.7554/eLife.14319.001 Cells use a sugar called glucose as fuel to provide energy for many essential processes. The light-sensing cells in the eye, known as photoreceptors, need tremendous amounts of glucose, which they receive from the blood with the help of neighboring cells called retinal pigment epithelium (RPE) cells. Without a reliable supply of this sugar, the photoreceptors die and vision is lost. As we age, we are at greater risk of vision loss because RPE cells become less efficient at transporting glucose and our blood vessels shrink so that the photoreceptors may become starved of glucose. To prevent age-related vision loss, we need new strategies to keep blood vessels and RPE cells healthy. However, it was not clear exactly how RPE cells supply photoreceptors with glucose, and what happens when blood supplies are reduced. To address this question, Kurihara, Westenskow et al. used genetically modified mice to investigate how cells in the eye respond to starvation. The experiments show that when nutrients are scarce the RPE cells essentially panic, radically change their diet, and become greedy. That is to say that they double in size and begin burning fuel faster while also stockpiling extra sugar and fat for later use. In turn, the photoreceptors don’t get the energy they need and so they slowly stop working and die. Kurihara, Westenskow et al. also show that there is a rapid change in the way in which sugar and fat are processed in the eye during starvation. Learning how to prevent these changes in patients with age-related vision loss could protect their photoreceptors from starvation and death. The next step following on from this research is to design drugs to improve the supply of glucose and nutrients to the photoreceptors by repairing aging blood vessels and/or preventing RPE cells from stockpiling glucose for themselves. DOI:http://dx.doi.org/10.7554/eLife.14319.002
Collapse
Affiliation(s)
- Toshihide Kurihara
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Peter D Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States.,The Lowy Medical Research Institute, La Jolla, United States
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Andrew Schultz
- Center for Metabolomics, The Scripps Research Institute, La Jolla, United States
| | - Stephen Bravo
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Carli Wittgrove
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Mollie Sh Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Liliana P Paris
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Emily Chew
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Gary Siuzdak
- Center for Metabolomics, The Scripps Research Institute, La Jolla, United States
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
176
|
Sergejeva O, Botov R, Liutkevičienė R, Kriaučiūnienė L. Genetic factors associated with the development of age-related macular degeneration. MEDICINA-LITHUANIA 2016; 52:79-88. [PMID: 27170480 DOI: 10.1016/j.medici.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/01/2015] [Accepted: 02/13/2016] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) affects the macula and is the leading cause of significant and irreversible central visual loss. It is the most common cause of visual loss in people aged more than 60 years. This disease affects 2.5 million individuals in Europe. AMD is caused by both environmental and genetic factors. Numerous risk factors have been reported, but the pathogenesis of AMD is complex and fairly understood. Age, female gender, obesity, race, education status, family history, hyperopia, iris color, cigarette smoking, previous cataract surgery, history of cardiovascular and cerebrovascular disease, diabetes, sunlight exposure and many other factors have been shown to be associated with AMD development. Scientific evidence shows that genes may play a role in the development of nearly 3 out of 4 cases of this devastating eye disease. The genes that have been shown to be associated with AMD are genes encoding complement system components such as CFH, C2, C3, CFB, and other.
Collapse
Affiliation(s)
- Olga Sergejeva
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Roman Botov
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Liutkevičienė
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania; Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Loresa Kriaučiūnienė
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
177
|
Wang Q, Zhao HS, Li L. Association between complement factor I gene polymorphisms and the risk of age-related macular degeneration: a Meta-analysis of literature. Int J Ophthalmol 2016; 9:298-305. [PMID: 26949655 DOI: 10.18240/ijo.2016.02.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/27/2015] [Indexed: 01/11/2023] Open
Abstract
AIM To systematically review the association between complement factors I (CFI) polymorphisms and age-related macular degeneration (AMD) and to explore whether CFI polymorphisms are associated with AMD. METHODS Meta-analysis of articles published from 1995 to January 2015 of articles involved with AMD and polymorphisms of the CFI gene. Eligible data were pooled in a Meta-analysis, analyzing using STATA software (version 12.0), Review Manager (version 5.2) and different models based on the heterogeneity of effect sizes. Egger's test, Begg's rank correlation methods were used to evaluate for publication bias. RESULTS Thirteen articles were eligible, describing two loci polymorphisms of the CFI gene (of which 12 articles focus on rs10033900T>C and 3 articles focus on rs2285714C>T). For rs10033900T>C, the results of our study revealed that having a mutant allele C, TC, CC and TC+CC was associated with a decreased risk of AMD in all population groups studied (C versus T models, OR=0.84, 95%CI: 0.72-0.99, P=0.04; TC versus TT models OR=0.89, 95%CI: 0.88-0.99, P=0.04; CC versus TT models, OR=0.76, 95%CI: 0.60-0.98, P=0.03; TC+CC versus TT models, OR=0.81, 95%CI:0.65-0.99, P=0.04). We found that C allele were related to lower AMD risk in the Caucasian population by subgroup analysis, but there was no association with AMD under the allele and genotypes comparison in Asian studies. For rs2285714 C>T, the TC, TT genotypes contributed to a higher risk of AMD, compared with the CC carriers and TC+CC (OR=1.34, 95%CI: 1.09-1.63, P=0.004; OR=1.50, 95%CI: 1.25-1.80, P<0.0001). CONCLUSION This Meta-analysis suggests that CFI rs10033900T>C and rs2285714C>T polymorphisms may contribute to AMD.
Collapse
Affiliation(s)
- Qin Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Center of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hai-Sheng Zhao
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Li
- Center of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
178
|
Ferrington DA, Kapphahn RJ, Leary MM, Atilano SR, Terluk MR, Karunadharma P, Chen GKJ, Ratnapriya R, Swaroop A, Montezuma SR, Kenney MC. Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Exp Eye Res 2016; 145:269-277. [PMID: 26854823 DOI: 10.1016/j.exer.2016.01.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness among the elderly in the developed world. Genetic analysis of AMD has identified 34 high-risk loci associated with AMD. The genes at these high risk loci belong to diverse biological pathways, suggesting different mechanisms leading to AMD pathogenesis. Thus, therapies targeting a single pathway for all AMD patients will likely not be universally effective. Recent evidence suggests defects in mitochondria (mt) of the retinal pigment epithelium (RPE) may constitute a key pathogenic event in some AMD patients. The purpose of this study is to determine if individuals with a specific genetic background have a greater propensity for mtDNA damage. We used human eyebank tissues from 76 donors with AMD and 42 age-matched controls to determine the extent of mtDNA damage in the RPE that was harvested from the macula using a long extension polymerase chain reaction assay. Genotype analyses were performed for ten common AMD-associated nuclear risk alleles (ARMS2, TNFRSF10A, CFH, C2, C3, APOE, CETP, LIPC, VEGF and COL10A1) and mtDNA haplogroups. Sufficient samples were available for genotype association with mtDNA damage for TNFRSF10A, CFH, CETP, VEGFA, and COL10A1. Our results show that AMD donors carrying the high risk allele for CFH (C) had significantly more mtDNA damage compared with donors having the wild-type genetic profile. The data from an additional 39 donors (12 controls and 27 AMD) genotyped for CFH alleles further supported these findings. Taken together, these studies provide the rationale for a more personalized approach for treating AMD by uncovering a significant correlation between the CFH high risk allele and accelerated mtDNA damage. Patients harboring this genetic risk factor may benefit from therapies that stabilize and protect the mt in the RPE.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michaela M Leary
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shari R Atilano
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Marcia R Terluk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pabalu Karunadharma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Rinki Ratnapriya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
179
|
Vavvas DG, Daniels AB, Kapsala ZG, Goldfarb JW, Ganotakis E, Loewenstein JI, Young LH, Gragoudas ES, Eliott D, Kim IK, Tsilimbaris MK, Miller JW. Regression of Some High-risk Features of Age-related Macular Degeneration (AMD) in Patients Receiving Intensive Statin Treatment. EBioMedicine 2016; 5:198-203. [PMID: 27077128 PMCID: PMC4816836 DOI: 10.1016/j.ebiom.2016.01.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Importance Age-related macular degeneration (AMD) remains the leading cause of blindness in developed countries, and affects more than 150 million worldwide. Despite effective anti-angiogenic therapies for the less prevalent neovascular form of AMD, treatments are lacking for the more prevalent dry form. Similarities in risk factors and pathogenesis between AMD and atherosclerosis have led investigators to study the effects of statins on AMD incidence and progression with mixed results. A limitation of these studies has been the heterogeneity of AMD disease and the lack of standardization in statin dosage. Objective We were interested in studying the effects of high-dose statins, similar to those showing regression of atherosclerotic plaques, in AMD. Design Pilot multicenter open-label prospective clinical study of 26 patients with diagnosis of AMD and the presence of many large, soft drusenoid deposits. Patients received 80 mg of atorvastatin daily and were monitored at baseline and every 3 months with complete ophthalmologic exam, best corrected visual acuity (VA), fundus photographs, optical coherence tomography (OCT), and blood work (AST, ALT, CPK, total cholesterol, TSH, creatinine, as well as a pregnancy test for premenopausal women). Results Twenty-three subjects completed a minimum follow-up of 12 months. High-dose atorvastatin resulted in regression of drusen deposits associated with vision gain (+ 3.3 letters, p = 0.06) in 10 patients. No subjects progressed to advanced neovascular AMD. Conclusions High-dose statins may result in resolution of drusenoid pigment epithelial detachments (PEDs) and improvement in VA, without atrophy or neovascularization in a high-risk subgroup of AMD patients. Confirmation from larger studies is warranted. High dose lipophilic statin administration was associated with regression of large soft drusen and vision gain in 10/23 AMD patients. Duration of treatment before a positive response was observed was usually 1–1.5 years. Patients on high-dose statin appeared to be protected from progression to “wet” neovascular-AMD.
There is a lack of effective therapies for dry age-related macular degeneration (AMD), one of the leading causes of blindness affecting millions. Although AMD shares similarities with atherosclerosis, prior studies on statins and AMD have failed to show improvement. A limitation of these studies has been the heterogeneity of AMD disease and the lack of standardization in statin dosage. Here, we present for the first time evidence that treatment with high-dose atorvastatin (80 mg) is associated with regression of lipid deposits and improvement in visual acuity, without atrophy or neovascularization, in high-risk AMD patients.
Collapse
Affiliation(s)
- Demetrios G. Vavvas
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| | - Anthony B. Daniels
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| | | | | | | | | | | | | | | | | | - Miltiadis K. Tsilimbaris
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| | - Joan W. Miller
- Corresponding authors at: 243 Charles St., Boston, MA 02114, USA.243 Charles St.BostonMA02114USA
| |
Collapse
|
180
|
Ma L, Tang FY, Chu WK, Young AL, Brelen ME, Pang CP, Chen LJ. Association of toll-like receptor 3 polymorphism rs3775291 with age-related macular degeneration: a systematic review and meta-analysis. Sci Rep 2016; 6:19718. [PMID: 26796995 PMCID: PMC4726375 DOI: 10.1038/srep19718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022] Open
Abstract
Association of a polymorphism rs3775291 in the toll-like receptor 3 (TLR3) gene with age-related macular degeneration (AMD) had been investigated intensively, with variable results across studies. Here we conducted a meta-analysis to verify the effect of rs3775291 on AMD. We searched for genetic association studies published in PubMed, EMBASE and Web of Science from start dates to March 10, 2015. Totally 235 reports were retrieved and 9 studies were included for meta-analysis, involving 7400 cases and 13579 controls. Summary odds ratios (ORs) with 95% confidence intervals (CIs) for alleles and genotypes were estimated. TLR3 rs3775291 was associated with both geographic atrophy (GA) and neovascular AMD (nAMD), with marginally significant pooled-P values. Stratification analysis by ethnicity indicated that rs3775291 was associated with all forms of AMD, GA and nAMD only in Caucasians (OR = 0.87, 0.78 and 0.77, respectively, for the TT genotype) but not in East Asians. However, the associations could not withstand Bonferroni correction. This meta-analysis has thus revealed suggestive evidence for TLR3 rs3775291 as an associated marker for AMD in Caucasians but not in Asians. This SNP may have only a small effect on AMD susceptibility. Further studies in larger samples are warranted to confirm its role.
Collapse
Affiliation(s)
- Li Ma
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Yao Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| | - Marten E Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales hospital, Hong Kong, China
| |
Collapse
|
181
|
APOE Isoforms Control Pathogenic Subretinal Inflammation in Age-Related Macular Degeneration. J Neurosci 2016; 35:13568-76. [PMID: 26446211 DOI: 10.1523/jneurosci.2468-15.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Contrary to Alzheimer's disease (AD), the APOE2 allele increases and the APOE4 allele reduces the risk to develop age-related macular degeneration (AMD) compared with the most common APOE3 allele. The underlying mechanism for this association with AMD and the reason for the puzzling difference with AD are unknown. We previously demonstrated that pathogenic subretinal mononuclear phagocytes (MPs) accumulate in Cx3cr1-deficient mice due to the overexpression of APOE, interleukin-6, and CC chemokine ligand 2 (CCL2). We here show using targeted replacement mice expressing the human APOE isoforms (TRE2, TRE3, and TRE4) that MPs of TRE2 mice express increased levels of APOE, interleukin-6, and CCL2 and develop subretinal MP accumulation, photoreceptor degeneration, and exaggerated choroidal neovascularization similar to AMD. Pharmacological inhibition of the cytokine induction inhibited the pathogenic subretinal inflammation. In the context of APOE-dependent subretinal inflammation in Cx3cr1(GFP/GFP) mice, the APOE4 allele led to diminished APOE and CCL2 levels and protected Cx3cr1(GFP/GFP) mice against harmful subretinal MP accumulation observed in Cx3cr1(GFP/GFP)TRE3 mice. Our study shows that pathogenic subretinal inflammation is APOE isoform-dependent and provides the rationale for the previously unexplained implication of the APOE2 isoform as a risk factor and the APOE4 isoform as a protective factor in AMD pathogenesis. SIGNIFICANCE STATEMENT The understanding of how genetic predisposing factors, which play a major role in age-related macular degeneration (AMD), participate in its pathogenesis is an important clue to decipher the pathomechanism and develop efficient therapies. In this study, we used transgenic, targeted replacement mice that carry the three human APOE isoform-defining sequences at the mouse APOE chromosomal location and express the human APOE isoforms. Our study is the first to show how APOE2 provokes and APOE4 inhibits the cardinal AMD features, inflammation, degeneration, and exaggerated neovascularization. Our findings reflect the clinical association of the genetic predisposition that was recently confirmed in a major pooled analysis. They emphasize the role of APOE in inflammation and inflammation in AMD.
Collapse
|
182
|
CYP4F2 (rs2108622) Gene Polymorphism Association with Age-Related Macular Degeneration. Adv Med 2016; 2016:3917916. [PMID: 27652291 PMCID: PMC5019857 DOI: 10.1155/2016/3917916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Background. Age-related macular degeneration is the leading cause of blindness in elderly individuals where aetiology and pathophysiology of age-related macular degeneration are not absolutely clear. Purpose. To determine the frequency of the genotype of rs2108622 in patients with early and exudative age-related macular degeneration. Methods. The study enrolled 190 patients with early age-related macular degeneration, 181 patients with exudative age-related macular degeneration (eAMD), and a random sample of 210 subjects from the general population (control group). The genotyping of rs2108622 was carried out using the real-time polymerase chain reaction method. Results. The analysis of rs2108622 gene polymorphism did not reveal any differences in the distribution of C/C, C/T, and T/T genotypes between the early AMD group, the eAMD group, and the control group. The CYP4F2 (1347C>T) T/T genotype was more frequent in males with eAMD compared to females (10.2% versus 0.8%; p = 0.0052); also T/T genotype was less frequently present in eAMD females compared to healthy control females (0.8% versus 6.2%; p = 0.027). Conclusion. Rs2108622 gene polymorphism had no predominant effect on the development of early AMD and eAMD. The T/T genotype was more frequent in males with eAMD compared to females and less frequently present in eAMD females compared to healthy females.
Collapse
|
183
|
A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 2015; 48:134-43. [PMID: 26691988 PMCID: PMC4745342 DOI: 10.1038/ng.3448] [Citation(s) in RCA: 1035] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
Abstract
Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Collapse
|
184
|
Lin JB, Mast N, Bederman IR, Li Y, Brunengraber H, Björkhem I, Pikuleva IA. Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. J Lipid Res 2015; 57:258-64. [PMID: 26630912 DOI: 10.1194/jlr.m064469] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/18/2022] Open
Abstract
The retina, a thin tissue in the back of the eye, has two apparent sources of cholesterol: in situ biosynthesis and cholesterol available from the systemic circulation. The quantitative contributions of these two cholesterol sources to the retinal cholesterol pool are unknown and have been determined in the present work. A new methodology was used. Mice were given separately deuterium-labeled drinking water and chow containing 0.3% deuterium-labeled cholesterol. In the retina, the rate of total cholesterol input was 21 μg of cholesterol/g retina • day, of which 15 μg of cholesterol/g retina • day was provided by local biosynthesis and 6 μg of cholesterol/g retina • day was uptaken from the systemic circulation. Thus, local cholesterol biosynthesis accounts for the majority (72%) of retinal cholesterol input. We also quantified cholesterol input to mouse brain, the organ sharing important similarities with the retina. The rate of total cerebral cholesterol input was 121 μg of cholesterol/g brain • day with local biosynthesis providing 97% of total cholesterol input. Our work addresses a long-standing question in eye research and adds new knowledge to the potential use of statins (drugs that inhibit cholesterol biosynthesis) as therapeutics for age-related macular degeneration, a common blinding disease.
Collapse
Affiliation(s)
- Joseph B Lin
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| | - Ilya R Bederman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | - Yong Li
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Huddinge, Stockholm 141 86 Sweden
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
185
|
Meng Q, Huang L, Sun Y, Bai Y, Wang B, Yu W, Zhao M, Li X. Effect of High-Density Lipoprotein Metabolic Pathway Gene Variations and Risk Factors on Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in China. PLoS One 2015; 10:e0143924. [PMID: 26624898 PMCID: PMC4666634 DOI: 10.1371/journal.pone.0143924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023] Open
Abstract
Purpose To investigate the effect of genetic variants in the high-density lipoprotein (HDL) metabolic pathway and risk factors on neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV) in China. Methods A total of 742 Chinese subjects, including 221 controls, 230 cases with nAMD, and 291 cases with PCV, were included in the present study. Five single nucleotide polymorphisms (SNPs) from three genes in the HDL metabolic pathway (HDLMP) including cholesteryl ester transfer protein (CETP), hepatic lipase (LIPC) and lipoprotein lipase (LPL) were genotyped in all study subjects with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Risk factors including gender, hypertension, hyperlipidemia, diabetes mellitus, and coronary artery disease were identified. Chi-square tests or Fisher’s exact tests were applied to discover associations between SNPs and risk factors for PCV and nAMD. Gene-gene interactions and gene-environment interactions were evaluated by the multifactor-dimensionality reduction (MDR) method. Results CETP rs3764261 were significantly associated with an increased risk for PCV (odds ratio (OR) = 1.444, P = 0.0247). LIPC rs1532085 conferred an increased risk for PCV (OR = 1.393, P = 0.0094). We found no association between PCV and LPL rs12678919, LIPC rs10468017 or CETP rs173539. No association was found between five SNPs with nAMD. Regarding risk factors, females were found to have significantly decreased risks for both PCV and nAMD (P = 0.006 and 0.001, respectively). Coronary artery disease (CAD) was a risk factor in PCV patients but played a protective role in nAMD patients. Hyperlipidemia was associated with PCV but not with nAMD. Neither hypertension nor diabetes mellitus was associated with PCV or nAMD. The MDR analysis revealed that a three-locus model with rs12678919, rs1532085, and gender was the best model for nAMD, while a five-locus model consisting of rs10468017, rs3764261, rs1532085, gender, and hyperlipidemia was best for PCV. Conclusion Our large-sample study suggested that CETP rs3764261 conferred an increased risk for PCV. We also first found the association between rs1532085 and PCV. The result of present study also showed that gender and CAD are associated with PCV and nAMD. Significant association was found between hyperlipidemia and PCV but not nAMD.
Collapse
Affiliation(s)
- Qingyu Meng
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Lvzhen Huang
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Yaoyao Sun
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Yujing Bai
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Bin Wang
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Wenzhen Yu
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- * E-mail: (MZ); (XL)
| | - Xiaoxin Li
- Peking University People’s Hospital, Ophthalmology Department, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- * E-mail: (MZ); (XL)
| |
Collapse
|
186
|
Arsenault BJ, Boyer M, Kastelein JJP. What does the future hold for cholesteryl ester transfer protein inhibition? Curr Opin Lipidol 2015; 26:526-35. [PMID: 26780006 DOI: 10.1097/mol.0000000000000248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article summarizes the latest studies relevant to cholesteryl ester transfer protein (CETP) inhibition and cardiovascular risk and proposes a series of patient populations that might eventually derive benefits from CETP inhibition. RECENT FINDINGS Results of recently published genetic epidemiology studies have helped shape our understanding of the association between lipoprotein-lipid levels and cardiovascular disease risk. These studies have confirmed the proatherogenic role of apolipoprotein B-containing lipoproteins and triglycerides and renewed our interest for lipoprotein(a) as a significant and causal predictor of cardiovascular risk. The association between HDL cholesterol levels and cardiovascular risk, albeit strong and consistent, is unlikely to be of causative nature, at least according to genetic epidemiology. However, a handful of intriguing studies have highlighted a predictive role for HDL cholesterol efflux capacities in predicting cardiovascular risk independently of HDL cholesterol levels. Potent CETP inhibitors, currently under investigation, significantly decrease apolipoprotein B-containing lipoproteins and lipoprotein(a) and increase both HDL cholesterol levels and HDL cholesterol efflux capacities. SUMMARY Two phase 3 cardiovascular outcomes trials testing the hypothesis that CETP inhibition will reduce cardiovascular outcomes in high-risk patients are well underway. The future of CETP inhibition will depend on the outcomes of these trials.
Collapse
Affiliation(s)
- Benoit J Arsenault
- aCentre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de QuébecbDepartment of Medicine, Faculty of Medicine, Université Laval, Québec, CanadacDepartment of Vascular Medicine, Academic Medical Center, AmsterdamdDezima Pharma BV, Naarden, the Netherlands
| | | | | |
Collapse
|
187
|
ABCA1 rs1883025 polymorphism and risk of age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2015; 254:323-32. [PMID: 26608582 DOI: 10.1007/s00417-015-3211-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To evaluate the association of the ABCA1 rs1883025 polymorphism and susceptibility to age-related macular degeneration (AMD). METHODS A systematic search of the PubMed, EMBASE, and ISI web of science databases was performed to identify eligible published studies without language restrictions up to September 2015. Pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated under different genetic models using meta-analytic methods. Stratified analysis and sensitivity analysis were performed to explore potential sources of heterogeneity. RESULTS A total of 12 articles with 25,445 cases and 36,460 controls were eligible in this meta-analysis. The ABCA1 rs1883025 variant showed significant association with the lower risk of overall AMD under the allelic model (OR= 0.81, 95 % CI=0.74-0.89). Stratified analysis based on ethnicity demonstrated a strong association between rs1883025 polymorphism and AMD in the Caucasian population, but not in Asian population. For late AMD, the ABCA1 rs1883025 variant was observed to have a significant association with the lower risk of this disease (OR = 0.81, 95 % CI, 0.72-0.91). In early-stage AMD, significant associations of the rs1883025 polymorphism with lower risk of early AMD were observed in different genetic models (OR ranging from 0.45 to 0.65, all P < 0.05). CONCLUSIONS The present meta-analysis indicated that the T allelic in rs1883025 variant was significantly associated with the risk of developing AMD, particularly at the early stage. The associations of the ABCA1 locus with AMD risk in various populations need further exploration.
Collapse
|
188
|
Sidore C, Busonero F, Maschio A, Porcu E, Naitza S, Zoledziewska M, Mulas A, Pistis G, Steri M, Danjou F, Kwong A, Ortega del Vecchyo VD, Chiang CWK, Bragg-Gresham J, Pitzalis M, Nagaraja R, Tarrier B, Brennan C, Uzzau S, Fuchsberger C, Atzeni R, Reinier F, Berutti R, Huang J, Timpson NJ, Toniolo D, Gasparini P, Malerba G, Dedoussis G, Zeggini E, Soranzo N, Jones C, Lyons R, Angius A, Kang HM, Novembre J, Sanna S, Schlessinger D, Cucca F, Abecasis GR. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet 2015; 47:1272-1281. [PMID: 26366554 PMCID: PMC4627508 DOI: 10.1038/ng.3368] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
Abstract
We report ∼17.6 million genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from previous sequencing-based compilations and are enriched for predicted functional consequences. Furthermore, ∼76,000 variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. We observe 14 signals, including 2 major new loci, for lipid levels and 19 signals, including 2 new loci, for inflammatory markers. The new associations would have been missed in analyses based on 1000 Genomes Project data, underlining the advantages of large-scale sequencing in this founder population.
Collapse
Affiliation(s)
- Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
- Università degli Studi di Sassari, Sassari, Italy
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
- University of Michigan, DNA Sequencing Core, Ann Arbor, MI, USA
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
- University of Michigan, DNA Sequencing Core, Ann Arbor, MI, USA
| | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
- Università degli Studi di Sassari, Sassari, Italy
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
| | | | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Università degli Studi di Sassari, Sassari, Italy
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
- Università degli Studi di Sassari, Sassari, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
| | - Fabrice Danjou
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
| | - Alan Kwong
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
| | | | - Charleston W. K. Chiang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | | | - Ramaiah Nagaraja
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Brendan Tarrier
- University of Michigan, DNA Sequencing Core, Ann Arbor, MI, USA
| | | | - Sergio Uzzau
- Porto Conte Ricerche srl, Tramariglio, Alghero, 07041 Italy
| | | | - Rossano Atzeni
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e tecnologico della Sardegna, Pula, Italy
| | - Frederic Reinier
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e tecnologico della Sardegna, Pula, Italy
| | - Riccardo Berutti
- Università degli Studi di Sassari, Sassari, Italy
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e tecnologico della Sardegna, Pula, Italy
| | - Jie Huang
- Human Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1HH
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, United Kingdom
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo Gasparini
- DSM-University of Trieste and IRCCS-Burlo Garofolo Children Hospital (Trieste, Italy)
- Experimental Genetics Division, Sidra, (Doha, Qatar)
| | - Giovanni Malerba
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | - Eleftheria Zeggini
- Human Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1HH
| | - Nicole Soranzo
- Human Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1HH
- Department of Haematology, University of Cambridge, Hills Rd, Cambridge CB2 0AH
| | - Chris Jones
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e tecnologico della Sardegna, Pula, Italy
| | - Robert Lyons
- University of Michigan, DNA Sequencing Core, Ann Arbor, MI, USA
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Center for Advanced Studies, Research, and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e tecnologico della Sardegna, Pula, Italy
| | - Hyun M. Kang
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
| | - John Novembre
- Department of Human Genetics, University of Chicago, IL, USA
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Cagliari, Italy
- Università degli Studi di Sassari, Sassari, Italy
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, Ann Arbor, University of Michigan, MI, USA
| |
Collapse
|
189
|
Rastogi N, Smith RT. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease. Surv Ophthalmol 2015; 61:422-33. [PMID: 26518628 DOI: 10.1016/j.survophthal.2015.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 09/26/2015] [Accepted: 10/02/2015] [Indexed: 02/04/2023]
Abstract
Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration.
Collapse
Affiliation(s)
- Neelesh Rastogi
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - R Theodore Smith
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
190
|
Wang YF, Han Y, Zhang R, Qin L, Wang MX, Ma L. CETP/LPL/LIPC gene polymorphisms and susceptibility to age-related macular degeneration. Sci Rep 2015; 5:15711. [PMID: 26503844 PMCID: PMC4621603 DOI: 10.1038/srep15711] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022] Open
Abstract
Three high-density lipoprotein (HDL)-related loci have been reported to be associated with age-related macular degeneration (AMD), but the results were inconsistent. In this study, the cholesteryl ester transfer protein (CETP) rs3764261 variant was significantly associated with an increased risk of AMD (odds ratio [OR] = 1.13, 95% confidence interval [CI]: 1.05–1.21, P < 0.001), and the hepatic lipase (LIPC) rs10468017 variant was associated with a significantly decreased risk of AMD (OR = 0.81, CI: 0.76–0.86, P < 0.001). Individuals carrying the lipoprotein lipase (LPL) rs12678919 polymorphism (A → G) had no significant change in the risk of developing AMD (OR = 1.01, CI: 0.92–1.10, P = 0.17). After adjusting for the complement factor H (CFH) gene, both CETP and LPL conferred a significantly increased AMD risk (ORCETP = 1.17, CI: 1.08–1.26, P < 0.001; ORLPL = 1.11, CI: 1.01–1.22, P = 0.02). Subgroup analysis based on ethnicity revealed a significant association between the CETP variant and AMD in both Americans (OR = 1.12, CI: 1.02–1.23, P = 0.01) and Europeans (OR = 1.10, CI: 1.01–1.19, P = 0.011). This meta-analysis revealed that both CETP rs3764261 and LIPC rs10468017 polymorphisms were significantly associated with AMD risk. After adjustment for the CFH gene, CETP/LPL conferred a significantly increased susceptibility to the disease, indicating potential interactions among genes in the complement system and the lipid metabolism pathway.
Collapse
Affiliation(s)
- Ya-Feng Wang
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Yue Han
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Rui Zhang
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Li Qin
- The First Affiliated Hospital, Xi'an Jiao tong University College of Medicine, Xi'an, China
| | - Ming-Xu Wang
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| | - Le Ma
- School of Public Health, Xi'an Jiao tong University Health Science Center, Xi'an, China
| |
Collapse
|
191
|
Brown GC, Brown MM, Lieske HB, Lieske PA, Brown KS. A Value-Based Medicine cost-utility analysis of genetic testing for neovascular macular degeneration. Int J Retina Vitreous 2015; 1:19. [PMID: 27847612 PMCID: PMC5088478 DOI: 10.1186/s40942-015-0016-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/16/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There is a dearth of patient, preference-based cost-effectiveness analyses evaluating genetic testing for neovascular age-related macular degeneration (NVAMD). METHODS A Value-Based Medicine, 12-year, combined-eye model, cost-utility analysis evaluated genetic testing of Category 3 AMD patients at age 65 for progression to NVAMD. The benefit of genetic testing was predicated upon the fact that early-treatment ranibizumab therapy (baseline vision 20/40-20/80) for NVAMD confers greater patient value than late-treatment (baseline vision ≤20/160). Published genetic data and MARINA Study ranibizumab therapy data were utilized in the analysis. Patient value (quality-of-life gain) and financial value (2012 US real dollar) outcomes were discounted at 3 % annually. RESULTS Genetic testing-enabled, early-treatment ranibizumab therapy per patient conferred mean 20/40-1 vision, a 0.845 QALY gain and 14.1 % quality-of-life gain over sham therapy. Late-treatment ranibizumab therapy conferred mean 20/160+2 vision, a 0.250 QALY gain and 4.2 % quality-of-life gain over sham therapy. The gain from early-treatment over late-treatment was 0.595 QALY (10.0 % quality-of-life gain). The per-patient cost for genetic testing/closer monitoring was $2205 per screened person, $2.082 billion for the 944,000 estimated new Category 3 AMD patients annually. Genetic testing/monitoring costs per early-treatment patient totaled $66,180. Costs per early-treatment patient included: genetic testing costs: $66,180 + direct non-ophthalmic medical costs: -$40,914 + caregiver costs: -$172,443 + employment costs: -$14,098 = a net societal cost saving of $160,582 per early treatment patient. When genetic screening facilitated an incremental 12,965 (8.0 %) of the 161,754, new annual NVAMD patients aged ≥65 in the US to undergo early-treatment ranibizumab therapy, each additional patient treated accrued an overall, net financial gain for society of $160,582. Genetic screening was cost-effective, using World Health Organization criteria, when it enabled an incremental 4.1 % (6634) of 161,754 annual NVAMD patients ≥65 years to receive early-treatment ranibizumab therapy. CONCLUSIONS Genetic screening-enabled, early-treatment ranibizumab therapy for NVAMD is cost-effective if it enables an incremental 4.1 % of the annual US cohort of new-onset NVAMD patients ≥65 to undergo early-treatment with ranibizumab.
Collapse
Affiliation(s)
- Gary C. Brown
- Center for Value-Based Medicine®, 6010 West Mill Road, Flourtown, PA 19031 USA
- The Eye Research Institute, Philadelphia, PA USA
- The Retina Service, Wills Eye Hospital, Jefferson Medical University, Philadelphia, PA USA
| | - Melissa M. Brown
- Center for Value-Based Medicine®, 6010 West Mill Road, Flourtown, PA 19031 USA
- The Eye Research Institute, Philadelphia, PA USA
- The Research Department, Wills Eye Hospital, Jefferson Medical University, Philadelphia, PA USA
| | - Heidi B. Lieske
- Center for Value-Based Medicine®, 6010 West Mill Road, Flourtown, PA 19031 USA
| | - Philip A. Lieske
- Center for Value-Based Medicine®, 6010 West Mill Road, Flourtown, PA 19031 USA
| | - Kathryn S. Brown
- Center for Value-Based Medicine®, 6010 West Mill Road, Flourtown, PA 19031 USA
| |
Collapse
|
192
|
Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature 2015; 526:68-74. [PMID: 26432245 PMCID: PMC4750478 DOI: 10.1038/nature15393] [Citation(s) in RCA: 10831] [Impact Index Per Article: 1203.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/20/2015] [Indexed: 12/04/2022]
Abstract
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. Results for the final phase of the 1000 Genomes Project are presented including whole-genome sequencing, targeted exome sequencing, and genotyping on high-density SNP arrays for 2,504 individuals across 26 populations, providing a global reference data set to support biomedical genetics. The 1000 Genomes Project has sought to comprehensively catalogue human genetic variation across populations, providing a valuable public genomic resource. The data obtained so far have found applications ranging from association studies and fine mapping studies to the filtering of likely neutral variants in rare-disease cohorts. The authors now report on the final phase of the project, phase 3, which covers previously uncharacterized areas of human genetic diversity in terms of the populations sampled and categories of characterized variation. The sample now includes more than 2,500 individuals from 26 global populations, with low coverage whole-genome and deep exome sequencing, as well as dense microarray genotyping. They find that while most common variants are shared across populations, rarer variants are often restricted to closely related populations. The authors also demonstrate the use of the phase 3 dataset as a reference panel for imputation to improve the resolution in genetic association studies.
Collapse
|
193
|
Hall JB, Cooke Bailey JN, Hoffman JD, Pericak-Vance MA, Scott WK, Kovach JL, Schwartz SG, Agarwal A, Brantley MA, Haines JL, Bush WS. Estimating cumulative pathway effects on risk for age-related macular degeneration using mixed linear models. BMC Bioinformatics 2015; 16:329. [PMID: 26467978 PMCID: PMC4606903 DOI: 10.1186/s12859-015-0760-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/03/2015] [Indexed: 11/13/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly in developed countries and typically affects more than 10 % of individuals over age 80. AMD has a large genetic component, with heritability estimated to be between 45 % and 70 %. Numerous variants have been identified and implicate various molecular mechanisms and pathways for AMD pathogenesis but those variants only explain a portion of AMD’s heritability. The goal of our study was to estimate the cumulative genetic contribution of common variants on AMD risk for multiple pathways related to the etiology of AMD, including angiogenesis, antioxidant activity, apoptotic signaling, complement activation, inflammatory response, response to nicotine, oxidative phosphorylation, and the tricarboxylic acid cycle. While these mechanisms have been associated with AMD in literature, the overall extent of the contribution to AMD risk for each is unknown. Methods In a case–control dataset with 1,813 individuals genotyped for over 600,000 SNPs we used Genome-wide Complex Trait Analysis (GCTA) to estimate the proportion of AMD risk explained by SNPs in genes associated with each pathway. SNPs within a 50 kb region flanking each gene were also assessed, as well as more distant, putatively regulatory SNPs, based on DNaseI hypersensitivity data from ocular tissue in the ENCODE project. Results We found that 19 previously associated AMD risk SNPs contributed to 13.3 % of the risk for AMD in our dataset, while the remaining genotyped SNPs contributed to 36.7 % of AMD risk. Adjusting for the 19 risk SNPs, the complement activation and inflammatory response pathways still explained a statistically significant proportion of additional risk for AMD (9.8 % and 17.9 %, respectively), with other pathways showing no significant effects (0.3 % – 4.4 %). Discussion Our results show that SNPs associated with complement activation and inflammation significantly contribute to AMD risk, separately from the risk explained by the 19 known risk SNPs. We found that SNPs within 50 kb regions flanking genes explained additional risk beyond genic SNPs, suggesting a potential regulatory role, but that more distant SNPs explained less than 0.5 % additional risk for each pathway. Conclusions From these analyses we find that the impact of complement SNPs on risk for AMD extends beyond the established genome-wide significant SNPs. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0760-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacob B Hall
- Graduate Program in Human Genetics, Vanderbilt University, Nashville, TN, USA.
| | - Jessica N Cooke Bailey
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
| | - Joshua D Hoffman
- Graduate Program in Human Genetics, Vanderbilt University, Nashville, TN, USA.
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jaclyn L Kovach
- Department of Ophthalmology at Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Stephen G Schwartz
- Department of Ophthalmology at Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Anita Agarwal
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Milam A Brantley
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Jonathan L Haines
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
| | - William S Bush
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
194
|
Zhou J, Ueda K, Zhao J, Sparrow JR. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J Biol Chem 2015; 290:27215-27227. [PMID: 26400086 DOI: 10.1074/jbc.m115.680363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 01/10/2023] Open
Abstract
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4(-/-) and Rdh8(-/-)/Abca4(-/-) mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4(-/-) but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4(-/-) mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4(-/-) mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Jilin Zhou
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Keiko Ueda
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032.
| |
Collapse
|
195
|
Shen L, Hoffmann TJ, Melles RB, Sakoda LC, Kvale MN, Banda Y, Schaefer C, Risch N, Jorgenson E. Differences in the Genetic Susceptibility to Age-Related Macular Degeneration Clinical Subtypes. Invest Ophthalmol Vis Sci 2015; 56:4290-9. [PMID: 26176866 DOI: 10.1167/iovs.15-16533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE We compared across age-related macular degeneration (AMD) subtypes the effect of AMD risk variants, their predictive power, and heritability. METHODS The prevalence of AMD was estimated among active non-Hispanic white Kaiser Permanente Northern California members who were at least 65 years of age as of June 2013. The genetic analysis included 5,170 overall AMD cases ascertained from electronic health records (EHR), including 1,239 choroidal neovascularization (CNV) cases and 1,060 nonexudative AMD cases without CNV, and 23,130 controls of non-Hispanic white ancestry from the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Imputation was based on the 1000 Genomes Project reference panel. RESULTS The narrow-sense heritability due to common autosomal single nucleotide polymorphisms (SNPs) was 0.37 for overall AMD, 0.19 for AMD unspecified, 0.20 for nonexudative AMD, and 0.60 for CNV. For the 19 previously reported AMD risk loci, the area under the receiver operating characteristic (ROC) curve was 0.675 for overall AMD, 0.640 for AMD unspecified, 0.678 for nonexudative AMD, and 0.766 for CNV. The individual effects on the risk of AMD for 18 of the 19 SNPs were in a consistent direction with those previously reported, including a protective effect of the APOE ε4 allele. Conversely, the risk of AMD was significantly increased in carriers of the ε2 allele. CONCLUSIONS These findings provide an independent confirmation of many of the previously identified AMD risk loci, and support a potentially greater role of genetic factors in the development of CNV. The replication of established associations validates the use of EHR in genetic studies of ophthalmologic traits.
Collapse
Affiliation(s)
- Ling Shen
- Kaiser Permanente Division of Research Oakland, California, United States
| | - Thomas J Hoffmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States 3Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States
| | - Ronald B Melles
- Department of Ophthalmology, Kaiser Permanente Northern California Redwood City Medical Center, Redwood City, California, United States
| | - Lori C Sakoda
- Kaiser Permanente Division of Research Oakland, California, United States
| | - Mark N Kvale
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States
| | - Yambazi Banda
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States
| | - Catherine Schaefer
- Kaiser Permanente Division of Research Oakland, California, United States
| | - Neil Risch
- Kaiser Permanente Division of Research Oakland, California, United States 3Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States 4Department of Ophthalmology, Kaiser Permanente North
| | - Eric Jorgenson
- Kaiser Permanente Division of Research Oakland, California, United States
| |
Collapse
|
196
|
Levy O, Calippe B, Lavalette S, Hu SJ, Raoul W, Dominguez E, Housset M, Paques M, Sahel JA, Bemelmans AP, Combadiere C, Guillonneau X, Sennlaub F. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 2015; 7:211-26. [PMID: 25604058 PMCID: PMC4328649 DOI: 10.15252/emmm.201404524] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Physiologically, the retinal pigment epithelium (RPE) expresses immunosuppressive signals such as FAS ligand (FASL), which prevents the accumulation of leukocytes in the subretinal space. Age-related macular degeneration (AMD) is associated with a breakdown of the subretinal immunosuppressive environment and chronic accumulation of mononuclear phagocytes (MPs). We show that subretinal MPs in AMD patients accumulate on the RPE and express high levels of APOE. MPs of Cx3cr1(-/-) mice that develop MP accumulation on the RPE, photoreceptor degeneration, and increased choroidal neovascularization similarly express high levels of APOE. ApoE deletion in Cx3cr1(-/-) mice prevents pathogenic age- and stress-induced subretinal MP accumulation. We demonstrate that increased APOE levels induce IL-6 in MPs via the activation of the TLR2-CD14-dependent innate immunity receptor cluster. IL-6 in turn represses RPE FasL expression and prolongs subretinal MP survival. This mechanism may account, in part, for the MP accumulation observed in Cx3cr1(-/-) mice. Our results underline the inflammatory role of APOE in sterile inflammation in the immunosuppressive subretinal space. They provide rationale for the implication of IL-6 in AMD and open avenues toward therapies inhibiting pathogenic chronic inflammation in late AMD.
Collapse
Affiliation(s)
- Olivier Levy
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Bertrand Calippe
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Sophie Lavalette
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Shulong J Hu
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - William Raoul
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Elisa Dominguez
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Michael Housset
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Michel Paques
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - José-Alain Sahel
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Alexis-Pierre Bemelmans
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France CEA DSV I²BM Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France CNRS CEA URA 2210, Fontenay-aux-Roses, France
| | - Christophe Combadiere
- Sorbonne Universités, UPMC Univ Paris 06 CR7 Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France INSERM U1135 CIMI-Paris, Paris, France CNRS ERL 8255 CIMI-Paris, Paris, France
| | - Xavier Guillonneau
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| | - Florian Sennlaub
- INSERM, Paris, France UPMC Univ Paris 06 UMR_S 968 Institut de la Vision, Paris, France Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts INSERM-DHOS CIC 503, Paris, France
| |
Collapse
|
197
|
Buchkovich ML, Eklund K, Duan Q, Li Y, Mohlke KL, Furey TS. Removing reference mapping biases using limited or no genotype data identifies allelic differences in protein binding at disease-associated loci. BMC Med Genomics 2015. [PMID: 26210163 PMCID: PMC4515314 DOI: 10.1186/s12920-015-0117-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Genetic variation can alter transcriptional regulatory activity contributing to variation in complex traits and risk of disease, but identifying individual variants that affect regulatory activity has been challenging. Quantitative sequence-based experiments such as ChIP-seq and DNase-seq can detect sites of allelic imbalance where alleles contribute disproportionately to the overall signal suggesting allelic differences in regulatory activity. Methods We created an allelic imbalance detection pipeline, AA-ALIGNER, to remove reference mapping biases influencing allelic imbalance detection and evaluate accuracy of allelic imbalance predictions in the absence of complete genotype data. Using the sequence aligner, GSNAP, and varying amounts of genotype information to remove mapping biases we investigated the accuracy of allelic imbalance detection (binomial test) in CREB1 ChIP-seq reads from the GM12878 cell line. Additionally we thoroughly evaluated the influence of experimental and analytical parameters on imbalance detection. Results Compared to imbalances identified using complete genotypes, using imputed partial sample genotypes, AA-ALIGNER detected >95 % of imbalances with >90 % accuracy. AA-ALIGNER performed nearly as well using common variants when genotypes were unknown. In contrast, predicting additional heterozygous sites and imbalances using the sequence data led to >50 % false positive rates. We evaluated effects of experimental data characteristics and key analytical parameter settings on imbalance detection. Overall, total base coverage and signal dispersion across the genome most affected our ability to detect imbalances, while parameters such as imbalance significance, imputation quality thresholds, and alignment mismatches had little effect. To assess the biological relevance of imbalance predictions, we used electrophoretic mobility shift assays to functionally test for predicted allelic differences in CREB1 binding in the GM12878 lymphoblast cell line. Six of nine tested variants exhibited allelic differences in binding. Two of these variants, rs2382818 and rs713875, are located within inflammatory bowel disease-associated loci. Conclusions AA-ALIGNER accurately detects allelic imbalance in quantitative sequence data using partial genotypes or common variants filling a critical methodological gap in these analyses, as full genotypes are rarely available. Importantly, we demonstrate how experimental and analytical features impact imbalance detection providing guidance for similar future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0117-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin L Buchkovich
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Karl Eklund
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Terrence S Furey
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
198
|
Butler JM, Sharif U, Ali M, McKibbin M, Thompson JP, Gale R, Yang YC, Inglehearn C, Paraoan L. A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer's disease. Hum Genet 2015; 134:705-15. [PMID: 25893795 PMCID: PMC4460273 DOI: 10.1007/s00439-015-1552-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/05/2015] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) and Alzheimer's disease (AD) are degenerative, multifactorial diseases involving age-related accumulation of extracellular deposits linked to dysregulation of protein homeostasis. Here, we strengthen the evidence that an nsSNP (p.Ala25Thr) in the cysteine proteinase inhibitor cystatin C gene CST3, previously confirmed by meta-analysis to be associated with AD, is associated with exudative AMD. To our knowledge, this is the first report highlighting a genetic variant that increases the risk of developing both AD and AMD. Furthermore, we demonstrate that the risk associated with the mutant allele follows a recessive model for both diseases. We perform an AMD-CST3 case-control study genotyping 350 exudative AMD Caucasian individuals. Bringing together our data with the previously reported AMD-CST3 association study, the evidence of a recessive effect on AMD risk is strengthened (OR = 1.89, P = 0.005). This effect closely resembles the AD-CST3 recessive effect (OR = 1.73, P = 0.005) previously established by meta-analysis. This resemblance is substantiated by the high correlation between CST3 genotype and effect size across the two diseases (R(2) = 0.978). A recessive effect is in line with the known function of cystatin C, a potent enzyme inhibitor. Its potency means that, in heterozygous individuals, a single functional allele is sufficient to maintain its inhibitory function; only homozygous individuals will lack this form of proteolytic regulation. Our findings support the hypothesis that recessively acting variants account for some of the missing heritability of multifactorial diseases. Replacement therapy represents a translational opportunity for individuals homozygous for the mutant allele.
Collapse
Affiliation(s)
- Joe M. Butler
- />Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA UK
| | - Umar Sharif
- />Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA UK
| | - Manir Ali
- />Ophthalmology and Neuroscience, University of Leeds, Leeds, LS9 7TF UK
| | - Martin McKibbin
- />Ophthalmology Department, St James’s University Hospital, Leeds, LS9 7TF UK
| | - Joseph P. Thompson
- />Ophthalmology and Neuroscience, University of Leeds, Leeds, LS9 7TF UK
| | - Richard Gale
- />Ophthalmology Department, The York Hospital, York, YO31 8HE UK
| | - Yit C. Yang
- />Ophthalmology, The Royal Wolverhampton NHS Trust, Wolverhampton, WV10 0QP UK
| | - Chris Inglehearn
- />Ophthalmology and Neuroscience, University of Leeds, Leeds, LS9 7TF UK
| | - Luminita Paraoan
- />Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA UK
| |
Collapse
|
199
|
Merle BMJ, Richard F, Benlian P, Puche N, Delcourt C, Souied EH. CFH Y402H and ARMS2 A69S Polymorphisms and Oral Supplementation with Docosahexaenoic Acid in Neovascular Age-Related Macular Degeneration Patients: The NAT2 Study. PLoS One 2015; 10:e0130816. [PMID: 26132079 PMCID: PMC4489493 DOI: 10.1371/journal.pone.0130816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/13/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose Genetic susceptibility could be modified by environmental factors and may also influence differential responses to treatments for age-related macular degeneration (AMD). We investigated whether genotype could influence response to docosahexaenoic acid (DHA)-supplementation in the occurrence of choroidal new vessels (CNV). Methods The Nutritional AMD Treatment 2 (NAT2) study was a randomized, placebo-controlled, double-blind, parallel, comparative study, including 250 patients aged 55 to 85 years with early lesions of age-related maculopathy, visual acuity better than 0.4 Logarithm of Minimum Angle of Resolution units in the study eye and neovascular AMD in the fellow eye. Patients were randomized at baseline to receive either 3 daily fish-oil capsules, each containing 280 mg DHA, 90 mg EPA and 2 mg Vitamin E, or placebo. Results Patients carrying the risk allele (C) for CFH Y402H had no statistically significant increased risk for developing CNV in the study eye (Hazard Ratio (HR)=0.97; 95% Confidence Interval (CI): 0.54-1.76 for heterozygous and HR=1.29; 95%CI: 0.69-2.40 for homozygous). Patients carrying the risk allele (T) for ARMS2 A69S had no statistically significant increased risk for developing CNV in the study eye (HR=1.68; 95%CI: 0.91-3.12) for heterozygous and HR=1.78; 95%CI: 0.90-3.52 for homozygous). A significant interaction was observed between CFH Y402H and DHA-supplementation (p=0.01). We showed a protective effect of DHA-supplementation among homozygous non-risk patients. Among these patients, occurrence of CNV was 38.2% in placebo group versus 16.7% in DHA group (p=0.008). Conclusions These results suggest that a genetic predisposition to AMD conferred by the CFH Y402H variant limits the benefit provided by DHA supplementation. Trial Registration ISRCTN registry 98246501
Collapse
Affiliation(s)
- Bénédicte M. J. Merle
- Ophthalmology Department, Hôpital Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
- * E-mail:
| | - Florence Richard
- Université de Lille Nord de France, INSERM774 Institut Pasteur de Lille, Lille, France
- Université de Lille Nord de France, Lille, France
| | - Pascale Benlian
- CHRU de Lille, Lille, France
- APHP - Saint-Antoine Hospital, Endocrinology and Metabolic Disease Department, F75012 Paris, France
- Lille 2 University, School of Medicine, Department of Biochemistry and Molecular Biology, F-59045 Lille, France
| | - Nathalie Puche
- Ophthalmology Department, Hôpital Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
| | - Cécile Delcourt
- INSERM, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- Univ. Bordeaux, ISPED, F-33000 Bordeaux, France
| | - Eric H. Souied
- Ophthalmology Department, Hôpital Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
| |
Collapse
|
200
|
Jiang DK, Ma XP, Yu H, Cao G, Ding DL, Chen H, Huang HX, Gao YZ, Wu XP, Long XD, Zhang H, Zhang Y, Gao Y, Chen TY, Ren WH, Zhang P, Shi Z, Jiang W, Wan B, Saiyin H, Yin J, Zhou YF, Zhai Y, Lu PX, Zhang H, Gu X, Tan A, Wang JB, Zuo XB, Sun LD, Liu JO, Yi Q, Mo Z, Zhou G, Liu Y, Sun J, Shugart YY, Zheng SL, Zhang XJ, Xu J, Yu L. Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B. Hepatology 2015; 62:118-28. [PMID: 25802187 DOI: 10.1002/hep.27794] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis B virus affects more than 2 billion people worldwide, 350 million of which have developed chronic hepatitis B (CHB). The genetic factors that confer CHB risk are still largely unknown. We sought to identify genetic variants for CHB susceptibility in the Chinese population. We undertook a genome-wide association study (GWAS) in 2,514 CHB cases and 1,130 normal controls from eastern China. We replicated 33 of the most promising signals and eight previously reported CHB risk loci through a two-stage validation totaling 6,600 CHB cases and 8,127 controls in four independent populations, of which two populations were recruited from eastern China, one from northern China and one from southern China. The joint analyses of 9,114 CHB cases and 9,257 controls revealed significant association of CHB risk with five novel loci. Four loci are located in the human leukocyte antigen (HLA) region at 6p21.3, including two nonsynonymous variants (rs12614 [R32W] in complement factor B [CFB], Pmeta =1.28 × 10(-34) ; and rs422951 [T320A] in NOTCH4, Pmeta = 5.33 × 10(-16) ); one synonymous variant (rs378352 in HLA-DOA corresponding to HLA-DOA*010101, Pmeta = 1.04 × 10(-23) ); and one noncoding variant (rs2853953 near HLA-C, Pmeta = 5.06 × 10(-20) ). Another locus is located at 20q13.1 (rs1883832 in the Kozak sequence of CD40, Pmeta = 2.95 × 10(-15) ). Additionally, we validated seven of eight previously reported CHB susceptibility loci (rs3130542 at HLA-C, rs1419881 at TCF19, rs652888 at EHMT2, rs2856718 at HLA-DQB1, rs7453920 at HLA-DQB2, rs3077 at HLA-DPA1, and rs9277535 at HLA-DPA2, which are all located in the HLA region, 9.84 × 10(-71) ≤ Pmeta ≤ 9.92 × 10(-7) ). CONCLUSION Our GWAS identified five novel susceptibility loci for CHB. These findings improve the understanding of CHB etiology and may provide new targets for prevention and treatment of this disease.
Collapse
Affiliation(s)
- De-Ke Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China.,Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiao-Pin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongjie Yu
- James D. Watson Institute of Genome Sciences, College of life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Dong-Lin Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Haitao Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Hui-Xing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Zhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xiao-Pan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xi-Dai Long
- Department of Pathology, Youjiang Medical College for Nationalities, Guangxi, China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Youjie Zhang
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yong Gao
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Tao-Yang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Wei-Hua Ren
- Luoyang Central Hospital, Affiliated to Zhengzhou University, Luoyang, China
| | - Pengyin Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Zhuqing Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Wei Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yuan-Feng Zhou
- Department of Pathology, Youjiang Medical College for Nationalities, Guangxi, China
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pei-Xin Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoli Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Aihua Tan
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jin-Bing Wang
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Xian-Bo Zuo
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Liang-Dan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Qing Yi
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Cancer Medicine, and the Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zengnan Mo
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jielin Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - S Lilly Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC.,Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Xue-Jun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China.,Center for Genetic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China.,Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|